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Abstract

To solve inverse problems, plug-and-play (PnP) methods have been developed
that replace the proximal step in a convex optimization algorithm with a call to
an application-specific denoiser, often implemented using a deep neural network
(DNN). Although such methods have been successful, they can be improved.
For example, denoisers are usually designed/trained to remove white Gaussian
noise, but the denoiser input error in PnP algorithms is usually far from white
or Gaussian. Approximate message passing (AMP) methods provide white and
Gaussian denoiser input error, but only when the forward operator is a large random
matrix. In this work, we propose a PnP algorithm based on generalized expectation
consistent (GEC) approximation that offers predictable error statistics at each
iteration, as well as a new DNN denoiser that leverages those statistics.

1 Introduction

Linear inverse problems aim to recover a signal x0 ∈ RN from measurements y ∈ RM of the form

y = Ax0 +w, (1)

whereA is a known linear operator and w is unknown noise. Well known examples of linear inverse
problems include deblurring; superresolution; inpainting; image recovery in magnetic resonance
imaging (MRI), computed tomography, or microscopy; and decoding in communications. In many
cases, one has knowledge of the class of signals from which x0 is drawn. If harnessed, such
knowledge can be extremely beneficial to signal recovery. In fact, in problems whereA is not full
column rank, such knowledge is essential because many x0 explain y even in the absence of noise.

The traditional approach to solving inverse problems relied on an expert-based model for the signal
class (e.g., sparsity in a known basis) and used an algorithm to jointly enforce that model, together
with (1). The primary challenge with this approach is that some signal classes (e.g., natural images)
are difficult to model. A more recent approach is to train a deep neural network (DNN) to predict
x0 from y. Although this method has shown promise, it requires a huge number of (x0,y) pairs for
training, which may be unavailable in some applications. Also, the trained model may not generalize
to test scenarios whereA and/or the statistics of w have changed.

So-called “plug-and-play” (PnP) approaches give a middle-ground between traditional algorithmic
approaches and end-to-end DNNs. There, a DNN is trained as a signal denoiser, and that denoiser is
called iteratively by an algorithm that knowsA and the statistics ofw. Convolutional DNN denoisers
can be trained using only patches of the signal, so that relatively few full signal examples are required.
Also, because the denoiser is trained independently ofA and w, generalization is not an issue.
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To understand the conventional approach to PnP algorithm design, it helps to first pose the inverse
problem as an optimization problem of the form

x̂ = argmin
x

{
g1(x) + g2(x)

}
, (2)

where g1(x) and g2(x) promote measurement and signal-class fidelity, respectively. For example,

Algorithm 1 ADMM

Require: g1(·), g2(·) and γ.
1: Select initial x2,u
2: repeat
3: x1 ← proxγ−1g1(x2 − u)
4: x2 ← proxγ−1g2(x1 + u)
5: u← u+ x1 − x2

6: until Terminated

g1(x) =
γw
2 ‖y −Ax‖

2 is an appropriate choice when w is
white Gaussian noise (WGN) with precision γw. For convex
g1 and g2, many algorithms have been proposed to solve (2).
One of the best known is ADMM [1], shown as Alg. 1. In
lines 3–4, γ is a positive stepsize that affects convergence
speed but not the fixed point, and

proxρ(r) , argmin
x

{
ρ(x) + 1

2‖x− r‖
2
}
. (3)

Using (3), line 4 can be interpreted as MAP estimation of
x0 with prior p(x0) ∝ e−g2(x0) from an observation r = x0 + e with γ-precision AWGN e, i.e.,
MAP denoising. This observation led Bouman et al. to propose that the prox in line 4 be replaced
by state-of-the-art denoiser f2 : RN → RN , giving rise to PnP-ADMM [2]. The PnP formula
was then applied to other algorithms, such as primal-dual splitting (PDS) in [3]. Regularization-by-
denoising (RED) [4, 5] yields a related class of algorithms that iteratively call a denoiser. See [6] for
a comprehensive overview of PnP and RED.

With a well-designed DNN denoiser f2, PnP and RED significantly outperform optimization-based
approaches, as well as end-to-end DNNs in limited-data and mismatched-A scenarios (see, e.g., [6]).
However, there is room for improvement. For example, while DNN denoisers are typically trained to
remove the effects of additive WGN (AWGN), PnP and RED algorithms do not provide the denoiser
with an AWGN-corrupted input at each iteration. Thus, one might wonder: Is it possible to design an
iterative denoising algorithm that presents the denoiser with AWGN at each iteration?

2 Approximate Message Passing

For Lipschitz denoisers f2, there is indeed a family of iterative denoising algorithms that presents
the denoiser with WGN of known variance at each iteration: approximate message passing (AMP)
algorithms like [7, 8]. In fact, when used with an MMSE denoiser f2, one can prove that these
algorithm converge (exponentially fast) to the MMSE estimate of x0 from y [9, 10]. But there is a
catch: for these algorithms to work as intended, the forward operatorA should be large and random.
For example, the original AMP algorithm [7] wantsA to be large and i.i.d. sub-Gaussian, while the
VAMP algorithm [8] imposes the looser requirement thatA be large and right-orthogonally invariant
(ROI), i.e., that the right singular-vector (RSV) matrix of A should be drawn uniformly from the
set of orthogonal matrices. Essentially, these algorithms want that the RSV matrix ofA randomly
rotates the denoiser’s output error at each iteration, rendering it statistically equivalent to WGN.

In many linear inverse problems, however, A does not have sufficient randomness for these AMP
algorithms to work as intended. For example, in many imaging applications,A is constructed from a
Fourier operator, but the denoiser output error also has significant Fourier structure, and so the desired
randomization does not happen. As a result, when these AMP algorithms are used with Fourier-
structuredA and x0, they tend to diverge. Although heuristic damping and initialization strategies
can be applied to stabilize VAMP in these applications, and even outperform PnP-ADMM [11], they
do not yield denoiser input errors that are white and Gaussian at each iteration.

That said, progress in VAMP algorithm design with Fourier-structuredA and natural-image x0 has
been made in [12–14]. These works all recover the wavelet coefficients of the image rather than the
image pixels. The motivation is that the Fourier-Wavelet matrix is known to be approximately block
diagonal [15], where the blocks are formed by the wavelet subbands. Furthermore, the subblocks
of the Fourier-Wavelet matrix behave as randomizing operators for the wavelet coefficients in each
wavelet subband. This gives the potential to design a VAMP-like algorithm with WGN error in each
subband, as long as differences across subbands are properly handled.

In the first of these works, Schniter, Rangan, and Fletcher [12] used VAMP to recover the whitened
wavelet coefficients in an attempt to equalize the subband error variances, but did not track the error
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variances over the iterations. Later, for the special case of variable-density (VD) subsampled Fourier
measurements, Millard et al. [13] proposed a VAMP modification called VDAMP that uses wavelet
thresholding to track the subband error variances across iterations. More recently, Metzler and
Wetzstein [14] extended VDAMP to generic denoising, and designed a DNN denoiser that exploits
known error-variance within each wavelet subband. The resulting technique, coined “denoising-
VDAMP” (D-VDAMP), yielded subband errors that were white and Gaussian with predictable
variance at each iteration, and showed a significant boost in MRI image recovery performance over
VDAMP, PnP-ADMM, and RED [14].

Although D-VDAMP works reasonably well, it is based on a heuristic modification of VAMP with
poor fixed points. Also, it is not clear how to use D-VDAMP with forward operators other than
VD-subsampled Fourier. These issues motivate our proposed approach, which is described next.

3 Proposed Approach

Our approach uses the GEC framework from [16], as summarized in Alg. 2. GEC is similar to VAMP,

Algorithm 2 Generalized EC (GEC)

Require: f1(·, ·),f2(·, ·), and gdiag(·).
1: Select initial r1,γ1
2: repeat
3: // Measurement fidelity
4: x̂1 ← f1(r1,γ1)
5: η1 ← Diag(gdiag(∇f1(r1,γ1)))−1γ1
6: γ2 ← η1 − γ1
7: r2 ← Diag(γ2)

−1(Diag(η1)x̂1−Diag(γ1)r1)
8: // Denoising
9: x̂2 ← f2(r2,γ2)

10: η2 ← Diag(gdiag(∇f2(r2,γ2)))−1γ2
11: γ1 ← η2 − γ2
12: r1 ← Diag(γ1)

−1(Diag(η2)x̂2−Diag(γ2)r2)
13: until Terminated

but it averages the diagonal of the Jaco-
bian ∇fi separately over L coefficient
subsets using gdiag : RN×N→RN :
gdiag(Q) , [d11

T
N1
, . . . , dL1T

NL
]T (4a)

d` =
tr{Q``}
N`

. (4b)

In (4), N` is the size of the `th subset
and Q`` ∈ RN`×N` is the `th diagonal
subblock of the matrix inputQ. In Alg. 2,
Diag(·) creates a diagonal matrix from
its vector argument. When L=1, GEC
reduces to VAMP.

When GEC is used to solve a convex op-
timization problem of the form (2), the
functions fi take the form

fi(r,γ) = gproxgi,γ(r) for gproxρ,γ(r) , argmin
x

{
ρ(x) + 1

2‖x− r‖
2
γ

}
, (5)

where ‖q‖γ ,
√
qH Diag(γ)q. Note that if γ = γ1, then gproxρ,γ = proxγ−1ρ. Furthermore, if

the γi vectors are held fixed over the iterations and take the form γi = γ1 for some γ > 0, then GEC
reduces to the “Peaceman Rachford” variant of ADMM, which uses two dual updates. Thus, GEC
can be interpreted an ADMM-like algorithm with adaptive vector-valued stepsizes, γ1 and γ2.

For our proposed “denoising GEC” (D-GEC) approach, we use a DNN denoiser for f2. Also, we
focus on WGN w (i.e., quadratic log-likelihood), which gives

f1(r,γ) =
(
γwA

HA+Diag(γ)
)−1(

γwA
Hy +Diag(γ)r

)
. (6)

For both f1 and f2, we approximate the tr{Q``} term in (4) using the Monte Carlo approach [17]

tr{Q``} ≈ δ−1qH
`

[
fi(r + δq`,γ)− fi(r,γ)

]
, (7)

where the coefficients in the `th subset of q` are i.i.d. unit-variance Gaussian and the others are zero.

For Fourier-structuredA, we recover the wavelet coefficients c0 = Ψx0 of x0, like in [12–14]. For
an orthogonal wavelet transform Ψ, we have that x0 = ΨTc0, and so (1) implies the model

y = Bc0 +w with B , AΨT. (8)
To apply D-GEC to c0 recovery, we use f1 as in (6), but withB in place ofA. For the diagonalization
subsets in (4), we choose the L subbands of a depth-D wavelet transform.

As in [14], we denoise the wavelet coefficient estimate r2 by converting to the pixel domain, denoising
in that domain, and converting back to the wavelet domain. In the pixel-domain, GEC predicts that the
noise will be correlated with correlation matrix ΨDiag(γ)−1ΨT. To handle this correlated noise, we
propose a new approach to denoising called “corr+corr,” which presents the (pixel-domain) denoiser
with the noisy image in one channel and an independent noise realization in another. During training,
the denoiser learns to extract statistics from this realization and use them productively for denoising.
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Figure 1: SD of D-GEC’s denoiser input versus iteration. Figure 2: Wavelet coefficient QQ-plots.

4 Numerical Experiments

We compare the proposed D-GEC algorithm to the existing D-VDAMP [14] and PnP-PDS [3]
algorithms for MRI image recovery. For C-coil MRI, we constructed A = [AT

1, . . . ,A
T
C ]

T with
Ac = MF Diag(sc) ∈ CM×N , where F is the unitary 2D Fourier matrix, sampling mask M
contains M rows of IN , and sc ∈ CN is a coil sensitivity map generated from the Biot-Savart Law.
In the single-coil case, C=1 and s1 = 1. Like in [14], we used VD masks (see Fig. 4 of Appendix).

Denoisers: For D-VDAMP, we used the denoiser proposed in [14], which is a modification of
DnCNN [18] that accepts the noise standard deviation (SD) in each wavelet subband. Five versions
of this denoiser were trained using independent subband noise SDs uniformly distributed in the
ranges 0-10, 10-20, 20-50, 50-120, and 120-500, respectively. (Pixel values ranged from 0-255.)
For PnP-PDS, we trained bias-free DnCNN [19] with white noise of SD uniformly distributed in
the range 0-55. For D-GEC, we trained bias-free DnCNN using the previously described corr+corr
approach using independent subband SDs uniformly distributed in the ranges 0-10, 10-20, 20-50,
50-120, and 120-500, respectively. All DNNs were trained using patches from 70 MRI images of the
Stanford 2D FSE dataset available at http://mridata.org. All denoisers use only the real part of
the input and generate a real-valued output.

Test data: For evaluation, we used ten 352×352 MRI images from the Stanford 2D FSE dataset that
were not used as training images (see Fig. 3 of Appendix). The measurements y were constructed
using (1) with complex AWGN w whose variance was adjusted to give a pre-masking SNR of 40 dB.

Algorithm parameters: For D-GEC and D-VDAMP, we used a 2D Haar wavelet transform with
D=4 levels, giving L=13 wavelet subbands. D-VDAMP code was obtained from the authors and
run under default settings, which are detailed in [14]. PnP-PDS was run for 200 iterations using the
parameters that maximized PSNR on the training set. For D-GEC, we used the damping scheme
from [11] and the auto-tuning scheme from [20].

Single-coil results: Table 1 shows that D-GEC significantly outperformed D-VDAMP and PnP-PDS
C = 1 coil C = 4 coils

M/N = 1/4 M/N = 1/8 M/N = 1/4 M/N = 1/8
method PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

PnP-PDS 45.97 0.978 41.28 0.957 47.98 0.992 43.81 0.977
D-VDAMP 44.61 0.974 38.43 0.901 n/a n/a n/a n/a

D-GEC 47.64 0.982 42.42 0.959 50.80 0.997 46.67 0.991
Table 1: Recovery results averaged over the ten test images.

in all experiments. Figure 1
shows the evolution of the SD
of the error at the input to D-
GEC’s denoiser in each sub-
band. There, we see a close
agreement between true and
predicted values. Figure 2 shows QQ plots that indicate the subband errors are Gaussian. In
the Appendix, Fig. 5 shows an example of the wavelet coefficients input to D-GEC’s denoiser at the
10th iteration, and their error relative to the true coefficients, while Fig. 6 shows image recoveries and
error maps for one of the test images at M/N=1/4.

Multi-coil results: Table 1 shows D-GEC significantly outperforming PnP-PDS in PSNR and SSIM
in the 4-coil case. D-VDAMP does not support multi-coil MRI and thus is not shown in the table.

5 Conclusion

We designed a GEC-based PnP algorithm that aims to present the denoiser with subband errors
that are white and Gaussian with known variance at each iteration, and a denoiser that handles the
resulting noise, which has a known correlation structure in the pixel domain. Experiments with MRI
image recovery show significantly improved recovery performance relative to previous PnP methods.
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6 Appendix

Figure 3: Test images from Stanford 2D FSE dataset at http://mridata.org.

Figure 4: A variable-
density sampling mask
at M/N = 1/4.

c0 r2 |r2 − c0|

Figure 5: An example of the true coefficients c0, denoiser input r2, and
denoiser input error r2 − c0 at D-GEC iteration 10.

Figure 6: Example single-coil recoveries and error maps at M/N = 1/4.
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