
OPTICAL CHARACTER RECOGNITION (OCR) FOR TELUGU:

DATABASE, ALGORITHM AND APPLICATION

Konkimalla Chandra Prakash, Y. M. Srikar, Gayam Trishal, Souraj Mandal, Sumohana S. Channappayya

Indian Institute of Technology Hyderabad, Kandi - 502285, Telangana, India

ABSTRACT

Telugu is a Dravidian language spoken by more than 80 mil-

lion people worldwide. The optical character recognition

(OCR) of the Telugu script has wide ranging applications

including education, health-care, administration etc. The

beautiful Telugu script however is very different from Ger-

manic scripts like English and German. This makes the use

of transfer learning of Germanic OCR solutions to Telugu a

non-trivial task. To address the challenge of OCR for Telugu,

we make three contributions in this work: (i) a database of

Telugu characters, (ii) a deep learning based OCR algorithm,

and (iii) a client server solution for the online deployment of

the algorithm. For the benefit of the Telugu people and the

research community, our code has been made freely available

at https://gayamtrishal.github.io/OCR Telugu.github.io/.

Index Terms— OCR, Telugu, Convolutional neural net-

work, Deep learning, Document Recognition.

1. INTRODUCTION

Telugu is the official language of the Indian states of Telan-

gana and Andhra Pradesh. It ranks third by the number of

native speakers in India, and fifteenth in the Ethnologue list

of most-spoken languages worldwide [1]. There are a large

number of Telugu character shapes whose components are

simple and compound characters from 16 vowels (called

achus) and 36 consonants (called hallus). Optical Character

Recognition (OCR) is the mechanical or electronic conver-

sion of images of typed, handwritten or printed text into

machine-encoded text. The availability of huge online collec-

tions of scanned Telugu documents in conjunction with appli-

cations in e-governance and healthcare justifies the necessity

for an OCR system, but the complex script and grammar

make the problem a challenging one.

OCR for Indian languages is much more challenging than

that of Germanic languages because of the huge number of

combinations of the main characters, vattus, and guninthas

(modifiers). Unlike Germanic languages, Telugu characters

are round in shape, and seldom contain any horizontal or ver-

tical lines. In the English language, character segmentation

can be easily done using connected components-like algo-

rithms, as a majority of the characters are formed by a single

stroke. In the Telugu script however, parts of the character

extend both above and below the main characters and are also

not joined to the main character as shown in 1. This makes

the use of histogram based segmentation methods (and trans-

fer learning in general) difficult.

Fig. 1: English text vs Telugu text.

The complexity of the problem at hand is huge because

of the large number of output classes possible and the inter

class variability. The absence of robust deep learning based

OCR systems for Telugu has motivated us to build one. An

OCR system has a huge impact in real life applications along

with a word processor. In the literature, other attempts on

Telugu OCR have neither shown results on large datasets [2]

nor have considered all possible character and vattu combina-

tions which exist in the language. Here, we describe a novel

end-to-end approach for Telugu OCR.

Besides data, classifier selection also has a significant im-

pact on an OCR system. Before deep learning was used, fea-

ture learning was a critical step in the design of any classi-

fier because feeding raw data would not lead to the targeted

results. Therefore, classification is generally performed af-

ter the difficult process of appropriate feature selection that

distinguishes classes. The advent of Convolutional Neural

Networks (CNNs) has paved the way for automated feature

learning. Also, the strong generalization capability of this

multi-layered network has pushed the classification perfor-

mance beyond human accuracy. Due to these reasons, we

have used a CNN based classifier in our OCR system.

We have addressed these challenges in Telugu OCR and

summarize our contributions as follows:

• We introduce the largest dataset for Telugu characters

with 17387 categories and 560 samples per category.

• We propose a 2-CNN architecture that performs ex-

tremely well on our dataset.

• We have developed an android application for its de-

ployment.

ar
X

iv
:1

71
1.

07
24

5v
2

 [
cs

.C
V

]
 2

5
D

ec
 2

01
8

The rest of the paper is structured as follows. Section 2

talks about previous works on OCR of Telugu and Kannada

(a similar script). Section 3 briefly describes the methodol-

ogy and novelties introduced in this paper. Sub-section 3.1

talks about the proposed dataset. Sub-section 3.2 presents the

architectural details of the proposed CNN framework and the

overall model for classification of characters. Sub-section 3.3

gives an in-depth explanation of the prepossessing steps and

segmentation algorithm. We finally present results in Section

4 and offer concluding remarks in Section 5.

2. RELATED WORK

Optical character recognition (OCR) has been one of the most

studied problems in pattern recognition. Until recently, fea-

ture engineering was the dominant approach that used fea-

tures like Wavelet features, Gabor features, Circular features,

Skeleton features etc; [3] [4] [5] followed by a support vector

machine (SVM) or boosting based classifiers. The recent and

astounding success of CNNs in feature learning has motivated

us to use them for Telugu character recognition.

The first reported work on OCR for Telugu can be dated

back to 1977 by Rajasekharan and Deekshatulu [6] which

used features that encode the curves that trace a letter, and

compare this encoding with a set of predefined templates. It

was able to identify 50 primitive features, and proposes a two-

stage syntax-aided character recognition system. The first at-

tempt to use neural networks was made by Sukhaswami et

al., which trains multiple neural networks, pre-classifies an

image based on its aspect ratio and feeds it to the correspond-

ing network [7]. It demonstrated the robustness of a Hopfield

network for the purpose of recognition of noisy Telugu char-

acters. Later work on Telugu OCR primarily followed the

featurization classification paradigm [8].

The work by Jawahar et al., [2] describes a bilingual

Hindi-Telugu OCR for documents containing Hindi and Tel-

ugu text. It is based on Principal Components Analysis (PCA)

followed by support vector regression. They report an over-

all accuracy of 96.7% over an independent test set. They

perform character level segmentation offline using their data

collecting tools. However, they have only considered 330

distinct classes.

The work by Achanta and Hastie [9] on Telugu OCR us-

ing convolutional neural networks is also interesting. They

used 50 fonts in four styles for training data each image of

size 48 × 48. However, they did not consider all possible

outputs (only 457 classes) of CNN. The work by Kunte and

Samuel [10] on Kannada OCR employs a twp-stage classi-

fication system that is similar to our approach. They have

first used wavelets for feature extraction and then two-stage

multi-layer perceptrons for the task of classification. They

have divided the characters into seperate sub classes but have

not considered all possible combinations.

Our proposed approach addresses some of the shortcom-

ings in the literature and is described next.

3. PROPOSED METHODOLOGY

The pipeline followed here is a classic one: skew correction

– word segmentation – character segmentation – recognition.

Our paper introduces novelties in the dataset and classifier.

Our pre-processing and segmentation techniques are minor

modifications of existing techniques and are fine-tuned for

the Telugu script as described in the following subsections.

We describe the dataset next followed by a description of the

classifier and the application.

3.1. Dataset

A major issue in the field of Telugu OCR is a lack of large data

repositories of Telugu characters that are needed for training

deep neural networks. This could be attributed to the fact that

most previous methods (as described in the previous Section)

did not rely on deep learning techniques for feature extaction.

For e.g., the work by Pramod et al., [11] has 1000 words

and on an average of 32 images per category. They used the

most frequently occuring words in Telugu but were unable

to cover all the words in the Telugu language. Later works

were based on character level [3] [12] [10]. The dataset by

Achanta and Hastie [9] has 460 classes and 160 samples per

class which made up 76000 images. However, these works

have not considered all the possible combinations of vattu

and guninthas. To tackle this issue, we propose a dataset

which takes into consideration all possible combinations of

vattu and guninthas. This is to ensure that the classification

algorithms have a good set of training samples which in turn

helps improve overall performance.

Each character has been augmented with 20 different

fonts downloaded from [13]. Using all the fonts for gutintham

variants and 3 fonts for vattu variants, all possible vattu and

gunintham forms of a character have been manually entered

in Microsoft Word. We then changed the font size from 15 to

40 with a step size of 5 covering 6 different font sizes for all

the variants of each character. We then took screen-shots of

each page containing these characters and used our segmen-

tation algorithm on them to get the individual characters.

We have also introduced random rotations (angle in de-

grees: -6, -2, 2, 6), additive noise (variance = 0.5 + J

10
* 2

3
,

J ∈ (0,5)) and random crops to simulate realistic conditions.

We have then applied elastic deformations on the characters.

The dataset has 17387 categories and nearly 560 samples per

class. All the images are of size 32× 32. There are 6,757,044

training samples, 972,309 validation samples and 1,934,190

test samples which add upto 1 million images (10 GB). Our

dataset is novel because unlike other datasets which only take

into account the commonly occuring permutations of charac-

ters and vattus, we have spanned the entire Telugu alphabets

(a) Architecture 1 for main character.

(b) Architecture 2 for vattu.

Fig. 2: Architecture of 1st CNN (main character) and 2nd CNN (vattu and gunintham.)

and their corresponding vattu and guninthas.

3.2. Classifier

The performance of an OCR system depends hugely on the

performance of its classifier. Previous works [14] on Telugu

OCR have done the character level segmentation based on his-

tograms along the x and y directions. Assuming that the his-

togram method for segmentation would work perfectly, they

have used an SVM based classifiers for character classifica-

tion. However, we have observed that in real scenarios, the

histogram method fails to properly segment out the vattu and

the main character together. It also fails when the characters

are rotated or if they share common region when projected on

x-axis or y-axis.

Inspired by the success of deep neural networks for fea-

ture learning, we have explored CNNs to classify the charac-

ters and proposed a new architecture for the same. A CNN is a

type of feed-forward neural network or a sequence of multiple

layers which is inspired by biological processes. It eliminates

the dependency on hand-crafted features and directly learns

useful features from the training data itself. It is a combi-

nation of both a feature extractor and a classifier and mainly

consists of convolutional (weight-sharing), pooling and fully

connected layers.

In general, a Telugu character consists of two main com-

ponents - the main character and the vattu/gunintham as

shown in Figure 3. Using a single CNN would be futile

because of the huge number of classes arising from various

permutations of the main character, vattu and gunintham.

Therefore, we have used a 2 CNN architecture for classify-

ing the character. The first CNN is used for identifying the

main character and the second CNN for identifying the vattu

and/or gunintam present along with the main character. The

architectures for both the CNNs is shown in Figure 2.

Fig. 3: Main character and vattu.

3.3. Pre-Processing and Segmentation

Pre-processing consists of skew correction in which tilt in the

image is adjusted and binarization after which the image is

binarized and segmented into individual words. This is fol-

lowed by character level segmentation and classification.

Our segmentation algorithm assumes that there is no skew

in the image. This makes skew correction a matter of utmost

importance. We have used a straight line Hough transform

based technique for correcting skew that can detect and cor-

rect skew upto 90 degrees. We used a modified version of

Otsu’s thresholding [15] for our binarization. We used mor-

phological closing algorithm for noise removal. We then com-

puted the logical OR between the denoised image and that of

the Otsu’s thresholding result and applied mode based thresh-

old on it.

For application to Telugu characters, we modified the

MSER method [16] to take into consideration dheergas and

vattus. In order to eliminate the possibility of dheergam

and vattu being segmented separately we merged the nearby

characters into one word by dilating the output of MSER.

We used the connected components algorithm for charac-

ter level segmentation. After binarization of the word, we ap-

ply the algorithm to separate all the characters as components

(groups of binary pixels). In this process, minor blobs are re-

moved from the components. In some cases, vattus are not

connected with the main/base character. So, for connecting

the base character with its vattu, we measured the overlap-

ping distance in horizontal and vertical direction and grouped

them together.

3.4. Mobile Application

To facilitate usability, we have developed an Android app

that deploys the proposed OCR solution. The app does on-

line image to text conversion with Industry standard (MVP

Architecture) which works on any Android (4.4+) device.

We used client-server based communication where the client

(App user) requests the server with an image and the server

responds to the app with a html file. The theme is specifically

made keeping in mind that old age or low vision people can

use it easily. The App uses camera or gallery for images. This

App will also be made publicly available.

4. RESULTS AND DISCUSSION

We now present the experimental details and the results of our

proposed algorithm. As presented earlier, a total of 6,757,044

samples were used for training the network. The performance

was validated using 972,309 samples. We used a batch size

of 500 because of the large training data size. Initially, we

trained our network using a SGD + momentum optimizer.

Even after 70-80 epochs, the accuracy was not satisfactory

(80%). By using the Adam optimizer, we were able to attain

much higher accuracy within 30-40 epochs. We halted the

training process when there is no increase in validation accu-

racy for a few epochs (5). Our model was trained on GTX

1060 with 16GB RAM.

We would like to note that in addition to the CNN archi-

tectures that have been proposed in Fig. 2, standard CNN

architectures defined in Cifar [17] and Lenet [18] were also

trained using the same approach descirbed above. This was

done primarily for comparative analysis as described next.

Table 1: CNN accuracies for Character Classification.

Network Architecture Accuracy

MC Cifar CRPC32-CRPC32-CRPC64-D360 98.60

MC Lenet CRPL20-CRPL50-D500 98.62

TCCNN-S CRP25-CRP20-DD256 97.95

TCCNN-L CRP20-CRP50-CRP100-DD500 98.74

Table 2: CNN accuracies for Vattu.

Network Architecture Accuracy

MV Cifar CRPC32-CRPC32-CRPC64-D500 95.46

MV Lenet CRPL20-CRPL50-D500 95.59

TVCNN-S CRP25-CRP20-DD256 94.32

TVCNN-L CRP20-CRP50-CRP100-DD1000 96.09

4.1. Table descriptions

Tables 1 and 2 show the accuracy of various CNN architec-

tures on our testing data after the CNN was trained on the pro-

posed dataset. The abbreviations in the tables are explained

below.

• CRP (n) - Convolution (3x3, n filters), Relu, Pool(2x2)

• CRPC (n) - Convolution (3x3, n filters), Relu, Pool(3x3)

• D (n) - Dense layer of n nodes.

• DD (n) - Dropout and Dense layer of n nodes.

• TCCNN-L/S - Telugu Character CNN Large/Small

• TVCNN-L/S - Telugu Vattu CNN Large/Small

• MC/MV Cifar - Modified Character/Vattu Cifar

• MC/MV Lenet - Modified Character/Vattu Lenet

The last layers of the Cifar [17] and Lenet [18] architec-

tures have been modified according to the number of outputs

of the main character and vattu. We have introduced two dif-

ferent architectures, each having two CNNs – one for the main

character and one for the vattu. TCCNN-S and TVCNN-S are

smaller architectures which are faster than the others but with

slightly lower accuracy. TCCNN-L and TVCNN-L achieve

better accuracy than both the Cifar and Lenet architectures.

Even though the improvement is small, it is signficant due to

the large size of our dataset. This improvement could be ex-

plained by the fact that the proposed architectures in Figs. 2

are tuned for characters and vattu individually. Further, the

architecture does not reduce the resolution of the image patch

as much as the other architectures thereby helping with clas-

sification of subtle shapes in the Telugu character set.

We have not used very deep models like VGG [19] and

Resnet [20] because they are trained with input images of size

224×224. In our case however, the images are of size 32×32..

We couldn’t compare with other works on Telugu OCR be-

cause there are very few which have character level segmenta-

tion and use a deep learning based approach for classification.

The work by Achanta and Hastie [9] is the closest one to ours

but has 48 × 48 images. On the other hand, our images are

32× 32. CNN’s structure varies with the image size, so such

comparison would be futile. Further, their classes also differ.

Hence, we have compared with standard CNN architectures

on our dataset.

5. CONCLUSION AND FUTURE WORK

We have presented a solution for Telugu OCR that includes

a database, algorithm and an application. We have spanned

the entire Telugu language while creating the dataset, so there

isn’t any further possibility of increase in data. The segmen-

tation algorithm can be improved so that every character is

segmented together with its vattu and gunintham. Network

accuracy can be further improved to make the classifier bet-

ter. This proposed work can be further extended to other lan-

guages with the scope of having a common OCR system for

all the languages of India.

6. REFERENCES

[1] Wikipedia contributors, “Telugu language — wikipedia,

the free encyclopedia,” 2018, [Online; accessed 13-

February-2018].

[2] CV Jawahar, MNSSK Pavan Kumar, and SS Ravi Ki-

ran, “A bilingual ocr for hindi-telugu documents and

its applications,” in Document Analysis and Recogni-

tion, 2003. Proceedings. Seventh International Confer-

ence on. IEEE, 2003, pp. 408–412.

[3] Arja Rajesh Babu, “Ocr for printed telugu documents,”

Diss. Indian Institute of Technology Bombay Mumbai,

2014.

[4] R Ramanathan, Arun S Nair, L Thaneshwaran, S Pon-

mathavan, N Valliappan, and KP Soman, “Robust fea-

ture extraction technique for optical character recogni-

tion,” in Advances in Computing, Control, & Telecom-

munication Technologies, 2009. ACT’09. International

Conference on. IEEE, 2009, pp. 573–575.

[5] Peifeng Hu, Yannan Zhao, Zehong Yang, and Jiaqin

Wang, “Recognition of gray character using gabor fil-

ters,” in Information Fusion, 2002. Proceedings of the

Fifth International Conference on. IEEE, 2002, vol. 1,

pp. 419–424.

[6] SNS Rajasekaran and BL Deekshatulu, “Recognition

of printed telugu characters,” Computer graphics and

image processing, vol. 6, no. 4, pp. 335–360, 1977.

[7] PVS Rao and TM Ajitha, “Telugu script recognition-

a feature based approach,” in Document Analysis and

Recognition, 1995., Proceedings of the Third Interna-

tional Conference on. IEEE, 1995, vol. 1, pp. 323–326.

[8] OCR An, “System for telugu,” in Proceedings of the

Sixth International Conference on Document Analysis

and Recognition, 2001, p. 1110.

[9] Rakesh Achanta and Trevor Hastie, “Telugu ocr

framework using deep learning,” arXiv preprint

arXiv:1509.05962, 2015.

[10] R Sanjeev Kunte and RD Sudhaker Samuel, “An ocr

system for printed kannada text using two-stage multi-

network classification approach employing wavelet fea-

tures,” in Conference on Computational Intelligence

and Multimedia Applications, 2007. International Con-

ference on. IEEE, 2007, vol. 2, pp. 349–353.

[11] Pramod Sankar K, CV Jawahar, and Raghavan Man-

matha, “Nearest neighbor based collection ocr,” in

Proceedings of the 9th IAPR International Workshop on

Document Analysis Systems. ACM, 2010, pp. 207–214.

[12] L Prasanth, V Babu, R Sharma, GV Rao, and M Di-

nesh, “Elastic matching of online handwritten tamil and

telugu scripts using local features,” in Document Anal-

ysis and Recognition, 2007. ICDAR 2007. Ninth Inter-

national Conference on. IEEE, 2007, vol. 2, pp. 1028–

1032.

[13] “http://fonts.siliconandhra.org,” .

[14] Rinki Singh and Mandeep Kaur, “Ocr for telugu

script using back-propagation based classifier,” Inter-

national Journal of Information Technology and Knowl-

edge Management, vol. 2, no. 2, pp. 639–643, 2010.

[15] Nobuyuki Otsu, “A threshold selection method from

gray-level histograms,” IEEE transactions on systems,

man, and cybernetics, vol. 9, no. 1, pp. 62–66, 1979.

[16] David Nistér and Henrik Stewénius, “Linear time maxi-

mally stable extremal regions,” in European Conference

on Computer Vision. Springer, 2008, pp. 183–196.

[17] Alex Krizhevsky and G Hinton, “Convolutional deep

belief networks on cifar-10,” Unpublished manuscript,

vol. 40, pp. 7, 2010.

[18] Yann LeCun et al., “Lenet-5, convolutional neural net-

works,” URL: http://yann. lecun. com/exdb/lenet, p. 20,

2015.

[19] Karen Simonyan and Andrew Zisserman, “Very deep

convolutional networks for large-scale image recogni-

tion,” arXiv preprint arXiv:1409.1556, 2014.

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian

Sun, “Deep residual learning for image recognition,” in

Proceedings of the IEEE conference on computer vision

and pattern recognition, 2016, pp. 770–778.

	1 Introduction
	2 RELATED WORK
	3 PROPOSED METHODOLOGY
	3.1 Dataset
	3.2 Classifier
	3.3 Pre-Processing and Segmentation
	3.4 Mobile Application

	4 Results and Discussion
	4.1 Table descriptions

	5 Conclusion and Future Work
	6 References

