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Abstract
Deep learning hasmade significant advancements and breakthroughs
in medical image recognition. However, the clinical reality is com-
plex and multifaceted, with patients often suffering from multiple
intertwined diseases, not all of which are equally common, leading
to medical datasets that are frequently characterized by multi-labels
and a long-tailed distribution. In this paper, we propose a method
involving label decoupling and reconstruction (LDRNet) to address
these two specific challenges. The label decoupling utilizes the fu-
sion of semantic information from both categories and images to
capture the class-aware features across different labels. This process
not only integrates semantic information from labels and images to
improve the model’s ability to recognize diseases, but also captures
comprehensive features across various labels to facilitate a deeper
understanding of disease characteristics within the dataset. Fol-
lowing this, our label reconstruction method uses the class-aware
features to reconstruct the label distribution. This step generates
a diverse array of virtual features for tail categories, promoting
unbiased learning for the classifier and significantly enhancing the
model’s generalization ability and robustness. Extensive experi-
ments conducted on three multi-label long-tailed medical image
datasets, including the Axial Spondyloarthritis Dataset, NIH Chest
X-ray 14 Dataset, and ODIR-5K Dataset, have demonstrated that our
approach achieves state-of-the-art performance, showcasing its ef-
fectiveness in handling the complexities associated with multi-label
and long-tailed distributions in medical image recognition.
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1 Introduction
In recent years, deep learning has achieved significant accomplish-
ments in the field of computer-assisted diagnosis [6, 9, 41, 45].
Medical image recognition, in particular, plays a crucial role in the
clinical diagnosis of diseases. The ability to automatically identify
specific diseases or conditions in medical images can significantly
assist physicians in clinical diagnosis, reduce their workload, and
improve diagnostic efficiency. However, in real-world clinical ap-
plications, medical images (such as CT scans, X-rays, etc.) often
contain multiple diseases, thereby inevitably exhibiting multi-label
characteristics. Additionally, due to the varying incidences of dis-
eases, medical image datasets typically show a long-tail distribution,
where common cases (head categories) dominate a large number of
samples while rare cases (tail categories) are represented in smaller
quantities. Therefore, the medical image recognition tasks in real
scenarios are confronted with two significant challenges: multi-
label and long-tail distribution (refer to Fig. 1). Without proper
handling, trained models may develop a bias towards head cate-
gories, presenting substantial challenges to the task.

Considerable efforts have been made towards multi-label medi-
cal image recognition. Among the existing works on medical im-
age classification, Zhang et al.[49] introduced a triplet attention
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Figure 1: The top part depicts the multi-label scenario of
medical images, where each medical image corresponds to
multiple labels of pathological features. The bottom part
shows the long-tail distribution ofmedical images, indicating
an extremely imbalanced distribution within the medical
image dataset.

mechanism combined with contrastive learning to mine effective
information frommedical images for learning high-quality label em-
beddings for all disease labels. He et al.[16] employed a knowledge
distillation-based approach to enhance the diagnostic performance
of multi-label medical image diseases. Zhou et al.[53] addressed the
challenge of extending single-label to multi-label scenarios through
a cross-domain transfer method. While these methods have ad-
dressed the multi-label issue in medical image recognition, they
have not adequately considered the long-tail distribution.

Other existing methods are dedicated to tackling the long-tail
distribution problem in medical image recognition, which can be
broadly categorized into re-sampling and re-weighting strategies.
Re-sampling methods[2, 3, 28, 33] aim to create a balanced dataset
by under-sampling the head categories and over-sampling the tail
categories, thereby assisting the model in better learning the less
common categories. Re-weighting approaches[24, 37, 48] address
the long-tail issue by adjusting the loss function weights for differ-
ent categories. Specifically, these methods assign higher weights to
the tail categories and lower weights to the head categories, encour-
aging the model to focus more on the tail categories. However, the
aforementioned methods are not applicable to data with multi-label
long-tail distribution. Specifically, re-sampling methods struggle
to balance sampling across categories due to the influence of label
co-occurrence, while re-weighting methods are highly sensitive to
weight parameters in a multi-label context, impacting the model’s
generalization ability and robustness.

To address the challenges mentioned above, in this paper, we
propose a two-stage model based on label decoupling and recon-
struction (LDRNet), using class-aware features to reconstruct the
distribution of label feature and training an unbiased classifier, to
solve the multi-label medical image recognition problem under
long-tail distribution. Specifically, in the first stage, we introduce
a label decoupling technique that employs prompts and a Self-
Attention-based method to decouple class-aware features from the
global image features, and training a biased classifier. In the second

stage, we begin by assuming that each category follows a Gauss-
ian distribution, and then reconstruct the Gaussian distribution
for each category by the class-aware features obtained in the first
stage. Next, we employ a reverse sampling strategy to sample from
the Gaussian distributions of each category and generate virtual
global image features. Finally, we fine-tune the biased classifier
with the generated virtual features to correct its bias. Since our
method samples from Gaussian distributions for each category, it
generates more diverse features for tail categories, further reducing
the classifier’s overfitting to tail categories, and thereby enhancing
the model’s generalization ability and robustness. Additionally, due
to the scarcity of publicly available multi-label long-tail distribution
medical image datasets, we have collected a long-tail distribution
multi-label medical image dataset on Axial Spondyloarthritis to
foster development in this field, which we plan to make open source
in the future. We evaluated our method on this dataset and two
publicly available datasets, and the experimental results demon-
strate the superiority of our approach. Our contributions can be
summarized as follows:

• We propose a LDRNet for long-tail multi-label medical image
recognition, which operates through a two-stage training
process. In the first stage, we decouple features for each
label from the global image, and in the second stage, we
reconstruct the feature distribution for each label, then using
reverse-sampling to generate more diverse virtual features
to obtain the unbiased classifier.

• We have collected an Axial Spondyloarthritis Dataset to
promote the development of the field of multi-label image
recognition under long-tail distribution.

• We conducted experiments on our collected dataset and two
other publicly availablemulti-label medical datasets and com-
pared them with current state-of-the-art methods. The final
experimental results prove the effectiveness of our method.

2 Related Work
2.1 Multi-label Medical Images
Multi-label classification tasks have now been extensively studied
for predicting multiple category labels [8, 27, 29, 42, 51]. Recently, in
the medical image recognition field, to learn the common relations
among labels in multi-labels, some methods can be divided into
these two major categories: 1) Architecture-Network-based meth-
ods, which mainly focus on designing various network variants to
learn the commonalities between labels. For example, MLGCN [8],
introduces a GCN-based multi-label classification model to capture
the relationships between labels; C-Tran [22] utilizes the Trans-
former to exploit complex dependencies between visual features
and labels; CheXNet [46], integrates CNN and Transformer mod-
ules, where CNN provides rich input through bottom-up feature
extraction for the Transformer, and the Transformer guides the
feature extraction in CNN with its top-down attention mechanism,
to boost performance. 2) Loss-based methods, which mainly involve
designing or adjusting the loss function for each label to optimize
the model’s handling of multi-label images, ensuring it can effec-
tively handle the complexities of label interdependencies and vary-
ing error costs. Among these, MLSL [48] designs a softmax-based
loss function to reduce intra-label and inter-label ranking errors
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during training, thereby directly optimizing the ranking loss and
AUC; ASL [40] introduces a new asymmetric loss, acting differently
on positive and negative samples to balance probabilities across
various samples. Kobayashi et al.[21] proposes a dual-approach loss,
namely the multi-label classification loss for each sample and the
label classification loss for each class, to simultaneously improve
sample-wise and class-wise discrimination performance, thereby
enhancing classification accuracy.

2.2 Long-tail Distribution of Medical Images
In the medical field, due to the different incidence rates of diseases,
medical image datasets often exhibit a long-tail distribution [10, 11],
where common cases account for a large number of samples, and
rare cases account for a small number of samples. This long-tail
distribution leads to model training bias towards head categories
while neglecting tail categories, severely impairing the model’s di-
agnostic performance in real-world scenarios. Therefore, balanced
recognition of minority categories is necessary to improve diag-
nostic performance. To address this issue, most previous methods
focus on learning each category in a balance manner, these methods
can generally be categorized into three aspects. The re-sampling
methods, which include under-sampling for head categories [2]
and over-sampling for tail categories [33], focus on constructing
a balanced training set. While the re-weighting methods [24, 37]
adjust the long-tail distribution by assigning different weights to
the samples. Furthermore, recent studies [36, 52] have proposed us-
ing a two-stage decoupling approach to address the long-tail issue,
achieving notable results. However, these methods are solely appli-
cable to single-label tasks and are not suitable for multi-label tasks,
particularly in the context of medical image recognition. Specifi-
cally, for re-sampling methods, when a medical image includes both
head and tail categories, it is not feasible to achieve balanced sam-
pling through under-sampling or over-sampling strategies, making
it difficult to directly be applied. For re-weighting methods, they
are highly sensitive to weight parameters in a multi-label context,
leading to unstable model training and decreased model robustness.

In real clinical scenarios, where there are both commonality
among multiple pathological features and rare pathological fea-
tures, medical datasets are typically both multi-labeled and long-tail
distributed. Therefore, we propose a model for multi-label med-
ical imaging under a long-tail distribution, aiming to simultane-
ously solve the problems of multi-label and long-tail distribution
in real-world medical clinical scenarios. Furthermore, this model
also enhances the generalization ability and robustness.

3 Method
3.1 Problem Setup
Given a multi-label dataset 𝐷 = {𝑰 , 𝒀 } with 𝐶 categories and
𝑁 samples, where 𝑰 represents the input medical images, and
𝒀 = {𝑦1, 𝑦2, ..., 𝑦𝐶 } represents the image-level label annotations,
with 𝑦𝑐 ∈ {0, 1} indicating whether category 𝑐 is present in the
image (’1’ for presence and ’0’ for absence). Data in real medi-
cal clinical scenarios often exhibit a long-tail distribution, where
head categories comprise the majority of the data, while tail cate-
gories have very few samples. The presence of a long-tail distribu-
tion poses unique challenges for multi-label image classification,

primarily manifested in learning algorithms tending to optimize
performance for categories with a large number of samples while
neglecting those with fewer samples. Our objective is to learn a
function 𝑓 (𝑰 ) = 𝒀 ′, to predict the categories of the input image,
and this function 𝑓 is not affected by the long-tail distribution.

3.2 Framework Overview
In this paper, we propose a two-stage method, denoted as LDRNet,
to address the multi-label recognition task with long-tail distribu-
tion in medical images, the overall framework is shown in Fig. 2.
In the first stage, we utilize a Transformer encoder and prompt
strategy to decouple class-aware features. In the second stage, we
first reconstruct the Gaussian distribution for each category using
class-aware features, then apply a reverse sampling strategy to sam-
ple and generate virtual multi-label image global features from the
Gaussian distribution to fine-tune the classifier from the first stage.
Our LDRNet aims to achieve balanced learning of each category by
the classifier.

3.3 Class-aware Feature Extraction
Our aim is to use class-aware features to reconstruct the Gaussian
distribution of each category, so we need to obtain the class-aware
features. Current mainstream operations for feature decoupling
include CAM-based [7] and Self-Attention-based [26] methods.
Given the complexity and specialization of medical image data
compared to natural images, we adopt the Self-Attention-based
method, which has better performance. Specifically, we first use
the backbone to obtain global image features, then use learnable
query embeddings 𝑸 and a Transformer encoder to decouple the
class-aware features from the global features. Formally, given the
input multi-label medical image 𝑰 , and using the backbone to obtain
global image features 𝑿 ∈ R𝐷×𝐻×𝑊 :

𝑿 = 𝑓𝑏𝑎𝑐𝑘𝑏𝑜𝑛𝑒 (𝑰 ), (1)

where 𝐷,𝐻,𝑊 represent the channels, height, and width of the
features, respectively. 𝑓𝑏𝑎𝑐𝑘𝑏𝑜𝑛𝑒 (·) represents the learnable neural
network, for which we primarily use densenet [19] and resnet [17].
Then, we propose a prompt strategy to decouple the class features.
Specifically, we first define the prompting template: "The Categories
of the image are {LN}", where "LN" represents the name of the labels,
and use CLIP[39] to obtain the word embedding 𝑾 ∈ R𝑀×𝐷 ′

.
Then, we use a learnable MLP to map the dimensions of the word
embedding to 𝐷 . Next, we define a learnable label embedding 𝑳 ∈
R𝐶×𝐷 as the label query, define 𝑷𝑤𝑜𝑟𝑑 ∈ R1×𝐷 and 𝑷𝑙𝑎𝑏𝑒𝑙 ∈ R1×𝐷

as the learnable indicator embeddings for the prompting word and
label. Finally, we fuse the above embeddings and add the learnable
position embedding to obtain the query embedding 𝑸 :

𝑸 = [𝑾 + 𝑷𝑤𝑜𝑟𝑑 : 𝑳 + 𝑷𝑙𝑎𝑏𝑒𝑙 ] + 𝑷𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ∈ R(𝑀+𝐶 )×𝐷 , (2)

where [:] denotes the concatenation operation, 𝑷𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ∈ R(𝑀+𝐶 )×𝐷

is the learnable position embedding. Once we have the query em-
bedding 𝑸 , we then use the Transformer encoder to implement
the decoupling of the category features. Firstly, we reshape the
global image features along the spatial dimensions and obtain the
flattened feature:

𝑿 𝑓 = 𝑓𝑟𝑒𝑠ℎ𝑎𝑝𝑒 (𝑿 ) , (3)
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Figure 2: The overall framework of our proposed method.

where 𝑿 𝑓 ∈ R𝐻𝑊 ×𝐷 denotes the flattened feature, and 𝑓𝑟𝑒𝑠ℎ𝑎𝑝𝑒 (·)
is the reshape operator. Secondly, we integrate the query embedding
𝑸 and flattened feature 𝑿 𝑓 , and use the Transformer encoder to
obtain the class-aware features 𝑿𝑐𝑙𝑎𝑠𝑠 :

𝑿 ′ = 𝑓𝑒𝑛𝑐𝑜𝑑𝑒𝑟 ( [𝑸 : 𝑿 𝑓 ]), (4)

𝑿𝑐𝑙𝑎𝑠𝑠 = 𝑓𝑠𝑒𝑙𝑒𝑐𝑡 (𝑿 ′) ∈ R𝐶×𝐷 , (5)

where 𝑓𝑒𝑛𝑐𝑜𝑑𝑒𝑟 (·) denotes a standard Transformer encoder, which
contains a self-attentionmodule and a feed-forward network. 𝑓𝑠𝑒𝑙𝑒𝑐𝑡 (·)
is the feature selection operation, which selects features from 𝑿 ′

at positions corresponding to the label embedding 𝑳. Then, we can
obtain the prediction confidence of class-aware feature �̂�:

�̂� = 𝑓𝑐𝑙𝑠 (𝑿𝑐𝑙𝑎𝑠𝑠 ) , (6)

where 𝑓𝑐𝑙𝑠 (·) represents our classifier, and it tends to exhibit bias.
Finally, we employ a Binary Cross-Entropy (BCE) loss to constrain
feature learning and achieve the disentangling operation:

𝐿𝐵𝐶𝐸 = − 1
𝑁

1
𝐶

𝑁∑︁
𝑐=1

𝐶∑︁
𝑐=1

[
𝑦𝑖,𝑐 log(𝜎 (�̂�𝑖,𝑐 ) ) + (1 − 𝑦𝑖,𝑐 ) log(1 − 𝜎 (�̂�𝑖,𝑐 ) )

]
, (7)

where 𝜎 (·) is the sigmoid function, 𝑦𝑖,𝑐 is the ground truth label of
the 𝑐-th category for the 𝑖-th sample, and 𝑦𝑖,𝑐 is the predicted logit
for the 𝑐-th category of the 𝑖-th sample.

3.4 Label Distribution Reconstruction
Unlike long-tail distribution single-label image recognition tasks,
multi-label image recognition cannot employ re-sampling methods
to balance the sampling of each category due to the influence of
label co-occurrence relationships. Inspired by [1, 36], we assume
that the feature distribution of each category follows a Gaussian
distribution, and propose a Gaussian distribution reconstruction
method for multi-label medical imaging under long-tail distribution.
This method attempts to reconstruct the Gaussian distribution of
each label and uses a reverse sampling strategy to sequentially sam-
ple features from the Gaussian distributions to generate a virtual

global feature of the image. This generated feature is then used to
fine-tune the classifier trained in the first stage, thereby "correct-
ing" the classifier’s bias. Specifically, for the class-aware features
𝑿𝑖
𝑐𝑙𝑎𝑠𝑠

∈ R𝐶×𝐷 of the 𝑖-th image, we divide along the channel
dimension 𝐷 into feature vectors for each category :

𝑿𝑖
class = {𝑿𝑖,1

class,𝑿
𝑖,2
class, . . . ,𝑿

𝑖,𝐶

class}, (8)

where 𝑿𝑖,𝑐

𝑐𝑙𝑎𝑠𝑠
∈ R1×𝐷 represents the decoupled feature of the 𝑐-th

category for the 𝑖-th image.
Then, we construct a corresponding Gaussian distribution for

each category. Unlike single-label images, since multi-label images
contain multiple categories without location annotation informa-
tion, decoupling processes may still yield class-aware features at
corresponding positions for categories not present in the image.
Simply reconstructing features for categories present in the image
would disrupt the original feature distribution. Therefore, we re-
construct both label-0 and label-1 Gaussian distributions for each
category.

Formally, given the class-aware feature 𝑿𝑖,𝑐

𝑐𝑙𝑎𝑠𝑠
for the 𝑐-th cate-

gory of the 𝑖-th image, we calculate the mean and variance for the
𝑐-th category as follows:

𝜇
𝑗
𝑐 =

1
𝑁

𝑗
𝑐

𝑁
𝑗
𝑐∑︁

𝑖=1
𝑿𝑖,𝑐

𝑐𝑙𝑎𝑠𝑠
, (9)

Σ
𝑗
𝑐 =

1
𝑁

𝑗
𝑐 − 1

𝑁
𝑗
𝑐∑︁

𝑖=1
(𝑿𝑖,𝑐

𝑐𝑙𝑎𝑠𝑠
− 𝜇

𝑗
𝑐 )𝑇 (𝑿𝑖,𝑐

𝑐𝑙𝑎𝑠𝑠
− 𝜇

𝑗
𝑐 ), (10)

where 𝑗 ∈ {0, 1} corresponds to label 0 or 1. 𝑁 𝑗
𝑐 represents the

number of samples for category 𝑐 with label 𝑗 , and 𝜇 𝑗𝑐 and Σ
𝑗
𝑐 repre-

sent the mean and variance of features for category 𝑐 with label 𝑗 .
Then, based on the calculated mean and variance, we construct the
corresponding Gaussian distributions, whose probability density
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functions can be written as:

𝑓
𝑗
𝑐 (𝑿 𝑗

𝑐 ) =
1

Σ
𝑗
𝑐

√
2𝜋

𝑒
− (𝑿 𝑗

𝑐 −𝜇 𝑗𝑐 )2

2(Σ𝑗𝑐 )2 , (11)

where 𝑗 ∈ {0, 1} corresponds to label 0 or 1,𝑿 𝑗
𝑐 represents the class-

aware feature vector with category 𝑐 label 𝑗 , and 𝑓
𝑗
𝑐 (·) represents

the probability density functions for category 𝑐 with label 𝑗 . Next,
we employ a reverse sampling strategy for each category to achieve
feature re-sampling. The sampling probability for each category is
as follows:

𝑝𝑐 =

(
1

𝐹𝑐+𝜖

)𝛼
∑𝐶

𝑗=1

(
1

𝐹 𝑗+𝜖

)𝛼 , (12)

where 𝑝𝑐 denotes the probability of category 𝑐 , 𝐹𝑐 represents the
frequency of the 𝑐-th category samples, 𝜖 is a constant for numerical
stability which is set to 1𝑒-9, and𝛼 is a hyperparameter that controls
the smoothness, which is set to 0.9. Our ablation study will later
show the impact of different values of 𝛼 on the sampling probability.
Then, for each category, we generate independent random numbers
𝑟𝑐 to obtain the sampled features, which can be written as:

�̂�𝑐
𝑐𝑙𝑎𝑠𝑠

=

{
𝑿1
𝑐 ,𝑿

1
𝑐 ∼ N

(
𝜇1𝑐 , Σ

1
𝑐

)
if 𝑟𝑐 ≤ 𝑝𝑐

𝑿0
𝑐 ,𝑿

0
𝑐 ∼ N

(
𝜇0𝑐 , Σ

0
𝑐

)
if 𝑟𝑐 > 𝑝𝑐

(13)

where 𝑋𝑐
𝑐𝑙𝑎𝑠𝑠

∈ R1×𝐷 represents the virtual class-aware feature of
the 𝑐-th category sampled from the Gaussian distribution. Finally,
we concatenate all sampled features to obtain the final virtual class-
aware feature 𝑋𝑐𝑙𝑎𝑠𝑠 :

�̂�𝑐𝑙𝑎𝑠𝑠 = [�̂�1
𝑐𝑙𝑎𝑠𝑠

: �̂�2
𝑐𝑙𝑎𝑠𝑠

: ... : �̂�𝐶
𝑐𝑙𝑎𝑠𝑠

] ∈ R𝐶×𝐷 , (14)

However, since the Gaussian distribution is computed based on
the statistical measures of the feature space from the first stage,
to further mitigate potential biases, we employ the Expectation-
Maximization algorithm [32, 36] to iteratively fine-tune the classi-
fier and encoder. In the maximization step, we freeze the encoder
and backbone, and train the classifier on a balanced feature space.
In the expectation step, we freeze the classifier, and supervise the
encoder and backbone with an additional balance constraint to
avoid being contaminated by the long-tail label space again. There-
fore, we use BCE to fine-tune the classifier in the maximization step
and design a Generalized Cross Entropy (GCE) loss [50] suitable
for multi-label in the expectation step, which can be written as:

�̂�′ = 𝑓𝑐𝑙𝑠 (�̂�𝑐𝑙𝑎𝑠𝑠 ) ∈ R𝐶 , (15)

LGCE =
1
𝑁

1
𝐶

𝑁∑︁
𝑖=1

𝐶∑︁
𝑐=1

[
−𝑦𝑖,𝑐

(
1 − (�̂�′𝑖,𝑐 )𝑞

)
+ (1 − 𝑦𝑖,𝑐 ) (�̂�′𝑖,𝑐 )𝑞

]1/𝑞
, (16)

where 𝑓𝑐𝑙𝑠 (·) represents our classifier trained in the first stage,
which we fine-tune in the second stage. The hyperparameter 𝑞 is in
the range (0, 1] and controls the generalization of the loss function.
When 𝑞 is set to 1, the loss function becomes the traditional BCE
Loss. In our setup, we set 𝑞 to 0.8, which our subsequent ablation
study shows yields optimal performance. 𝑦𝑖,𝑐 is the ground truth
label for the 𝑐-th category of the 𝑖-th sample, and 𝑦′

𝑖,𝑐
is the pre-

dicted logit for the 𝑐-th category of the 𝑖-th sample. Through our
reconstructed label distribution, the classifier can classify within a

Table 1: Comparisons with SOTA on Axial Spondyloarthritis
Dataset.

Method AUC mACC mAP
DenseNet 0.7268 0.7088 0.6059
ResNet 0.7411 0.7087 0.6337

MLSL [48] 0.717 0.6854 0.6022
Focal Loss [24] 0.7900 0.7610 0.7430

Two-way Loss [21] 0.7439 0.7192 0.6728
RAL [37] 0.8010 0.68 0.7225

DenseNet + LDRNet 0.8051 0.7567 0.7510
ResNet + LDRNet 0.8292 0.7838 0.7596

balanced feature space while learning diverse feature representa-
tions, enhancing generalization and robustness, especially for those
tail categories with scarce sample sizes.

4 Experiments
4.1 Datasets
1) Axial Spondyloarthritis Dataset. This dataset comprises MRI
scans of the sacroiliac joints of 996 patients, with each patient
providing between 16 and 24 image slices. Each image slice in-
cludes 12 disease image labels: Erosion Right/Left (ER/EL), Sclerosis
Right/Left (SR/SL), Joint Space Right/Left (JSR/JSL), Osteophyte
Right/Left (OR/RL), Lipomatosis Right/Left (LR/LL), and Bone Mar-
row Edema Right/Left (BMER/BMEL). These labels were determined
by 3 musculoskeletal radiologists (two with 8 years of experience,
one with 5 years of experience) and 2 rheumatology specialists (one
with 21 years of experience, one with 11 years of experience) based
on additional CT images of the patients, assessing structural lesions
of the sacroiliac joints on both sides, including erosion, sclerosis,
space, and osteophytes. In cases of discrepancy, a thorough discus-
sion was conducted among the five doctors to reach a consensus.
Due to a long-tail distribution in the dataset, the head categories
include BMER, BMEL, JSR, and JSL, with the remaining categories
considered as tail categories.

2) NIH Chest X-ray 14 Dataset. The NIH Chest X-ray 14
dataset[44] encompasses 112,120 frontal chest X-ray images from
30,805 patients, each annotated with 14 disease image labels mined
through natural language processing from the corresponding radio-
logical reports. The head categories are Pneumothorax, Infiltration,
Atelectasis, Emphysema, Edema, Effusion, and Pneumonia, with
the remaining categories classified as tail categories.

3) ODIR-5K Dataset. The ODIR-5K [23] dataset, comprises a
multi-label image dataset with 7,000 images that include patient-
level annotations and image-level diagnostic keywords. The dataset
encompasses a range of eye diseases, includingNormal (N), Diabetes
(D), Glaucoma (G), Cataract (C), Age-related Macular Degeneration
(AMD), Hypertension (H), Myopia (M), and Others. Among these,
the head categories, consisting of N, D, and O, while the remainings
are tail categories.

For all datasets, we randomly split the dataset into training,
validation, and test sets by a ratio of 7:1:2 at the patient level. Sub-
sequently, we evaluate our methodology on the test set.
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Table 2: Comparisons with SOTA on NIH Chest X-ray 14 Dataset.

Method Number Wang DNetLoc Liu GWSA+LCD Xi PCSANetA3Net ImageGCNMFCNetThoraX-PriorNet DGFN LDRNet
of labels [44] [14] [25] [47] [35] [5] [43] [30] [4] [18] [12]

Atelectasis 7996 0.700 0.767 0.773 0.770 0.770 0.807 0.779 0.802 0.833 0.827 0.8178 0.830
Cardiomegaly 1950 0.810 0.883 0.889 0.877 0.870 0.910 0.895 0.894 0.915 0.902 0.9284 0.915

Effusion 9621 0.760 0.828 0.821 0.827 0.830 0.879 0.836 0.874 0.884 0.884 0.8751 0.881
Infiltration 13914 0.660 0.709 0.710 0.701 0.710 0.698 0.710 0.702 0.717 0.723 0.7452 0.724

Mass 3988 0.690 0.821 0.829 0.821 0.830 0.824 0.834 0.843 0.853 0.867 0.8803 0.859
Nodule 4376 0.670 0.758 0.770 0.790 0.790 0.750 0.777 0.768 0.803 0.807 0.7865 0.826

Pneumonia 978 0.660 0.731 0.713 0.732 0.820 0.750 0.737 0.715 0.770 0.764 0.7791 0.783
Pneumothorax 3705 0.800 0.846 0.869 0.870 0.880 0.850 0.878 0.900 0.885 0.890 0.8936 0.899
Consolidation 3263 0.700 0.745 0.749 0.746 0.740 0.802 0.759 0.796 0.810 0.812 0.8091 0.817

Edema 1690 0.810 0.835 0.847 0.847 0.840 0.888 0.855 0.883 0.893 0.908 0.8925 0.900
Emphysema 1799 0.830 0.895 0.934 0.924 0.940 0.890 0.933 0.915 0.924 0.927 0.9397 0.947
Fibrosis 1158 0.790 0.818 0.845 0.839 0.830 0.812 0.838 0.825 0.837 0.826 0.8175 0.849

Pleural Thickening 2279 0.680 0.761 0.773 0.782 0.790 0.768 0.791 0.791 0.784 0.813 0.8137 0.808
Hernia 144 0.870 0.896 0.925 0.921 0.910 0.915 0.938 0.943 0.905 0.905 0.9215 0.943

Mean AUC - 0.7450 0.8070 0.8180 0.8181 0.8190 0.8250 0.8260 0.8320 0.8440 0.8467 0.8501 0.8560

4.2 Evaluation Metrics
In the Axial Spondyloarthritis Dataset, we evaluate our method
using three metrics: Area Under the Curve (AUC), mean Accuracy
(mACC), and mean Average Precision (mAP), where "mean" de-
notes the average across all categories. For the NIH Chest X-ray
14 dataset, to fairly compare with current state-of-the-art (SOTA)
methods [4, 5, 12, 14, 18, 25, 30, 35, 43, 44, 47], we adopt AUC as
the measurement standard. For the ODIR-5K Dataset, in order to
compare with current SOTA methods [13, 15, 16, 20, 23, 24, 34],
we follow the unified official evaluation metrics proposed by [23],
which include Cohen’s kappa coefficient, F1 score, and AUC, as
well as the Final Score as evaluation metrics.

4.3 Implementation Details
During the training phase, we utilized ImageNet-pretrained mod-
els of ResNet-50 or DenseNet-121 as the backbone, depending on
the specific dataset and objectives. The learning rate was set at
1𝑒 − 4, with beta parameters for the Adam optimizer configured at
(0.9, 0.999). A weight decay of 1𝑒 − 5 was applied, and the batch
size was set to 32 to balance computational efficiency and memory
usage. Additionally, we adopted a reverse sampling strategy, with
parameters 𝛼 and 𝜖 in Eq.12 set to 0.9 and 1𝑒 − 9, respectively. For
our loss function in Eq. 16, the parameter 𝑞 was set to 0.8. For input
image processing, in the Axial Spondyloarthritis Dataset, images
were first resized to dimensions of 256×256, followed by a cropping
step of fixed size 224 × 224. In contrast, for the NIH Chest X-ray
14 and ODIR-5K Datasets, to maintain consistency with previous
SOTA works in terms of input size, the input images were initially
resized to 512 × 512 before being cropped to 448 × 448.

4.4 Comparisons With SOTA Methods
4.4.1 Comparisons on the Axial Spondyloarthritis Dataset. We first
compared our method with some SOTA methods on the Axial
Spondyloarthritis Dataset. As shown in Table 1, this comparison

was based on unified data augmentation and data partitioning stan-
dards, ensuring the fairness and accuracy of the evaluation. It is
evident that our method outperforms previous methods across all
evaluation metrics. For instance, our method surpassed the base-
line (DenseNet) by 7.8%, 4.8%, and 14.5% in AUC, mACC, and mAP
metrics, respectively. Under ResNet, the improvement was 8.8%,
7.5%, and 12.6%. This indicates that our method, through decou-
pling features and reconstructing label distributions, addresses the
bias of classifiers under long-tail distributions, thereby enhancing
classifier performance. Compared to other SOTA methods, such as
the Two-way Loss [21] with ResNet50 as backbone, our method still
excelled by 8.5%, 6.5%, and 8.7% in AUC, mACC, and mAP metrics,
respectively. This result further validates the effectiveness of our
approach.

4.4.2 Comparisons on NIH Chest X-ray 14 Dataset. We also evalu-
ated our proposed model with SOTA methods on the publicly avail-
able NIH Chest X-ray 14 dataset. The results are shown in Table 2.
Our method achieved a competitive mean AUC score of 0.8560
across 14 thoracic diseases, comparing favorably with previous
methods. Moreover, our method showed significant improvement
in performance on tail classes. For example, with Nodule pathol-
ogy, which is challenging to detect and rare in the dataset, other
methods struggle to perform well due to the long-tail distribution.
However, our proposed method of label decoupling and reconstruc-
tion enables the generation of diverse features for the classifier to
learn, thereby better detecting such pathologies to aid diagnosis
and treatment.

4.4.3 Comparisons on ODIR-5K. Similar to the previous datasets,
our method outperformed previous approaches on the ODIR-5K
dataset, which is shown in the Table 3. Specifically, our Kappa score
exceeded other baselines, demonstrating that our model can provide
reliable and accurate predictions across various categories, even in
cases of uneven data distribution. The improvement in the F1 score
indicates our model’s success in balancing precision and recall,
which is particularly important for medical image classification. A
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Table 3: Comparisons with SOTA on ODIR-5K dataset.

Method Kappa F1 AUC Final Score
Li et al. [23] 0.3072 0.8495 0.8306 0.6624

Jordi et al. [20] 0.426 0.850 0.805 0.693
Gour and Khanna [13] 0.433 0.853 0.849 0.712

He et al. [15] 0.520 0.886 0.903 0.770
BFENet [34] 0.535 0.892 0.912 0.780

Focal Loss [24] 0.625 0.895 0.930 0.817
SCFKD [16] 0.635 0.911 0.927 0.824
LDRNet 0.663 0.917 0.934 0.838

high F1 score means the model does not miss many cases while
also maintaining a low false-positive rate. The high AUC score
showcases our model’s ability to differentiate between different
pathological categories, proving its effectiveness in distinguishing
between healthy and pathological samples and reducing the risk of
false positives and negatives. This is crucial for improving diagnos-
tic accuracy and treatment outcomes for patients. Furthermore, the
leading final score further validates our method’s superior overall
performance.

4.5 Ablation Studies
4.5.1 Effects of Different Stage Processes. We performed related ab-
lation studies on each stage. The experiments are shown in Table 4,
where ’+’ denotes the inclusion of an element, while ’-’ indicates
its absence. From the Table 4, we can observe that the learning
of class-aware features in our first stage shows significant perfor-
mance improvements over the baseline across three metrics. This
indicates that our proposed feature learning strategy effectively
captures the global features of complex medical images and de-
couples them, providing a more robust feature representation for
subsequent classification tasks. The enhancement of global features
is particularly crucial for medical images, which are subtle and
varied. It helps the model to maintain a high recognition rate for
common diseases while also improving the ability to recognize
rare diseases. Furthermore, the performance significantly improves
after using feature decoupling along with label distribution recon-
struction. This demonstrates that our method of label distribution
reconstruction effectively balances the multi-label medical images
under a long-tail distribution, allowing the classifier to learn about
each category in a balanced manner. Through this reconstruction,
our model can provide a more balanced learning environment when
facing imbalanced data distribution, ensuring that each category
receives adequate attention. Especially for categories with scarce
samples, this approach can significantly enhance the model’s ability
to learn their features and improve recognition accuracy. Addition-
ally, we observe further improvements in our model’s performance
across three metrics with the addition of Prompt. This is attributed
to the semantic information of labels aiding in the decoupling of
features by category. By integrating rich contextual and descriptive
information with image data, the Prompt module offers semantic
guidance to the model, promoting more accurate recognition of
rare and difficult-to-distinguish categories.

4.5.2 Effects of Different Language Models on Prompt Strategy. In
this section, we explore ablation experiments on different language

Table 4: Effects of different stage processes.

Stage-1 Stage-2 Prompt AUC mACC mAP
Decoupling Reconstruction

- - - 0.7411 0.7087 0.6337
+ - - 0.7720 0.7530 0.7253
+ + - 0.8101 0.7730 0.7522
+ + + 0.8292 0.7838 0.7596

models, considering three distinct types of models. For a fair com-
parison, all models were trained in a two-stage process, with other
settings kept consistent. As shown in Table 5, among the three
models, the CLIP model demonstrated the best performance, out-
performing the other two models by approximately 1.1% in AUC,
0.9% in mACC, and 0.5% in mAP. We believe this may be due to the
word embeddings from CLIP possibly containing relevant clinical
semantics such as sclerosis and steatosis, enabling the model to
utilize more accurate semantic information to facilitate the decou-
pling of image labels. Moreover, CLIP is trained on image-text pairs,
giving it an advantage in integrating textual semantic information
with image information.

Table 5: Effects of different language models.

Language Models AUC mACC mAP
Word2vector [31] 0.8113 0.7758 0.7540
BlueBERT [38] 0.8183 0.7742 0.7570

CLIP [39] 0.8292 0.7838 0.7596

4.5.3 Effects of Different Resampling Strategies. We present the
ablation experiments for different sampling strategies in the second
stage as depicted in Eq. 12. As shown in the Table 6, we observe that
sampling from the multi-label reconstructed Gaussian distribution
using our reverse sampling strategy outperforms uniform sampling
from the same distribution by approximately 2.9%, 1.9%, and 3.2%
across three metrics, respectively. We speculate that since the clas-
sifier learned in the first stage already exhibits a significant bias,
it is necessary to employ a reverse sampling strategy to eliminate
this bias, thereby enabling the classifier to distinguish between cat-
egories more equitably. Notably, even when our method employs a
uniform sampling strategy in its second stage, the results surpass
both the baseline and the performance using only the first stage.
We attribute this to our proposed reconstruction of the multi-label
Gaussian distribution. Even though uniform sampling on a long-
tailed distribution might result in fewer tail samples compared to
head samples, our reconstructed multi-label Gaussian distribution
generates a rich variety of features for tail categories.

4.5.4 Effects of Different Hyperparameters. In our model’s hyper-
parameter ablation experiments, we first focused on the smoothing
parameter 𝛼 within the sampling probability equation in Eq.12.
We set the range of 𝛼 values from 0.1 to 1.0, increasing in steps
of 0.1, and conducted experiments across three metrics using a
uniform ResNet50 as the backbone on our Axial Spondyloarthritis
Dataset, with all other settings kept cxwonsistent. The results, as
shown in Fig.3a, indicate that the optimal setting for 𝛼 is 0.9. This
finding suggests that a higher 𝛼 value helps the model to more
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Table 6: The effect with different Sampling Strategies.

Sampling Strategies AUC mACC mAP
ResNet 0.7411 0.7087 0.6337

Uniform Sampling 0.7998 0.7650 0.7277
Reverse Sampling 0.8292 0.7838 0.7596
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Figure 3: Performance evaluation over different hyperparam-
eters 𝛼 and 𝑞.

Baseline：{LR, LL}

Ours：{ER, EL, LR, LL, BMER, BMEL}

Ground Truth：{LR, LL, BMER, BMEL}

Baseline：{OR}

Ours：{OR}

Ground Truth：{OR}

Baseline：{ER, LL, BMER, BMEL}

Ours：{ER,OR, LR, LL, BMEL, BMER}

Ground Truth：{ER, OR, LR, LL, BMER, BMEL}

Baseline：{ER, EL, OL, LR, LL, BMER, BMEL}

Ours：{ER, EL, JSR, JSL, OL, OR, LR, LL, BMER, BMEL}

Ground Truth：{ER, EL, JSR, JSL, OR, OL, LR,LL, BMER, BMEL}

Figure 4: The first line of each prediction represents the base-
line predictions, the second line represents our predictions,
and the third line represents the ground-truth.

balancedly handle categories, especially in situations of class im-
balance, thereby enhancing the overall performance of the model.

The parameter 𝑞 in Eq. 16 controls the generality of the loss func-
tion, significantly impacting the model’s optimization. By keeping
other model parameters constant, we explored a range of 𝑞 values,
set as {0.1, 0.2, ..., 1.0}. As depicted in Fig. 3b, the result indicates that
the optimal setting for 𝑞 is 0.8. This demonstrates that moderately
adjusting the generality of the loss function on our dataset can
effectively improve the model’s generalization capability, thereby
optimizing overall performance.

4.6 Visualization
In the previous sections, we have conducted some quantitative
analyses of our method. In this section, we will carry out a qualita-
tive analysis by performing some visualization experiments on the
Axial Spondyloarthritis dataset. As illustrated in Fig. 4, it is observ-
able that our method predicts all pathological features for these
medically challenging images, whereas the baseline only predicts
pathological features of medical images containing a few labels,
such as shown in row 1 column 2. Notably, for the sample in row
1 column 1, our method predicted two additional pathological fea-
tures, ’ER’ and ’EL’, beyond the ground truth. We believe this may
be due to the complexity of medical images and noise present in
the images.

Furthermore, to explore whether our classifier addresses the is-
sue of long-tail distribution, we visualized the L2-Normalization of
the parameters in our fine-tuned and baseline classifier. As shown

ER EL SR SL
JS

R JS
L OR OL LR LL

BMER
BMEL

Class-Name
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0.2

0.4

0.6

0.8
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 N

or
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Our-Method Classifier

Figure 5: The results of L2 Normalization of the parameter
vectors corresponding to each category in baseline and LDR-
Net classifiers.

in Fig. 5, for the baseline classifier, the influence of the long-tail
distribution leads to a bias towards head categories, and the pa-
rameters of the classifier are fluctuating. In contrast, the fine-tuned
classifier is no evident bias towards any category, and the results
are quite stable. This indicates that our method, through feature
decoupling and label reconstruction, effectively solves the problem
of classifier bias in multi-label medical images under a long-tail
distribution, enabling the classifier to treat each category more
fairly.

5 Conclusion
In this paper, we introduce a novel two-stage training framework,
namely decoupling and reconstruction, to effectively address the
inherent long-tail distribution problem in multi-label medical im-
age classification tasks. In the first stage, our method initially em-
ploys a technique that combines prompt-based approaches with
the Transformer model to decouple specific category features from
global image features. In the second stage, we reconstruct Gaussian
distributions for each category, and then use reverse-sampling to
generate more diverse virtual features to correct the biased classi-
fier. Furthermore, acknowledging the scarcity of publicly available
multi-label medical image datasets under long-tail distribution, we
have collected a multi-label medical image dataset on ankylosing
spondylitis and plan to make it open-source to foster research de-
velopment in the related field. The experimental results on this
dataset, along with two other public multi-label datasets, validate
the effectiveness and superiority of our approach. In the future, we
will try to combine two stages into one stage.
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