When LLM Meets Time Series: Can LLMs Perform
Multistep Time Series Reasoning and Inference

Wen Ye, Jinbo Liu, Defu Cao, Wei Yang, Yan Liu
University of Southern California
{yewen, jinboliu,defucao,wyang930,yanliu.cs}@usc.edu

Abstract

The rapid advancement of Large Language Models (LLMs) has sparked growing
interest in their application to time series analysis tasks. However, their ability
to perform complex reasoning over temporal data application domains remains
significantly underexplored. To achieve this goal, one first step is to establish a
rigorous benchmark dataset for evaluation. In this work, we introduce TSAIA
Benchmark, a first attempt to evaluate LLMs as a time series artificial intelligence
assistant. To ensure both scientific rigor and practical relevance, we surveyed
over 20 academic publications and identified 33 real world task formulations. The
benchmark encompasses a broad spectrum of challenges, ranging from constraint
aware forecasting to anomaly detection with threshold calibration, tasks that require
compositional reasoning and multistep time series analysis. The question generator
is designed to be dynamic and extensible, supporting continuous expansion as new
datasets or task types are introduced. Given the heterogeneous nature of the tasks,
we adopt task specific success criteria and tailored inference quality metrics to
ensure meaningful evaluation for each task. We apply this benchmark to assess
eight state of the art LLMs under a unified evaluation protocol. Our analysis reveals
limitations in current models’ ability to assemble complex time series analysis
workflows, underscoring the need for specialized methodologies for adaptation
toward domain specific applications. The first version of TSAIA is available at
https://huggingface.co/datasets/Melady/TSAIA and will continue to be
expanded and upgraded.

1 Introduction

Time series analysis is a core competency for data analysts and scientists across critical domains
such as energy [1I], finance [2], climate science [3], and healthcare [4]]. Real-world time series
workflows are inherently complex [3, 6]: they require multi-step reasoning [7]], precise numerical
computation [8], integration of domain knowledge [9], and adherence to operational constraints [[10].
With the advent of powerful large language models (LLMs) demonstrating broad capabilities in
language understanding [[11]], code generation [12], and scientific reasoning [[L3]], a natural question
arises: Can these models act as time series “assistants” that follow natural language instructions
and perform such complex workflows? Answering this question requires rigorous benchmarks that
capture the reasoning, computation, and decision-making challenges of time series analysis.

Existing time-series benchmarks fall into three categories, yet all miss essential ingredients for
evaluating a general-purpose time-series Al assistant. Pure temporal reasoning benchmarks such
as Test of Time [14] and TRAM [15] probe ordering, duration, and arithmetic but contain no
time-series data (TS involved:X), leaving numerical signal processing untested. Single-task static
benchmarks like TSI-Bench [16], TSB-AD [17], GIFT-Eval [18]], TFB [19], Time-MMD [20],
CiK [21]], and TGTSF [22] evaluate one narrowly defined task (e.g., imputation, anomaly detection,

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: LLM Evaluation.


https://huggingface.co/datasets/Melady/TSAIA

Predictive Task (201)

Electricity Prediction without
Covariates (68)

Diagnostic Task (426)

Causal Discovery with Domain
Knowledge (142)

Analytical Task (277) Decision-making Task

(150)

Perform Risk Return Analysis

Choose Best Portfolio Based

Stock Price, Volatility & Trend
Prediction (69)

on Financial Metrics (100)

Anomaly Detection with

Electricity Prediction with Anomaly-Free Samples (142)

Covariates (65)
Stock Trading Investment (71)

Draw Conclusion on Stock
Performance Compared to
Electricity Prediction for Market (50)

Multiple Grids (68)

Anomaly Detection with Known

Prior (142) Benchmark Against Market (71)

Figure 1: Categorization of Tasks in TSAIA. Lighter colors denote tasks with less difficulty and
darker colors denote tasks with higher difficulty.

forecasting) under rigid settings (Dynamic:X, Reasoning:X, Tasks=1). More recent hybrid efforts
like MTBench [23]], CiK [21]], and ChatTime [24] involve both time-series and text (TS involved:v")
and require reasoning (Reasoning:v"), but still adopt fixed settings (Dynamic:X) and focus almost
entirely on context-aided forecasting. Motivated by recent calls for building general time-series
assistants [25]], we propose a benchmark that goes beyond these limitations by supporting dynamic
task settings, incorporating natural language instructions and auxiliary context, and covering diverse
tasks beyond forecasting—Ilaying the groundwork for evaluating models as adaptive, compositional
reasoners over heterogeneous, real-world time-series scenarios.

In this work, we introduce the Time Series Artificial Intelligence Assistant TSAIA Benchmark,
designed for practical relevance, dynamic extensibility, and unified evaluation. It spans 33 task types
distilled from existing literatures; and 1054 questions covering predictive, diagnostic, analytical,
and decision making tasks. Solving TSAIA demands compositional and comparative reasoning,
commonsense and decision oriented judgment, and numerical precision [26l 27]. We evaluate
eight state of the art models: GPT-40, Qwen2.5-Max, Llama-3.1 Instruct 70B, Claude-3.5 Sonnet,
DeepSeek, Gemini-2.0, Codestral, and DeepSeek-R, using the CodeAct framework [28]. Agents
generate executable Python code with iterative refinement, mitigating premature output[29] and
numeric tokenization issues [30]. While some models excel on narrow tasks, none generalize across
the full benchmark; common failures include imprecise numerics or trivial predictions and difficulty
assembling complex pipelines. These results highlight the challenge of structured numerical reasoning
in real world time series applications and position TSAIA as a critical benchmark for progress.

2 TSAIA Benchmark

To evaluate time series Al assistants effectively, we focus on tasks grounded in real-world use
cases that data analyst in different time series application domains may face. By surveying existing
literature on time series applications, we collected real world tasks that exihbit multi-step complexity
with auxiliary context such as operational constraints or domain knowledge and requires precise
numerical analysis and reasoning. Such problem definitions are then converted to natural language
task instructions with task settings to be dynamically filled. As shown in Figure [T} tasks fall into
four groups: (1) Predictive: forecasting with or without covariates under constraints (minimum or
maximum limits [[10}[31], ramp rates [32] 33]], variability thresholds [6]); (2) Diagnostic: anomaly
detection (with reference samples or known anomaly rate [5, 134,135/ 136]) and causal discovery with
domain priors (e.g., partial causal ratios [37]); (3) Analytical: risk and return analysis and trading
strategy [38 139/ 140! 141]]; (4) Decision Making: multiple choice questions requiring comparison of
portfolios or stock vs. market indices [42,43]], testing computation and reasoning [44]]. TSAIA draws
from public data repositories containing: grid load, solar or wind power with weather covariates
[45ﬂ building energy usage [46]', ERAS climate variables [47]]', MIT-BIH ECG signals [48]]", and
stock indices or prices [49)*.

We use a modular, programmatic pipeline (Figure [2) to generate specific task instances: (1) Task
type: select from a predefined library; (2) Data: sample a CSV time series dataset; (3) Context: ran-

'CC BY 4.0 licence; Open Data Commons Attribution 1.0 licence. * Yahoo Finance Terms of Service:
personal, non commercial use only.



@ Composing Task Instance

J

Task Ground Truth Data [ Ground Truth Data J [ Final‘zleS:iltjilérf]mm J
Instruction v Anomaly labels
Selected v Future data
.eec 8 B v Causal graph
Time Series

; Backtest function

@ Evaluation

]—\

Evaluator

csv files)

t

1. Check structural
correctness

uality Metric
accuracy, F1, MAPE,
etc.g

1. Task Type Selection - 5

3. Data sPbPce selection. 7 SEIEES NS N Check constraint
3. Context Parameterization(sequence length, future length, target v Metric name: Sﬁoxﬁeacemn an
4 ng%ﬁglgémgfgxity (randomly sample constraint type and select Metric value incorgogation

5' reasonable constraint value v Message: ... 3. Compute Inference

. Ground Truth Construction (retrieve from dataset or

d dynamically
calculate based on data or create evaluation functlon)f

Figure 2: The proposed pipeline for multistep time series inference task instance generation and
evaluation protocol.

domize parameters (input length, horizon, target, covariates) and fill a natural language template; (4)
Complexity: inject domain constraints or auxiliary knowledge from the template; (5) Ground truth:
retrieve from data, compute via formulas, or call task specific evaluators, ensuring an executable
reference for automatic scoring. This task-generation pipeline enables TSAIA to grow dynamically:
new instances can be synthesized from existing datasets by sampling different horizons or operational
constraints, and additional datasets and task types can be incorporated to broaden coverage. As a
result, the current release represents a cost-controlled snapshot rather than a fixed benchmark size.

Ground truth data is either directly retrieved from the underlying dataset (future targets, anomaly
labels), or computed from data (e.g., risk and return metrics), or defined by an evaluation routine (e.g.,
backtesting trading signals to calculate cumulative or annualized return and maximum drawdown
[50, 1511 152]]). For multiple-choice questions, the ground-truth option is determined by selecting the
portfolio or market relation that optimizes the metric specified in the question (e.g., Sharpe ratio,
VaR [53|54]). Answer positions are uniformly randomized to prevent bias in random guess. To
ensure meaningful assessment, we adopt task-specific evaluation criteria that go beyond surface-level
correctness. Metrics are tailored for each task, and model outputs must satisfy the given constraints
and incorporate the provided knowledge. Trivial or degenerate solutions (e.g., low-quality forecasts
or all-zero anomaly labels) are considered failures even if they are well-formatted. The task-specific
success criteria and quality metrics, chosen to reflect practical utility, are summarized in Table[2]

3 Experiments

Benchmark GPT-40 Qwen-Max Llama3.1 Claude-3.5 DeepSeek Gemini-2.0 Codestral DeepSeek-R

Electricity Prediction with Covariates Success Rate 055 0.78 0.51 0.72 0.86 0.14 043 0.96
ectricity Freciction with L-ovariates MAPE (std) 0.14(0.17)  0.11(0.11) 0.11(0.10) 0.12(0.14) 0.13(0.16) 0.17 (0.11)  0.07 (0.06) ~ 0.11 (0.11)

Electricity Prediction without Covariates Success Rate 0.88 0.94 0.86 0.84 0.85 0.34 0.82 0.75
Y S MAPE (std) 0.18(0.14)  0.15(0.12)  0.17(0.10) 0.19(0.12) 0.16(0.15)  0.26(0.18) 0.17(0.12) ~ 0.22 (0.20)

- o ) .. Success Rate 0.65 0.75 0.52 0.77 0.85 032 025 0.83
Electricity Prediction for Multiple Grids ;s (/) 0.16(0.19) 0.19(023) 061 (034) 017(0.18) 0.16(0.17) 0.56(0.16) 0.15(0.15) 021 (0.24)

Diagnostic Task w/ Reference Samples Success Rate 0.37 0.20 0.39 0.65 0.38 0.12 0.41 0.49
g pies FI (std) 0.88(0.18)  0.86(0.22) 0.87(0.19) 0.83(0.18) 0.87(0.19) 0.88(0.08) 0.86(0.20)  0.86 (0.18)

Causal Discovery w/ Domain Knowledge  SUCCess Rate 0.89 0.81 091 0.99 0.96 042 0.94 0.97
sal Discovery 8¢ MAPE (std) 0.69(0.14)  0.67(0.14)  0.69(0.14) 0.74(0.12) 0.69(0.13) 0.71(0.15) 0.69 (0.14)  0.73 (0.13)

Anomaly Detection w/ Multiple Sequences  SUccess Rate 0.87 0.42 0.40 0.99 0.99 030 0.40 0.98
¥ ple Seq FI (std) 031(0.17)  038(0.19) 041(0.08) 0.60(0.15) 0.61(0.15) 0.42(0.19) 0.24(0.19)  0.56 (0.16)

Stock Prediction Success Rate 0.89 0.72 0.54 0.65 0.80 0.17 0.48 0.80
MAPE (std) 0.38(0.18) 044 (0.17) 0.35(0.18) 051(0.14) 040(0.19) 0.56(0.33) 0.33(0.19) 041 (0.15)

Stock Prediction Trend Success Rate 043 0.30 0.57 0.43 0.26 0.04 052 035
Accuracy (std) 0.90(0.20) 0.86(0.23) 0.88(0.21) 0.85(0.23) 1.00(0.00) 1.00(0.00) 0.96 (0.14)  0.81 (0.24)

Risk/Return Estimation Success Rate 0.42 0.23 0.27 0.35 0.38 0.06 . 0.38
: : Abs Error (std) 0.01 (0.00) 0.00(0.00) 0.00(0.00) 0.01(0.01) 0.01(001) 0.01(0.00) 0.01(0.00) 0.01(0.01)

Benchmark Aeainst Market Analysis Success Rate 0.44 0.20 0.06 051 0.73 0.18 0.01 0.77
& ¥ Abs Error (std) 0.00 (0.00) 0.01(0.01) 0.03(0.01) 0.00(0.01) 0.00(0.00) 0.00(0.01) 0.00(0.00) 0.0 (0.00)

Stock Trading Strateg: Success Rate 0.44 0.59 0.96 0.62 0.61 0.18 0.63 0.52

e 8y Cumulative Return 0.13 0.10 0.00 0.09 0.09 0.05 0.06 0.07

Annualized Return 243 456 0.05 458 1.69 036 3.87 1.41

Maximum Drawdown 0.05 0.05 0.00 0.04 0.05 0.02 0.02 0.04

Table 1: Model Performance on TSAIA. Red indicates best result, Blue indicates second best.

We evaluated eight LLMs: GPT-4o [55], Qwen2.5-Max [56], Llama-3.1 Instruct 70B [57], Claude-3.5
Sonnet [38], DeepSeek [39], Gemini-2.0 [60], Codestral [61]], and DeepSeek-R [62]]. All models use
the CodeAct framework [28]] via AgentScope [63] to generate Python code, execute in controlled
jupyter notebook environment, receive error feedback, and lastly revise. The maximum interaction



Execution Error/Did Not Reach A Solution Constraint Violation Trivial Prediction/Inadequate Result Format, Shape, Others Success

Electricity Prediction Electricity Prediction Electricity Prediction Causal Doscovery Diagnostic Task
w/o covariates w/ covariates across multiple grids w/ domain knowledge w/ reference samples
38.5%
64.7%
2.9% 0.7% 46.5%
so% 10.3% 9.9%
37.3%
91.2% 89.4%
1.5%
1'5%0 14.7%
31% 55.4% -
10.3% 16.2%
Diagnostic Task w/ known prior Stock Prediction Risk & Return analysis Benchmark Against Market Financial Trading

39.4% 42.3%

21% 1.4%
73.9% %
7.0% 53.0%

35% 87.3% 17.4% 42.4% 43.7% 43.7%

7.2% 11.3%

45% 5.6% 14.1%

Figure 4: Case Study on GPT-40 Error Distribution across Tasks Grouped by Difficulty Level

turns is capped at five. We report success rate (the fraction of instances satisfying the predefined
success criteria) and task-specific quality metrics (e.g., MAPE for forecasting, F1 for anomaly
detection), computed only on successful executions by the evaluators in Figure [2]

Table|[T]reports average success rates and quality
metrics for the three task groups in TSAIA, with

sub-task breakdowns in Appendix Tables @3]  £°°] GPT-40
and[6] In predictive tasks, models achieve rea- bos S:;Zb;alx
sonable accuracy on single-sequence forecasting g 041 Claude-3.5
but show performance degradation on multi-grid o Z:ren‘:f“e‘;ko
settings, reflected by lower success rates and g°'3 Codestral
higher MAPE. Error decomposition (Figure[d]) <02 Deepseek-R
reveals that adding covariates and multi-series 800 900 1000 1100 1200 1300

settings increases execution and constraint vio- Average Number of Token

lation errors, suggesting difficulties in scaling .
reasoning to higher-dimensional inputs. In di- Figure 3: Average Success Rate of Models with
agnostic tasks, models succeed when explicit TeSpect to the Average Number of Tokens Used.
domain knowledge or priors are available, but reference-sample calibration often collapses to trivial
predictions which is consistent with the low success rates and high frequency of degenerate outputs.
In analytical tasks, success rates are lowest: execution errors are frequent in market benchmarking,
risk/return failures arise from unfamiliar metrics (table[6), and trading strategies are often suboptimal
in backtests. Overall, reliability declines as tasks demand more multi-step reasoning, external context
integration, and nuanced financial understanding, highlighting the challenge of complex multi-step
time series workflows [64]. Notably, DeepSeek-R achieves the highest success rates across all groups,
providing direct evidence that explicit reasoning improves performance on TSAIA tasks, though at
the cost of increased token usage (Figure[3). By contrast, GPT-40 and DeepSeek-Chat achieve lower
success rates but remain the most token-efficient. Additional error analysis and experimental results
on multiple choice questions are shown in section [B]and [D]

4 Conclusion

This paper introduces TSAIA, a first benchmark for evaluating LLMs as time series Al assistants.
Covering diverse tasks, it emphasizes compositional reasoning, adherence to domain constraints,
and integration of contextual knowledge in addition to the basic numerical precision demanded by
traditional time series analysis. Evaluation of eight LLM agents reveals that current models are far
from reliable time series assistants. They frequently fail under domain constraints, struggle with
multistep workflows, and often produce trivial predictions under naive solution paths. Such gap
underscores the need for hybrid approaches that combine symbolic reasoning, execution feedback,
specialized tool integration, and domain alignment. TSAIA establishes a foundation for developing
and systematically assessing next-generation time series inference agents.



References

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Francisco Martinez Alvarez, Alicia Troncoso, Jose C Riquelme, and Jesus S Aguilar Ruiz.
Energy time series forecasting based on pattern sequence similarity. /EEE Transactions on
Knowledge and Data Engineering, 23(8):1230-1243, 2010.

Omer Berat Sezer, Mehmet Ugur Gudelek, and Ahmet Murat Ozbayoglu. Financial time
series forecasting with deep learning: A systematic literature review: 2005-2019. Applied soft
computing, 90:106181, 2020.

Manfred Mudelsee. Trend analysis of climate time series: A review of methods. Earth-science
reviews, 190:310-322, 2019.

Niels K Rathlev, John Chessare, Jonathan Olshaker, Dan Obendorfer, Supriya D Mehta, Todd
Rothenhaus, Steven Crespo, Brendan Magauran, Kathy Davidson, Richard Shemin, et al. Time
series analysis of variables associated with daily mean emergency department length of stay.
Annals of emergency medicine, 49(3):265-271, 2007.

Xudong Yan, Huaidong Zhang, Xuemiao Xu, Xiaowei Hu, and Pheng-Ann Heng. Learning
semantic context from normal samples for unsupervised anomaly detection. In Proceedings of
the AAAI conference on artificial intelligence, volume 35, pages 3110-3118, 2021.

Kyo Beom Han, Jaesung Jung, and Byung O Kang. Real-time load variability control using
energy storage system for demand-side management in south korea. Energies, 14(19):6292,
2021.

Yao Fu, Hao Peng, Ashish Sabharwal, Peter Clark, and Tushar Khot. Complexity-based
prompting for multi-step reasoning. arXiv preprint arXiv:2210.00720, 2022.

Kostadin Cvejoski, Ramsés J Sanchez, and César Ojeda. The future is different: Large pre-
trained language models fail in prediction tasks. arXiv preprint arXiv:2211.00384, 2022.

Zhiyi Xue, Liangguo Li, Senyue Tian, Xiaohong Chen, Pingping Li, Liangyu Chen, Tingting
Jiang, and Min Zhang. Domain knowledge is all you need: A field deployment of llm-powered
test case generation in fintech domain. In Proceedings of the 2024 IEEE/ACM 46th International
Conference on Software Engineering: Companion Proceedings, pages 314-315, 2024.

Ke-qiu WANG, Si-guang SUN, Hong-yi WANG, Chang-xu JIANG, and Zhao-xia JING. 220kv
city power grid maximum loadability determination with static security-constraints. Power,
Energy Engineering and Management (PEEM2016), page 1, 2016.

Li Dong, Nan Yang, Wenhui Wang, Furu Wei, Xiaodong Liu, Yu Wang, Jianfeng Gao, Ming
Zhou, and Hsiao-Wuen Hon. Unified language model pre-training for natural language under-
standing and generation. Advances in neural information processing systems, 32, 2019.

Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, and Sunghun Kim. A survey on large
language models for code generation. arXiv preprint arXiv:2406.00515, 2024.

Ross Taylor, Marcin Kardas, Guillem Cucurull, Thomas Scialom, Anthony Hartshorn, Elvis
Saravia, Andrew Poulton, Viktor Kerkez, and Robert Stojnic. Galactica: A large language
model for science. arXiv preprint arXiv:2211.09085, 2022.

Bahare Fatemi, Mehran Kazemi, Anton Tsitsulin, Karishma Malkan, Jinyeong Yim, John
Palowitch, Sungyong Seo, Jonathan Halcrow, and Bryan Perozzi. Test of time: A benchmark
for evaluating 1lms on temporal reasoning. arXiv preprint arXiv:2406.09170, 2024.

Yuqing Wang and Yun Zhao. Tram: Benchmarking temporal reasoning for large language
models. In Findings of the Association for Computational Linguistics ACL 2024, pages 6389—
6415, 2024.

Wenjie Du, Jun Wang, Linglong Qian, Yiyuan Yang, Zina Ibrahim, Fanxing Liu, Zepu Wang,
Haoxin Liu, Zhiyuan Zhao, Yingjie Zhou, et al. Tsi-bench: Benchmarking time series imputation.
arXiv preprint arXiv:2406.12747, 2024.



[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

Qinghua Liu and John Paparrizos. The elephant in the room: Towards a reliable time-series
anomaly detection benchmark. In The Thirty-eight Conference on Neural Information Process-
ing Systems Datasets and Benchmarks Track, 2024.

Taha Aksu, Gerald Woo, Juncheng Liu, Xu Liu, Chenghao Liu, Silvio Savarese, Caiming Xiong,
and Doyen Sahoo. Gift-eval: A benchmark for general time series forecasting model evaluation.
In NeurlPS Workshop on Time Series in the Age of Large Models, 2024.

Xiangfei Qiu, Jilin Hu, Lekui Zhou, Xingjian Wu, Junyang Du, Buang Zhang, Chenjuan Guo,
Aoying Zhou, Christian S. Jensen, Zhenli Sheng, and Bin Yang. Tfb: Towards comprehensive
and fair benchmarking of time series forecasting methods. Proc. VLDB Endow., 17(9):2363—
2377, 2024.

Haoxin Liu, Shangqing Xu, Zhiyuan Zhao, Lingkai Kong, Harshavardhan Kamarthi, Aditya B.
Sasanur, Megha Sharma, Jiaming Cui, Qingsong Wen, Chao Zhang, and B. Aditya Prakash.
Time-MMD: Multi-domain multimodal dataset for time series analysis. In The Thirty-eight
Conference on Neural Information Processing Systems Datasets and Benchmarks Track, 2024.

Andrew Robert Williams, Arjun Ashok, Etienne Marcotte, Valentina Zantedeschi, Jithendaraa
Subramanian, Roland Riachi, James Requeima, Alexandre Lacoste, Irina Rish, Nicolas Cha-
pados, et al. Context is key: A benchmark for forecasting with essential textual information.
arXiv preprint arXiv:2410.18959, 2024.

Zhijian Xu, Yuxuan Bian, Jianyuan Zhong, Xiangyu Wen, and Qiang Xu. Beyond trend and
periodicity: Guiding time series forecasting with textual cues. arXiv preprint arXiv:2405.13522,
2024.

Jialin Chen, Aosong Feng, Ziyu Zhao, Juan Garza, Gaukhar Nurbek, Cheng Qin, Ali Maatouk,
Leandros Tassiulas, Yifeng Gao, and Rex Ying. Mtbench: A multimodal time series benchmark
for temporal reasoning and question answering. arXiv preprint arXiv:2503.16858, 2025.

Chengsen Wang, Qi Qi, Jingyu Wang, Haifeng Sun, Zirui Zhuang, Jinming Wu, Lei Zhang, and
Jianxin Liao. Chattime: A unified multimodal time series foundation model bridging numerical
and textual data. In AAAI Conference on Artificial Intelligence, 2025.

Ming Jin, Yifan Zhang, Wei Chen, Kexin Zhang, Yuxuan Liang, Bin Yang, Jindong Wang,
Shirui Pan, and Qingsong Wen. Position paper: What can large language models tell us about
time series analysis. arXiv preprint arXiv:2402.02713, 2024.

Zhaoyi Li, Gangwei Jiang, Hong Xie, Linqgi Song, Defu Lian, and Ying Wei. Understanding
and patching compositional reasoning in llms. arXiv preprint arXiv:2402.14328, 2024.

Ernest Davis and Gary Marcus. Commonsense reasoning and commonsense knowledge in
artificial intelligence. Communications of the ACM, 58(9):92-103, 2015.

Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang, Yunzhu Li, Hao Peng, and Heng Ji.
Executable code actions elicit better 1lm agents. In Forty-first International Conference on
Machine Learning, 2024.

Seoha Song, Junhyun Lee, and Hyeonmok Ko. Hansel: Output length controlling framework
for large language models. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 39, pages 25146-25154, 2025.

Dimitris Spathis and Fahim Kawsar. The first step is the hardest: Pitfalls of representing
and tokenizing temporal data for large language models. Journal of the American Medical
Informatics Association, 31(9):2151-2158, 2024.

Claudia Greif, Raymond B Johnson, Chao an Li, Alva J Svoboda, and K Andrijeski Uemura.
Short-term scheduling of electric power systems under minimum load conditions. IEEE
transactions on power systems, 14(1):280-286, 1999.

Jonas Schaible, Bijan Nouri, Lars Hopken, Tim Kotzab, Matthias Loevenich, Niklas Blum,
Annette Hammer, Jonas Stithrenberg, Klaus Jdger, Christiane Becker, et al. Application of
nowcasting to reduce the impact of irradiance ramps on pv power plants. EPJ Photovoltaics,
15:15, 2024.



[33] Spyros I Gkavanoudis, Kyriaki-Nefeli D Malamaki, Eleftherios O Kontis, Charis S Demoulias,
Aditya Shekhar, Umer Mushtaq, and Sagar Bandi Venu. Provision of ramp-rate limitation as
ancillary service from distribution to transmission system: Definitions and methodologies for
control and sizing of central battery energy storage system. Journal of Modern Power Systems
and Clean Energy, 11(5):1507-1518, 2023.

[34] Yi Song, Sennan Kuang, Junling Huang, and Da Zhang. Unsupervised anomaly detection of
industrial building energy consumption. Energy and Built Environment, 2024.

[35] Zijian Niu, Ke Yu, and Xiaofei Wu. Lstm-based vae-gan for time-series anomaly detection.
Sensors, 20(13):3738, 2020.

[36] Shikha Verma, Kuldeep Srivastava, Akhilesh Tiwari, and Shekhar Verma. Deep learning
techniques in extreme weather events: A review. arXiv preprint arXiv:2308.10995, 2023.

[37] Raquel Aoki and Martin Ester. Parkca: Causal inference with partially known causes. In BIO-
COMPUTING 2021: Proceedings of the Pacific Symposium, pages 196-207. World Scientific,
2020.

[38] Timothy Riley and Qing Yan. Maximum drawdown as predictor of mutual fund performance
and flows. Financial Analysts Journal, 78(4):59-76, 2022.

[39] Cynthia Miglietti, Zdenka Kubosova, and Nicole Skulanova. Bitcoin, litecoin, and the euro: an
annualized volatility analysis. Studies in Economics and Finance, 37(2):229-242, 2020.

[40] Talwar Shalini, Pranav Shah, and Shah Utkarsh. Picking buy-sell signals: A practitioner’s
perspective on key technical indicators for selected indian firms. Studies in Business and
Economics, 14(3):205-219, 2019.

[41] Rommy Pramudya. Technical analysis to determine buying and selling signal in stock trade.
International Journal of Finance & Banking Studies (2147-4486), 9(1):58-67, 2020.

[42] Oliver Steinki and Ziad Mohammad. Common metrics for performance evaluation: Overview
of popular performance measurement ratios. Available at SSRN 2662054, 2015.

[43] Francis Gupta, Robertus Prajogi, and Eric Stubbs. The information ratio and performance.
Journal of Portfolio Management, 26(1):33, 1999.

[44] Paolo Legrenzi, Vittorio Girotto, and Philip N Johnson-Laird. Focussing in reasoning and
decision making. Cognition, 49(1-2):37-66, 1993.

[45] Xiangtian Zheng, Nan Xu, Loc Trinh, Dongqi Wu, Tong Huang, S Sivaranjani, Yan Liu, and
Le Xie. Psml: a multi-scale time-series dataset for machine learning in decarbonized energy
grids. arXiv preprint arXiv:2110.06324, 2021.

[46] Large-scale energy anomaly detection (lead). https://www.kaggle.com/competitions/
energy-anomaly-detection/data, 2022. Kaggle Competition.

[47] Hans Hersbach, Bill Bell, Paul Berrisford, Shoji Hirahara, Andras Horanyi, Joaquin Mufioz-
Sabater, Julien Nicolas, Carole Peubey, Raluca Radu, Dinand Schepers, et al. The era5 global
reanalysis. Quarterly journal of the royal meteorological society, 146(730):1999-2049, 2020.

[48] Ary L Goldberger, Luis AN Amaral, Leon Glass, Jeffrey M Hausdorff, Plamen Ch Ivanov,
Roger G Mark, Joseph E Mietus, George B Moody, Chung-Kang Peng, and H Eugene Stanley.
Physiobank, physiotoolkit, and physionet: components of a new research resource for complex
physiologic signals. circulation, 101(23):e215-e220, 2000.

[49] Yahoo Finance. Yahoo Finance, n.d. Accessed: 2025-05-14.

[50] Roger Clarke, Harindra De Silva, and Steven Thorley. Minimum-variance portfolio composition.
Journal of Portfolio Management, 37(2):31, 2011.

[51] David G Booth and Eugene F Fama. Diversification returns and asset contributions. Financial
Analysts Journal, 48(3):26-32, 1992.


https://www.kaggle.com/competitions/energy-anomaly-detection/data
https://www.kaggle.com/competitions/energy-anomaly-detection/data

[52] Malik Magdon-Ismail and Amir F Atiya. Maximum drawdown. Risk Magazine, 17(10):99-102,
2004.

[53] William F Sharpe. The sharpe ratio. Journal of portfolio management, 21(1):49-58, 1994.

[54] Darrell Duffie and Jun Pan. An overview of value at risk. Journal of derivatives, 4(3):7-49,
1997.

[55] Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark,
AlJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o0 system card. arXiv
preprint arXiv:2410.21276, 2024.

[56] Qwen Team. Qwen2.5-max: Exploring the intelligence of large-scale moe model, January 2025.
Accessed: 2025-05-14.

[57] Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian,
Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama
3 herd of models. arXiv preprint arXiv:2407.21783, 2024.

[58] Anthropic. Claude 3.5 sonnet, June 2024. Accessed: 2025-05-14.

[59] Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024.

[60] Google DeepMind. Introducing gemini 2.0: Our new ai model for the agentic era, December
2024. Accessed: 2025-05-14.

[61] Mistral Al. Codestral, May 2024. Accessed: 2025-05-14.

[62] Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-rl: Incentivizing reasoning capability in
Ilms via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

[63] Dawei Gao, Zitao Li, Xuchen Pan, Weirui Kuang, Zhijian Ma, Bingchen Qian, Fei Wei, Wenhao
Zhang, Yuexiang Xie, Daoyuan Chen, Liuyi Yao, Hongyi Peng, Ze Yu Zhang, Lin Zhu, Chen
Cheng, Hongzhu Shi, Yaliang Li, Bolin Ding, and Jingren Zhou. Agentscope: A flexible yet
robust multi-agent platform. CoRR, abs/2402.14034, 2024.

[64] Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine Li, Liwei Jiang, Bill Yuchen Lin,
Sean Welleck, Peter West, Chandra Bhagavatula, Ronan Le Bras, et al. Faith and fate: Limits
of transformers on compositionality. Advances in Neural Information Processing Systems,
36:70293-70332, 2023.

[65] Mike A Merrill, Mingtian Tan, Vinayak Gupta, Thomas Hartvigsen, and Tim Althoff. Language
models still struggle to zero-shot reason about time series. In EMNLP (Findings), 2024.

[66] Chen Ling, Xujiang Zhao, Jiaying Lu, Chengyuan Deng, Can Zheng, Junxiang Wang, Tanmoy
Chowdhury, Yun Li, Hejie Cui, Xuchao Zhang, et al. Domain specialization as the key to make
large language models disruptive: A comprehensive survey. arXiv preprint arXiv:2305.18703,
2023.



A Extended Benchmark Details

A.1 Question Generator: How to generate specific task instances?

1.0051
| have historical Temperature, Relative Humidity, Time  Tempera-  Relative Wind Load 10057
Wind Speed data and the corresponding ture  Humidity Speed  power 1'0062
load_power data for the past 117 minutes. | oo ’
need to ensure that the maximum allowable 12 (?9'949‘; 24.58 89.41 14 0.923 1.0068
system load does not exceed 1.0073
1.0689227278350713 MW. Think about how igz(ggo;: 24.60 89.31 1.4 0.924 1.0079
Temperature, Relative Humidity, Wind Speed ’ 1.0084
influence load_power. Please give me a forecast 1.0090
for the next 12 minutes for load_power. Your 202009, o o187 4 1003 1.0095
goal is to make the most accurate forecast as 1311:39 ’ ’ ’ ’ 1.0101
p055|b|§, refme'prefhcdtlon rzsult based on the 202009 ey o Looe 10106
constraint previously described, and ... 13 11:40 . . . . L0112
(a) Task Instruction (b) Serialized Dataset (c) Ground Truth

Figure 5: Example Task Instance containing the task instruction, accompanied serialized dataset, and
ground truth.

As shown in figure[5] each task instance contains a natural language instruction paired with structured
time series inputs and corresponding ground truth data. By design, the benchmark framework is
extensible and dynamic. New task instances can be generated automatically by applying the same
pipeline to additional time series data sources when accompanied by its designated task template,
supporting ongoing evaluation and adaptation to new domains. This supports long-term benchmarking
efforts and enables ongoing expansion across domains.

A.2 Evaluation: How to perform evaluation on heterogeneous task instances?

Task Type Success Criterion Metrics

Constrained Forecasting  Prediction is of correct shape and satisfies the specified oper- MAPE
ational constraint and the prediction is non-trivial (MAPE<1)

Anomaly Detection w/ A binary sequence with correct length is obtained and the F1-score

reference samples prediction is non-trivial (F1-score>0)

Causal Inference w/ do- A binary causal matrix with correct shape is returned. The — Accuracy

main knowledge provided domain knowledge is incorporated

Financial Analytics A scalar value is returned and the prediction is non-trivial ~ Absolute Error
(absolute error<0.05)

Financial Trading An investment signal of correct length is returned and there =~ CR, AR, MDD

is no loss in investment

Table 2: Task-specific success criteria and inference quality metrics. CR denotes Cumulative Return,
AR denotes Annualized Return, MDD denotes Maximum Drawdown.

The evaluation process follows a three-stage protocol. In the first stage, outputs are validated for
structural correctness, shape conformity. The second stage checks against specified constraint and
domain knowledge incorporation. Lastly, the inference quality metric is computed relative to ground
truth data. Results are returned in a structured format, including the success status, diagnostic
messages, and detailed metric scores. Failures are categorized into execution errors (model output
fails to run or parse), constraint violations (outputs violate injected domain-specific rules), and low
quality outputs (predictions meet format expectations but fall short on metric thresholds). Multiple
choice questions have a simple evaluation procedure of checking against ground truth letter option.

A.3 Comparison with Existing Benchmarks

As shown in table [3] existing time-series benchmarks fall into three main groups, each lacking one or
more component for evaluating time series Al assistant: First, datasets such as Test of Time [[14] and
TRAM [[15] present pure QA tasks (ordering, duration, arithmetic) with no time-series included (TS



Benchmark Dynamic TS involved Reasoning #Tasks Task Type

Test of Time [14] X X v 1 QA
TRAM [15]] X X v 1 QA
TSI-Bench [16] X v X 1 TS Analysis
TSB-AD [17] X v X 1 TS Analysis
GIFT-Eval [18] X v X 1 TS Analysis
TFB [19] X v X 1 TS Analysis
Time-MMD [20] X v X 1 TS Analysis
CiK [21]] X v X 1 TS Analysis
TGTSF [22]] X v X 1 TS Analysis
LLM TS Struggle [65]] X v v 2 QA, TS Analysis
MTBench [23] X v v 3 QA, TS Analysis
ChatTime [24] X v v 3 QA, TS Analysis
TSAIA(Ours) v v v 4 QA, TS Analysis

Table 3: Comparison of TSAIA and existing temporal-related benchmarks. Dynamic indicates
whether new task instances can be continuously generated.

involved:X). While they evaluate logical reasoning, they cannot test how models process numerical
signals. Secondly, benchmarks like TSI-Bench [16], TSB-AD [17], GIFT-Eval [18]], TFB [19],
Time-MMD [20], CiK [21]], and TGTSF [22]] focus on a single static time-series analysis including
imputation, anomaly detection, and forecasting over fixed datasets with pre-defined sliding window
size for evaluation (Dynamic:X, Reasoning:X, Tasks=1). Lastly, recent efforts on hybrid QA and
analysis such as MTBench [23]], ChatTime [24] combine time-series and text inputs (TS involved:v")
and include reasoning components (Reasoning:v), yet remain fixed setting (Dynamic:X) and only
covers context-aided forecasting in time series analysis component part. TSAIA arises as first of its
kind time series inference benchmark with practical relevance, task diversity, and supports continuous
expansion.

B Additional Result

Models are evaluated with hyperparameter top_p = 1 and temperature = 0 to minimize sampling
randomness. In predictive tasks (table ), models handle simple constraints (maximum or minimum
load) better than temporal smoothness (ramp or variability). In diagnostic tasks (table [5), models
struggle more with leveraging reference samples to calibration anomaly threshold. In analytical tasks
(table[6), price or volatility prediction is moderate to strong; trend prediction lags. In risk and return
analysis, models favor familiar or simpler metrics (e.g., volatility, Sharpe). In decision making tasks,
most models hover near chance (Figure[6); DeepSeek-R achieves consistent above random accuracy
but with higher token usage (Figure 3). Overall, results underline the value of domain specialization
[66]. Harder tasks elicit more interaction turns under CodeAct (Figure .

C Dataset Statistics

Table[7lsummarizes the dataset statistics for the raw time series datasets used in TSAIA. The climate
data is obtained from ERAS datasetﬂ Energy data with covariates is obtained fronﬂ The ECG signal
data is obtained from PhysioNelE‘ﬂ The building energy usage data is obtained from Kaggleﬂ Notably,
the daily stock data, hourly stock data, and energy data with geolocation were manually scraped
and preprocessed. The energy data with geolocation was obtained from official energy grid operator

"https://climatelearn.readthedocs.io/en/latest/user-guide/tasks_and_datasets.
html#erab-dataset
“https://github.com/tamu-engineering-research/Open-source-power-dataset
*https://physionet.org/content/nsrdb/1.0.0/
Shttps://physionet.org/content/1tdb/1.0.0/
Shttps://www.kaggle.com/competitions/energy-anomaly-detection/data

10


https://climatelearn.readthedocs.io/en/latest/user-guide/tasks_and_datasets.html#era5-dataset
https://climatelearn.readthedocs.io/en/latest/user-guide/tasks_and_datasets.html#era5-dataset
https://github.com/tamu-engineering-research/Open-source-power-dataset
https://physionet.org/content/nsrdb/1.0.0/
https://physionet.org/content/ltdb/1.0.0/
https://www.kaggle.com/competitions/energy-anomaly-detection/data

Metric GPT-40 Qwen-Max Llama3.1 Claude-3.5 DeepSeek Gemini-2.0 Codestral DeepSeek-R

Electricity Prediction with Covariates

Max Load Success Rate 0.50 0.75 0.56 0.88 1.00 0.19 0.31 0.94
x MAPE (std) ~ 0.09 (0.12)  0.07 (0.06) 0.10(0.11) 0.11(0.12) 0.10(0.12)  0.52(0.41) 0.03(0.03)  0.10(0.11)

Min Load Success Rate 0.76 0.82 0.65 0.82 0.88 0.18 0.59 1.00
MAPE (std) ~ 0.11(0.11)  0.09 (0.11)  0.10(0.11) 0.09 (0.11)  0.12(0.18)  0.09 (0.04)  0.09 (0.10)  0.09 (0.11)

Load Ramp Rate Success Rate 0.46 0.80 0.53 0.93 0.80 0.13 0.47 0.93
P MAPE (std)  0.18 (0.14)  0.14(0.12)  0.15(0.07)  0.19(0.19)  0.11(0.08)  0.04 (0.01) 0.12(0.08)  0.11(0.07)

Success Rate 0.47 0.76 0.29 0.29 0.76 0.06 0.35 0.94

Load Variability  \rapp () 020(0.31) 0.13(0.16) 0.09(0.12) 009(0.12) 0.19(0.27) 0.05(0.00) 0.04(0.03) 0.11 (0.14)

Electricity Prediction without Covariates

Max Load Success Rate 1.00 0.94 0.94 1.00 0.94 0.41 1.00 0.71
MAPE (std)  0.18 (0.16)  0.10(0.07) 0.16(0.10) 0.15(0.13) 0.15(0.12) 0.10(0.02) 0.12(0.07)  0.23 (0.26)

Min Load Success Rate 0.94 0.94 0.94 0.94 0.88 0.29 0.71 0.88
MAPE (std) ~ 0.14 (0.08)  0.14 (0.08) 0.17(0.08) 0.17(0.09) 0.13(0.09) 0.12(0.03) 0.14(0.05)  0.17 (0.16)

Load Ramp Rate Success Rate 0.76 1.00 0.71 0.76 0.82 0.24 0.88 0.76
P MAPE (std)  0.24(0.19) 0.23(0.22) 0.21(0.11) 0.28 (0.16) 0.19(0.20) 0.42(0.28) 0.29(0.30)  0.22(0.13)

Success Rate 0.82 0.88 0.82 0.65 0.76 0.41 0.71 0.65

Load Variability  \/ApE (i) 0.17(0.12)  0.13(0.09)  0.15(0.09) 0.16(0.12) 0.19(0.17) 039(0.39) 0.13(0.07)  0.24 (0.24)

Electricity Prediction for Multiple Grids

Max Load Success Rate 0.76 0.88 0.47 0.88 0.94 0.47 0.12 0.88
MAPE (std)  0.21 (0.27) 0.21(0.24) 0.64(0.31) 0.18(0.20) 0.16 (0.21) 0.34(0.39) 0.10(0.03)  0.23(0.27)

Min Load Success Rate 0.76 0.88 0.24 0.94 0.94 0.18 0.29 0.94
! MAPE (std)  0.10(0.12) 0.18(0.29) 0.46(0.37) 0.13(0.20) 0.08 (0.11) 0.01(0.01) 0.23(0.37)  0.16 (0.23)

Load Ramp Rate Success Rate 0.65 0.65 0.88 0.88 0.94 0.29 0.29 1.00
P MAPE (std)  0.19(0.24) 0.18(0.18) 0.73(0.33) 0.27(0.21) 0.21(0.21)  1.00(0.00) 0.10(0.05)  0.19 (0.19)

Success Rate 0.41 0.59 0.53 0.41 0.59 0.35 0.29 0.53

Load Variability  \yupp (i) 0.15(0.13)  0.18(0.23) 061 (036) 0.11(0.13) 0.18(0.14)  090(023) 0.19(0.13) 0.4 (0.25)

Table 4: Model Performance on Predictive Task. Red indicates best result, Blue indicates second best.

Benchmark GPT-40 Qwen-Max Llama3.l Claude-3.5 DeepSeek Gemini-2.0 Codestral DeepSeek-R
Diagnostic Task w/ Reference Samples
Extreme Weather Detection ~ Success Rate 0.24 0.23 0.23 0.62 0.23 0.14 0.23 0.34
w/ Reference Samples F1 (std) 0.91(0.23) 0.90(0.24) 0.90(0.24) 0.90(0.18) 0.90(0.24) 0.96 (0.06) 0.91(0.23)  0.91 (0.20)
ECG Signal Anomaly Success Rate 0.51 0.17 0.55 0.68 0.54 0.10 0.59 0.63
w/ Reference Samples F1 (std) 0.55(0.35) 0.70(0.29) 0.43(0.36) 0.65(0.32) 0.54(0.34) 0.01(0.00) 0.58(0.34) 0.61(0.32)
Causal Discovery w/ Domain Knowledge
Causal Discovery w/ Success Rate 0.94 0.92 0.99 1.00 0.97 0.39 0.94 0.96
Quantitative Knowledge Accuracy (std)  0.69 (0.09) 0.77 (0.11)  0.78 (0.12)  0.77(0.09)  0.71(0.11)  0.42(0.18) 0.72(0.11)  0.77 (0.10)
Causal Discovery w/ Success Rate 0.85 0.70 0.83 0.97 0.96 0.45 0.93 0.99
Qualitative Knowledge Accuracy (std)  0.87 (0.17)  0.79(0.17)  0.77 (0.18)  0.89 (0.16)  0.89(0.14)  0.72(0.20) 0.88 (0.15)  0.90 (0.12)
Anomaly Detection across Multiple Sequences
Extreme Weather Detection ~ Success Rate 0.87 0.31 0.03 0.97 0.97 0.37 0.23 1.00
w/ Known Anomaly Rate F1 (std) 0.53(0.25) 0.62(0.19) 0.68(0.05) 0.73(0.12) 0.72(0.11) 0.65(0.18) 0.42(0.31)  0.72(0.10)
Energy Usage Anomaly Success Rate 0.87 0.52 0.77 1.00 1.00 0.23 0.58 0.96
w/ Known Anomaly Rate F1 (std) 0.08 (0.09) 0.14(0.20) 0.15(0.11) 0.48(0.18) 0.50(0.19)  0.19(0.21)  0.06 (0.06)  0.40 (0.23)

Table 5: Model Performance on Diagnostic Task. Red indicates best result, Blue indicates second
best.

Website% and the associated geolocation was inferred as the largest city within the operational
zone delineated by each provider’s published grid mam Stock price data was scraped using the
pyﬁnanceE| package, with data pulled up to date as of 2024-09-17. The stock market indices data are
pulled from various sources on the web. The causal discovery dataset is synthetically generated to
reflect controlled causal structures. The prompt used to obtain causal discovery dataset is shown in
section

"https://www.nyiso.com/load-data

$https://www.ercot.com/gridinfo/load/load_hist

https://www.misoenergy.org/markets-and-operations/real-time--market-data/
market-reports

"https://www.nyiso.com/documents/20142/1397960/nyca_zonemaps . pdf

"https://www.ercot.com/news/mediakit/maps

]zhttps://www.misostates.org/images/stories/meetings/Cost_Allocation_Principles_
Committee/2021/Website_Presentations.pdf

“https://pypi.org/project/pyfinance/

11


https://www.nyiso.com/load-data
https://www.ercot.com/gridinfo/load/load_hist
https://www.misoenergy.org/markets-and-operations/real-time--market-data/market-reports
https://www.misoenergy.org/markets-and-operations/real-time--market-data/market-reports
https://www.nyiso.com/documents/20142/1397960/nyca_zonemaps.pdf
https://www.ercot.com/news/mediakit/maps
https://www.misostates.org/images/stories/meetings/Cost_Allocation_Principles_Committee/2021/Website_Presentations.pdf
https://www.misostates.org/images/stories/meetings/Cost_Allocation_Principles_Committee/2021/Website_Presentations.pdf
https://pypi.org/project/pyfinance/

Benchmark GPT-40 Qwen-Max Llama3.1 Claude-3.5 DeepSeek Gemini-2.0 Codestral DeepSeek-R
Stock Prediction

Future Price Success Rate 0.96 1.00 0.70 0.74 0.87 0.17 0.39 1.00
MAPE (std) 0.06 (0.08) 0.05(0.07) 0.06(0.08) 0.12(0.16) 0.05(0.07) 028 (0.42) 0.05(0.05)  0.05(0.07)
Future Volatili Success Rate 0.83 0.43 0.39 0.74 0.57 0.17 0.57 0.61
ty MAPE (std) 070(028) 0.83(026) 0.64(029) 0.75(0.31) 0.90(0.13) 0.84(0.24) 0.61(0.32)  0.77 (0.24)
Future Trend Success Rate 043 0.30 0.57 0.26 043 0.04 0.52 0.35
Accuracy (std) 0.90 (0.20) 0.86(0.23) 0.88 (0.21) 1.00(0.00) 0.85(0.23) 1.00(0.00) 0.96(0.14)  0.81(0.24)
Risk/Return Estimation
Annualized Return Success Rate 045 - 0.09 0.27 0.36 - 0.18 0.55
Abs Error (std) 0.02 (0.02) - 0.01 (0.00) 0.01(0.01) 0.02(0.01) 0.03(0.02)  0.02(0.02)

Success Rate 0.91 0.82 1.00 1.00 1.00 0.09 1.00 0.91

Annualized Volatility u "por (std) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.02(0.00) 0.00(0.00)  0.00(0.00)
Maximum Drawdown Success Rate 0.18 0.09 0.27 0.18 0.27 0.09 - 0.45
Abs Error (std) 0.00 (0.00)  0.00 (0.00)  0.00(0.00) 0.00 (0.00) 0.00 (0.00) 0.0 (0.00) - 0.01 (0.01)
Calmar Ratio Success Rate 0.18 0.18 - 0.27 0.27 - 0.82 0.18
Abs Error (std) 0.01(0.01)  0.01 (0.01) - 0.02 (0.01)  0.02 (0.01) - 0.01(0.01)  0.01 (0.01)
Sortino Ratio Success Rate 0.09 0.09 - - 0.18 - 0.09 -
Abs Error (std) 0.01(0.00)  0.01 (0.00) - - 0.00 (0.00) - 0.00 (0.00) -
Sharpe Ratio Success Rate 0.73 0.18 0.27 0.36 0.18 0.18 0.73 0.18
arp Abs Error (std) 0.00 (0.00)  0.00(0.00) 0.00(0.00) 0.01(0.01) 0.02(0.02) 0.02(0.02) 0.00(0.00) 0.02(0.01)
Benchmark Against Market Analysis
Information Rati Success Rate 0.44 0.20 0.06 0.51 0.73 0.18 0.01 0.77
niormation Ratio Abs Error (std) 0.00 (0.00)  0.01 (0.01) 0.03(0.01) 0.00(0.01) 0.00(0.00) 0.00(0.01) 0.00(0.00)  0.00 (0.00)
Stock Trading Strategy
Success Rate 0.44 0.59 0.96 0.62 0.61 0.18 0.63 0.52
Trading Strate Cumulative Return 0.13 0.10 0.00 0.09 0.09 0.05 0.06 0.07
2 ey Annualized Return 243 4.56 0.05 4.58 1.69 0.36 3.87 1.41
Maximum Drawdown 0.05 0.05 0.00 0.04 0.05 0.02 0.02 0.04

Table 6: Model Performance on Analytical Tasks. Red indicates the best result, Blue indicates the
second-best. A dash () denotes that no successful cases were recorded.

087 e GPT-40
0.7 [ Qwen-Max
’ e Llama-3.1
0.64 ™= Claude-3.5
| mm DeepSeek
B Gemini-2.0

0.5 1

> B Codestral

©

50.4- DeepSeek-R

g s Random

e
)
)

o
N
)

0.1 A

0.0-

ortfolio (Sharpe)

ket Performance Market Volatility

gest Portfolio (VaR) <tock vS.

Best P Stock vs. Mar

Figure 6: Model Performance on Decision-Making and Analysis-Interpretation Tasks in Multiple
Choice Format

[ GPT-40  mmm Qwen-Max = Llama-3.1 mmm Claude-3.5 [0 Deepseek  mmm Gemini-2.0 === Codestral Deepseek-R

R Predictive tasks Diagnostic tasks Analytical tasks

«

IS

Number of Turns

0
o covara®  iple Q""diask W] covariate gtical 8K

" K ic task
v - postic @S - gnostic @
e task w] S \ oy diagM (d diag
Pred\ct\vi cedictive rask ac predictive Easy Ha

ical task
Ve ard

casy anal anal

Figure 7: Average Number of Turns Models Take to Reach a Solution Grouped by Difficulty Level

12



Dataset Number of Data Files Avg Total Timestamps Number of Variables

Climate Data 624 526 2048
Energy Data w/ geolocation 22 8760 1-3
Energy Data w/ Covariates 66 872601 11
Building Energy Usage Data 398 5019 1
Causal Data 8 529 3-6
Daily Stock Data 6780 3785 7
Hourly Stock Data 5540 35 7
Stock Market Indices Data 6 3388 4
ECG Signal Data 24 10804352 2

Table 7: Dataset Statistics of the constructed dataset. The exact number of time series are not
calculated because it depends on randomly sampled sequence length when generating task instances.

mmm  Execution Error/Did Not Reach A Solution [ Constraint Violation mmm Trivial Prediction/Inadequate Result mmm Format, Shape, Others I Success

Electricity Prediction Electricity Prediction Electricity Prediction Causal Doscovery Diagnostic Task
w/o covariates w/ covariates across multiple grids w/ domain knowledge w/ reference samples
28.9%
1.4%
29% 72.3%
10.3%
8.8% a5 138% 7%
: 6.3%
2.9%
1.5:/» 7.4% 98.6%
10.8% 4.4% 64.8%
3.1%
Diagnostic Task w/ known prior Stock Prediction Risk & Return analysis Benchmark Against Market Financial Trading
58.0% 36.6% 38.0%
1.4%
4.8%
65.2%)
08.6%  30.4% 0.7%
8 62.0%

11.6%

Figure 8: Case Study on Claude 3.5 Error Distribution across Tasks Grouped by Difficulty Level

D Additional Error Analysis

Beyond GPT-40, we extend our error analysis to other representative models, whose detailed error
distributions are visualized in Figures[8HI4] While Claude-3.5 generally performs well, it exhibits
a noticeable proportion of constraint violation errors in electricity prediction tasks, suggesting
challenges in handling numerical constraints embedded within the input. Despite the complexity
of financial trading tasks, Llama-3.1 performs competitively relative to other models—particularly
notable given its open-source nature. In contrast, Gemini-2.0 and Codestral show a high incidence

B Execution Error/Did Not Reach A Solution [ Constraint Violation mmm Trivial Prediction/Inadequate Result ~ mm Format, Shape, Others [ Success

Electricity Prediction Electricity Prediction Electricity Prediction Causal Doscovery Diagnostic Task
w/o covariates w/ covariates across multiple grids w/ domain knowledge w/ reference samples

8.5%

2.9% a5 47.2%
5.9% 1.0%
17.6%
65% 88%
L.4% 44.4%
8.8%

Diagnostic Task w/ known prior Stock Prediction Risk & Return analysis Benchmark Against Market Financial Trading

19.7%
9.2%
64.8% 2.8% 40.89
12.7%

Figure 9: Case Study on Qwen Error Distribution across Tasks Grouped by Difficulty Level

63.6%

3.0%
22.7%

21.8% 8.7% 10.6%

45.1% 58.0%

13



m Execution Error/Did Not Reach A Solution Constraint Violation Trivial Prediction/Inadequate Result m Format, Shape, Others Success

Electricity Prediction Electricity Prediction Electricity Prediction Causal Doscovery Diagnostic Task
w/o covariates w/ covariates across multiple grids w/ domain knowledge w/ reference samples

11.3%‘

2.9%
2.9%

5.9%

43.1%
45.6%
29% . 45.1%
Lanbl
40.8%
93.7%

14.1%
Diagnostic Task w/ known prior Stock Prediction Risk & Return analysis Benchmark Against Market Financial Trading
6.1%

4

6.1%

82.4%

1.5%

4.6% 45.6%

40.1% 7.2%

62.0%

49.3%  40.9%

10.1%, 33.8%,

/ 63.4%

2.8%

6.3% 21.8% 33.3% 1.4%

Figure 10: Case Study on Codestral Error Distribution across Tasks Grouped by Difficulty Level

of execution errors across nearly all task categories, indicating limited suitability for structured,
multi-step time series reasoning. DeepSeek-R consistently avoids execution failures and maintains a
relatively high success rate across tasks.

E CodeAct System Prompt Template

You are a helpful assistant that gives helpful, detailed, and polite answers to the user’s
questions. The code written by assistant should be enclosed using <execute> tag, for example:
<execute> print("Hello World!”) </execute>. You should provide the solution in a single
<execute> block instead of taking many turns. You’ll receive feedback from your code
execution. You should always import packages and define variables before starting to use
them. You should stop <execute> and provide an answer when they have already obtained
the answer from the execution result. Whenever possible, execute the code for the user using
<execute> instead of providing it. Your response should be concise, but do express their
thoughts. Always write the code in <execute> block to execute them. You should not ask
for the user’s input unless necessary. Solve the task on your own and leave no unanswered
questions behind. You should do every thing by your self. You are not allowed to install any
new packages or overwrite available variables provided to you in the question. Additionally,
you are provided with the following variables available: {variable names} The above variables
is already available in your interactive Python (Jupyter Notebook) environment, allowing you
to directly use them without needing to re-declare them.

F Refinement Solution Path

Box [Fillustrates the solution refinement trajectory of Deepseek-R. Execution feedback from the
CodeAct Python interpreter enabled the model to revise its output twice—first to address a syntax
error due to a missing closing parenthesis, and second to resolve an import error. As shown in
Figure [7} Deepseek-R consistently requires more interaction turns than other models. A closer
examination reveals that this behavior stems from the lack of a proper stopping mechanism: although
a correct solution was reached by turn 3, the model continued executing redundant steps in turns 4
and 5. Notably, Deepseek-R also incorporates explicit inline comments such as # Total pairs:
5x4=20, top 20% is 4 pairs to document its intermediate reasoning steps, contributing to its
overall performance strength.

14



B Execution Error/Did Not Reach A Solution [0 Constraint Violation - Trivial Prediction/Inadequate Result W@ Format, Shape, Others [ Success

Electricity Prediction Electricity Prediction Electricity Prediction Causal Doscovery Diagnostic Task
w/o covariates w/ covariates across multiple grids w/ domain knowledge w/ reference samples
50.0%

35.3% 9.2%
Diagnostic Task w/ known prior Stock Prediction Risk & Return analysis Benchmark Against Market Financial Trading
4.5% 29.6% 5.6%
55.1% 42%
0.1% 42%
7.2%
4.2%
55.6% 24.6%
95.8%

13.0% 60.6%

Figure 11: Case Study on Llama Error Distribution across Tasks Grouped by Difficulty Level

mmm Execution Error/Did Not Reach A Solution == Constraint Violation ~ mmm Trivial Prediction/Inadequate Result ~ Wmm Format, Shape, Others ~ mw% Success

Electricity Prediction Electricity Prediction Electricity Prediction Causal Doscovery Diagnostic Task
w/o covariates w/ covariates across multiple grids w/ domain knowledge w/ reference samples
33.8% 32.3% 1.5% 32.4%

12.0%

42.3%
57.4% 9%
66.2%
Diagnostic Task w/ known prior Stock Prediction Risk & Return analysis Benchmark Against Market Financial Trading

18.3% 5.6% 18.3%
29.6%

76.1%

Figure 12: Case Study on Gemini Error Distribution across Tasks Grouped by Difficulty Level

B Execution Error/Did Not Reach A Solution [0 Constraint Violation - Trivial Prediction/Inadequate Result W@ Format, Shape, Others W00 Success

Electricity Prediction Electricity Prediction Electricity Prediction Causal Doscovery Diagnostic Task
w/o covariates w/ covariates across multiple grids w/ domain knowledge w/ reference samples
7.7% 8.8%
4.6% 2.9%
1.5% 2.9%
86.2%
9.2%
Diagnostic Task w/ known prior Stock Prediction Risk & Return analysis Benchmark Against Market Financial Trading

15%

37.9%
22.5%

29.0%,
2.3%
.6%
8.7%

Figure 13: Case Study on Deepseek-chat Error Distribution across Tasks Grouped by Difficulty Level

15



m Execution Error/Did Not Reach A Solution Constraint Violation Trivial Prediction/Inadequate Result s Format, Shape, Others Success

Electricity Prediction Electricity Prediction Electricity Prediction Causal Doscovery Diagnostic Task

w/o covariates w/ covariates across multiple grids w/ domain knowledge w/ reference samples
5.9% N
0.7% 38.7%,
2.1%
10.3%
75.0%
. 95.4% S
16.2% 159 e
it
5% o 50.0%
6% 97.2%
8.8% 11.3%
Diagnostic Task w/ known prior Stock Prediction Risk & Return analysis Benchmark Against Market Financial Trading
o %
24.6% 38.2% 9.9%
2.1% ‘ 12.7% ‘
o
- 8.7% 25,19 52.1%
97.9% 1.4% ‘
o 77.5%
65.2% 61.8%

2.8%

Figure 14: Case Study on Deepseek-R Error Distribution across Tasks Grouped by Difficulty Level

Deepseek-R Solution Path

User

I have historical Temperature (A), Humidity (B), Air Quality Index (C), Wind Speed (D),
Precipitation (E) data and want to get the causal relationship between each pair of the variables.
I know that 20.0% of the variable pairs have relationship. Self-causalation is not considered.
Consider the potential influence of each variable on the others in this variable list: [ Temperature
(A)’, ’Humidity (B)’, ’Air Quality Index (C)’, "Wind Speed (D)’, ’Precipitation (E)’]. Please
provide 2d numpy matrix with binary values to indicate whether each pair of variables has a
relationship. The data for all variables are stored in variable VAL.

Requirements:

- Store your output in the variable called ‘predictions‘, make sure to consider predictions to have
the right shape according to the question’s output requirements if it’s supposed to be an array,
there is no need to consider shapes if you only need to return a numerical value.

- Do not customly define/generate/overwrite the available variables, assume that the variables are
already defined and available.

data note: VAL values are usually stored in either a dataframe or numpy values.

You should enclose your python code in <execute> </execute> tag and do not overwrite available

variables that store the data. Do not use any other tags like “‘python‘‘.

Assisstant:

<execute>
import numpy as np

# Handle VAL (dataframe or numpy array)
if isinstance(VAL, pd.DataFrame):

data = VAL.values
else:

data = VAL

n_vars = 5 # Number of variables
predictions = np.zeros((n_vars, n_vars), dtype=int)

# Calculate time-lagged correlations for directed pairs
correlations = []
for i in range(n_vars):
for j in range(n_vars):
if i 1= j:
if data.shape[0] > 1:
x = datal[:-1, i]

16



y = datal1l:, j]

corr = np.corrcoef(x, y) [0, 1] if len(x) > 1 else O
correlations.append((i, j, abs(corr if not np.isnan(corr)
else 0))

# Sort by correlation strength and select top 20% (4 pairs)
sorted_pairs = sorted(correlations, key=lambda x: -x[2])[:4]

# Mark selected pairs in predictions matrix
for i, j, _ in sorted_pairs:
predictions[i, j] =1

# Ensure correct variable name (user specified ’predictions’)
predictions = predictions
</execute>

User:

Execution Failed: Execution Output: An error occurred while executing the following cell:
sorted_pairs = sorted(correlations, key=lambda x: -x[2])[:4] SyntaxError: invalid syntax

Side note: Remember to enclose your code in <execute> </execute> tag and do not overwrite
any available variables provided to you in the question, especially that they contain the data.

Assistant:

<execute>
import numpy as np

# Handle VAL (dataframe or numpy array)
if isinstance(VAL, pd.DataFrame):

data = VAL.values
else:

data = VAL

n_vars = 5 # Number of variables
predictions = np.zeros((n_vars, n_vars), dtype=int)

# Calculate time-lagged correlations for directed pairs
correlations = []
for i in range(n_vars):
for j in range(n_vars):
if i 1= §:
if data.shape[0] > 1:
x = datal:-1, i]
y = dataf[1:, j]
if len(x) > 1:
corr = np.corrcoef (x, y) [0, 1]
corr = 0 if np.isnan(corr) else corr
else:
corr = 0
correlations.append((i, j, abs(corr)))

# Sort by correlation strength and select top 20% (4 pairs)
sorted_pairs = sorted(correlations, key=lambda x: -x[2])[:4]

# Mark selected pairs in predictions matrix

for i, j, _ in sorted_pairs:
predictions[i, j]l =1

</execute>

User:

17




Execution Failed: Execution Output: An error occurred while executing the following cell: if
isinstance(VAL, pd.DataFrame): NameError: name "pd’ is not defined.

Side note: Remember to enclose your code in <execute> </execute> tag and do not overwrite
any available variables provided to you in the question, especially that they contain the data.
Assistant:

<execute>
import numpy as np
import pandas as pd

# Handle VAL (dataframe or numpy array)
if isinstance(VAL, pd.DataFrame):

data = VAL.values
else:

data = VAL

n_vars = 5 # Number of variables
predictions = np.zeros((n_vars, n_vars), dtype=int)

# Calculate time-lagged correlations for directed pairs
correlations = []
for i in range(n_vars):
for j in range(n_vars):
if 1 1= 3:
if data.shapel[0] > 1:
x = datal:-1, i]
y = dataf[1:, j]
if len(x) > 1:
corr = np.corrcoef (x, y) [0, 1]
corr = 0 if np.isnan(corr) else corr
else:
corr = 0
correlations.append((i, j, abs(corr)))

# Total pairs: 5%4=20, top 20% is 4 pairs
sorted_pairs = sorted(correlations, key=lambda x: -x[2]) [:4]

# Update predictions matrix
for pair in sorted_pairs:

i, j, _ = pair
predictions[i, j] =1
</execute>

User
Execution Successful: Execution Output: []

Assistant:

The code now correctly imports necessary packages and handles both DataFrame and numpy
array inputs for ‘“VAL. It calculates time-lagged correlations between variables, selects the top
20% strongest relationships (4 pairs), and constructs the binary matrix ‘predictions® with 1s
indicating causal directions. The final matrix respects the problem constraints and data structure
requirements.

<execute>
import numpy as np
import pandas as pd

# Handle VAL (dataframe or numpy array)
if isinstance(VAL, pd.DataFrame):

data = VAL.values
else:

18




data = VAL

n_vars = 5 # Number of variables
predictions = np.zeros((n_vars, n_vars), dtype=int)

# Calculate time-lagged correlations for directed pairs
correlations = []
for i in range(n_vars):
for j in range(n_vars):
if i 1= §:
if data.shapel[0] > 1:
x = datal[:-1, i]
y = data[1:, jl
if len(x) > 1:
corr = np.corrcoef (x, y) [0, 1]
corr = 0 if np.isnan(corr) else corr
else:
corr = 0
correlations.append((i, j, abs(corr)))

# Sort by absolute correlation and select top 4 pairs (20%)
sorted_pairs = sorted(correlations, key=lambda x: -x[2]) [:4]

# Update predictions matrix
for i, j, _ in sorted_pairs:
predictions[i, j] =1

predictions # Final output matrix
</execute>

User:

Execution Successful: Execution Output: ["array([[0, O, 1, 1, 0],[0, 0, 0, 0, 01,[0, 0, 0, 0, 0],[1, O,
1,0, 0L,[0, 0, 0, 0, 0]])’]

Assistant:

The code correctly identifies the top 20% of variable pairs with the strongest time-lagged
correlations, resulting in a 5x5 binary matrix ‘predictions‘ where 1 indicates a causal relationship.
The matrix shape and data type adhere to the problem’s requirements.

<execute>
import numpy as np
import pandas as pd

# Handle VAL (dataframe or numpy array)
if isinstance(VAL, pd.DataFrame):

data = VAL.values
else:

data = VAL

n_vars = 5 # Number of variables
predictions = np.zeros((n_vars, n_vars), dtype=int)

# Calculate time-lagged correlations
correlations = []
for i in range(n_vars):
for j in range(n_vars):
if i !'= j and data.shape[0] > 1:
x = datal[:-1, i]
y = data[1l:, j]
if len(x) >= 2: # Ensure valid correlation calculation

19




corr = np.corrcoef(x, y)[0, 1]
corr = 0 if np.isnan(corr) else abs(corr)
correlations.append((i, j, corr))

# Select top 20% pairs (4 out of 20 possible directed pairs)
top_pairs = sorted(correlations, key=lambda x: -x[2])[:4]
for i, j, _ in top_pairs:

predictions[i, j] =1

predictions
</execute>

User:

Execution Successful: Execution Output: [ array([[0, O, 1, 1, 0],[0, 0, 0, 0, 0],[0, O, 0, 0, 0],[1, O,
1,0, 0],[0, 0, 0, 0, 0]1)’]

Assistant: I have reached the maximum number of executions. Can you assist me or ask me
another question?

Evaluation: final value <class 'numpy.ndarray’> (5, 5) [[00110][00000][00000][1010
0] [0 0 0 0 0]] evaluation result: {’status’: 1, ’accuracy’: 0.84}

G Casual Discovery Data Generation Prompt

Now you are a Time series data scientist, please help me to write the code to generate some synthetic
data in real world Time series domain, you should save the data into "*/data.csv":

Now suggesting you should construct a series data based on a relation matrix and the correlation
ratio for different influence factor, you should notice the following points,for time step I want you to
generate 500 time steps:

1. data correlation: the multi variable should be correlated, sample: which A first influence B, then B
have influence on C or D, there should be some time delay, as the influence on other staff needs time.

2. data trend: there should be some trend in the data, like the data is increasing or decreasing.
3. data: seasonality there should be some seasonality in the data, like the data is periodic.
4. data noise: the noise should be added to the data, as the real world data is not perfect.

5. data background: the data should have some real world background, you should first think about
different real world data, and provide a description for the variable and time series data, then generate
the data using the code. CoT Sample: Q: Approximate Relation Ratio: 0.5 Relation Matrix:

|A B C D
ATT T 0 1
B0 1 0 1
clo 1 1 1
Dl0 0 0 1

¢ A influences B and D, and itself.
¢ B influences D, and itself.
¢ Cinfluences B and D, and itself.

* D influences only itself.

variable size: 4 A: Scenario: Sales Data of a Chain of Stores Over Time Let’s assume we are
generating synthetic data,the variable size for the data is 4. for the daily sales of multiple stores across
a chain, the sales numbers are influenced by:

1. Advertising (A): The level of advertising spend directly impacts the sales of each store. After a
delay, this starts influencing sales. 2. Sales (B): The sales numbers for each store are influenced by
both the advertising and local seasonal events. 3. Economic Factors (C): Broader economic trends,
like GDP growth or unemployment rates, also impact sales. These factors show a delayed and more

20



subtle influence over time. 4. Customer Sentiment (D): Customer sentiment affects the sales of
specific products in each store and is influenced by both advertising and broader economic factors.

Seasonality: Sales experience periodic seasonal trends, with peaks around the holidays and lower
numbers during off-seasons.

Trend: There is a general increasing trend in sales as the chain expands.

Noise: Random noise is added to mimic real-world data fluctuations.

21



	Introduction
	TSAIA Benchmark
	Experiments
	Conclusion
	Extended Benchmark Details
	Question Generator: How to generate specific task instances?
	Evaluation: How to perform evaluation on heterogeneous task instances?
	Comparison with Existing Benchmarks

	Additional Result
	Dataset Statistics
	Additional Error Analysis
	CodeAct System Prompt Template
	Refinement Solution Path
	Casual Discovery Data Generation Prompt

