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Abstract

The rapid advancement of Large Language Models (LLMs) has sparked growing1

interest in their application to time series analysis tasks. However, their ability2

to perform complex reasoning over temporal data application domains remains3

significantly underexplored. To achieve this goal, one first step is to establish a4

rigorous benchmark dataset for evaluation. In this work, we introduce TSAIA5

Benchmark, a first attempt to evaluate LLMs as a time series artificial intelligence6

assistant. To ensure both scientific rigor and practical relevance, we surveyed7

over 20 academic publications and identified 33 real world task formulations. The8

benchmark encompasses a broad spectrum of challenges, ranging from constraint9

aware forecasting to anomaly detection with threshold calibration, tasks that require10

compositional reasoning and multistep time series analysis. The question generator11

is designed to be dynamic and extensible, supporting continuous expansion as12

new datasets or task types are introduced. Given the heterogeneous nature of13

the tasks, we adopt task specific success criteria and tailored inference quality14

metrics to ensure meaningful evaluation for each task. We apply this benchmark15

to assess eight state of the art LLMs under a unified evaluation protocol. Our16

analysis reveals limitations in current models’ ability to assemble complex time17

series analysis workflows, underscoring the need for specialized methodologies18

for adaptation toward domain specific applications. Our benchmark and code are19

publicly available online.20

1 Introduction21

Time series analysis is a core competency for data analysts and scientists across critical domains22

such as energy [1], finance [2], climate science [3], and healthcare [4]. Real-world time series23

workflows are inherently complex [5, 6]: they require multi-step reasoning [7], precise numerical24

computation [8], integration of domain knowledge [9], and adherence to operational constraints [10].25

With the advent of powerful large language models (LLMs) demonstrating broad capabilities in26

language understanding [11], code generation [12], and scientific reasoning [13], a natural question27

arises: Can these models act as time series “assistants” that follow natural language instructions28

and perform such complex workflows? Answering this question requires rigorous benchmarks that29

capture the reasoning, computation, and decision-making challenges of time series analysis.30

Existing time-series benchmarks fall into three categories, yet all miss essential ingredients for31

evaluating a general-purpose time-series AI assistant. Pure temporal reasoning benchmarks such32

as Test of Time [14] and TRAM [15] probe ordering, duration, and arithmetic but contain no33

time-series data (TS involved:✗), leaving numerical signal processing untested. Single-task static34

benchmarks like TSI-Bench [16], TSB-AD [17], GIFT-Eval [18], TFB [19], Time-MMD [20],35

CiK [21], and TGTSF [22] evaluate one narrowly defined task (e.g., imputation, anomaly detection,36

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.



Predictive Task (201)

Electricity Prediction with 
Covariates （65)

Electricity Prediction without 
Covariates (68)

Electricity Prediction for 
Multiple Grids (68)

Diagnostic Task (426)

Anomaly Detection with Known 
Prior (142)

Anomaly Detection with 
Anomaly-Free Samples (142)

Analytical Task (277)

Stock Trading Investment (71)

Perform Risk Return Analysis 
(66)

Benchmark Against Market (71)

Decision-making Task 
(150)

Stock Price, Volatility & Trend 
Prediction (69)

Choose Best Portfolio Based 
on Financial Metrics (100)

Draw Conclusion on Stock 
Performance Compared to 

Market (50)

Causal Discovery with Domain 
Knowledge (142)

Figure 1: Categorization of Tasks in TSAIA. Lighter colors denote tasks with less difficulty and
darker colors denote tasks with higher difficulty.

forecasting) under rigid settings (Dynamic:✗, Reasoning:✗, Tasks=1). More recent hybrid efforts37

like MTBench [23], CiK [21], and ChatTime [24] involve both time-series and text (TS involved:✓)38

and require reasoning (Reasoning:✓), but still adopt fixed settings (Dynamic:✗) and focus almost39

entirely on context-aided forecasting. Motivated by recent calls for building general time-series40

assistants [25], we propose a benchmark that goes beyond these limitations by supporting dynamic41

task settings, incorporating natural language instructions and auxiliary context, and covering diverse42

tasks beyond forecasting—laying the groundwork for evaluating models as adaptive, compositional43

reasoners over heterogeneous, real-world time-series scenarios.44

In this work, we introduce the Time Series Artificial Intelligence Assistant TSAIA Benchmark,45

designed for practical relevance, dynamic extensibility, and unified evaluation. It spans 33 task types46

distilled from existing literatures; and 1054 questions covering predictive, diagnostic, analytical,47

and decision making tasks. Solving TSAIA demands compositional and comparative reasoning,48

commonsense and decision oriented judgment, and numerical precision [26, 27]. We evaluate49

eight state of the art models: GPT-4o, Qwen2.5-Max, Llama-3.1 Instruct 70B, Claude-3.5 Sonnet,50

DeepSeek, Gemini-2.0, Codestral, and DeepSeek-R, using the CodeAct framework [28]. Agents51

generate executable Python code with iterative refinement, mitigating premature output[29] and52

numeric tokenization issues [30]. While some models excel on narrow tasks, none generalize across53

the full benchmark; common failures include imprecise numerics or trivial predictions and difficulty54

assembling complex pipelines. These results highlight the challenge of structured numerical reasoning55

in real world time series applications and position TSAIA as a critical benchmark for progress.56

2 TSAIA Benchmark57

To evaluate time series AI assistants effectively, we focus on tasks grounded in real-world use58

cases that data analyst in different time series application domains may face. By surveying existing59

literature on time series applications, we collected real world tasks that exihbit multi-step complexity60

with auxiliary context such as operational constraints or domain knowledge and requires precise61

numerical analysis and reasoning. Such problem definitions are then converted to natural language62

task instructions with task settings to be dynamically filled. As shown in Figure 1, tasks fall into63

four groups: (1) Predictive: forecasting with or without covariates under constraints (minimum or64

maximum limits [10, 31], ramp rates [32, 33], variability thresholds [6]); (2) Diagnostic: anomaly65

detection (with reference samples or known anomaly rate [5, 34, 35, 36]) and causal discovery with66

domain priors (e.g., partial causal ratios [37]); (3) Analytical: risk and return analysis and trading67

strategy [38, 39, 40, 41]; (4) Decision Making: multiple choice questions requiring comparison of68

portfolios or stock vs. market indices [42, 43], testing computation and reasoning [44]. TSAIA draws69

from public data repositories containing: grid load, solar or wind power with weather covariates70

[45]1, building energy usage [46]1, ERA5 climate variables [47]1, MIT-BIH ECG signals [48]†, and71

stock indices or prices [49]‡.72

We use a modular, programmatic pipeline (Figure 2) to generate specific task instances: (1) Task73

type: select from a predefined library; (2) Data: sample a CSV time series dataset; (3) Context: ran-74

1CC BY 4.0 licence; † Open Data Commons Attribution 1.0 licence. ‡ Yahoo Finance Terms of Service:
personal, non commercial use only.

2



Evaluator 

Ground Truth Data Final Result from 
Execution

② Evaluation ① Composing Task Instance

Question GeneratorTime Series 
Dataset 

(in csv files)

1. Task Type Selection
2. Data Source Selection
3. Context Parameterization(sequence length, future length, target 

variable, etc)
4. Adding Complexity (randomly sample constraint type and select 

reasonable constraint value)
5. Ground Truth Construction (retrieve from dataset or dynamically 

calculate based on data or create evaluation function)

ü Status: Yes / No
ü Metric name: 

Metric value
ü Message: …

Ground Truth Data
ü Anomaly labels
ü Future data
ü Causal graph
ü Backtest function
ü …

1. Check structural 
correctness

2. Check constraint 
satisfaction and 
knowledge 
incorporation

3. Compute Inference 
Quality Metric 
(accuracy, F1, MAPE, 
etc.)

Task Choice
Task 
Instruction

Selected 
Time Series

Figure 2: The proposed pipeline for multistep time series inference task instance generation and
evaluation protocol.

domize parameters (input length, horizon, target, covariates) and fill a natural language template; (4)75

Complexity: inject domain constraints or auxiliary knowledge from the template; (5) Ground truth:76

retrieve from data, compute via formulas, or call task specific evaluators, ensuring an executable77

reference for automatic scoring. This task-generation pipeline enables TSAIA to grow dynamically:78

new instances can be synthesized from existing datasets by sampling different horizons or operational79

constraints, and additional datasets and task types can be incorporated to broaden coverage. As a80

result, the current release represents a cost-controlled snapshot rather than a fixed benchmark size.81

Ground truth data is either directly retrieved from the underlying dataset (future targets, anomaly82

labels), or computed from data (e.g., risk and return metrics), or defined by an evaluation routine (e.g.,83

backtesting trading signals to calculate cumulative or annualized return and maximum drawdown84

[50, 51, 52]). For multiple-choice questions, the ground-truth option is determined by selecting the85

portfolio or market relation that optimizes the metric specified in the question (e.g., Sharpe ratio,86

VaR [53, 54]). Answer positions are uniformly randomized to prevent bias in random guess. To87

ensure meaningful assessment, we adopt task-specific evaluation criteria that go beyond surface-level88

correctness. Metrics are tailored for each task, and model outputs must satisfy the given constraints89

and incorporate the provided knowledge. Trivial or degenerate solutions (e.g., low-quality forecasts90

or all-zero anomaly labels) are considered failures even if they are well-formatted. The task-specific91

success criteria and quality metrics, chosen to reflect practical utility, are summarized in Table 2.92

3 Experiments93

Benchmark GPT-4o Qwen-Max Llama3.1 Claude-3.5 DeepSeek Gemini-2.0 Codestral DeepSeek-R

Electricity Prediction with Covariates Success Rate 0.55 0.78 0.51 0.72 0.86 0.14 0.43 0.96
MAPE (std) 0.14 (0.17) 0.11 (0.11) 0.11 (0.10) 0.12 (0.14) 0.13 (0.16) 0.17 (0.11) 0.07 (0.06) 0.11 (0.11)

Electricity Prediction without Covariates Success Rate 0.88 0.94 0.86 0.84 0.85 0.34 0.82 0.75
MAPE (std) 0.18 (0.14) 0.15 (0.12) 0.17 (0.10) 0.19 (0.12) 0.16 (0.15) 0.26 (0.18) 0.17 (0.12) 0.22 (0.20)

Electricity Prediction for Multiple Grids Success Rate 0.65 0.75 0.52 0.77 0.85 0.32 0.25 0.83
MAPE (std) 0.16 (0.19) 0.19 (0.23) 0.61 (0.34) 0.17 (0.18) 0.16 (0.17) 0.56 (0.16) 0.15 (0.15) 0.21 (0.24)

Diagnostic Task w/ Reference Samples Success Rate 0.37 0.20 0.39 0.65 0.38 0.12 0.41 0.49
F1 (std) 0.88 (0.18) 0.86 (0.22) 0.87 (0.19) 0.83 (0.18) 0.87 (0.19) 0.88 (0.08) 0.86 (0.20) 0.86 (0.18)

Causal Discovery w/ Domain Knowledge Success Rate 0.89 0.81 0.91 0.99 0.96 0.42 0.94 0.97
MAPE (std) 0.69 (0.14) 0.67 (0.14) 0.69 (0.14) 0.74 (0.12) 0.69 (0.13) 0.71 (0.15) 0.69 (0.14) 0.73 (0.13)

Anomaly Detection w/ Multiple Sequences Success Rate 0.87 0.42 0.40 0.99 0.99 0.30 0.40 0.98
F1 (std) 0.31 (0.17) 0.38 (0.19) 0.41 (0.08) 0.60 (0.15) 0.61 (0.15) 0.42 (0.19) 0.24 (0.19) 0.56 (0.16)

Stock Prediction Success Rate 0.89 0.72 0.54 0.65 0.80 0.17 0.48 0.80
MAPE (std) 0.38 (0.18) 0.44 (0.17) 0.35 (0.18) 0.51 (0.14) 0.40 (0.19) 0.56 (0.33) 0.33 (0.19) 0.41 (0.15)

Stock Prediction Trend Success Rate 0.43 0.30 0.57 0.43 0.26 0.04 0.52 0.35
Accuracy (std) 0.90 (0.20) 0.86 (0.23) 0.88 (0.21) 0.85 (0.23) 1.00 (0.00) 1.00 (0.00) 0.96 (0.14) 0.81 (0.24)

Risk/Return Estimation Success Rate 0.42 0.23 0.27 0.35 0.38 0.06 0.47 0.38
Abs Error (std) 0.01 (0.00) 0.00 (0.00) 0.00 (0.00) 0.01 (0.01) 0.01 (0.01) 0.01 (0.00) 0.01 (0.00) 0.01 (0.01)

Benchmark Against Market Analysis Success Rate 0.44 0.20 0.06 0.51 0.73 0.18 0.01 0.77
Abs Error (std) 0.00 (0.00) 0.01 (0.01) 0.03 (0.01) 0.00 (0.01) 0.00 (0.00) 0.00 (0.01) 0.00 (0.00) 0.00 (0.00)

Stock Trading Strategy Success Rate 0.44 0.59 0.96 0.62 0.61 0.18 0.63 0.52
Cumulative Return 0.13 0.10 0.00 0.09 0.09 0.05 0.06 0.07
Annualized Return 2.43 4.56 0.05 4.58 1.69 0.36 3.87 1.41
Maximum Drawdown 0.05 0.05 0.00 0.04 0.05 0.02 0.02 0.04

Table 1: Model Performance on TSAIA. Red indicates best result, Blue indicates second best.

We evaluated eight LLMs: GPT-4o [55], Qwen2.5-Max [56], Llama-3.1 Instruct 70B [57], Claude-3.594

Sonnet [58], DeepSeek [59], Gemini-2.0 [60], Codestral [61], and DeepSeek-R [62]. All models use95

the CodeAct framework [28] via AgentScope [63] to generate Python code, execute in controlled96

jupyter notebook environment, receive error feedback, and lastly revise. The maximum interaction97
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turns is capped at five. We report success rate (the fraction of instances satisfying the predefined98

success criteria) and task-specific quality metrics (e.g., MAPE for forecasting, F1 for anomaly99

detection), computed only on successful executions by the evaluators in Figure 2.100
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Figure 3: Average Success Rate of Models with
respect to the Average Number of Tokens Used.

Table 1 reports average success rates and quality101

metrics for the three task groups in TSAIA, with102

sub-task breakdowns in Appendix Tables 4,5,103

and 6. In predictive tasks, models achieve rea-104

sonable accuracy on single-sequence forecasting105

but show performance degradation on multi-grid106

settings, reflected by lower success rates and107

higher MAPE. Error decomposition (Figure 4)108

reveals that adding covariates and multi-series109

settings increases execution and constraint vio-110

lation errors, suggesting difficulties in scaling111

reasoning to higher-dimensional inputs. In di-112

agnostic tasks, models succeed when explicit113

domain knowledge or priors are available, but reference-sample calibration often collapses to trivial114

predictions which is consistent with the low success rates and high frequency of degenerate outputs.115

In analytical tasks, success rates are lowest: execution errors are frequent in market benchmarking,116

risk/return failures arise from unfamiliar metrics (table 6), and trading strategies are often suboptimal117

in backtests. Overall, reliability declines as tasks demand more multi-step reasoning, external context118

integration, and nuanced financial understanding, highlighting the challenge of complex multi-step119

time series workflows [64]. Notably, DeepSeek-R achieves the highest success rates across all groups,120

providing direct evidence that explicit reasoning improves performance on TSAIA tasks, though at121

the cost of increased token usage (Figure 3). By contrast, GPT-4o and DeepSeek-Chat achieve lower122

success rates but remain the most token-efficient. Additional error analysis and experimental results123

on multiple choice questions are shown in section B and D.124

4 Conclusion125

This paper introduces TSAIA, a first benchmark for evaluating LLMs as time series AI assistants.126

Covering diverse tasks, it emphasizes compositional reasoning, adherence to domain constraints,127

and integration of contextual knowledge in addition to the basic numerical precision demanded by128

traditional time series analysis. Evaluation of eight LLM agents reveals that current models are far129

from reliable time series assistants. They frequently fail under domain constraints, struggle with130

multistep workflows, and often produce trivial predictions under naive solution paths. Such gap131

underscores the need for hybrid approaches that combine symbolic reasoning, execution feedback,132

specialized tool integration, and domain alignment. TSAIA establishes a foundation for developing133

and systematically assessing next-generation time series inference agents.134
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A Extended Benchmark Details315

A.1 Question Generator: How to generate specific task instances?316

I have historical Temperature, Relative Humidity, 
Wind Speed data and the corresponding 
load_power data for the past 117 minutes. I 
need to ensure that the maximum allowable 
system load does not exceed 
1.0689227278350713 MW. Think about how 
Temperature, Relative Humidity, Wind Speed 
influence load_power. Please give me a forecast 
for the next 12 minutes for load_power. Your 
goal is to make the most accurate forecast as 
possible, refine prediction result based on the 
constraint previously described, and …

(a) Task Instruction

Time Tempera-
ture

Relative 
Humidity 

Wind 
Speed 

Load 
power 

2020-09-
13 09:44 24.58 89.41 1.4 0.923

2020-09-
13 09:45 24.60 89.31 1.4 0.924

... ... ... ... ...

2020-09-
13 11:39 25.40 81.87 1.4 1.003

2020-09-
13 11:40 25.40 81.87 1.4 1.004

(b) Serialized Dataset

1.0051

1.0057

1.0062

1.0068

1.0073

1.0079

1.0084

1.0090

1.0095

1.0101

1.0106

1.0112

(c) Ground Truth

Figure 5: Example Task Instance containing the task instruction, accompanied serialized dataset, and
ground truth.

As shown in figure 5, each task instance contains a natural language instruction paired with structured317

time series inputs and corresponding ground truth data. By design, the benchmark framework is318

extensible and dynamic. New task instances can be generated automatically by applying the same319

pipeline to additional time series data sources when accompanied by its designated task template,320

supporting ongoing evaluation and adaptation to new domains. This supports long-term benchmarking321

efforts and enables ongoing expansion across domains.322

A.2 Evaluation: How to perform evaluation on heterogeneous task instances?323

Task Type Success Criterion Metrics
Constrained Forecasting Prediction is of correct shape and satisfies the specified oper-

ational constraint and the prediction is non-trivial (MAPE<1)
MAPE

Anomaly Detection w/
reference samples

A binary sequence with correct length is obtained and the
prediction is non-trivial (F1-score>0)

F1-score

Causal Inference w/ do-
main knowledge

A binary causal matrix with correct shape is returned. The
provided domain knowledge is incorporated

Accuracy

Financial Analytics A scalar value is returned and the prediction is non-trivial
(absolute error<0.05)

Absolute Error

Financial Trading An investment signal of correct length is returned and there
is no loss in investment

CR, AR, MDD

Table 2: Task-specific success criteria and inference quality metrics. CR denotes Cumulative Return,
AR denotes Annualized Return, MDD denotes Maximum Drawdown.

The evaluation process follows a three-stage protocol. In the first stage, outputs are validated for324

structural correctness, shape conformity. The second stage checks against specified constraint and325

domain knowledge incorporation. Lastly, the inference quality metric is computed relative to ground326

truth data. Results are returned in a structured format, including the success status, diagnostic327

messages, and detailed metric scores. Failures are categorized into execution errors (model output328

fails to run or parse), constraint violations (outputs violate injected domain-specific rules), and low329

quality outputs (predictions meet format expectations but fall short on metric thresholds). Multiple330

choice questions have a simple evaluation procedure of checking against ground truth letter option.331

A.3 Comparison with Existing Benchmarks332

As shown in table 3, existing time-series benchmarks fall into three main groups, each lacking one or333

more component for evaluating time series AI assistant: First, datasets such as Test of Time [14] and334

TRAM [15] present pure QA tasks (ordering, duration, arithmetic) with no time-series included (TS335
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Benchmark Dynamic TS involved Reasoning #Tasks Task Type
Test of Time [14] ✗ ✗ ✓ 1 QA
TRAM [15] ✗ ✗ ✓ 1 QA
TSI-Bench [16] ✗ ✓ ✗ 1 TS Analysis
TSB-AD [17] ✗ ✓ ✗ 1 TS Analysis
GIFT-Eval [18] ✗ ✓ ✗ 1 TS Analysis
TFB [19] ✗ ✓ ✗ 1 TS Analysis
Time-MMD [20] ✗ ✓ ✗ 1 TS Analysis
CiK [21] ✗ ✓ ✗ 1 TS Analysis
TGTSF [22] ✗ ✓ ✗ 1 TS Analysis
LLM TS Struggle [65] ✗ ✓ ✓ 2 QA, TS Analysis
MTBench [23] ✗ ✓ ✓ 3 QA, TS Analysis
ChatTime [24] ✗ ✓ ✓ 3 QA, TS Analysis
TSAIA(Ours) ✓ ✓ ✓ 4 QA, TS Analysis

Table 3: Comparison of TSAIA and existing temporal-related benchmarks. Dynamic indicates
whether new task instances can be continuously generated.

involved:✗). While they evaluate logical reasoning, they cannot test how models process numerical336

signals. Secondly, benchmarks like TSI-Bench [16], TSB-AD [17], GIFT-Eval [18], TFB [19],337

Time-MMD [20], CiK [21], and TGTSF [22] focus on a single static time-series analysis including338

imputation, anomaly detection, and forecasting over fixed datasets with pre-defined sliding window339

size for evaluation (Dynamic:✗, Reasoning:✗, Tasks=1). Lastly, recent efforts on hybrid QA and340

analysis such as MTBench [23], ChatTime [24] combine time-series and text inputs (TS involved:✓)341

and include reasoning components (Reasoning:✓), yet remain fixed setting (Dynamic:✗) and only342

covers context-aided forecasting in time series analysis component part. TSAIA arises as first of its343

kind time series inference benchmark with practical relevance, task diversity, and supports continuous344

expansion.345

B Additional Result346

Models are evaluated with hyperparameter top_p = 1 and temperature = 0 to minimize sampling347

randomness. In predictive tasks (table 4), models handle simple constraints (maximum or minimum348

load) better than temporal smoothness (ramp or variability). In diagnostic tasks (table 5), models349

struggle more with leveraging reference samples to calibration anomaly threshold. In analytical tasks350

(table 6), price or volatility prediction is moderate to strong; trend prediction lags. In risk and return351

analysis, models favor familiar or simpler metrics (e.g., volatility, Sharpe). In decision making tasks,352

most models hover near chance (Figure 6); DeepSeek-R achieves consistent above random accuracy353

but with higher token usage (Figure 3). Overall, results underline the value of domain specialization354

[66]. Harder tasks elicit more interaction turns under CodeAct (Figure 7).355

C Dataset Statistics356

Table 7 summarizes the dataset statistics for the raw time series datasets used in TSAIA. The climate357

data is obtained from ERA5 dataset 2. Energy data with covariates is obtained from3. The ECG signal358

data is obtained from PhysioNet45. The building energy usage data is obtained from Kaggle6. Notably,359

the daily stock data, hourly stock data, and energy data with geolocation were manually scraped360

and preprocessed. The energy data with geolocation was obtained from official energy grid operator361

2https://climatelearn.readthedocs.io/en/latest/user-guide/tasks_and_datasets.
html#era5-dataset

3https://github.com/tamu-engineering-research/Open-source-power-dataset
4https://physionet.org/content/nsrdb/1.0.0/
5https://physionet.org/content/ltdb/1.0.0/
6https://www.kaggle.com/competitions/energy-anomaly-detection/data
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Metric GPT-4o Qwen-Max Llama3.1 Claude-3.5 DeepSeek Gemini-2.0 Codestral DeepSeek-R
Electricity Prediction with Covariates

Max Load Success Rate 0.50 0.75 0.56 0.88 1.00 0.19 0.31 0.94
MAPE (std) 0.09 (0.12) 0.07 (0.06) 0.10 (0.11) 0.11 (0.12) 0.10 (0.12) 0.52 (0.41) 0.03 (0.03) 0.10 (0.11)

Min Load Success Rate 0.76 0.82 0.65 0.82 0.88 0.18 0.59 1.00
MAPE (std) 0.11 (0.11) 0.09 (0.11) 0.10 (0.11) 0.09 (0.11) 0.12 (0.18) 0.09 (0.04) 0.09 (0.10) 0.09 (0.11)

Load Ramp Rate Success Rate 0.46 0.80 0.53 0.93 0.80 0.13 0.47 0.93
MAPE (std) 0.18 (0.14) 0.14 (0.12) 0.15 (0.07) 0.19 (0.19) 0.11 (0.08) 0.04 (0.01) 0.12 (0.08) 0.11 (0.07)

Load Variability Success Rate 0.47 0.76 0.29 0.29 0.76 0.06 0.35 0.94
MAPE (std) 0.20 (0.31) 0.13 (0.16) 0.09 (0.12) 0.09 (0.12) 0.19 (0.27) 0.05 (0.00) 0.04 (0.03) 0.11 (0.14)

Electricity Prediction without Covariates

Max Load Success Rate 1.00 0.94 0.94 1.00 0.94 0.41 1.00 0.71
MAPE (std) 0.18 (0.16) 0.10 (0.07) 0.16 (0.10) 0.15 (0.13) 0.15 (0.12) 0.10 (0.02) 0.12 (0.07) 0.23 (0.26)

Min Load Success Rate 0.94 0.94 0.94 0.94 0.88 0.29 0.71 0.88
MAPE (std) 0.14 (0.08) 0.14 (0.08) 0.17 (0.08) 0.17 (0.09) 0.13 (0.09) 0.12 (0.03) 0.14 (0.05) 0.17 (0.16)

Load Ramp Rate Success Rate 0.76 1.00 0.71 0.76 0.82 0.24 0.88 0.76
MAPE (std) 0.24 (0.19) 0.23 (0.22) 0.21 (0.11) 0.28 (0.16) 0.19 (0.20) 0.42 (0.28) 0.29 (0.30) 0.22 (0.13)

Load Variability Success Rate 0.82 0.88 0.82 0.65 0.76 0.41 0.71 0.65
MAPE (std) 0.17 (0.12) 0.13 (0.09) 0.15 (0.09) 0.16 (0.12) 0.19 (0.17) 0.39 (0.39) 0.13 (0.07) 0.24 (0.24)

Electricity Prediction for Multiple Grids

Max Load Success Rate 0.76 0.88 0.47 0.88 0.94 0.47 0.12 0.88
MAPE (std) 0.21 (0.27) 0.21 (0.24) 0.64 (0.31) 0.18 (0.20) 0.16 (0.21) 0.34 (0.39) 0.10 (0.03) 0.23 (0.27)

Min Load Success Rate 0.76 0.88 0.24 0.94 0.94 0.18 0.29 0.94
MAPE (std) 0.10 (0.12) 0.18 (0.29) 0.46 (0.37) 0.13 (0.20) 0.08 (0.11) 0.01 (0.01) 0.23 (0.37) 0.16 (0.23)

Load Ramp Rate Success Rate 0.65 0.65 0.88 0.88 0.94 0.29 0.29 1.00
MAPE (std) 0.19 (0.24) 0.18 (0.18) 0.73 (0.33) 0.27 (0.21) 0.21 (0.21) 1.00 (0.00) 0.10 (0.05) 0.19 (0.19)

Load Variability Success Rate 0.41 0.59 0.53 0.41 0.59 0.35 0.29 0.53
MAPE (std) 0.15 (0.13) 0.18 (0.23) 0.61 (0.36) 0.11 (0.13) 0.18 (0.14) 0.90 (0.23) 0.19 (0.13) 0.24 (0.25)

Table 4: Model Performance on Predictive Task. Red indicates best result, Blue indicates second best.

Benchmark GPT-4o Qwen-Max Llama3.1 Claude-3.5 DeepSeek Gemini-2.0 Codestral DeepSeek-R
Diagnostic Task w/ Reference Samples
Extreme Weather Detection Success Rate 0.24 0.23 0.23 0.62 0.23 0.14 0.23 0.34
w/ Reference Samples F1 (std) 0.91 (0.23) 0.90 (0.24) 0.90 (0.24) 0.90 (0.18) 0.90 (0.24) 0.96 (0.06) 0.91 (0.23) 0.91 (0.20)

ECG Signal Anomaly Success Rate 0.51 0.17 0.55 0.68 0.54 0.10 0.59 0.63
w/ Reference Samples F1 (std) 0.55 (0.35) 0.70 (0.29) 0.43 (0.36) 0.65 (0.32) 0.54 (0.34) 0.01 (0.00) 0.58 (0.34) 0.61 (0.32)

Causal Discovery w/ Domain Knowledge
Causal Discovery w/ Success Rate 0.94 0.92 0.99 1.00 0.97 0.39 0.94 0.96
Quantitative Knowledge Accuracy (std) 0.69 (0.09) 0.77 (0.11) 0.78 (0.12) 0.77 (0.09) 0.71 (0.11) 0.42 (0.18) 0.72 (0.11) 0.77 (0.10)

Causal Discovery w/ Success Rate 0.85 0.70 0.83 0.97 0.96 0.45 0.93 0.99
Qualitative Knowledge Accuracy (std) 0.87 (0.17) 0.79 (0.17) 0.77 (0.18) 0.89 (0.16) 0.89 (0.14) 0.72 (0.20) 0.88 (0.15) 0.90 (0.12)

Anomaly Detection across Multiple Sequences
Extreme Weather Detection Success Rate 0.87 0.31 0.03 0.97 0.97 0.37 0.23 1.00
w/ Known Anomaly Rate F1 (std) 0.53 (0.25) 0.62 (0.19) 0.68 (0.05) 0.73 (0.12) 0.72 (0.11) 0.65 (0.18) 0.42 (0.31) 0.72 (0.10)

Energy Usage Anomaly Success Rate 0.87 0.52 0.77 1.00 1.00 0.23 0.58 0.96
w/ Known Anomaly Rate F1 (std) 0.08 (0.09) 0.14 (0.20) 0.15 (0.11) 0.48 (0.18) 0.50 (0.19) 0.19 (0.21) 0.06 (0.06) 0.40 (0.23)

Table 5: Model Performance on Diagnostic Task. Red indicates best result, Blue indicates second
best.

websites789, and the associated geolocation was inferred as the largest city within the operational362

zone delineated by each provider’s published grid map101112. Stock price data was scraped using the363

pyfinance13 package, with data pulled up to date as of 2024-09-17. The stock market indices data are364

pulled from various sources on the web. The causal discovery dataset is synthetically generated to365

reflect controlled causal structures. The prompt used to obtain causal discovery dataset is shown in366

section G.367

7https://www.nyiso.com/load-data
8https://www.ercot.com/gridinfo/load/load_hist
9https://www.misoenergy.org/markets-and-operations/real-time--market-data/

market-reports
10https://www.nyiso.com/documents/20142/1397960/nyca_zonemaps.pdf
11https://www.ercot.com/news/mediakit/maps
12https://www.misostates.org/images/stories/meetings/Cost_Allocation_Principles_

Committee/2021/Website_Presentations.pdf
13https://pypi.org/project/pyfinance/
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Benchmark GPT-4o Qwen-Max Llama3.1 Claude-3.5 DeepSeek Gemini-2.0 Codestral DeepSeek-R
Stock Prediction

Future Price Success Rate 0.96 1.00 0.70 0.74 0.87 0.17 0.39 1.00
MAPE (std) 0.06 (0.08) 0.05 (0.07) 0.06 (0.08) 0.12 (0.16) 0.05 (0.07) 0.28 (0.42) 0.05 (0.05) 0.05 (0.07)

Future Volatility Success Rate 0.83 0.43 0.39 0.74 0.57 0.17 0.57 0.61
MAPE (std) 0.70 (0.28) 0.83 (0.26) 0.64 (0.29) 0.75 (0.31) 0.90 (0.13) 0.84 (0.24) 0.61 (0.32) 0.77 (0.24)

Future Trend Success Rate 0.43 0.30 0.57 0.26 0.43 0.04 0.52 0.35
Accuracy (std) 0.90 (0.20) 0.86 (0.23) 0.88 (0.21) 1.00 (0.00) 0.85 (0.23) 1.00 (0.00) 0.96 (0.14) 0.81 (0.24)

Risk/Return Estimation

Annualized Return Success Rate 0.45 – 0.09 0.27 0.36 – 0.18 0.55
Abs Error (std) 0.02 (0.02) – 0.01 (0.00) 0.01 (0.01) 0.02 (0.01) – 0.03 (0.02) 0.02 (0.02)

Annualized Volatility Success Rate 0.91 0.82 1.00 1.00 1.00 0.09 1.00 0.91
Abs Error (std) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.02 (0.00) 0.00 (0.00) 0.00 (0.00)

Maximum Drawdown Success Rate 0.18 0.09 0.27 0.18 0.27 0.09 – 0.45
Abs Error (std) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) – 0.01 (0.01)

Calmar Ratio Success Rate 0.18 0.18 – 0.27 0.27 – 0.82 0.18
Abs Error (std) 0.01 (0.01) 0.01 (0.01) – 0.02 (0.01) 0.02 (0.01) – 0.01(0.01) 0.01 (0.01)

Sortino Ratio Success Rate 0.09 0.09 – – 0.18 – 0.09 –
Abs Error (std) 0.01 (0.00) 0.01 (0.00) – – 0.00 (0.00) – 0.00 (0.00) –

Sharpe Ratio Success Rate 0.73 0.18 0.27 0.36 0.18 0.18 0.73 0.18
Abs Error (std) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.01 (0.01) 0.02 (0.02) 0.02 (0.02) 0.00 (0.00) 0.02 (0.01)

Benchmark Against Market Analysis

Information Ratio Success Rate 0.44 0.20 0.06 0.51 0.73 0.18 0.01 0.77
Abs Error (std) 0.00 (0.00) 0.01 (0.01) 0.03 (0.01) 0.00 (0.01) 0.00 (0.00) 0.00 (0.01) 0.00 (0.00) 0.00 (0.00)

Stock Trading Strategy

Trading Strategy

Success Rate 0.44 0.59 0.96 0.62 0.61 0.18 0.63 0.52
Cumulative Return 0.13 0.10 0.00 0.09 0.09 0.05 0.06 0.07
Annualized Return 2.43 4.56 0.05 4.58 1.69 0.36 3.87 1.41
Maximum Drawdown 0.05 0.05 0.00 0.04 0.05 0.02 0.02 0.04

Table 6: Model Performance on Analytical Tasks. Red indicates the best result, Blue indicates the
second-best. A dash (–) denotes that no successful cases were recorded.
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Figure 6: Model Performance on Decision-Making and Analysis-Interpretation Tasks in Multiple
Choice Format
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Dataset Number of Data Files Avg Total Timestamps Number of Variables
Climate Data 624 526 2048
Energy Data w/ geolocation 22 8760 1-3
Energy Data w/ Covariates 66 872601 11
Building Energy Usage Data 398 5019 1
Causal Data 8 529 3–6
Daily Stock Data 6780 3785 7
Hourly Stock Data 5540 35 7
Stock Market Indices Data 6 3388 4
ECG Signal Data 24 10804352 2

Table 7: Dataset Statistics of the constructed dataset. The exact number of time series are not
calculated because it depends on randomly sampled sequence length when generating task instances.
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Figure 8: Case Study on Claude 3.5 Error Distribution across Tasks Grouped by Difficulty Level

D Additional Error Analysis368

Beyond GPT-4o, we extend our error analysis to other representative models, whose detailed error369

distributions are visualized in Figures 8–14. While Claude-3.5 generally performs well, it exhibits370

a noticeable proportion of constraint violation errors in electricity prediction tasks, suggesting371

challenges in handling numerical constraints embedded within the input. Despite the complexity372

of financial trading tasks, Llama-3.1 performs competitively relative to other models—particularly373

notable given its open-source nature. In contrast, Gemini-2.0 and Codestral show a high incidence374
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Figure 9: Case Study on Qwen Error Distribution across Tasks Grouped by Difficulty Level
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Figure 10: Case Study on Codestral Error Distribution across Tasks Grouped by Difficulty Level

of execution errors across nearly all task categories, indicating limited suitability for structured,375

multi-step time series reasoning. DeepSeek-R consistently avoids execution failures and maintains a376

relatively high success rate across tasks.377

E CodeAct System Prompt Template378

You are a helpful assistant that gives helpful, detailed, and polite answers to the user’s
questions. The code written by assistant should be enclosed using <execute> tag, for example:
<execute> print(’Hello World!’) </execute>. You should provide the solution in a single
<execute> block instead of taking many turns. You’ll receive feedback from your code
execution. You should always import packages and define variables before starting to use
them. You should stop <execute> and provide an answer when they have already obtained
the answer from the execution result. Whenever possible, execute the code for the user using
<execute> instead of providing it. Your response should be concise, but do express their
thoughts. Always write the code in <execute> block to execute them. You should not ask
for the user’s input unless necessary. Solve the task on your own and leave no unanswered
questions behind. You should do every thing by your self. You are not allowed to install any
new packages or overwrite available variables provided to you in the question. Additionally,
you are provided with the following variables available: {variable names} The above variables
is already available in your interactive Python (Jupyter Notebook) environment, allowing you
to directly use them without needing to re-declare them.

379

F Refinement Solution Path380

Box F illustrates the solution refinement trajectory of Deepseek-R. Execution feedback from the381

CodeAct Python interpreter enabled the model to revise its output twice—first to address a syntax382

error due to a missing closing parenthesis, and second to resolve an import error. As shown in383

Figure 7, Deepseek-R consistently requires more interaction turns than other models. A closer384

examination reveals that this behavior stems from the lack of a proper stopping mechanism: although385

a correct solution was reached by turn 3, the model continued executing redundant steps in turns 4386

and 5. Notably, Deepseek-R also incorporates explicit inline comments such as # Total pairs:387

5*4=20, top 20% is 4 pairs to document its intermediate reasoning steps, contributing to its388

overall performance strength.389

14



2.9%
2.9%
2.9%

5.9%
85.3%

Electricity Prediction 
w/o covariates

44.6%

1.5%
3.1% 50.8%

Electricity Prediction 
w/ covariates

1.5%
4.4%

8.8%

35.3%

50.0%

Electricity Prediction 
across multiple grids

4.9%

4.2%

90.8%

Causal Doscovery 
w/ domain knowledge

52.1%

9.2%

38.7%

Diagnostic Task 
w/ reference samples

55.6%
4.2%

40.1%

Diagnostic Task w/ known prior

7.2%

24.6%

13.0%

55.1%

Stock Prediction
4.5%

62.1%

6.1%

27.3%

Risk & Return analysis
29.6%

60.6%

4.2%
5.6%

Benchmark Against Market
4.2%

95.8%

Financial Trading

Execution Error/Did Not Reach A Solution Constraint Violation Trivial Prediction/Inadequate Result Format, Shape, Others Success

Figure 11: Case Study on Llama Error Distribution across Tasks Grouped by Difficulty Level
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Figure 12: Case Study on Gemini Error Distribution across Tasks Grouped by Difficulty Level
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Figure 13: Case Study on Deepseek-chat Error Distribution across Tasks Grouped by Difficulty Level

15



16.2%

8.8%

75.0%

Electricity Prediction 
w/o covariates

1.5%1.5%1.5%

95.4%

Electricity Prediction 
w/ covariates

5.9%

10.3%

83.8%

Electricity Prediction 
across multiple grids

0.7%
2.1%

97.2%

Causal Doscovery 
w/ domain knowledge

38.7%

11.3%

50.0%

Diagnostic Task 
w/ reference samples

2.1%

97.9%

Diagnostic Task w/ known prior

1.4%

8.7%

24.6%

65.2%

Stock Prediction

61.8%

38.2%

Risk & Return analysis
9.9%

12.7%

77.5%

Benchmark Against Market

45.1%

2.8%

52.1%

Financial Trading

Execution Error/Did Not Reach A Solution Constraint Violation Trivial Prediction/Inadequate Result Format, Shape, Others Success

Figure 14: Case Study on Deepseek-R Error Distribution across Tasks Grouped by Difficulty Level

Deepseek-R Solution Path

User:
I have historical Temperature (A), Humidity (B), Air Quality Index (C), Wind Speed (D),
Precipitation (E) data and want to get the causal relationship between each pair of the variables.
I know that 20.0% of the variable pairs have relationship. Self-causalation is not considered.
Consider the potential influence of each variable on the others in this variable list: [’Temperature
(A)’, ’Humidity (B)’, ’Air Quality Index (C)’, ’Wind Speed (D)’, ’Precipitation (E)’]. Please
provide 2d numpy matrix with binary values to indicate whether each pair of variables has a
relationship. The data for all variables are stored in variable VAL.
Requirements:
- Store your output in the variable called ‘predictions‘, make sure to consider predictions to have
the right shape according to the question’s output requirements if it’s supposed to be an array,
there is no need to consider shapes if you only need to return a numerical value.
- Do not customly define/generate/overwrite the available variables, assume that the variables are
already defined and available.
data note: VAL values are usually stored in either a dataframe or numpy values.
You should enclose your python code in <execute> </execute> tag and do not overwrite available
variables that store the data. Do not use any other tags like “‘python“‘.

Assisstant:
<execute>
import numpy as np

# Handle VAL (dataframe or numpy array)
if isinstance(VAL, pd.DataFrame):

data = VAL.values
else:

data = VAL

n_vars = 5 # Number of variables
predictions = np.zeros((n_vars, n_vars), dtype=int)

# Calculate time-lagged correlations for directed pairs
correlations = []
for i in range(n_vars):

for j in range(n_vars):
if i != j:

if data.shape[0] > 1:
x = data[:-1, i]

390
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y = data[1:, j]
corr = np.corrcoef(x, y)[0, 1] if len(x) > 1 else 0
correlations.append((i, j, abs(corr if not np.isnan(corr)
else 0))

# Sort by correlation strength and select top 20% (4 pairs)
sorted_pairs = sorted(correlations, key=lambda x: -x[2])[:4]

# Mark selected pairs in predictions matrix
for i, j, _ in sorted_pairs:

predictions[i, j] = 1

# Ensure correct variable name (user specified ’predictions’)
predictions = predictions
</execute>

User:
Execution Failed: Execution Output: An error occurred while executing the following cell:
sorted_pairs = sorted(correlations, key=lambda x: -x[2])[:4] SyntaxError: invalid syntax
Side note: Remember to enclose your code in <execute> </execute> tag and do not overwrite
any available variables provided to you in the question, especially that they contain the data.

Assistant:
<execute>
import numpy as np

# Handle VAL (dataframe or numpy array)
if isinstance(VAL, pd.DataFrame):

data = VAL.values
else:

data = VAL

n_vars = 5 # Number of variables
predictions = np.zeros((n_vars, n_vars), dtype=int)

# Calculate time-lagged correlations for directed pairs
correlations = []
for i in range(n_vars):

for j in range(n_vars):
if i != j:

if data.shape[0] > 1:
x = data[:-1, i]
y = data[1:, j]
if len(x) > 1:

corr = np.corrcoef(x, y)[0, 1]
corr = 0 if np.isnan(corr) else corr

else:
corr = 0

correlations.append((i, j, abs(corr)))

# Sort by correlation strength and select top 20% (4 pairs)
sorted_pairs = sorted(correlations, key=lambda x: -x[2])[:4]

# Mark selected pairs in predictions matrix
for i, j, _ in sorted_pairs:

predictions[i, j] = 1
</execute>

User:
391
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Execution Failed: Execution Output: An error occurred while executing the following cell: if
isinstance(VAL, pd.DataFrame): NameError: name ’pd’ is not defined.
Side note: Remember to enclose your code in <execute> </execute> tag and do not overwrite
any available variables provided to you in the question, especially that they contain the data.
Assistant:
<execute>
import numpy as np
import pandas as pd

# Handle VAL (dataframe or numpy array)
if isinstance(VAL, pd.DataFrame):

data = VAL.values
else:

data = VAL

n_vars = 5 # Number of variables
predictions = np.zeros((n_vars, n_vars), dtype=int)

# Calculate time-lagged correlations for directed pairs
correlations = []
for i in range(n_vars):

for j in range(n_vars):
if i != j:

if data.shape[0] > 1:
x = data[:-1, i]
y = data[1:, j]
if len(x) > 1:

corr = np.corrcoef(x, y)[0, 1]
corr = 0 if np.isnan(corr) else corr

else:
corr = 0

correlations.append((i, j, abs(corr)))

# Total pairs: 5*4=20, top 20% is 4 pairs
sorted_pairs = sorted(correlations, key=lambda x: -x[2])[:4]

# Update predictions matrix
for pair in sorted_pairs:

i, j, _ = pair
predictions[i, j] = 1

</execute>
User:
Execution Successful: Execution Output: []

Assistant:
The code now correctly imports necessary packages and handles both DataFrame and numpy
array inputs for ‘VAL‘. It calculates time-lagged correlations between variables, selects the top
20% strongest relationships (4 pairs), and constructs the binary matrix ‘predictions‘ with 1s
indicating causal directions. The final matrix respects the problem constraints and data structure
requirements.
<execute>
import numpy as np
import pandas as pd

# Handle VAL (dataframe or numpy array)
if isinstance(VAL, pd.DataFrame):

data = VAL.values
else:

392

18



data = VAL

n_vars = 5 # Number of variables
predictions = np.zeros((n_vars, n_vars), dtype=int)

# Calculate time-lagged correlations for directed pairs
correlations = []
for i in range(n_vars):

for j in range(n_vars):
if i != j:

if data.shape[0] > 1:
x = data[:-1, i]
y = data[1:, j]
if len(x) > 1:

corr = np.corrcoef(x, y)[0, 1]
corr = 0 if np.isnan(corr) else corr

else:
corr = 0

correlations.append((i, j, abs(corr)))

# Sort by absolute correlation and select top 4 pairs (20%)
sorted_pairs = sorted(correlations, key=lambda x: -x[2])[:4]

# Update predictions matrix
for i, j, _ in sorted_pairs:

predictions[i, j] = 1

predictions # Final output matrix
</execute>
User:
Execution Successful: Execution Output: [’array([[0, 0, 1, 1, 0],[0, 0, 0, 0, 0],[0, 0, 0, 0, 0],[1, 0,
1, 0, 0],[0, 0, 0, 0, 0]])’]
Assistant:
The code correctly identifies the top 20% of variable pairs with the strongest time-lagged
correlations, resulting in a 5x5 binary matrix ‘predictions‘ where 1 indicates a causal relationship.
The matrix shape and data type adhere to the problem’s requirements.
<execute>
import numpy as np
import pandas as pd

# Handle VAL (dataframe or numpy array)
if isinstance(VAL, pd.DataFrame):

data = VAL.values
else:

data = VAL

n_vars = 5 # Number of variables
predictions = np.zeros((n_vars, n_vars), dtype=int)

# Calculate time-lagged correlations
correlations = []
for i in range(n_vars):

for j in range(n_vars):
if i != j and data.shape[0] > 1:

x = data[:-1, i]
y = data[1:, j]
if len(x) >= 2: # Ensure valid correlation calculation
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corr = np.corrcoef(x, y)[0, 1]
corr = 0 if np.isnan(corr) else abs(corr)
correlations.append((i, j, corr))

# Select top 20% pairs (4 out of 20 possible directed pairs)
top_pairs = sorted(correlations, key=lambda x: -x[2])[:4]
for i, j, _ in top_pairs:

predictions[i, j] = 1

predictions
</execute>
User:
Execution Successful: Execution Output: [’array([[0, 0, 1, 1, 0],[0, 0, 0, 0, 0],[0, 0, 0, 0, 0],[1, 0,
1, 0, 0],[0, 0, 0, 0, 0]])’]
Assistant: I have reached the maximum number of executions. Can you assist me or ask me
another question?
Evaluation: final value <class ’numpy.ndarray’> (5, 5) [[0 0 1 1 0] [0 0 0 0 0] [0 0 0 0 0] [1 0 1 0
0] [0 0 0 0 0]] evaluation result: {’status’: 1, ’accuracy’: 0.84}

394

G Casual Discovery Data Generation Prompt395

Now you are a Time series data scientist, please help me to write the code to generate some synthetic396

data in real world Time series domain, you should save the data into "*/data.csv":397

Now suggesting you should construct a series data based on a relation matrix and the correlation398

ratio for different influence factor, you should notice the following points,for time step I want you to399

generate 500 time steps:400

1. data correlation: the multi variable should be correlated, sample: which A first influence B, then B401

have influence on C or D, there should be some time delay, as the influence on other staff needs time.402

2. data trend: there should be some trend in the data, like the data is increasing or decreasing.403

3. data: seasonality there should be some seasonality in the data, like the data is periodic.404

4. data noise: the noise should be added to the data, as the real world data is not perfect.405

5. data background: the data should have some real world background, you should first think about406

different real world data, and provide a description for the variable and time series data, then generate407

the data using the code. CoT Sample: Q: Approximate Relation Ratio: 0.5 Relation Matrix:408

A B C D
A 1 1 0 1
B 0 1 0 1
C 0 1 1 1
D 0 0 0 1

• A influences B and D, and itself.409

• B influences D, and itself.410

• C influences B and D, and itself.411

• D influences only itself.412

variable size: 4 A: Scenario: Sales Data of a Chain of Stores Over Time Let’s assume we are413

generating synthetic data,the variable size for the data is 4. for the daily sales of multiple stores across414

a chain, the sales numbers are influenced by:415

1. Advertising (A): The level of advertising spend directly impacts the sales of each store. After a416

delay, this starts influencing sales. 2. Sales (B): The sales numbers for each store are influenced by417

both the advertising and local seasonal events. 3. Economic Factors (C): Broader economic trends,418

like GDP growth or unemployment rates, also impact sales. These factors show a delayed and more419

20



subtle influence over time. 4. Customer Sentiment (D): Customer sentiment affects the sales of420

specific products in each store and is influenced by both advertising and broader economic factors.421

Seasonality: Sales experience periodic seasonal trends, with peaks around the holidays and lower422

numbers during off-seasons.423

Trend: There is a general increasing trend in sales as the chain expands.424

Noise: Random noise is added to mimic real-world data fluctuations.425
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