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Abstract
Diffusion models have made significant strides
in visual content generation but also raised in-
creasing demands on generated image detection.
Existing detection methods have achieved consid-
erable progress, but they usually suffer a signifi-
cant decline in accuracy when detecting images
generated by an unseen diffusion model. In this
paper, we seek to address the generalizability of
generated image detectors from the perspective
of hard sample classification. The basic idea is
that if a classifier can distinguish generated im-
ages that closely resemble real ones, then it can
also effectively detect less similar samples, po-
tentially even those produced by a different dif-
fusion model. Based on this idea, we propose
Diffusion Reconstruction Contrastive Learning
(DRCT), a universal framework to enhance the
generalizability of the existing detectors. DRCT
generates hard samples by high-quality diffusion
reconstruction and adopts contrastive training to
guide the learning of diffusion artifacts. In addi-
tion, we have built a million-scale dataset, DRCT-
2M, including 16 types diffusion models for the
evaluation of generalizability of detection meth-
ods. Extensive experimental results show that
detectors enhanced with DRCT achieve over a
10% accuracy improvement in cross-set tests. The
code, models, and dataset will soon be available
at https://github.com/beibuwandeluori/DRCT.

1. Intorduction
In recent years, image generation technologies based on de-
noising diffusion models (Ho et al., 2020; Song et al., 2020;
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Figure 1. Generalization performance comparison between our pro-
posed DRCT framework and six existing detection methods, in-
cluding CNNSpot (Wang et al., 2019), F3Net (Qian et al., 2020),
UnivFD (Ojha et al., 2023), GramNet (Liu et al., 2020), De-
fake (Sha et al., 2023), DIRE (Wang et al., 2023). All detection
methods are trained on the same dataset consisting of generated
images by Stable Diffusion (SD) v1.4 and real images from the
MSCOCO dataset. The reported detection accuracies (ACC, %)
are evaluated on each of the eight subsets of the GenImage (Zhu
et al., 2023) dataset, and the averaged accuracy of each detection
method is also respectively reported in brackets at the legends
for convenient comparision. It shows that the proposed DRCT
framework outperforms the compared methods by a remarkable
margin of 15% or more.

Nichol & Dhariwal, 2021; Rombach et al., 2021; Saharia
et al., 2022) have rapidly advanced, with new generative
models continually emerging. These technologies have pro-
vided efficient content editing and generation tools for ap-
plications such as digital creation, commercial advertising,
news publishing, and social entertainment. However, there
is also the risk of malicious misuse, such as fabricating fake
news, misleading public opinion, interfering with political
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elections, and infringing on copyright. Therefore, there is an
urgent need to develop technologies for detecting generated
images to maintain a trustworthy cyberspace environment.

AI model-sharing platforms such as Hugging Face and CIV-
ITAI offer a range of sophisticated diffusion-based image
generative models and their variants, which facilitates users
to generate diverse image content through simple textual
interactions. The wide diversity and available of image
generative models have raised a considerable challenge to
the generalizability of detection methods. It demands that
generated image detectors should be able to identify images
produced by not only the known generative models but also
the newly developed models that have not been involved in
the training of detectors. In the remainder of this paper, we
define real images as Real and the corresponding artificial
intelligence-generated images as Fake.

In this work, we address the generalizability of generated
image detection from the perspective of hard sample classi-
fication. The core idea is that if a classifier can distinguish
hard-to-detect generated images from real images, it is also
likely to generalize well in identifying easier samples. This
inspires us to let the classifier focus on learning from hard
samples to achieve better generalizability. In the task of gen-
erated image detection, if a large number of hard samples
could be constructed for training the detectors, incorporating
reasonable guidance, the generalizability of the detectors is
expected to improve to some extent.

Based on the aforementioned idea, we have developed a uni-
versal training framework named Diffusion Reconstruction
Contrastive Training (DRCT), aimed at enhancing the gener-
alizability of generated image detectors. DRCT creates hard
samples by reconstructing real images, which can produce
high-quality near-real images that have almost the same ap-
pearance as the real images but contain subtle and impercep-
tible traces left by the generation model. Training existing
detection methods with these hard samples is expected to
improve their generalizability, enabling them to effectively
detect the traces left by those image generation models not
covered by the training set. Figure 1 shows the detection
accuracies of six existing detection methods and our pro-
posed DRCT framework (using UnivFD as the backbone
detector) across all subsets of the GenImage dataset (Zhu
et al., 2023). All seven detectors, including DRCT, were
trained on images generated by Stable Diffusion(SD) v1.4
and then tested across all eight subsets of the GenImage
dataset. As seen, DRCT outperforms all the compared meth-
ods, achieving an averaged detection accuracy of 87.95%
over all tested subsets. DRCT achieves a 15% improvement
over the second-highest method F3Net. Note that DRCT
uses UnivFD as the backbone detector. As seen, the Uni-
vFD detector equipped with DRCT increases its detection
accuracy from 67.73% to 87.95%, indicating DRCT’s ef-

fectiveness in enhancing the generalizability of the used
backbone detector.

To further demonstrate how hard samples can enhance gen-
eralizability, we extract the features of real images, real
reconstructed images, generated images using Stable Dif-
fusion v1.4, and the generated-then-reconstructed images,
from the last feature layer before the classification layers
in a pre-trained detector Convnext-base (Liu et al., 2022c)
(Conv-B). These four sets of features are then projected
into a 2D space using t-SNE, as shown in Figure 2 (a). It
can be seen that the feature points of real images are dis-
tributed near those of real reconstructed images, indicating
their relative difficulty in distinguishing between the two,
so that the real reconstructed ones can serve as hard sam-
ples. By fine-tuning the pre-trained detector with real recon-
structed samples and generated-then-reconstructed samples,
the detector learns better discriminability in differentiating
real images from hard samples (real reconstructed samples).
Consequently, the detector is likely to be able to identify
generated samples and their reconstructed counterparts, as
shown in Figure 2 (b).

Our main contributions are fourfold:

1. We discover that diffusion reconstruction on real im-
ages can well preserve the image visual content while
leaving the intrinsic fingerprint of the diffusion model
on the resulting images. These reconstructed images
can serve as informative yet hard samples for detectors
to learn the subtle differences between real and gener-
ated images, offering an effective approach to enhance
the generalization ability of the detectors.

2. We propose a novel training framework named Dif-
fusion Reconstruction Contrastive Training (DRCT)
based on the aforementioned observation and con-
trastive learning. The proposed framework can sig-
nificantly improve the detection accuracy and general-
ization ability of diffusion-generated image detectors.

3. We create the DRCT-2M benchmark dataset, which
comprises 2 million high-quality generated images of
sizes from 256 to 1024, covering 16 typical stable diffu-
sion models. The DRCT-2M dataset also encompasses
136k generated images named DRCT-2M-Wild, which
were manually collected from 8 real-world generation
platforms. The DRCT-2M dataset provides a compre-
hensive benchmark for performance evaluation and
comparison in generated image detection tasks.

4. We conduct extensive experiments to validate and eval-
uate the effectiveness, robustness and generalizability
of our proposed DRCT framework under various set-
tings as well as real-world scenarios. The results show
that the detectors equipped with DRCT achieve remark-
able improvement in detection accuracy.
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Figure 2. Visualization of the t-SNE embeddings with cluster centers (a) before using DRCT and (b) after using DRCT.

2. Related Work
2.1. Image Generation with Diffusion Models

Generative Adversarial Networks (GANs) (Goodfellow
et al., 2014; Zhu et al., 2017; Karras et al., 2017; 2018;
Brock et al., 2018; Park et al., 2019) and Variational Autoen-
coders (VAEs) (Kingma & Welling, 2013; Sohn et al., 2015;
Higgins et al., 2016; Hou et al., 2016; Zhao et al., 2017;
van den Oord et al., 2017) have been the forerunners in the
field of image generation. However, their limitations in con-
trolling the generated image content paved the way for a new
paradigm. Introduced by Ho et al. (Ho et al., 2020), Denois-
ing Diffusion Probabilistic Models (DDPMs) have shown
promise in generating high-quality images that rival those
produced by GANs, thus marking a significant milestone
in the evolution of diffusion model-based image generation
techniques. Subsequent works have focused on enhancing
the structure (Dhariwal & Nichol, 2021; Nichol et al., 2021;
Ramesh et al., 2022; Saharia et al., 2022; Rombach et al.,
2021) and sampling efficiency (Nichol & Dhariwal, 2021;
Song et al., 2020; Liu et al., 2022b; Lu et al., 2022) of diffu-
sion models. The Latent Diffusion Model (LDM) proposed
by Rombach et al. (Rombach et al., 2021), which underlies
the popular open-source Stable Diffusion (SD) technology,
has been a catalyst for further research. Notable extensions
of SD include ControlNet (Zhang et al., 2023) for improved
image generation control, SDXL (Podell et al., 2023) for
high-resolution images, and LCM-RoLA (Luo et al., 2023)
and SD-turbo (Sauer et al., 2023) for accelerated sampling.

2.2. Generated Image Detection

In the past few years, the detection of generated images
has mainly focused on GAN-based images (Karras et al.,
2017; Frank et al., 2020; Liu et al., 2020; Ju et al., 2022;

Liu et al., 2022a; Tan et al., 2023). A variety of approaches
have been proposed for this task. Wang et al. (Wang et al.,
2019) demonstrated that a simple CNN classifier, trained
on JPEG-compressed and blurred ProGAN (Karras et al.,
2017) images, can generalize to other GAN-based generated
images. However, Corvi et al. (Corvi et al., 2022) found
that classifiers trained solely on GAN-based images face
difficulties in generalizing to diffusion-based generated im-
ages. For the detection of diffusion-based generated images,
Sha et al. (Sha et al., 2023) utilized a multimodal fusion
technique with CLIP (Radford et al., 2021) as the backbone
network, and found robustness in using BLIP-generated (Li
et al., 2022) captions as input to a text model. Utkarsh et
al. (Ojha et al., 2023) employed a large pre-trained CLIP
model as a feature extractor with a nearest neighbor clas-
sifier, achieving promising generalization. Wu et al. (Wu
et al., 2023a) adopted a CLIP-based text-image contrastive
learning approach for their detector. Moving away from
CLIP-based methods, Wang et al. (Wang et al., 2023) pro-
posed the Diffusion Reconstruction Error (DIRE) method
to detect diffusion-based generated images, leveraging the
insight that real images cannot be accurately reconstructed
by diffusion models. Similarly, Ma et al. (Ma et al., 2023)
developed the Stepwise Error for Diffusion-based generated
Image Detection (SeDID) method, utilizing intermediate
step noising features for classification. Xi et al. (Xi et al.,
2023) introduced a dual-stream detection network enhanced
with cross-attention, integrating handcrafted SRM features
and RGB depth features. Zhong et al. (Zhong et al., 2023)
focused on the contrast in interpixel correlation between rich
and poor texture regions, leading to a dual-stream model
combining SRM filters and CNN classifiers. For more gran-
ular detection, Guarnera et al. (Guarnera et al., 2023) and
Guo et al. (Guo et al., 2023) proposed multilevel algorithms
capable of distinguishing between different GAN-based and
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Figure 3. Workflow of the Diffusion Reconstruction Contrastive Training (DRCT) framework. The DRCT framework consists of two
main stages: a reconstruction stage and a training stage. In the reconstruction stage, an input image undergoes a diffusion process and is
then reconstructed through a denoising network. In the training stage, a binary classifier is trained on real images, generated images,
and their reconstructed counterparts. Contrastive loss (Hadsell et al., 2006) is adopted to guide the discriminative feature learning, and
classification loss is used for generated image detection.

diffusion-based generated images, as well as localized forg-
eries. Bird et al. (Bird & Lotfi, 2023) utilized a simple
CNN classifier for binary classification, while Epstein et al.
(Epstein et al., 2023) adopted an online learning approach,
training incrementally on images generated by newly re-
leased technologies. They also highlighted the efficacy
of the cutmix data augmentation technique for improving
pixel-level segmentation performance in detecting Stable
Diffusion inpainting images.

3. Diffusion Reconstruction Contrastive
Training

As stated previously in the Introduction section, the idea of
Diffusion Reconstruction Contrastive Training (DRCT) is
to enhance the generalizability of detectors by training them
with hard samples under appropriate guidance. This section
is structured as follows. We first present the overall frame-
work of DRCT, followed by a description of its technical
details including diffusion reconstruction and contrastive
training. Subsequently, the DRCT-2M dataset, comprising
two million high-quality samples, is introduced for evaluat-
ing the generalizability of generated image detection.

3.1. The DRCT Framework

Figure 3 presents the framework of DRCT. The DRCT
framework consists of two main stages: a reconstruction
stage and a training stage. In the reconstruction stage, a
large number of image samples are produced by reconstruct-
ing both real images and generated image using one or more
selected diffusion-based generative models, which are then
prepared for the training of the classifier. In the training
stage, four types of samples, including real images, real re-
constructed images, fake images(namely, generated images),
and fake reconstructed images, are utilized for computing
the contrastive loss and the classification loss. The two loss
functions guide the classifier to learn a better feature repre-
sentation and to identify real images as real and the other
three types of images as fake.

3.2. Diffusion Reconstruction

The reconstruction within the Stable Diffusion framework
relies on a conditional diffusion process that iteratively de-
noises an image. This process is articulated in the Stable
Diffusion (SD) model (Rombach et al., 2021), which lever-
ages a latent variable to modulate the expressiveness of the
diffusion process. The forward diffusion process is charac-
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Figure 4. Samples from our proposed DRCT-2M dataset for demonstration. The real image is “000000000285.jpg” from the
MSCOCO (Lin et al., 2014) dataset. The text prompt used for image generation is “A big burly grizzly bear is shown with grass
in the background.” The DRCT-2M dataset involves 16 types of stable diffusion models, including LDM, SDv1.4, SDv1.5, SDv2, SDXL,
SDXL-refiner, SD-Turbo, SDXL-Turbo, LCM-SDv1.5, LCM-SDXL, SDv1-Ctrl, SDv2-Ctrl, SDXL-Ctrl, SDv1-DR, SDv2-DR and
SDXL-DR, where “Ctrl” means “ControlNet” and “DR” means “Diffusion Reconstruction”. Specifically, we utilize SDv1-DR, SDv2-DR
and SDXL-DR models to reconstruct the real images from MSCOCO (Lin et al., 2014). It can be seen that the images generated using the
SDv2 and SDXL series models likely have richer details and better quality than those produced by the SDv1 series models.

terized by incrementally adding noise to an image, and the
denoising process reverses this by iteratively reducing noise
to recover the original image.

The forward diffusion process can be expressed as:

xt =
√
ᾱtx0 +

√
1− ᾱtϵ, (1)

where ϵ ∼ N (0, I), for t = 0, . . . , T . Here, x0 denotes the
initial data, xt denotes the noisy data after t diffusion steps,
and ᾱt =

∏t
s=1 αs.

The reverse process of DDIM (Song et al., 2020) is deter-
ministic and can be represented by:

xt−1 =
√
αt−1

xt −
√
1− αtϵθ(xt, t)√

αt
+
√
1− αt−1ϵt,

(2)
where αt−1 = ᾱt−1

ᾱt
, for t = T, . . . , 1, ϵθ(xt, t) is the pre-

dicted noise by the denoising neural network parameterized
by θ, and ϵt ∼ N (0, I) is Gaussian noise.

Our proposed method utilizes stable diffusion models for
reconstructing the image, differing from DIRE (Wang et al.,
2023), which directly adds noise to the input image fol-
lowed by denoising with DDIM to obtain the reconstructed
image. Initially, the encoder of VAE is used to encode the
input image x into a latent space representation x0. Subse-
quently, x0 undergoes a process of noise addition followed
by a denoising process using DDIM, resulting in the recon-
structed latent representation x′

0. Finally, the decoder of
VAE decodes x′

0 to obtain the reconstructed image x′.

3.3. Contrastive Training

We employ a margin-based contrastive loss (Hadsell et al.,
2006) within our framework that brings positive pairs closer

while separating negative pairs by a margin. This approach
simplifies the loss computation and is stated mathematically
as:

Lcontrastive =
1

N

N∑
i

[Y ·Dw(i)
2

+(1− Y ) ·max(0,m−Dw(i))
2]

(3)

where N is the total number of sample pairs, Y is the binary
label for each sample pair (if two samples share the same
classification label i.e., real or fake, then Y = 1, otherwise
Y = 0). Dw(i) is the Euclidean distance between the sam-
ples in each pair. m > 0 is the margin for negative sample
pairs, and the default value for m is 1.0 in our experiments.

The overall objective to be minimized is a combination
of the contrastive loss and the binary classification cross-
entropy loss, weighted by a balancing parameter λ:

Ltotal = λLcontrastive + (1− λ)Lcross-entropy (4)

with the cross-entropy loss defined as:

Lcross-entropy = −
N∑
i=1

[yi log(pi) + (1− yi) log(1− pi)] ,

(5)
where yi is the true label of the i-th sample and pi is the
predicted probability of the i-th sample belonging to the
positive class. The parameter λ ∈ [0, 1) regulates the trade-
off between the losses, and the default value for λ is 0.3 in
our experiments.

3.4. DRCT-2M Dataset

We constructed the DRCT-2M dataset, a comprehensive
collection of two million images for training and evaluating
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Table 1. Accuracy (ACC, %) comparisons of our DRCT and other generated image detectors on DRCT-2M. Except for DIRE and DRCT,
all methods are only trained on SDv1.4 and then evaluated on different testing subsets on DRCT-2M. For the training data of DIRE and
DRCT, when the Diffusion Reconstructed (DR) model is SDv1, the original fake images were generated by SDv1.4. When the DR model
is SDv2, the original fake images were generated by SDv2.

Method DR
SD Variants Turbo Variants LCM Variants ControlNet Variants DR Variants

Avg.
LDM SDv1.4 SDv1.5 SDv2 SDXL SDXL- SD- SDXL- LCM- LCM- SDv1- SDv2- SDXL- SDv1- SDv2- SDXL-

Refiner Turbo Turbo SDv1.5 SDXL Ctrl Ctrl Ctrl DR DR DR

CNNSpot - 99.87 99.91 99.90 97.55 66.25 86.55 86.15 72.42 98.26 61.72 97.96 85.89 82.84 60.93 51.41 50.28 81.12
F3Net - 99.85 99.78 99.79 88.66 55.85 87.37 68.29 63.66 97.39 54.98 97.98 72.39 81.99 65.42 50.39 50.27 77.13
CLIP/RN50 - 99.00 99.99 99.96 94.61 62.08 91.43 83.57 64.40 98.97 57.43 99.74 80.69 82.03 65.83 50.67 50.47 80.05
GramNet - 99.40 99.01 98.84 95.30 62.63 80.68 71.19 69.32 93.05 57.02 89.97 75.55 82.68 51.23 50.01 50.08 76.62
De-fake - 92.1 99.53 99.51 89.65 64.02 69.24 92.00 93.93 99.13 70.89 58.98 62.34 66.66 50.12 50.16 50.00 75.52
Conv-B - 99.97 100.0 99.97 95.84 64.44 82.00 80.82 60.75 99.27 62.33 99.80 83.40 73.28 61.65 51.79 50.41 79.11
UnivFD - 98.30 96.22 96.33 93.83 91.01 93.91 86.38 85.92 90.44 88.99 90.41 81.06 89.06 51.96 51.03 50.46 83.46

DIRE SDv1 98.19 99.94 99.96 68.16 53.84 71.93 58.87 54.35 99.78 59.73 99.65 64.20 59.13 51.99 50.04 49.97 71.23
DIRE SDv2 54.62 75.89 76.04 99.87 59.90 93.08 99.77 57.55 87.29 72.53 67.85 99.69 64.40 49.96 52.48 49.92 72.55

DRCT/Conv-B (ours) SDv1 99.91 99.90 99.90 96.32 83.87 85.63 91.88 70.04 99.66 78.76 99.90 95.01 81.21 99.90 95.40 75.39 90.79
DRCT/Conv-B (ours) SDv2 99.66 98.56 98.48 99.85 96.10 98.68 99.59 83.30 98.45 93.78 96.68 99.85 97.66 93.91 99.87 90.39 96.55
DRCT/UnivFD (ours) SDv1 96.74 96.26 96.33 94.89 96.24 93.46 93.43 92.94 91.17 95.01 95.60 92.68 91.95 94.10 69.55 57.43 90.49
DRCT/UnivFD (ours) SDv2 94.45 94.35 94.24 95.05 95.61 95.38 94.81 94.48 91.66 95.54 93.86 93.48 93.54 84.34 83.20 67.61 91.35

our proposed DRCT framework and existing methods of
generated image detection. The DRCT-2M dataset mainly
consists of two parts: images automatically generated by
various diffusion-based generative models and those col-
lected from the real-world scenarios.

DRCT-2M The first part dataset DRCT-2M consists of two
kinds of generated images. The images of first kind were
generated by using a text-to-image process, whose input
prompts are derived from the MSCOCO (Lin et al., 2014)
dataset. A total of 10 types of the currently available SD
models have been involved. The images of second kind
were generated by using an image-to-image process, which
included 3 types ControlNet (Zhang et al., 2023) for creat-
ing controllable images and 3 types diffusion reconstruction
models for generating reconstruction images. The input
conditions of ControlNet are text prompts and Canny Edge
Map (called “canny”) extracted by the Canny edge detec-
tion algorithm (Canny, 1986), and the input conditions of
diffusion reconstruction models are text prompts, masks
and real images. Therefore, the first part dataset DRCT-2M
includes 16 types of generated images, with 120k images
for each type. The quality of the generated images from var-
ious diffusion models is exemplified in Figure 4. Moreover,
we have explored the quality of generated images, with the
specific comparison results presented in Figure 8. More
details of the DRCT-2M dataset are illustrated in Table 11.

DRCT-2M-Wild The second part dataset DRCT-2M-Wild
consists of images collected from real-world scenarios to
evaluate the model’s generalizability and robustness in vari-
ous practical applications. Except for Midjourney collected
from DISCORD, all other images were collected from the
open-source diffusion models on the CIVITAI website, with
the specific generation models and image quantities detailed
in Table 12. These samples reflect real-world distortions,
facilitating performance evaluation and optimization in prac-
tical scenarios.

The proposed DRCT-2M dataset aims to provide a com-
prehensive set of samples and scenarios that support the
development of effective algorithms capable of distinguish-
ing between real and generated images. It will soon be
publicly available for research purposes.

4. Experiments
We first present the experimental setup, and then report and
discuss the results of our proposed DRCT framework and
the compared methods. More results are presented in the
Appendix Section.

4.1. Experimental Setup

Data Preprocessing and Augmentation: The compared
methods involved in most comparative experiments are
trained on the DRCT-2M dataset (utilizing real images from
MSCOCO (Lin et al., 2014)) or the GenImage (Zhu et al.,
2023) dataset, as will be specified. Two pretrained stable
diffusion models, namely SDv1 and SDv2, are utilized to
generate reconstructed images. During training, all detec-
tors take input images of size 224× 224, and during testing,
images larger than 224 × 224 will be center-cropped. To
achieve better robustness against post-processing, a range
of data augmentations are conducted during training, includ-
ing horizontal flipping, Gaussian noise disturbance, Gaus-
sian blurring, random rotation, JPEG compression with
random quality, brightness and contrast adjustments, and
grid dropout.

Evaluation Metrics and Comparative Approaches: We
adopt Accuracy (ACC) as the metric to evaluate detection
performance, using a threshold of 0.5 for calculating ACC.
The compared methods include representative binary clas-
sifiers retrained for generated image detection and pub-
licly available detectors originally proposed for detecting
generated images. That is, Conv-B (Liu et al., 2022c),
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Table 2. Accuracy (ACC, %) comparisons of our DRCT and other generated image detectors. All methods were trained on GenIm-
age/SDv1.4 and evaluated on different testing subsets. The Diffusion Reconstruction Model of DIRE and DRCT is SDv1.

Method Midjourney SDv1.4 SDv1.5 ADM GLIDE Wukong VQDM BigGAN Avg.

CNNSpot 84.92 99.88 99.76 53.48 53.80 99.68 55.50 49.93 74.62
F3Net 77.85 98.99 99.08 51.20 54.87 97.92 58.99 49.21 73.51

CLIP/RN50 83.30 99.97 99.89 54.55 57.37 99.52 57.90 50.00 75.31
GramNet 73.68 98.85 98.79 51.52 55.38 95.38 55.15 49.41 72.27
De-fake 79.88 98.65 98.62 71.57 78.05 98.42 78.31 74.37 84.73
Conv-B 83.55 99.99 99.92 51.75 56.27 99.92 58.41 50.00 74.98
UnivFD 91.46 96.41 96.14 58.07 73.40 94.53 67.83 57.72 79.45
DIRE 50.40 99.99 99.92 52.32 67.23 99.98 50.10 49.99 71.24

DRCT/Conv-B (ours) 94.63 99.88 99.82 61.78 65.92 99.91 74.88 58.81 82.08
DRCT/UnivFD (ours) 91.50 95.01 94.41 79.42 89.18 94.67 90.03 81.67 89.49

Table 3. Accuracy (ACC, %) comparisons of our DRCT and other generated image detectors. Except for DIRE and DRCT, all methods
were trained on DRCT-2M/SDv1.4 and evaluated on different testing subsets of DRCT-2M-Wild. For the training data of DIRE and
DRCT, when the Diffusion Reconstructed (DR) model is SDv1, the original fake images were generated by SDv1.4. When the DR model
is SDv2, the original fake images were generated by SDv2.

Method RD DreamShaper SD-XL Niji Realistic Vision Deep Negative Detail Tweaker MajicMix rMada Midjourney Avg.XL10 Special Edition v5.1 v1.x Lora Realistic Merge

CNNSpot - 61.98 76.04 67.00 63.41 64.20 57.05 73.86 07.54 58.89
F3Net - 37.65 45.20 51.26 44.21 41.28 40.41 48.37 11.11 39.94

CLIP/RN50 - 53.58 73.03 50.95 66.03 63.34 55.78 65.28 02.97 53.87
GramNet - 34.13 44.67 46.29 42.52 38.47 41.26 49.28 08.14 38.10
De-fake - 16.16 03.40 32.83 03.56 05.01 06.55 17.95 02.13 10.95
Conv-B - 49.67 68.85 42.34 47.17 43.91 31.96 65.80 03.45 44.14
UnivFD - 73.08 84.34 65.19 61.87 62.52 59.51 84.53 17.33 63.55

DIRE SDv1 23.59 40.08 31.86 49.15 39.17 38.81 53.71 04.01 35.05
DIRE SDv2 34.77 50.04 63.21 79.09 67.77 73.03 81.92 01.60 56.43

DRCT/Conv-B(ours) SDv1 78.43 85.34 82.47 86.93 86.54 81.15 87.13 68.51 82.06
DRCT/Conv-B(ours) SDv2 94.07 93.39 96.56 93.88 93.93 95.65 97.01 80.76 93.16
DRCT/UnivFD(ours) SDv1 90.89 96.10 86.50 93.59 93.41 91.74 93.24 52.39 87.23
DRCT/UnivFD(ours) SDv2 98.34 97.81 95.15 98.26 97.71 98.26 98.83 90.80 96.90

CLIP/RN50 (Radford et al., 2021) (pretrained model RN50
with only the image modality), CNNSpot (Wang et al., 2019)
(Resnet50 as backbone), F3Net (Qian et al., 2020) (input
size is 299 × 299), UnivFD (Ojha et al., 2023) (ViT-L/14
as backbone, freezing the backbone and training only the
final fully connected layer), GramNet (Liu et al., 2020),
De-fake (Sha et al., 2023) (BLIP technology for extract-
ing image descriptions from the textual modality), and
DIRE (Wang et al., 2023) (Conv-B as backbone). Note that
all the comparisons were replicated in our training protocol.

4.2. Comparisons of Detection Accuracies

Performance comparisons are conducted on the DRCT-2M
dataset and the GenImage dataset, respectively.

Comprasions on DRCT-2M When the training and the
testing datasets are aligned, existing detection methods such
as DIRE (Wang et al., 2023), De-fake (Sha et al., 2023), and
UnivFD (Ojha et al., 2023) have reported near-perfect detec-
tion accuracies. However, in real-world scenarios, it is cru-
cial to achieve good accuracies on images generated by un-

seen diffusion models. In this context, we compare the per-
formance of existing detectors including CNNSpot, F3Net,
UnivFD, GramNet, De-fake, DIRE, Conv-B, DRCT/Conv-B
(means Conv-B enhanced with DRCT), and DRCT/UnivFD
(means UnivFD enhanced with DRCT). Except for DIRE
and DRCT, all other solutions were trained on a subset of
DRCT-2M, that is, SDv1.4 (for fake images) and MSCOCO
(for real images). For fair comparison, when training DIRE
and DRCT, if the reconstruction model is SDv1, we se-
lect fake images from the subset SDv1.4 of DRCT-2M and
then perform reconstruction. Similarly, if the reconstruction
model if SDv2, we select fake images from the subset SDv2
of DRCT-2M.

Comparisons of detection accuracies on the DRCT-2M
dataset are reported in Table 1. Most methods exhibit ex-
tremely high ACCs on images generated by diffusion mod-
els related to SDv1.4, such as LDM, SDv1.5, LCM-SDv1.5,
and SD-Ctrl. However, these approaches suffer a significant
decline in ACC when detecting unseen and substantially
altered diffusion models like SDv2, SDXL, SDXL-Refiner,
SDXL-Turbo, LCM-SDXL, and SDXL-Ctrl. Particularly,
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Figure 5. Robustness evaluations against resizing and JPEG com-
pression on the two subsets SDv1.4 and SDv2 of DRCT-2M.

for images generated by SDXL, the ACCs of existing meth-
ods except UnivFD, range only between 53%-67%. The
ACCs of existing methods for detecting real reconstructed
images of SDv1-DR, SDv2-DR, and SDXL-DR drop to
50%-65%.

In contrast, our proposed DRCT framework achieves supe-
rior ACCs across all types of SD-generated images. We also
compare the detection ACCs when different diffusion model
(namely, SDv1 or SDv2) is used for reconstruction. As
shown, merely using SDv1 for reconstruction in DRCT, the
average detection ACC has already improved from 79.11%
to 90.79% compared to the baseline detector Conv-B. For
UnivFD, the average ACC is improved from 83.46% to
90.49%. When using SDv2 for reconstruction, the average
detection ACC can be further improved to 96.55% com-
pared to the baseline detector Conv-B. This indicates that a
better reconstruction model helps to achieve better detection
performance on the DRCT-2M dataset.

Comparisons on GenImage To further validate the effec-
tiveness of the DRCT framework, we also conduct com-
parisons following the same experimental protocol as Gen-
Image. All detection methods are trained on the SDv1.4
subset of GenImage. Specifically, for the training of DIRE
and DRCT, the reconstruction model is also SDv1. The
comparative results in Table 2 reveal that all compared meth-
ods achieve very high detection accuracies on the SDv1.4,
SDv1.5, and Wukong subsets. However, a noticeable de-
cline in ACCs can be observed across the other subsets such

as Midjourney, ADM, GLIDE, VQDM, and BigGAN, espe-
cially on non-diffusion-based generated methods BigGAN.
After incorporating our proposed DRCT framework, the
backbone detectors Conv-B and UnivFD achieve an average
ACC improvement of 7.1% and 10.04% respectively. This
validates the stable effectiveness of the DRCT framework
in enhancing the generalizability of the involved detectors.

4.3. Comparisons of Generalizability

To validate the generalizability of our proposed DRCT
framework, we conduct cross-database evaluation on DRCT-
2M-Wild and GenImage using detectors trained on DRCT-
2M, as described in Section 4.2. DRCT-2M-Wild is an
internet-collected dataset reflecting real-world scenarios.

The cross-dataset evaluation results on DRCT-2M-Wild are
presented in Table 3. Except for DRCT, the average detec-
tion ACCs of all other compared methods are below 65%. In
contrast, the Conv-B and UnivFD detectors enhanced with
DRCT achieve average ACCs of over 80% on DRCT-2M-
Wild, which is a significant improvement over their origi-
nal versions. Moreover, DRCT/UnivFD trained on SDv2
reaches the highest average ACC of 96.90%. Similarly, the
DRCT-enhanced methods also demonstrate superior gener-
alizability on GenImage, as shown in Table 7.

4.4. Robustness against Post-Processing

To evaluate the resilience of the DRCT framework against
post-processing, we adopt the experimental setup from
(Wu et al., 2023a) to perform resizing (with scales of 0.5,
0.75, 1.0, 1.25, 1.5) and JPEG compression (with qual-
ity factors of 60, 70, 80, 90, 100) on the tested images,
which include both real and generated images. We employ
six detectors including Conv-B, UnivFD, DRCT/Conv-B
(SDv1), DRCT/Conv-B (SDv2), DRCT/UnivFD (SDv1),
and DRCT/UnivFD (SDv2) to validate the robustness. All
methods were trained under the same framework with iden-
tical data augmentation. As shown in Figure 5, the Conv-B
detectors enhanced with DRCT exhibit superior robustness,
maintaining detection ACCs of up to 99% for resizing and
JPEG compression post-processing. Moreover, compared
to UnivFD enhanced with DRCT, Conv-B enhanced with
DRCT exhibits better post-processing robustness, mainly
due to the fact that Conv-B tunes all its network weights
while UnivFD only funes its final fully connected layer.

4.5. Ablation Studies

In the ablation studies, we focus on the impact of the follow-
ing two factors on detection performance: 1) the effect of
whether reconstructing both real and fake images from the
training set on the detector; 2) the effect of using Contrastive
Loss on the detector’s effectiveness.
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Table 4. Ablation study results demonstrating the effect of our DRCT (Conv-B as the backbone). All methods were trained on DRCT-
2M/SDv1.4 and tested on different testing subsets of GenImage. We report ACC (%) in the Table.

w/o Fake Image w/o Real Rec. w/o Fake Rec. w/o Contrastive Loss Midjourney SDv1.4 SDv1.5 ADM GLIDE Wukong VQDM BigGAN Avg.

✓ × × × 67.79 95.64 95.85 51.44 52.01 86.13 52.97 49.99 68.98
× ✓ × × 74.25 99.77 99.61 51.73 51.54 99.61 61.12 50.60 73.53
✓ ✓ × × 86.88 99.89 99.81 52.51 53.70 99.83 64.13 51.50 76.03
✓ ✓ ✓ × 86.62 99.90 99.80 55.49 57.67 99.83 64.08 52.49 76.99
✓ ✓ ✓ ✓ 94.43 99.37 99.19 66.42 73.31 99.25 76.85 59.41 83.53

To ensure the fairness of our ablation experiments, we
used Conv-B as the baseline classifier, training on a subset
of the DRCT-2M/SDv1.4 dataset (with real images from
MSCOCO and the reconstruction model being SDv1) and
then testing on the GenImage dataset. The results of the
ablation studies are shown in Table 4. The initial baseline
detector achieved an average ACC of 68.98% on GenImage.
When the original SDv1.4 fake images were replaced with
reconstructed real images (Real Rec.), the average ACC
significantly increased by 6.55%, indicating that training the
model with both real images and reconstructed real images
aids in guiding the detector to learn common distortion fea-
tures of AI-generated images, while mitigating overfitting
to semantic features. Upon adding back the original SDv1.4
fake images, the average ACC increased by another 2.5%.
Furthermore, including reconstructed fake images led to an
additional 0.96% increase in average ACC. Lastly, when we
added Contrastive Loss to the original BCE loss function
during training, the average ACC saw a significant increase
of 6.54%, reaching an overall accuracy of 83.53%. These
ablation studies further demonstrate the effectiveness of our
proposed DRCT training framework.

5. Discussions
Limitations The proposed DRCT framework has remark-
ably enhanced the detection performance for diffusion-based
generated images. While it also improves the detection ac-
curacy for non-diffusion-based images, such as those gen-
erated by GANs, the improvement is less marked. This
discrepancy mainly stems from the significant differences in
the image generation processes of GAN-based and diffusion-
based methods, which exhibit distinct generative artifacts.

Moreover, our evaluation of DRCT has so far only covered
the detection of globally generated images. Detecting lo-
cally generated regions in images presents a more challeng-
ing task, especially when the area of the locally generated
region is small. Investigating the performance of DRCT
in detecting locally generated images and how to further
enhance it will be the focus of our future work.

Conclusions We have proposed a universal framework,
Diffusion Reconstruction Contrastive Training, for enhanc-
ing the generalizability of existing methods for detecting
diffusion-based generated images. With DRCT, the back-

bone detector can achieve remarkable improvement, indicat-
ing the effectiveness of the DRCT framework. In addition,
a large-scale, high-quality image dataset, DRCT-2M, has
been built for the training of detectors and the evaluation
of effectiveness, generalizability, robustness, etc. Future
work includes improving DRCT to keep pace with the devel-
opment of diffusion models. Exploring the interpretability
of the features learned by DRCT-enhanced detectors may
provide insights into the fundamental differences between
real and generated images.
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A. More Analysis of the Proposed DRCT
Framework

A.1. More Evaluation Metrics on DRCT-2M

Beyond the comparison results of ACC in Table 1, we have
supplemented the evaluation metrics of F1 Score and False
Negative Rate (FNR) in Table 5 and Table 6 respectively.
Similarly, our proposed method DRCT consistently exhibits
superior performance in the evaluations of both F1 and FNR.

A.2. More Comparison Results on GenImage

Cross-Dataset Evaluation To evaluate the generalizability
of our proposed method DRCT, all detectors were trained
on DRCT-2M/SDv1.4 and subsequently tested on different
subsets of GenImage. As shown in Table 7, our proposed
method DRCT/UnivFD achieves the highest average ACC
score, reaching 87.67%, which is 14.84% higher than the
best non-DRCT method F3Net.

A.3. In-Depth Analysis of Reconstructed Image
Detectability

tSNE Visualization As shown in Figure 2, we utilized tSNE
to intuitively showcase the distinction between real images
and their reconstructed counterparts (termed “Real Rec”),
by visualizing the features derived from the classifier back-
bone network. By reducing the dimensionality to a two-
dimensional space, we observed the scatter distribution of
the samples, as depicted in Figure 2(a). It is evident that
the Real Rec samples cluster closely to the real samples,
whereas the generated samples (via SDv1.4) are noticeably
distant from the real samples. This suggests that differentiat-
ing between the real and Real Rec samples poses a greater
challenge than distinguishing between the real and gener-
ated samples. Consequently, integrating Real Rec images
into the training process can encourage the classifier to es-
tablish tighter classification boundaries, thus enhancing the
classifier’s generalization capabilities.

Spectral Distribution Inspired by UnivFD (Ojha et al.,
2023), diffusion models reveal some kinds of distinct spec-
tral distribution patterns. As done in UnivFD, we evaluated
the average Fourier amplitude spectra for real images, real
reconstructed images (labeled “Real Rec”), generated im-
ages (labeled “SDv1.4” and “SDv2”) and generated recon-
structed images (labeled “SDv1.4 Rec”), by averaging over
5000 samples for each category, as shown in Figure 6. No-
tably, SDv1.4, SDv1.4 Rec, and SDv2 exhibit a similar and
distinctive pattern, significantly different from the ampli-
tude spectrum of real images. Simultaneously, the amplitude
spectrum of real reconstructed images shows a greater simi-
larity to that of real images, indicating that distinguishing
between the two is more challenging than differentiating
between real and generated images to a certain extent.

A.4. The Effect of Reconstruction Step

Table 8 show the performance of DRCT/Conv-B when the
reconstruction step employed during the training phase does
not match the reconstruction step of the generated image in
the testing phase. The results indicate that the reconstruc-
tion step exerts a relatively small impact on the performance
of detecting reconstructed images for DRCT-2M/SDv1-DR
and DRCT-2M/SDv2-DR. However, in the case of DRCT-
2M/SDXL-DR, the larger the reconstruction step, the closer
the reconstructed image gets to the real image (thus im-
proving the quality of generation), which makes it more
challenging to identify as a generated image.

A.5. The Sensitivity of the Detector to the λ Parameter
in Loss Function

The parameter λ is crucial for balancing the trade-off be-
tween contrastive loss and BCE loss. We evaluated the
impact of various λ values (0.1, 0.2, 0.3, 0.5, 0.7, 0.9) on
the detection performance. The results of Table 9 indi-
cate that as λ progressively increases, the average accuracy
of DRCT/Conv-B (trained on DRCT-2M/SDv1.4) on Gen-
Image initially rises, then declines. The optimal average
accuracy is achieved at a λ value of 0.3, which we have
adopted as the default in our experiments.

A.6. The Sensitivity of the Detector to the m Parameter
in Loss Function

The parameter m is the margin for negative sample pairs
in contrastive loss. We evaluated the impact of various m
values (0.1, 0.5, 1.0, 1.5, 2.0) on the detection performance.
Similar to λ, the results of Table 9 indicate that as m pro-
gressively increases, the average accuracy of DRCT/Conv-B
(trained on DRCT-2M/SDv1.4) on GenImage initially rises,
then declines. The optimal average accuracy is achieved at
a m value of 1.0, which we have adopted as the default in
our experiments.

A.7. The Influence of Image Category on Detection
Performance

To further evaluate the influence of image category on de-
tection performance, we conducted a semantics analysis
experiment, as done in De-fake (Sha et al., 2023). We used
the DRCT/Conv-B detector trained on DRCT-2M/SDv1.4
dataset to test the generated images of DRCT-2M/SDXL
dataset. The results highlight the top ten categories with
the highest prediction accuracy and the ten with the lowest.
As shown in Figure 7. The categories achieving the highest
accuracy were “toaster”, “microwave” and “hair drier”, each
achieving a 100% accuracy, while the lowest was “apple”
with an accuracy of 25.00%, followed by “baseball glove”
with 33.33%, “skateboard” with 41.67%.
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Table 5. F1 (%) comparisons of our DRCT and other generated image detectors on DRCT-2M. Except for DIRE and DRCT, all methods
are only trained on SDv1.4 and then evaluated on different testing subsets on DRCT-2M. For the training data of DIRE and DRCT, when
the Diffusion Reconstructed (DR) model is SDv1, the original fake images were generated by SDv1.4. When the DR model is SDv2, the
original fake images were generated by SDv2.

Method DR
SD Variants Turbo Variants LCM Variants ControlNet Variants DR Variants

Avg.
LDM SDv1.4 SDv1.5 SDv2 SDXL SDXL- SD- SDXL- LCM- LCM- SDv1- SDv2- SDXL- SDv1- SDv2- SDXL-

Refiner Turbo Turbo SDv1.5 SDXL Ctrl Ctrl Ctrl DR DR DR

CNNSpot - 99.87 99.91 99.90 97.49 49.13 84.48 83.94 61.97 98.23 38.08 97.92 83.59 79.31 35.98 05.67 01.31 69.80
F3Net - 99.85 99.78 99.79 84.24 21.20 85.57 53.69 43.08 97.32 18.38 97.94 61.95 78.08 47.29 01.90 01.43 61.97
CLIP/RN50 - 99.99 99.99 99.96 94.30 38.94 90.63 80.34 47.74 98.96 25.90 99.97 76.07 78.10 48.11 02.68 01.90 67.72
GramNet - 99.40 99.01 98.83 95.10 40.99 76.26 59.92 56.18 92.59 25.54 88.94 67.93 79.23 06.09 01.42 01.69 61.82
De-fake - 91.45 99.53 99.51 88.50 44.10 55.79 91.34 93.56 99.13 59.13 30.85 39.92 50.24 01.15 01.31 00.68 59.14
Conv-B - 99.97 100.0 99.97 95.66 44.82 78.05 76.27 35.39 99.26 39.56 99.80 80.10 63.54 37.79 06.91 01.63 66.17
UnivFD - 98.29 96.11 96.22 93.48 90.21 93.57 84.39 83.78 89.53 87.75 89.49 76.88 87.83 09.01 05.63 03.47 74.10

DIRE SDv1 98.16 99.94 99.96 53.33 14.36 61.01 30.21 16.10 99.78 32.65 99.65 44.29 30.95 07.76 00.28 00.00 49.28
DIRE SDv2 17.16 68.30 68.56 99.87 33.23 92.58 99.77 26.44 85.47 62.21 52.73 99.69 44.86 00.16 09.73 00.00 53.80

DRCT/Conv-B (ours) SDv1 99.91 99.90 99.90 96.19 80.81 83.25 91.18 57.33 99.66 73.09 99.90 94.76 76.91 99.90 95.19 67.43 88.46
DRCT/Conv-B (ours) SDv2 99.66 98.54 98.46 99.85 95.95 98.66 99.59 80.00 98.43 93.38 96.57 99.85 97.61 93.53 99.87 89.39 96.21
DRCT/UnivFD (ours) SDv1 96.82 96.33 96.41 94.92 96.31 93.41 93.38 92.85 90.89 95.05 95.66 92.56 91.76 94.09 59.57 32.63 88.29
DRCT/UnivFD (ours) SDv2 94.61 94.51 94.39 95.22 95.78 95.55 94.98 94.64 91.67 95.71 94.00 93.61 93.67 83.14 81.68 57.45 90.66

Table 6. False Negative Rate (FNR, %) comparisons of our DRCT and other generated image detectors on DRCT-2M. Except for DIRE
and DRCT, all methods are only trained on SDv1.4 and then evaluated on different testing subsets on DRCT-2M. For the training data of
DIRE and DRCT, when the Diffusion Reconstructed (DR) model is SDv1, the original fake images were generated by SDv1.4. When the
DR model is SDv2, the original fake images were generated by SDv2.

Method DR
SD Variants Turbo Variants LCM Variants ControlNet Variants DR Variants

Avg.
LDM SDv1.4 SDv1.5 SDv2 SDXL SDXL- SD- SDXL- LCM- LCM- SDv1- SDv2- SDXL- SDv1- SDv2- SDXL-

Refiner Turbo Turbo SDv1.5 SDXL Ctrl Ctrl Ctrl DR DR DR

CNNSpot - 00.16 00.08 00.10 04.80 67.40 26.80 27.60 55.06 03.38 76.46 03.98 28.12 34.22 78.04 97.08 99.34 37.66
F3Net - 00.12 00.26 00.24 22.50 88.12 25.08 63.24 72.50 05.04 89.86 03.86 55.04 35.84 68.98 99.04 99.28 45.56
CLIP/RN50 - 00.00 00.00 00.06 10.76 75.82 17.12 32.84 71.18 02.04 85.12 00.50 38.60 35.92 68.32 98.64 99.04 39.75
GramNet - 00.50 01.28 01.62 08.70 74.04 37.94 56.92 60.66 13.20 85.26 19.36 48.20 33.94 96.84 99.28 99.14 46.06
De-fake - 15.46 00.60 00.64 20.36 71.62 61.18 15.66 11.80 01.40 57.88 81.70 74.98 66.34 99.42 99.34 99.66 48.63
Conv-B - 00.06 00.00 00.06 08.32 71.12 36.00 38.36 78.50 01.46 75.34 00.40 33.20 53.44 76.70 96.42 99.18 41.79
UnivFD - 02.54 06.70 06.48 11.48 17.12 11.32 26.38 27.30 18.26 21.16 18.32 37.02 21.02 95.24 97.08 98.22 32.23

DIRE SDv1 03.56 00.06 00.02 63.62 92.26 56.08 82.20 91.24 00.38 80.48 00.64 71.54 81.68 95.96 99.86 100.0 57.47
DIRE SDv2 90.60 48.06 47.76 00.10 80.04 13.68 00.30 84.74 25.26 54.78 64.14 00.46 71.04 99.92 94.88 100.0 54.74

DRCT/Conv-B (ours) SDv1 00.00 00.02 00.02 07.18 32.08 28.56 16.06 59.74 00.50 42.30 00.02 00.98 37.40 00.02 09.02 49.04 17.68
DRCT/Conv-B (ours) SDv2 00.50 02.70 02.86 00.12 07.62 02.46 00.64 33.22 02.92 12.26 06.46 00.12 04.50 12.00 00.08 19.04 06.72
DRCT/UnivFD (ours) SDv1 00.76 01.72 01.58 04.46 01.76 07.32 07.38 08.36 11.90 04.22 03.04 08.88 10.34 06.04 55.14 79.38 13.27
DRCT/UnivFD (ours) SDv2 02.58 02.78 03.00 01.38 00.26 00.72 01.86 02.52 08.16 00.40 03.76 04.52 04.40 22.80 25.08 56.26 08.78

B. Additional Details of DRCT-2M and
DRCT-2M-wild Datasets

B.1. More Details of DRCT-2M

In this subset, we introduce more details about our proposed
DRCT-2M dataset. The real images of DRCT-2M are de-
rived from MSCOCO (Lin et al., 2014), as well as fake
images generated by 16 different types of SD models. There
are 10 types of text-to-image SD models and 6 types of
image-to-image SD models, and their pre-training weights
are downloaded from the open source library: diffusers (von
Platen et al., 2022). To generate fake images, different SD
models have different inference step and input conditions.
For text-to-image SD models (including “LDM”, “SDv1.4”,
“SDv1.5”, “SDv2”, “SDXL”, “SDXL-Refiner”, “SD-Turbo”,
“SDXL-Turbo ”, “LCM-SDv1.5” and “LCM-SDXL”), their
input condition are text prompts, which corresponds to the
caption of the real images in MSCOCO. For the image-to-
image SD model, “SDv1-Ctrl”, “SDv2-Ctrl” and “SDXL-
Ctrl” are combined with ControlNet (Zhang et al., 2023) to
generate controllable images. Their input conditions are text

prompts and Canny Edge Map (called “canny”) extracted by
the Canny edge detection algorithm (Canny, 1986), where
the prompts are the caption of the real images in MSCOCO,
and the canny are extracted from the real images. Moreover,
“SDv1-DR”, “SDv2-DR”, and “SDXL-DR” are utilized to
generate reconstruction images of the real images using the
SD inpainting models, with input conditions being the im-
age, text prompt, and binary mask, where the input image
comes from the real image in MSCOCO, the prompt is an
empty string “”, and the mask is a zero matrix of the same
size as the real image. Further details of the DRCT-2M
dataset are illustrated in Table 11.

To evaluate the quality of images generated by different
types of SD models in the DRCT-2M dataset, we made
use of two generated image quality assessment methods:
HPSv2 (Wu et al., 2023b) and ImageReward (Xu et al.,
2023). As shown in Figure 8, within the HPSv2 assessment,
“SDv2” received the highest score, followed by “SDXL”,
with “LDM” performing the worst. In the ImageReward
evaluation, “SDXL-Turbo” achieved the highest score, with
“SDXL” next, and “LDM” ranking lowest. Moreover, some
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Table 7. Accuracy (ACC, %) comparisons of our DRCT and other generated image detectors. Except for DIRE and DRCT, all methods
were trained on DRCT-2M/SDv1.4 and evaluated on different testing subsets of GenImage. For the training data of DIRE and DRCT,
when the Diffusion Reconstructed (DR) model is SDv1, the original fake images were generated by SDv1.4. When the DR model is
SDv2, the original fake images were generated by SDv2.

Method RD Midjourney SDv1.4 SDv1.5 ADM GLIDE Wukong VQDM BigGAN Avg.

CNNSpot - 71.72 95.72 95.90 53.07 53.68 91.67 53.60 49.87 70.65
F3Net - 71.44 97.35 97.49 55.73 61.42 87.01 62.52 49.68 72.83

CLIP/RN50 - 69.74 93.03 93.39 52.06 50.64 80.94 54.29 49.87 68.00
GramNet - 68.38 86.08 86.65 51.83 53.50 75.87 53.75 49.51 65.70
De-fake - 57.03 85.22 85.33 54.87 59.57 77.28 54.69 52.40 65.80
Conv-B - 67.79 95.64 95.85 51.44 52.01 86.13 52.97 49.99 68.98
UnivFD - 73.08 73.72 73.78 55.95 71.40 74.04 56.64 63.20 67.73

DIRE SDv1 51.11 55.07 55.31 49.93 50.02 53.71 49.87 49.85 51.86
DIRE SDv2 59.60 50.42 50.51 49.67 49.76 50.79 49.64 49.63 51.25

DRCT/Conv-B(ours) SDv1 94.43 99.37 99.19 66.42 73.31 99.25 76.85 59.41 83.53
DRCT/Conv-B(ours) SDv2 98.26 97.88 97.83 60.00 60.02 95.89 61.32 52.33 77.94
DRCT/UnivFD(ours) SDv1 85.82 92.33 91.87 75.18 87.44 92.23 89.12 87.38 87.67
DRCT/UnivFD(ours) SDv2 88.55 88.39 88.04 71.61 77.92 87.55 84.98 84.83 83.98

Real Real_Rec SDv1.4 SDv1.4_Rec SDv2

Figure 6. Average frequency spectra for real images, real reconstructed images (labeled “Real Rec”), generated images (labeled “SDv1.4”
and “SDv2”) and generated reconstructed images (labeled “SDv1.4 Rec”).

examples of generated images in DRCT-2M dataset are
illustrated in Figure 9.

B.2. More Details of DRCT-2M-wild

To evaluate the generalization of our proposed DRCT
method to generated images in real-world scenarios, we
collected eight types of generated images from two internet
platforms, CIVITAI and DISCORD. Except for Midjourney,
which was sourced from DISCORD, the rest were gathered
from CIVITAI. More details about DRCT-2M-wild are pre-
sented in Table 12, and some examples of generated images
from DRCT-2M-wild are illustrated in Figure 10.
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Table 8. Ablation study results demonstrate the effect of the reconstruction step. We trained all classifiers (Conv-B as the backbone) using
the DRCT framework on DRCT-2M/SDv1.4 and DRCT-2M/SDv2 with different reconstruction steps, and then tested on three subsets:
DRCT-2M/SDv1-DR, DRCT-2M/SDv2-DR, and DRCT-2M/SDXL-DR with different reconstruction steps (namely 10, 20, 50, 70). We
report ACC (%)/ AUC (%) in the Table.

Test set Trained on DRCT-2M/SDv1.4 Trained on DRCT-2M/SDv2

step=10 step=20 step=50 step=70 step=10 step=20 step=50 step=70

DRCT-2M/SDv1-DR(step=10) 99.94/100.0 99.90/100.0 99.94/100.0 99.98/100.0 95.78/99.30 94.18/99.71 92.69/99.28 95.62/99.64
DRCT-2M/SDv1-DR(step=20) 99.94/100.0 99.90/100.0 99.94/100.0 99.98/100.0 95.59/99.29 94.06/99.69 92.57/99.26 95.34/99.61
DRCT-2M/SDv1-DR(step=50) 99.94/100.0 99.90/100.0 99.94/100.0 99.98/100.0 95.44/99.28 93.91/99.69 92.48/99.26 95.03/99.59
DRCT-2M/SDv1-DR(step=70) 99.94/100.0 99.90/100.0 99.94/100.0 99.98/100.0 99.48/99.28 93.96/99.68 92.50/99.26 95.17/99.60

DRCT-2M/SDv2-DR(step=10) 95.78/99.85 96.28/99.66 92.47/99.56 93.97/99.83 99.91/100.0 99.90/100.0 99.96/100.0 99.95/100.0
DRCT-2M/SDv2-DR(step=20) 95.01/99.81 95.79/99.58 91.43/99.42 92.88/99.68 99.90/100.0 99.88/100.0 99.96/100.0 99.94/100.0
DRCT-2M/SDv2-DR(step=50) 94.47/99.79 95.40/99.95 91.00/99.35 92.22/99.62 99.88/100.0 99.87/100.0 99.95/100.0 99.94/100.0
DRCT-2M/SDv2-DR(step=70) 94.94/99.80 95.62/99.54 91.25/99.38 92.53/99.64 99.89/100.0 99.88/100.0 99.95/100.0 99.94/100.0

DRCT-2M/SDXL-DR(step=10) 80.98/98.76 82.84/97.09 75.30/96.25 73.51/96.52 97.37/99.80 93.28/99.59 95.36/99.79 93.80/99.50
DRCT-2M/SDXL-DR(step=20) 77.98/98.00 79.14/95.40 72.54/94.55 69.79/94.78 96.91/99.76 91.84/99.45 94.63/99.70 92.49/99.32
DRCT-2M/SDXL-DR(step=50) 74.50/97.03 75.39/93.08 70.06/92.04 66.17/92.13 96.44/99.70 90.39/99.18 93.88/99.59 91.08/98.96
DRCT-2M/SDXL-DR(step=70) 74.94/97.18 76.04/93.39 70.41/92.29 66.59/92.42 96.47/99.70 90.57/99.23 93.91/99.60 91.26/99.03

Table 9. Ablation study results demonstrating the sensitivity of detector to λ parameter in loss function. The detectors are DRCT/Conv-B,
which were trained on DRCT-2M/SDv1.4 and tested on different testing subsets of GenImage. We report ACC (%) in the Table.

λ Midjourney SDv1.4 SDv1.5 AMD GLIDE Wukong VQDM BigGAN Avg.

0.1 88.92 99.82 99.74 53.48 55.43 99.82 66.59 51.75 76.94
0.2 92.36 99.57 99.41 63.31 65.10 99.54 72.12 58.08 81.19

0.3(default) 94.43 99.37 99.19 66.42 73.31 99.25 76.85 59.41 83.53
0.5 94.85 99.40 99.16 60.33 64.74 99.08 75.28 52.47 80.66
0.7 96.33 99.24 99.04 65.72 67.04 99.15 83.39 56.47 83.30
0.9 92.43 99.36 99.21 58.53 66.43 99.35 69.41 55.31 80.00

Table 10. Ablation study results demonstrating the sensitivity of detector to margin (m) parameter in loss function. The detectors are
DRCT/Conv-B, which were trained on DRCT-2M/SDv1.4 and tested on different testing subsets of GenImage. We report ACC (%) in the
Table.

m Midjourney SDv1.4 SDv1.5 AMD GLIDE Wukong VQDM BigGAN Avg.

0.1 88.60 99.88 99.81 56.66 60.79 99.86 63.13 53.71 77.81
0.5 92.30 99.57 99.46 62.06 63.28 99.57 73.22 54.16 80.45

1.0(default) 94.43 99.37 99.19 66.42 73.31 99.25 76.85 59.41 83.53
1.5 91.53 99.59 99.46 57.53 56.32 99.57 67.33 51.68 77.88
2.0 87.88 99.79 99.72 57.06 57.57 99.70 64.93 52.45 77.39

16



DRCT: Diffusion Reconstruction Contrastive Training towards Universal Detection of Diffusion Generated Images

toa
ste

r

micr
ow

av
e

ha
ir d

rie
r

toi
let

sci
sso

rs
lap

top

sui
tca

se
clo

ck
ov

en
rem

ote

Category

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

ap
ple

ba
seb

all 
glo

ve

ska
teb

oa
rd

be
ar

va
se cow

ted
dy

 be
ar

she
ep

do
nu

t
car

rot

Category

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

(a) The 10 categories with the highest accuracy. (b) The 10 categories with lowest accuracy.

Figure 7. The influence of image category on detection performance.

Table 11. More details of DRCT-2M dataset.
Category Diffusion Model Model Name in diffusers (von Platen et al., 2022) Image Count Inference Step Conditions

SD Variants

LDM CompVis/ldm-text2im-large-256 123287 50 prompt
SDv1.4 CompVis/stable-diffusion-v1-4 123287 50 prompt
SDv1.5 runwayml/stable-diffusion-v1-5 123287 50 prompt
SDv2 stabilityai/stable-diffusion-2-1 123287 50 prompt
SDXL stabilityai/stable-diffusion-xl-base-1.0 123287 50 prompt

SDXL-refiner stabilityai/stable-diffusion-xl-refiner-1.0 123287 50 prompt

Turbo Variants SD-Turbo stabilityai/sd-turbo 123287 1 prompt
SDXL-Turbo stabilityai/sdxl-turbo 123287 1 prompt

LCM Variants LCM-SDv1.5 latent-consistency/lcm-lora-sdv1-5 123287 4 prompt
LCM-SDXL latent-consistency/lcm-lora-sdxl 123287 4 prompt

ControlNet Variants
SDv1-Ctrl lllyasviel/sd-controlnet-canny 123287 20 prompt+canny
SDv2-Ctrl thepowefuldeez/sd21-controlnet-canny 123287 20 prompt+canny
SDXL-Ctrl diffusers/controlnet-canny-sdxl-1.0 123287 20 prompt+canny

DR Variants
SDv1-DR runwayml/stable-diffusion-inpainting 123287 50 image+prompt+mask
SDv2-DR stabilityai/stable-diffusion-2-inpainting 123287 50 image+prompt+mask
SDXL-DR diffusers/stable-diffusion-xl-1.0-inpainting-0.1 123287 50 image+prompt+mask
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Figure 8. Diffusion-generated image of DRCT-2M quality assessment by HPSv2 (Wu et al., 2023b) and ImageReward (Xu et al., 2023).
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Real LDM SDv1.4 SDv1.5 SDv2 SDXL SDXL-Refiner SD-Turbo SDXL-Turbo

LCM-SDv1.5 LCM-SDXL SDv1-Ctrl SDv2-Ctrl SDXL-Ctrl SDv1-DR SDv2-DR SDXL-DR

Figure 9. Some examples of generated images in DRCT-2M. The real image is “000000000139.jpg”, “000000000632.jpg” and
“000000000724.jpg” from the MSCOCO dataset. The prompt used for text-generated images is “A woman stands in the dining
area at the table.”, “Bedroom scene with a bookcase, blue comforter and window.”, “A stop sign is mounted upside-down on it’s post.”,
respectively. We constructed datasets using 16 types of SD models, including LDM, SDv1.4, SDv1.5, SDv2, SDXL, SDXL-refiner,
SD-Turbo, SDXL-Turbo, LCM-SDv1.5, LCM-SDXL, SDv1-Ctrl, SDv2-Ctrl, SDXL-Ctrl, SDv1-DR, SDv2-DR and SDXL-DR, where
“Ctrl” means “ControlNet” and “DR” means “Diffusion Reconstruction”. Specifically, we utilized SDv1-DR, SDv2-DR and SDXL-DR
models to reconstruct the real image set from MSCOCO.

Table 12. More details of DRCT-2M-Wild dataset in real-world scenarios.
Method Name Base Model Model ID in CIVITAI Image Count

DreamShaper XL10 SDXL 112902 8,696

Niji Special Edition SDXL 120765 3,615

Realistic Vision v5.1 SDv1.5 4201 36,999

Deep Negative v1.x SDv1.5 4629 11,600

Detail Tweaker Lora SDv1.5 58390 24,293

MajicMix Realistic SDv1.5 43331 41,496

rMada Merge SDv2 15303 769

Midjourney - - 9349
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DreamShaper Niji Realistic Deep Negative Detail Tweaker MajicMix rMada Midjourney
XL10 Special Edition Vision v5.1 v1.x Lora Realistic Merge

Figure 10. Some examples of generated images in DRCT-2M-wild. These images mainly consist of those generated by 8 models on
internet platforms CIVITAI and Midjourney, including DreamShaper XL10, Niji Special Edition, Realistic Vision v5.1, Deep Negative
v1.x, Detail Tweaker Lora, MajicMix Realistic, rMada Merge, Midjourney.
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