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Abstract

Escaping from saddle points and finding local minimum is a central problem in1

nonconvex optimization. Perturbed gradient methods are perhaps the simplest2

approach for this problem. However, to find (ε,
√
ε)-approximate local minima, the3

existing best stochastic gradient complexity for this type of algorithms is Õ(ε−3.5),4

which is not optimal. In this paper, we propose Pullback, a faster perturbed5

stochastic gradient framework for finding local minima. We show that Pullback6

with stochastic gradient estimators such as SARAH/SPIDER and STORM can7

find (ε, εH)-approximate local minima within Õ(ε−3 + ε−6H ) stochastic gradient8

evaluations (or Õ(ε−3) when εH =
√
ε). The core idea of our framework is a9

step-size “pullback” scheme to control the average movement of the iterates, which10

leads to faster convergence to the local minima.11

1 Introduction12

In this paper, we focus on the following optimization problem13

min
x∈Rd

F (x) := Eξ[f(x; ξ)], (1.1)

where f(x; ξ) : Rd → R is a stochastic function indexed by some random vector ξ, and it is14

differentiable and possibly nonconvex. We consider the case where only the stochastic gradients15

∇f(x; ξ) are accessible. (1.1) can unify a variety of stochastic optimization problems, such as finite-16

sum optimization and online optimization. Since in general, finding global minima of a nonconvex17

function could be an NP-hard problem [12], one often seeks to finding an (ε, εH)-approximate local18

minimum x, i.e., ‖∇F (x)‖2 ≤ ε and λmin

(
∇2F (x)

)
≥ −εH , where ∇F (x) is the gradient of F19

and λmin

(
∇2F (x)

)
is the smallest eigenvalue of the Hessian of F at x. In many machine learning20

applications such as matrix sensing and completion [5, 11], it suffices to find local minima due to the21

fact that all local minima are global minima.22

For the case where f is a deterministic function, it has been shown that vanilla gradient descent fails23

to find local minima efficiently since the iterates will get stuck at saddle points for exponential time24

[8]. To address this issue, the simplest idea is to add random noises as a perturbation to the stuck25

iterates. Jin et al. [13] showed that the simple perturbation step is enough for gradient descent to26

escape saddle points and find (ε,
√
ε)-approximate local minima within Õ(1/ε2) gradient evaluations,27

which matches the number of gradient evaluations for gradient descent to find ε-stationary points28

[19]. Such matching results suggest that perturbed gradient methods can find local minima efficiently,29

at least for deterministic optimization. When it comes to stochastic optimization, a natural question30

arises:31

Can perturbed stochastic gradient methods find local minima efficiently?32

To answer this question, we first look into existing results of perturbed stochastic gradient methods33

for finding local minima. Ge et al. [10] showed that perturbed Stochastic gradient descent can find34
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(ε,
√
ε)-approximate local minima within Õ(poly(ε−1)) stochastic gradient evaluations. Daneshmand35

et al. [7] showed that under a specific CNC condition, stochastic gradient descent is able to find36

(ε,
√
ε)-approximate local minima within Õ(1/ε5) stochastic gradient evaluations. Later on, Li [17]37

showed that simple stochastic recursive gradient descent (SSRGD) can find (ε,
√
ε)-approximate38

local minima within Õ(ε−3.5) stochastic gradient evaluations, which is the state-of-the-arts to date.39

However, none of these results by perturbed stochastic gradient methods matches the optimal result40

Õ(ε−3) for finding ε-stationary points, achieved by SPIDER [9], SNVRG [30] and STORM [6] (See41

also Arjevani et al. [4] for the lower bound results). Therefore, whether perturbed stochastic gradient42

methods can find local minima as efficiently as finding stationary points still remains unknown.43

In this work, we give an affirmative answer to the above question. We propose a general framework44

named Pullback, which works together with existing popular stochastic gradient estimators such45

as SARAH/SPIDER and STORM to find approximate local minima efficiently. We summarize our46

contributions as follows:47

• We prove that Pullback finds (ε, εH)-approximate local minima within Õ(ε−3 + ε−6H ) stochastic48

gradient evaluations. Specifically, in the classic setting where εH =
√
ε, our Pullback together49

with the SARAH/SPIDER estimator enjoys an Õ(ε−3) stochastic gradient complexity, which50

outperforms previous best known complexity result Õ(ε−3.5) achieved by Li [17]. Our result51

also matches the best possible complexity result Õ(ε−3) achieved by negative curvature search52

based algorithms [9, 31], which suggests that simple methods such as perturbed stochastic gradient53

methods can find local minima as efficiently as the more complicated ones.54

• Besides, we also show that Pullback with a recent proposed STORM estimator is also able to find55

(ε, εH)-approximate local minima within Õ(ε−3 + ε−6H ) stochastic gradient evaluations.56

• At the core of our Pullback is a novel step-size "pullback" scheme to control the average movement57

of the iterates, which may be of independent interest to other related nonconvex optimization58

algorithm design.59

To compare with, we summarized related results of stochastic first-order methods for finding local60

minima in Table 1.61

Table 1: Comparison of of different optimization algorithm for find approximate local minima of non
convex online problems.

Algorithm Gradient complexity Classic Setting Neon2

Neon2+Natasha2 [1] Õ(ε−3.25 + ε−3ε−1
H + ε−5

H ) Õ(ε−3.5) needed
Neon2+SCSG [3] Õ(ε−10/3 + ε−2ε−3

H + ε−5
H ) Õ(ε−3.5) needed

SNVRG++Neon2 [31] Õ(ε−3 + ε−2ε−3
H + ε−5

H ) Õ(ε−3.5) needed
SPIDER-SFO+(+Neon2)[9] Õ(ε−3 + ε−2ε−2

H + ε−5
H ) Õ(ε−3) needed

Perturbed SGD [10] Poly(d, ε−1, ε−1
H ) Õ(Poly(ε−1)) No

CNC-SGD [7] Õ(ε−4 + ε−10
H ) Õ(ε−5) No

SSRGD [17] Õ(ε−3 + ε−2ε−3
H + ε−1ε−4

H ) Õ(ε−3.5) No
Pullback (This paper) Õ(ε−3 + ε−6

H ) Õ(ε−3) No

Notations We use lower case letters to denote scalars, lower and upper case bold letters to denote62

vectors and matrices. We use ‖ · ‖ to indicate Euclidean norm. We use Bx(r) to denote a Euclidean63

ball center at x with radius r.We also use the standard O and Ω notations. We use λmin(M) to denote64

the minimum eigenvalue of matrix M. We say an = O(bn) if and only if ∃C > 0, N > 0,∀n >65

N, an ≤ Cbn; an = Ω(bn) if an ≥ Cbn. The notation Õ is used to hide logarithmic factors.66

2 Related Work67

In this section, we review some important related works.68

Variance reduction methods for finding stationary points. Our algorithm takes stochastic gradient69

estimators as its subroutine. In specific, Johnson and Zhang [14], Xiao and Zhang [28] proposed70

Stochastic Variance Reduced Gradient (SVRG) for convex optimization in the finite-sum setting.71

Reddi et al. [25], Allen-Zhu and Hazan [2] analyzed SVRG for nonconvex optimization. Lei et al. [16]72
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proposed a new variance reduction algorithm, dubbed stochastically controlled stochastic gradient73

(SCSG) algorithm, which finds a ε-stationary point within O(ε−10/3) stochastic gradient evaluations.74

Nguyen et al. [21] proposed a SARAH algorithm which uses a recursive gradient estimator for convex75

optimization, and it was extended to nonconvex optimization in [22]. Fang et al. [9] proposed a76

SPIDER algorithm with a recursive gradient estimator and proved an O(ε−3) stochastic gradient77

evaluations to find a ε-stationary point, which matches a corresponding lower bound. Concurrently,78

Zhou et al. [30] proposed an SNVRG algorithm with a nested gradient estimator and proved an Õ(ε−3)79

stochastic gradient evaluations to find a ε-stationary point. Wang et al. [27] proposed a Spiderboost80

algorithm with a constant step size, achieves the same O(ε−3) gradient complexity. Pham et al.81

[23] extended SARAH [22] to proximal optimization and proved O(ε−3) gradient complexity for82

finding stationary points. Recently, Cutkosky and Orabona [6] proposed a recursive momentum-based83

algorithm called STORM and proved an Õ(ε−3) gradient complexity to find ε-stationary points.84

Tran-Dinh et al. [26] proposed a SARAH-SGD algorithm which hybrids both SGD and SARAH85

algorithm with an Õ(ε−3) gradient complexity when ε is small. Li et al. [18] proposed a PAGE86

algorithm with probabilistic gradient estimator which also attains an Õ(ε−3) gradient complexity.87

In our work, we employ SARAH/SPIDER and STORM as the gradient estimator in our Pullback88

framework since they are most representative and simple to use.89

Utilizing negative curvature descent to escape from saddle points. To escape saddle points, a90

widely used approach is to first compute the direction of the negative curvature of the saddle point and91

move away along that direction. In stochastic optimization, to find (ε, εH)-approximate local minima,92

[1] proposed a Natasha algorithm using Hessian-vector product to compute the negative curvature93

direction with the total computation cost of Õ(ε−3.25 + ε−3ε−1H + ε−5H ). Later, Xu et al. [29] proposed94

a Neon method which computes the negative curvature direction with perturbed stochastic gradients,95

whose total computational cost is Õ(ε−10/3 + ε−2ε−3H + ε−6H ). [3] proposed a Neon2 negative96

curvature computation subroutine with Õ(ε−10/3 + ε−2ε−3H + ε−5H ) stochastic gradient evaluations.97

Fang et al. [9] then showed that SPIDER equipped with Neon2 can find (ε, εH)-approximate local98

minima within Õ(ε−3 + ε−2ε−2H + ε−5H ) stochastic gradient evaluations, while independently Zhou99

et al. [31] proved that SNVRG equipped with Neon2 can find (ε, εH)-approximate local minima100

within Õ(ε−3 + ε−2ε−3H + ε−5H ) stochastic gradient evaluations. In contrast to this line of works, our101

algorithm is simpler since it does not need to use the negative curvature search routine.102

3 Preliminaries103

In this section, we present assumptions and definitions that will be used throughout our analysis.104

We first introduce the standard smoothness and Hessian Lipschitz assumptions.105

Assumption 3.1. For all ξ, f(·; ξ) is L-smooth and its Hessian is ρ-Lipschitz continuous w.r.t. x,106

i.e., for any x1,x2, we have that107

‖∇f(x1; ξ)−∇f(x2; ξ)‖2 ≤ L‖x1 − x2‖2, ‖∇2f(x1; ξ)−∇2f(x2; ξ)‖2 ≤ ρ‖x1 − x2‖2

This assumption directly implies that the expected objective function F (x) is also L-smooth and its108

Hessian is ρ-Lipschitz continuous. This assumption is standard for finding approximate local minima109

in all the results presented in Table 1.110

Assumption 3.2. The squared difference between the stochastic gradient and full gradient is bounded111

by σ2 <∞, i.e., for any x, ξ ∈ Rd, ‖∇f(x; ξ)−∇F (x)‖22 ≤ σ2.112

Assumption 3.2 is standard in online/stochastic optimization for finding second-order stationary113

points [9, 17], and immediately implies that the variance of the stochastic gradient is bounded by σ2.114

It can be relaxed to be ‖∇f(x; ξ)−∇F (x)‖2 has a σ-Sub-Gaussian tail.115

Let x0 ∈ Rd be the starting point of the algorithm. We assume the gap between the initial function116

value and the optimal value is bounded.117

Assumption 3.3. We have ∆ = F (x0)− infx F (x) < +∞.118

Next, we give the formal definition of approximate local minima (a.k.a., second-order stationary119

points).120
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Definition 3.4. We call x ∈ Rd an (ε, εH)-approximate local minimum, if121

‖∇F (x)‖2 ≤ ε, λmin

(
∇2F (x)

)
≥ −εH .

The definition of (ε, εH)-approximate local minima is a generalization of the classical (ε,
√
ε)-122

approximate local minima studied by Nesterov and Polyak [20], Jin et al. [13].123

4 The Pullback Framework124

In this section, we present our main algorithm Pullback. We begin with reviewing the mechanism125

of perturbed gradient descent in deterministic optimization, and then we discuss the main difficulty of126

extending it to the stochastic optimization case. Finally, we show how we overcome such a difficulty127

by presenting our Pullback framework.128

How does perturbed gradient descent escape from saddle points? We review the perturbed129

gradient descent [13] (PGD for short) with its proof roadmap, which shows how PGD finds (ε,
√
ε)-130

approximate local minima efficiently. In general, the whole process of perturbed gradient descent131

can be decomposed into several epochs, and each epoch consists of two non-overlapping phases: the132

gradient descent phase (GD phase for short) and the Escape from saddle point phase (Escape phase133

for short). In each epoch, PGD starts with the GD phase by default. In the GD phase, PGD performs134

vanilla gradient descent to update its iterate, until at some iterate x̃, the norm of the gradient135

‖∇F (x̃)‖2 is less than the target accuracy Õ(ε). Then PGD switches to the Escape phase. In the136

Escape phase, PGD first adds a uniform random noise (or Gaussian noise) to the current iterate x̃,137

then it runs `thres = Õ(ε−1/2) steps of vanilla gradient descent. PGD then compares the function138

value gap between the current iterate and the beginning iterate of Escape phase x̃. If the gap is less139

than a threshold F = Õ(ε1.5), then PGD outputs x̃ as the targeted local minimum. Otherwise, PGD140

starts a new epoch and performs gradient descent again.141

To see why PGD can find (ε,
√
ε)-approximate local minima within Õ(ε−2) gradient evaluations, we142

do the following calculation. First, when PGD is in the GD phase, the function value decreases Õ(ε2)143

per step (following the standard gradient descent analysis). When PGD is in the Escape phase, the144

function value decreases F/`thres = Õ(ε2) per step on average. Therefore, the total number of steps145

will be bounded by Õ(ε−2), which is in the same order as GD for finding ε-stationary points.146

Limitation of existing methods. However, extending the two-phase PGD algorithm from determinis-147

tic optimization to stochastic optimization with a competative gradient complexity is very challenging.148

We take the SSRGD algorithm proposed by Li [17] as an example, which uses SARAH/SPIDER [9] as149

its gradient estimator. Unlike deterministic optimization where we can access the exact function value150

F (x) and gradient ∇F (x) defined in (1.1), in the stochastic optimization case we can only access151

the stochastic function f(x; ξ) and the stochastic gradient∇f(x; ξ). Therefore, in order to estimate152

the gradient norm ‖∇F (x)‖2 (which is required at the beginning of Escape phase), a naive approach153

(adapted by Li [17]) is to sample a big batch of stochastic gradient∇f(x; ξ1), . . . ,∇f(x; ξB) and154

uses their mean to approximate ∇F (x). Standard concentration analysis suggests that in order to155

achieve an ε-accuracy, the batch size B should be in the order Õ(ε−2). Thus, each Escape phase156

leads to a F = Õ(ε1.5) function value decrease with at least Õ(ε−2) number of stochastic gradient157

evaluations, which contributes Õ(1/ε1.5 · ε−2) = Õ(ε−3.5) gradient complexity in the end. This is158

already worse than the O(ε−3) gradient complexity of SPIDER for finding ε-stationary points.159

Our approach. Here we propose our Pullback framework in Algorithm 1, which overcomes the160

aforementioned limitation. In detail, Pullback inherits the two-phase structure of PGD and SSRGD,161

and it takes either SARAH/SPIDER or STORM [6] as its gradient estimator. The two gradient162

estimators are summarized as subroutines GradEst-SPIDER and GradEst-STORM in Algorithms 2163

and 3 respectively, and we use dt to denote their estimated gradient at iterate xt. The key improvement164

of Pullback is that, it directly takes the output of the gradient estimator GradEst to estimate the165

true gradient ∇F (x), which avoids sampling a big batch of stochastic gradients as in Li [17] and166

thus saves the total gradient complexity. A similar strategy has also been adapted in [9], but for the167

negative curvature search subroutine. However, such a strategy leads to a new problem to be solved.168

Since we use dt to directly estimate ∇F (xt), in order to make such an estimation valid, we need to169

guarantee that the error between dt and ∇F (xt) is small enough, e.g., up to O(ε) accuracy. Notice170
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Algorithm 1 Pullback
Input: Initial point x1, step size η and ηH , perturbation radius r, threshold parameter `thres, average

movement D.
1: d1 ← GradEst(0,0,0,x1), s← 0, t← 1, FIND←false
2: while FIND = false do
3: s← s+ 1, ts ← t, FIND←true
4: while ‖dt‖2 > ε do
5: ηt ← η/‖dt‖2, {"PullBack"}
6: xt+1 ← xt − ηtdt, dt+1 ← GradEst(t,dt,xt,xt+1), t← t+ 1
7: end while
8: ms ← t, ξ ∼ Uniform B0(r), xt+1 ← xt + ξ, dt+1 ← GradEst(t,dt,xt,xt+1), t← t+ 1
9: for k = 0, . . . , `thres − 1 do

10: ηt ← ηH , D ←
∑t
i=ms

η2i ‖di‖22
11: if D > (t−ms + 1)D then
12: Set ηt such that

∑t
i=ms

η2i ‖di‖22 = (t−ms + 1)D {"PullBack"}
13: xt+1 ← xt − ηtdt, dt+1 ← GradEst(t,dt,xt,xt+1), t← t+ 1, FIND← false, break
14: end if
15: xt+1 ← xt − ηtdt, dt+1 ← GradEst(t,dt,xt,xt+1), t← t+ 1
16: end for
17: end while
Output: xms

Algorithm 2 GradEst-SPIDER(t,dt,xt,xt+1, b, q, B)
Input: Big batch size B, mini-batch size b, loop length q

1: if t mod q = 0 then
2: Generate ξ1t+1, . . . , ξ

B
t+1. Set dt+1 ←

∑B
i=1∇f(xt+1; ξit+1)/B

3: else
4: Generate ξ1t+1, . . . , ξ

b
t+1. Set dt+1 ← dt +

∑b
i=1

[
∇f(xt+1; ξit+1)−∇f(xt; ξ

i
t+1)

]
/b

5: end if
Output: dt+1

that the recursive structure of SARAH/SPIDER and STORM suggests the following error bound:171

∀t, ‖dt −∇F (xt)‖22 = Õ

( t−1∑
i=st

‖xi+1 − xi‖22
)
, (4.1)

where st is some reference index only related to t. Therefore, in order to make the error172

‖dt −∇F (xt)‖2 small, it suffices to make the movement of the iterates ‖xi+1 − xi‖2 small either173

individually or on average. We achieve this goal by our proposed step-size “Pullback” scheme. In de-174

tail, in the GD phase, when the norm of the estimated gradient ‖dt‖2 is large, we pull the step-size ηt175

back to a smaller value via normalization, which forces the movement ‖xi+1 − xi‖2 = ηt‖dt‖2 = η176

to be small. Such an approach is also adapted by Fang et al. [9] as a normalized gradient de-177

scent for finding first-order stationary points. In the Escape phase, which starts at ms-th step, we178

record the accumulative squared movement starting from xms+1 (after the perturbation step) as179

D :=
∑t
i=ms+1 ‖xi+1−xi‖22 =

∑t
i=ms+1 η

2
i ‖di‖22. When the average movement D/(t−ms + 1)180

is large, we pull the last step size ηt back to a smaller value, which forces the average movement181

D/(t−ms + 1) to be small. Fortunately, such a simple step-size calibration scheme allows us to182

well-control the error between dt and∇F (xt), and to reduce the gradient complexity.183

5 Main Results184

In this section, we present the main theoretical results. We first present the convergence guarantee of185

Pullback-SPIDER, which uses GradEst-SPIDER to estimate the gradient dt in Algorithm 1.186

Theorem 5.1. Under Assumptions 3.1, 3.2 and 3.3, choose batch size B = Õ
(
σ2ε−2 +187

σ2ρ2ε−4H
)
, b = q =

√
B, set step size η = σ/(2

√
BL), ηH = Õ(L−1), perturbation ra-188

dius r ≤ min
{
σ/(2
√
BL), log(4/δ)ηHσ

2/(2Bε),
√

2 log(4/δ)ηHσ2/(BL)
}

, threshold `thres =189
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Algorithm 3 GradEst-STORM(t,dt,xt,xt+1, a, b, B)
Input: Initial batch size B, mini batch size b and weight parameter a.

1: if t = 0 then
2: Generate ξ1t+1, . . . , ξ

B
t+1. Set dt+1 ←

∑B
i=1∇f(xt+1; ξit+1)/B

3: else
4: Generate ξ1t+1, . . . , ξ

b
t+1

5: Set dt+1 ← (1− a)
[
dt −

∑b
i=1∇f(xt; ξ

i
t+1)/b

]
+
∑b
i=1∇f(xt+1; ξit+1)/b

6: end if
Output: dt+1

Õ(1/(ηHεH)) and D = σ2/(4BL2). Then with high probability, Pullback-SPIDER can find190

(ε, εH)-approximate local minima within Õ
(
σL∆ε−3 + σρ3L∆ε−6H

)
stochastic gradient evaluations.191

Remark 5.2. In the classical setting ε =
√
εH , our result gives Õ(ε−3) gradient complexity, which192

outperforms the best existing result Õ(ε−3.5) for perturbed stochastic gradient methods achieved193

by SSRGD [17]. For sufficiently small ε, Arjevani et al. [4] proved the lower bound of gradient194

complexity Ω(ε−3 + ε−5H ) for any first-order stochastic methods to find (ε, εH)-approximate local195

minima. Our results matches the lower bound Õ(ε−3) when εH ≤ ε3/5. For the general case, there is196

still a gap in the dependency of εH between our result and the lower bound, and we leave to close it197

as future work.198

Next, we present the convergence guarantee of Pullback-STORM, which uses GradEst-STORM to199

estimate the gradient dt in Algorithm 1.200

Theorem 5.3. Under Assumptions 3.1, 3.2 and 3.3, choose the mini batch size b = Õ
(
σε−1 +201

σρε−2H
)
, and initial batch size B = b2, set step size η = σ/(2bL), ηH = Õ(L−1),202

weight a = 562 log(4/δ)/b, threshold `thres = Õ(1/(ηHεH)), perturbation radius r ≤203

min
{
σ/(2bL), log(4/δ)2ηHσ

2/(εb2),
√

2 log(4/δ)2ηHσ2/(b2L)
}

, and D = σ2/(4b2L2). Then204

with high probability, Pullback-STORM can find (ε, εH)-approximate local minima within205

Õ
(
σL∆ε−3 + σρ3L∆ε−6H

)
stochastic gradient evaluations.206

Remark 5.4. Different from Pullback-SPIDER, the estimation error ‖dt − ∇F (xt)‖2 of207

Pullback-STORM is controlled by the weight parameter a. This allows us to come up with a208

simpler single-loop algorithm instead of a double-loop algorithm.209

6 Proof Outline of the Main Results210

Due to the page limit, we only outline the proof of Theorem 5.1 and leave the proof of Theorem 5.3211

to the appendix.212

Let εt denote the difference between true gradient∇F (xt) and the estimated gradient dt, which is213

εt := dt −∇F (xt). The following lemma suggests that the estimation error ‖εt‖2 can be bounded.214

Lemma 6.1. Under Assumptions 3.1 and 3.2, set b = q =
√
B, η ≤ σ/(2

√
BL), r ≤ σ/(2

√
BL)215

and D ≤ σ2/(4BL2), then with probability at least 1− δ, for all t we have216

‖εt‖2 ≤
√

8 log(4/δ)σ/
√
B.

Specifically, by the choice of B in Theorem 5.1 we have that ‖εt‖2 ≤ ε/2.217

Proof of Lemma 6.1. By GradEst-SPIDER presented in Algorithm 2 we have218

εt+1 =
1

B

B∑
i=1

[
∇f(xt+1; ξit+1)−∇F (xt+1)

]
, t mod q = 0,

εt+1 = εt +
1

b

b∑
i=1

[
∇f(xt+1; ξit+1)−∇f(xt; ξ

i
t+1)−∇F (xt+1) +∇F (xt)

]
, t mod q 6= 0.

By the L-smoothness in Assumption 3.1 we have219 ∥∥∇f(xt+1; ξit+1)−∇f(xt; ξ
i
t+1)−∇F (xt+1) +∇F (xt)

∥∥
2
≤ 2L‖xt+1 − xt‖2.
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Then by Assumption 3.2 and Azuma–Hoeffding inequality (See Lemma D.1 for details), with220

probability at least 1− δ, we have221

∀t > 0, ‖εt+1‖22 ≤ 4 log(4/δ)

(
σ2

B
+

4L2

b

t∑
i=bt/qcq

‖xi+1 − xi‖22
)
. (6.1)

Notice that GradEst-SPIDER is parallel with Pullback. Thus we need to further bound (6.1) by222

considering iterates in three different cases: (1) for step i in the GD phase, we have ‖xi+1−xi‖22 ≤ η2223

due to the "Pullback" scheme; (2) for i = ms for some s in the Escape phase, we have ‖xi+1−xi‖22 ≤224

r2; and (3) for the other steps in Escape phase, we have on average, ‖xi+1 − xi‖22 ≤ D. Therefore225

we have226

‖εt+1‖22 ≤ 4 log(4/δ)

(
σ2

B
+

4L2

b
· q ·max{η2, r2, D}

)
≤ 8 log(4/δ)σ2

B
.

227

Lemma 6.1 guarantees that with high probability ‖∇F (xt)‖2 ≤ ‖dt‖2 + ε, which ensures228

‖∇F (xms
)‖2 ≤ 2ε when the algorithm terminates. Next lemma bounds the function value de-229

crease in the GD phase, which is also valid for Pullback-STORM.230

Lemma 6.2. Suppose the event in Lemma 6.1 holds, η ≤ ε/(2L), then for any s, we have231

F (xts)− F (xms
) ≥ (ms − ts)ηε

8
.

The choice of η in Theorem 5.1 further implies that the loss decreases by at least σε/(16
√
BL) per232

step on average.233

Proof of Lemma 6.2. For any ts ≤ t < ms, we can show the following property (See Lemma D.2),234

F (xt+1) ≤ F (xt)−
ηt
2
‖dt‖22 +

ηt
2
‖εt‖22 +

L

2
‖xt+1 − xt‖22. (6.2)

Plugging the update rule xt+1 = xt − ηtdt into (6.2) gives,235

F (xt+1) = F (xt)− ‖xt+1 − xt‖22
(

1

2ηt
− L

2

)
+
ηt‖εt‖22

2

≤ F (xt)− η2
(

1

2ηt
− L

2

)
+
ηtε

2

8
,

≤ F (xt)−
ηε

8

where the first inequality holds due to the fact that ηt = η/‖dt‖2 and ‖εt‖2 ≤ ε/2, and the second236

inequality is by ηt = η/‖dt‖2 ≤ η/ε ≤ 1/(2L).237

Following Lemma shows that if xms
is a saddle point, then with high probability, the algorithm will238

break during the Escape phase and set FIND←false. Thus, whenever xms
is not a local minima, the239

algorithm cannot terminate.240

Lemma 6.3. Under Assumptions 3.1 and 3.2, set perturbation radius r ≤ LηHεH/(Cρ),step241

size ηH ≤ min{1/(16L log(ηHεH
√
dLC−1ρ−1δ−1r−1)), 1/(8CL log `thres)} = Õ(L−1), `thres =242

2 log(ηHεH
√
dLC−1ρ−1δ−1r−1)/(ηHεH) = Õ(η−1H ε−1H ), and D < C2L2η2Hε

2
H/(ρ

2`2thres), where243

C = O(log(d`thres/δ) = Õ(1). We also set b = q =
√
B ≥ 16 log(4/δ)/(η2Hε

2
H). Then for244

any s, when λmin(∇2F (xms
)) ≤ −εH , with probability at least 1 − 2δ algorithm breaks in the245

Escape phase.246

Proof of Lemma 6.3. Let {xt}, {x′t} be two coupled sequences by running Pullback-SPIDER from247

xms+1,x
′
ms+1 with xms+1 − x′ms+1 = r0e1, where xms+1,x

′
ms+1 ∈ Bxms

(r). Here r0 = δr/
√
d248

and e1 denotes the smallest eigenvector direction of Hessian∇2F (xms
).249
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When λmin(∇2F (xms)) ≤ −εH , under the parameter choice in Lemma 6.3, we can show that250

at least one of two sequence will escape the saddle point (See Lemma D.3). To be specific, with251

probability at least 1− δ,252

max
ms<t<ms+`thres

{‖xt − xms+1‖2, ‖x′t − x′ms+1‖2} ≥
LηHεH
Cρ

. (6.3)

(6.3) suggests that for any two points xms+1,x
′
ms+1 satisfying xms+1−x′ms+1 = r0e1, at least one253

of them will generate a sequence of iterates which finally move more than LηHεH/(Cρ). Thus, let254

S ⊆ Bms
(r) be the set of xms+1 which will not generate a sequence of iterates moving more than255

LηHεH
Cρ , then in the direction e1, the "thickness" of S is smaller than r0. Simple integration shows that256

the ratio between the volume of S and Bms
(r) is bounded by δ. Therefore, since xms+1 is generated257

from xms
by adding a uniform random noise in ball Bms

(r), we conclude that the probability for258

xms+1 locating in S is less than δ. Applying union bound, we get with probability at least 1− 2δ,259

∃ms < t < ms + `thres, ‖xt − xms+1‖2 ≥
LηHεH
Cρ

. (6.4)

Denote E as the event that the algorithm does not break in the Escape phase. Then under E , for any260

ms < t < ms + `thres, we have261

‖xt − xms+1‖2 ≤
t−1∑

i=ms+1

‖xi+1 − xi‖2 ≤

√√√√(t−ms)

t−1∑
i=ms

‖xi+1 − xi‖22 ≤ (t−ms)
√
D,

where the first inequality is due to the triangle inequality and the second inequality is due to Cauchy-262

Schwarz inequality. Thus, by the choice of `thres and D, we have263

‖xt − xms+1‖2 ≤ (t−ms)
√
D ≤ `thres

√
D < C · LηHεH

ρ
.

Then by (6.4), we know that P(E) ≤ 2δ. Therefore when λmin(∇2F (xms)) ≤ −εH , with probability264

at least 1− 2δ, Pullback breaks in the Escape phase.265

Next lemma bounds the decreasing value of the function during the Escape phase if the algorithm266

breaks in the Escape phase(i.e. FIND is false).267

Lemma 6.4 (localization). Suppose the result of Lemma 6.1 holds, and268

set the step size ηH ≤ 1/
(
L
√

128 log(4/δ)
)
, perturbation radius r ≤269

min
{

log(4/δ)ηHσ
2/(2Bε),

√
2 log(4/δ)ηHσ2/(BL)

}
, and D = σ2/(4BL2). Suppose the270

algorithm breaks in the Escape phase starting at xms
, then we have271

F (xms
)− F (xts+1

) ≥ (ts+1 −ms)
log(4/δ)ηHσ

2

B
.

Proof of Lemma 6.4. For anyms < i < ts+1, we can show the following property (See Lemma D.2),272

F (xi+1) ≤ F (xi)−
ηi
2
‖di‖22 +

ηi
2
‖εi‖22 +

L

2
‖xi+1 − xi‖22. (6.5)

Plugging the update rule xi+1 = xi − ηidi into (6.5) gives,273

F (xi+1) ≤ F (xi) +
ηi
2
‖εi‖22 −

(
1

2ηi
− L

2

)
‖xi+1 − xi‖22

≤ F (xi) +
ηH
2

8 log(4/δ)σ2

B
− 1

4ηH
‖xi+1 − xi‖22 (6.6)

where the the second inequality holds due to Lemma 6.1 and ηi ≤ ηH ≤ 1/(2L) for any ms < i <274

ts+1. Telescoping (6.6) from i = ms + 1 to ts+1 − 1, we have275

F (xts+1
) ≤ F (xms+1) + 4ηH log(4/δ)(ts+1 −ms − 1)

σ2

B
− 1

4ηH

ts+1−1∑
i=ms+1

‖xi+1 − xi‖22.

8



Finally, we have276

F (xms+1)− F (xts+1
) ≥

ts+1−1∑
i=ms+1

‖xi+1 − xi‖22
4ηH

− 4 log(4/δ)(ts+1 −ms − 1)ηH
σ2

B

= (ts+1 −ms − 1)

(
D

4ηH
− 4 log(4/δ)ηHσ

2

B

)
= (ts+1 −ms − 1)

(
σ2

16ηHBL2
− 4 log(4/δ)ηHσ

2

B

)
≥ (ts+1 −ms − 1)

4 log(4/δ)ηHσ
2

B
, (6.7)

where the last inequality is by the choice of ηH ≤ 1/
(
L
√

128 log(4/δ)
)
. For i = ms, we have (See277

Lemma D.2)278

F (xms+1) ≤ F (xms
) + (‖dms

‖2 + ‖εms
‖2 + Lr/2)r. (6.8)

Plugging ‖dms
‖2 ≤ ε and ‖εms

‖2 ≤ ε/2 into (6.8) gives,279

F (xms+1) ≤ F (xms
) + (4ε+ Lr/2)r ≤ F (xms

) +
2 log(4/δ)ηHσ

2

B
, (6.9)

where the last inequality is by the choice r ≤ min
{

log(4/δ)ηHσ
2/(2Bε),

√
2 log(4/δ)ηHσ2/(BL)

}
.280

Combining (6.7) and (6.9) and applying ts+1 −ms ≥ 2 gives,281

F (xms
)− F (xts+1

) ≥ [4(ts+1 −ms − 1)− 2]
log(4/δ)ηHσ

2

B
≥ (ts+1 −ms)

log(4/δ)ηHσ
2

B
.

282

Now, we can provide the proof of Theorem 5.1 .283

Proof of Theorem 5.1. The analysis can be divided into two phases, i.e., GD phase and Escape phase.284

The function value will decrease at different rates in different phases.285

GD phase: In this phase, ‖dt‖2 ≥ ε and ‖ε‖2 ≤ ε/2 due to Lemma 6.1. Thus the gradients of the286

function are large ‖∇F (x)‖2 ≥ ε/2. Lemma 6.2 further shows that the loss decreases by at least287

σε/(16
√
BL) on average.288

Escape phase: In this phase, the starting point xms
satisfies ‖∇F (xms

)‖2 ≤ ‖dms
‖2 + ‖εt‖2 ≤ 2ε.289

If xms
is a saddle point with λmin(∇2F (xms

)) ≤ −εH , then by Lemma 6.3, with high probability290

Pullback-SPIDER will break Escape phase, set FIND←False and begin a new GD phase. Further291

by Lemma 6.4, the loss will decrease by at least log(4/δ)ηHσ
2/B per step on average.292

Sample Complexity: Note that the total amount for function value can decrease is at most ∆ =293

F (x0) − infx F (x) < +∞. So the algorithm must end and find an (ε, εH)-approximate local294

minimum within Õ(
√
BL∆σ−1ε−1 + BL∆σ−2) iterations. Notice that on average we sample295

max{b, B/q} =
√
B examples per iteration, so the total sample complexity is Õ(BL∆σ−1ε−1 +296

B3/2L∆σ−2). Plugging in the choice of B = Õ(σ2ε−2 + σ2ρ2ε−4H ) in Theorem 5.1, we have the297

total gradient complexity298

Õ

(
σL∆

ε3
+
σρ2L∆

εε4H
+
σρ3L∆

ε6H

)
= Õ

(
σL∆

ε3
+
σρ3L∆

ε6H

)
,

where the equation is due to the Young’s inequality.299

300

7 Conclusions301

In this paper, we propose a perturbed stochastic gradient framework named Pullback for finding302

local minima. Pullback can find (ε, εH)-approximate local minima within Õ(ε−3 + ε−6H ) stochastic303

gradient evaluations, which matches the best possible complexity results in the classical εH =
√
ε304

setting. Our results show that simple perturbed gradient methods can be as efficient as more305

sophisticated algorithms for finding local minima.306
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