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Abstract

Bayesian Optimization (BO) is a powerful tool for optimizing expensive black-
box objective functions. While extensive research has been conducted on the
single-objective optimization problem, the multi-objective optimization problem
remains challenging. In this paper, we propose MOBO-OSD, a multi-objective
Bayesian Optimization algorithm designed to generate a diverse set of Pareto opti-
mal solutions by solving multiple constrained optimization problems, referred to as
MOBO-OSD subproblems, along orthogonal search directions (OSDs) defined with
respect to an approximated convex hull of individual objective minima. By employ-
ing a well-distributed set of OSDs, MOBO-OSD ensures broad coverage of the
objective space, enhancing both solution diversity and hypervolume performance.
To further improve the density of the set of Pareto optimal candidate solutions
without requiring an excessive number of subproblems, we leverage a Pareto Front
Estimation technique to generate additional solutions in the neighborhood of exist-
ing solutions. Additionally, MOBO-OSD supports batch optimization, enabling
parallel function evaluations to accelerate the optimization process when resources
are available. Through extensive experiments and analysis on a variety of synthetic
and real-world benchmark functions with two to six objectives, we demonstrate that
MOBO-OSD consistently outperforms the state-of-the-art algorithms. Our code
implementation can be found at https://github.com/LamNgol/mobo-osd.

1 Introduction

Multi-objective Bayesian Optimization (MOBO) has recently attracted much attention [5} 113} 152, 144}
1]. MOBO extends Bayesian Optimization (BO) — a powerful framework for optimizing expensive
black-box functions — to settings where multiple, often conflicting, objectives must be optimized
simultaneously. Applications of MOBO include but are not limited to machine learning [47, [29],
material design [18},156]], agriculture [27, [28]], robotics [54}34] and vehicle design [32, [2].

There are several challenges when working with MOBO problems. First, the objective functions are
often conflicting, meaning that improving one objective may deteriorate another. Hence the goal
is not to identify a single optimal solution, but rather a set of Pareto optimal solutions. Second,
maintaining the diversity among these Pareto optimal solutions is crucial to capture the wide range of
trade-off across all objectives. This becomes more challenging under the limited evaluation budget in
MOBO settings, where there is less budget to balance between exploration and exploitation while
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covering the Pareto front. Third, batch optimization plays an important role in reducing the time
and cost through parallel evaluations of objective functions. However, in MOBO, it introduces
additional complexity, as it requires modeling the interactions among unobserved points across
multiple objective functions. Fourth, the computational cost remains a significant drawback, as
the cost for training surrogate models and computing multi-objective acquisition functions, e.g.,
EHVI [13], become increasingly expensive with the number of objectives. Despite the growing body
of MOBO research, there exists substantial room for improvement. Many existing approaches rely
on scalarization techniques [5} 9} 41]], which often fail to capture a diverse Pareto front, leading to
suboptimal performance in terms of the hypervolume indicator. Moreover, several studies are unable
to scale to a large number of objectives (M > 3) [33] or suffer from high computational cost in batch
optimization settings [[13} 52].

In this paper, our goal is to develop a novel MOBO algorithm that prioritizes Pareto front diversity,
resulting in an improvement in hypervolume performance and scalability to an arbitrary number of
objectives in both sequential and batch optimization settings. To achieve this, we build upon the key
insight of the Normal Boundary Intersection (NBI) method [11]]: the intersection points between
the boundary of the objective space and the vectors orthogonal to the convex hull of individual
minima (CHIM) of the objectives could be Pareto optimal solutions. This geometric approach has
been shown to generate a well-distributed (diverse) set of Pareto optimal solutions and scale well
to a large number of objectives in multi-objective optimization problems with a large evaluation
budget. To incorporate this idea under the limited evaluation budget in MOBO problems, we first
introduce a technique to effectively approximate the CHIM. We then generate a well-distributed set
of orthogonal search directions (OSDs) with respect to the approximated CHIM and define a tailored
search procedure that solves a constrained single-objective optimization problem along each OSD
(MOBO-OSD subproblem) to identify intersection points with the boundary that are likely to be Pareto
optimal. By constructing a well-distributed set of OSDs, MOBO-OSD achieves broad coverage of the
objective space, enhancing both solution diversity and hypervolume performance. To further enrich
the set of Pareto optimal candidate solutions without the need to solve a large number of MOBO-OSD
subproblems, we incorporate a Pareto Front Estimation (PFE) technique [46] that locally explores the
neighborhood of existing Pareto optimal candidates. All candidates are aggregated and evaluated
using the hypervolume improvement acquisition function [19], and those with the highest scores are
selected as the next batch of data points for evaluation. Finally, to support batch optimization, we
incorporate the Kriging Believer technique [22] while considering the diversity of exploration regions,
i.e., ensuring that selected points for observation originate from different exploration spaces. We
name our method Batch Multi-Objective Bayesian Optimization via Orthogonal Search Directions
(MOBO-0OSD). Our thorough analysis and extensive experiments on various synthetic and real-world
benchmark problems, in both sequential and batch optimization settings, show that MOBO-OSD
outperforms the state-of-the-art MOBO methods. We summarize our contributions as follows.

* We propose MOBO-OSD, a novel MOBO algorithm that generates a diverse set of Pareto
optimal candidate solutions by solving multiple optimization subproblems defined along
search directions orthogonal to the approximated CHIM of the objective space. To further
enhance the diversity, we propose to locally explore the Pareto set for additional Pareto
solutions via a PFE technique.

* We develop MOBO-OSD in such a way that it can perform effectively in the batch optimiza-
tion setting by leveraging the Kriging Believer technique and exploration space information.

* We demonstrate that MOBO-OSD can outperform the state-of-the-art MOBO baselines on a
comprehensive set of synthetic and real-world multi-objective benchmark problems with a
wide range of numbers of objectives, in both sequential and batch settings.

2 Background

2.1 Multi-Objective Optimization

We consider a multi-objective optimization (MOQ) problem involving a vector-valued objective
function f : X — Y with £ = (f1,..., far), where X C RP is a D-dimensional input space,
and ) C RM is an M-dimensional output space (M > 1). Without loss of generality, we assume
the goal is to minimize all objectives of f. In MOO, it is generally not possible to find a single
solution that optimizes all objectives simultaneously. Instead, the aim is to identify the set of Pareto
optimal solutions, where no objective can be improved without deteriorating at least one of the others.



A solution f(x") is said to Pareto dominate another solution f(x)), i.e., f(x¥) = f(x(7)), if
i (x@) > f,,(x9)) Vm = 1,..., M and there exists m’ € {1,..., M} such that f,,(x*) >
fm(x)). The set of Pareto optimal solutions is called the Pareto front Py = {f(x) | #x' €
X @ f(x') = f(x)}, and the corresponding set of Pareto optimal inputs is called the Pareto set
Ps = {x € X | f(x) € P;}. Formally, the MOO problem is expressed as finding the Pareto front
P and Pareto set Py such that,

Pf E)I(I}Ei/ryl(fl(x)7f2(x)"'-vfM(x))' (1)

To measure the quality of a Pareto front Py, the Hypervolume (HV) indicator [39]] is one of the
most widely used metrics [45 |5} 9} [13} 4, [1]]. Given a reference point r € RM | the HV indicator of
a finite approximated Pareto front Py is defined as the M -dimensional Lebesgue measure Ap; of
the space dominated by solutions p in P and upper bounded by the reference point r. Formally,
HV(Py,r) = A (Upep, [r, p]), where [r, p] denotes the hyperrectangle bounded by the reference
point r and p € Py [9[13[14]. The higher the HV, the better ¢ approximates the true Pareto front.

2.2 Multi-Objective Bayesian Optimization

Bayesian Optimization [21] is a common tool for optimizing expensive black-box objective functions
f. Given a minimization problem, the goal is to find the global optimum of the function f using the
least function evaluations. BO sequentially selects observation data via an iterative process. Each
BO iteration trains a probabilistic surrogate model, builds an acquisition function, then selects the
acquisition function’s maximizer as the next observation. The most common type of surrogate model
for BO is a Gaussian Process (GP) [55], which provides a posterior distribution over the objective
function given the observed dataset D. The acquisition function @ : X — R is constructed from
the surrogate model and an optimization policy to quantify the utility of each unobserved data point.
Single-objective BO has many common acquisition functions such as EI [37]], UCB [48] and TS [51].

Multi-objective Bayesian Optimization (MOBO) extends the capabilities of BO to optimize expensive
black-box vector-valued objective functions f : X — Y with f = (f1,..., far). Given a minimiza-
tion problem, the goal is to find the Pareto set P, and the corresponding Pareto front Py, using the
least function evaluations. In MOBO, the most common surrogate model is a set of GPs, where each
GP independently represents an objective function f,,, [31,9] 41} [5.[13]. For acquisition functions,
while several works leverage existing single-objective acquisition functions [31}!41}15], others propose
new acquisition functions tailored for the MOO setting 23\ 4,152, [13| [14} [12].

3 Related Work

There have been various works aiming to develop MOBO algorithms. Many works have attempted
to adapt single-objective (SO) acquisition functions to the multi-objective optimization (MOO)
framework. One of the earliest methods is ParEGO [31], which randomly scalarizes the objectives and
applies the EI acquisition function [37] to determine the next data points for observation. Paria et al.
[41] systematically generalize the random scalarization technique, allowing different scalarization
techniques, e.g., weighted sum and Tchebyshev [39]], as well as different SO acquisition functions,
e.g., TS [51]], UCB [48], to be integrated into the MOBO framework. TSEMO [9] formulates a multi-
objective TS acquisition function [51] by sampling all objectives, employs NSGA-II [[16] to solve
the resulting optimization problem, and selects the next evaluations by maximizing hypervolume
improvement. USeMO [3] aims to maximize the uncertainty reduction of the candidate points
generated by a MO acquisition function, which is defined by applying SO acquisition functions
to each objective GP. Recently, PDBO [1] uses a multi-armed bandit technique to select an SO
acquisition function and generate a candidate pool, followed by a Determinantal Point Process to
select a diverse set of solutions. Our proposed method operates directly on a multi-objective (MO)
acquisition function, the Hypervolume Improvement, which is more suitable for the MOBO setting.
In the experimental section, we compare against ParEGO, USeMO and PDBO - one of the latest
state-of-the-art methods.

There are also many works that have focused on developing new acquisition functions tailored
for the MOO setting. Information-theoretic (IT) MO acquisition functions aim to maximize the
information gain of the next observation about the objective functions. Examples include PESMO (23],
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Figure 1: Summary of the MOBO-OSD algorithm: (a) The boundary points are defined via the
nadir and ideal points; (b) The approximated CHIM is defined from the boundary points and the OSDs
are defined on each U(3) point and orthogonal to the approximated CHIM; (¢) The MOBO-OSD
subproblem (Eq. (2)) is optimized for x° candidates; (d) Additional candidates x*™® are generated
by locally exploring around x°5P. Finally, X,y is chosen based on Eq. .

MESMO [4], PFES [49], and JES [52]. PAL [61]] is another algorithm based on information theory,
but it is only applicable to input spaces with finite set of discrete points. Another widely used approach
to define MO acquisition functions is through the HV indicator. The EHVI acquisition function [19]
extends the EI concept from SOO to compute the expected improvement in the hypervolume of
the Pareto front. Daulton et al. [[13] propose a novel formulation of EHVI in a parallel setting,
namely qEHVI, based on Monte-Carlo sampling. Despite being differentiable, even for M > 2
objectives, qEHVI can suffer from high computational cost. Unlike gEHVI, which computes the
expected hypervolume improvement under the posterior distribution, DGEMO [33]] relies solely
on the hypervolume improvement of the posterior mean, yet its integration with the Pareto Front
Estimation technique [46] renders the method competitive. Nonetheless, unlike our proposed method,
its search strategy for Pareto optimal solutions is entirely random and does not ensure adequate
coverage of the Pareto front. Moreover, DGEMO requires a specialized data structure that must be
designed separately for each specific number of objectives, thereby limiting its scalability beyond
problems with three objectives. Recently, the HVKG [[12] acquisition function, which extends the SO
Knowledge Gradient acquisition function, has been proposed to tackle multi-fidelity and decoupled
MOO problems. Although our proposed method uses the Hypervolume Improvement acquisition
function, it is compatible with alternative MO acquisition functions, rendering it applicable to new
developments. In the experiment section, we compare against JES - a state-of-the-art IT-based
method, as well as gEHVI and DGEMO, as they also leverage the HV-based acquisition functions.

Evolutionary Algorithms (EA) are also capable of tackling MOO problems. Examples of multi-
objective Evolutionary Algorithms include MOEA/D [57], SMS-EMOA [6], and NSGA-II [[16, [26].
Generally, EA-based algorithms are less sample-efficient than BO-based methods, making them
unsuitable for settings with a limited evaluation budget. We compare against NSGA-II, the most
widely used EA baseline in MOBO works.

4 Proposed Method

In this section, we present our proposed algorithm MOBO-OSD. See Fig. [I| for a summary of the
proposed MOBO-OSD method. The core idea of MOBO-OSD is to find the Pareto optimal solutions
by estimating the intersection points between the boundary of the objective space and the vectors
orthogonal to the convex hull of individual objective minima (CHIM) [[L1]]. To achieve this in the
MOBO setting with limited evaluation budget, we first approximate the CHIM using a bounded
hyperplane (the approximated CHIM), and then construct a set of well-distributed orthogonal search
directions (OSDs) w.r.t. this approximated CHIM (Sec. .I). Then we propose the MOBO-OSD
subproblem for each OSD (Sec.[.2), followed by the incorporation of the Pareto Front Estimation
technique (Sec.[d.3). Finally, we propose the batch selection process (Sec.[d.4). For simplicity, we
assume that all the objective values are non-negative, which can be achieved by offsetting the current
worst value found so far in each objective.



4.1 The MOBO-OSD Components

Approximated CHIM. As it is not possible to obtain the individual min-

ima of the objectives in MOBO settings with a limited evaluation budget, we : ° o
propose to approximate the CHIM as a convex hull of M boundary points, o e °
which are the extreme points computed from the observed dataset. Denote the | 4 o o o
ideal point y'% = (minyep f1(X), ..., minkep far(x)) and the nadir point °

y"IT = (maxyep f1(X),. .., maxyep far(x)) as M-dimensional points o
whose components are the best and the worst values observed so far for | e

each objective, respectively. Then, the m-th boundary point p,,, is computed \N’

by replacing the m-th component of the ideal point with its corresponding Truc Parcto Front
nadir value, leaving the rest unchanged, i.e., p,, satisfies [p,,]; = [y™]; if % Boundary Points

j = m and [y'%"]; otherwise, for j = 1,..., M. This approximated CHIM % Individual Minima
serves as a replacement for the true CHIM, which is not available as individual ®  Observed data
minima cannot be found efficiently in MOBO settings. Compared to a simpler alternative, which
approximates the CHIM via individual minima found so far in the observed dataset, our approach
avoids prematurely shrinking the search region for the Pareto optimal solutions. In the alternative
method, if a good Pareto optimal solution is found early, the individual minima found so far in the
observed dataset immediately shrink the search region, overlooking other potential unexplored regions
of the objective space to find more Pareto optimal solutions. In contrast, the proposed approximated
CHIM maintains a broader search region, allowing our proposed method MOBO-OSD to explore
more promising regions. See the inset for an example where our proposed approximated CHIM
provides a larger search region (green area) than that of the alternative method (purple area).

Orthogonal Search Directions. Having obtained the approximated CHIM, the Orthogonal Search
Direction (OSD) is defined as a one-dimensional line in the objective space that follows the unit normal
vector n of the approximated CHIM and passes through a point on the approximated CHIM. Denote

(3 as an M-dimensional convex combination vector 3 € RM, fo:l Bm = 1 and S, > 0, which
defines a point on the approximated CHIM U(3). Formally, 4(3) = {P3 = fo:l BmPm | B €

RM, Zj\wle Bm = 1,Bm > 0} such that P = [py, ..., pas] is the matrix whose columns are the
M boundary points p,,. We then denote the OSD as a line £L(/(3), n) that goes through the point
U(B) in the direction of the normal vector n. In order to generate a well-distributed set of OSDs,
it is essential to construct a well-distributed set of 2/(/3) points. This is equivalent to generating a
well-distributed set of {3} over an M -dimensional unit simplex, as /(3) is, by definition, the linear
transformation of 3 from a unit simplex to the approximated CHIM. To achieve this, we propose to
employ the Riesz s-Energy method [8] to arrange the set of 3 in a well-distributed fashion. Following
the physics principle that the minimum potential energy state of a set of points corresponds to a
diverse distribution of those points, the Riesz s-Energy aims to minimize the sum of a potential
energy function defined over {3}, which effectively generates a well-distributed set of 3. To sum
up, in practice, we generate ng well-distributed OSDs by first producing ng well-distributed convex
combination weight vectors {(3,}, then linearly mapping them to the corresponding points ¢/ (3;) on
the approximated CHIM, and finally defining the set of OSDs {L(U(3;),n)}, where i = 1,..., ng.
See Fig.[Ip for an illustration of the OSDs. More details on the OSDs are in Appendix

4.2 The MOBO-OSD Subproblem

We now present the MOBO-OSD subproblem, which is a constrained optimiza-

tion problem designed to obtain the Pareto optimal solutions by finding the 1 £
intersection between an OSD and the boundary of the objective space. Given a

convex combination weight vector (3, a point on the approximated CHIM U/ (3),

andan OSD £ = L(U(8),n), the intersection point L* between the line £ and .

the boundary of the objective space can be parameterized as L* = U(3)+ A*n, *

where the scalar parameter \* satisfies (x*, \*) € maxcgr xex A subject to

U(B) + An = f(x). This is the ideal optimization subproblem used in the NBI |

method. More details on the NBI technique and its subproblem can be foundin e p(x%P)  — o(x)
Appendix[A.T] In MOBO settings, however, it is not feasible to solve this ideal o y(x2) 0sb

constrained problem due to the high evaluation cost of the constraints. There- 4  U(B) point
fore, we propose the MOBO-OSD subproblem, which aims to approximate \*



and x*. We modify the ideal problem as follows. First, we replace the objective function values f(x)
with the estimated function values, the posterior mean vector pu(x). Second, we relax the equality
constraint that forces (x) to be exactly on the OSD, U(3) + An = p(x), and only require pt(x) to be
within a certain distance from the OSD. This can be achieved by constraining the projection of p(x)
within its confidence bounds, i.e., y(x; 3,n) € Q(x) where v(x; 3, n) is the projection function
of p(x) onto the OSD £, and Q(x) = {y | pu(x) — do(x) <y < pu(x) + do(x)} represents a
hyper-rectangular confidence region defined by the posterior standard deviation vector o and a scaling
factor ¢ [61]]. Finally, we maximize the scalar A, which represents the scalar parameter corresponding
to the projection point on the OSD L, i.e., v(x; 3, n) = U(3) + An. See the inset for an illustration of
the MOBO-OSD subproblem. Note that X is not necessarily the distance ||y(x) —U(3)||2, as A can be
negative in the case of a concave Pareto front, e.g., the DTLZ2 benchmark function [[17]. Ultimately,
the MOBO-OSD subproblem is defined as the following constrained optimization problem,

g1(x) =7(x;8,n) — p(x) + do(x) > 0
g2(x) = p(x) + 6o (x) = 7(x;8,n) > 0

A detailed formula for A\ can be derived from the definition of the projection operator, i.e.,
v(x; B,n) = Proj,(p(x)) = Proj, (u(x) —U(B)) =U(B) + Wn Therefore, A can be
expressed as \(x; 3,n) = (u(x) —U(B)) - n, as |n|| = 1. Solving Eq. (2) results in (x50, \O5D),
which approximates the ideal (x*, A*) as Eq. (2)) ensures that the obtained solution has competitive
estimated function values while remaining close to the current OSD £. The point p(x°5P) serves as
an approximation of the intersection point L*. Given a set of ng well-distributed OSDs as defined
in Sec.[d.1] solving a MOBO-OSD subproblem for each OSD L generates a well-distributed set of
solutions {x95P}. See Fig. |1k for an illustration.

(XOSD7 )\OSD) c 213)}({)\ subject to { )

The detailed optimization routine for the proposed MOBO-OSD subproblem in Eq. (2)) proceeds
as follows. We solve Eq. (2) using a gradient-based off-the-shelf optimizer, e.g., SLSQP [35]]. To
compute the gradient vector 7 (x) and Jacobian matrix Jjg, g,](X), we require the Jacobian matrix
of the posterior mean and standard deviation vectors of the GPs, which can be computed either
in analytic form under common kernels [33}138]] or by automatic differentiation via computational
graphs [42]. Moreover, since the problem is highly non-convex, we solve Eq. (Z) via multiple starting

points {XE«O) i, and select the most promising solution among the resulting solutions. Specifically,

for each starting point x'*, we obtain a solution x95P(3) = x9S that exhibits a different trade-off
between maximizing A\(x) and minimizing the distance from u(x) to £, i.e., [(x) = ||ju(x) — v(x)||2-
Since it is not feasible to find the promising solution x?5P that maximizes \(x?SP) while enforcing
1(x9SP) = 0, we opt to select the most potential solution by formulating a bi-objective selection step
to identify the best trade-off among the ns candidates {x95P}|"s | characterized by \; = A\(x95P)
and [; = [(x95P). We use the hypervolume indicator for this selection, computing the hypervolume
contribution for each pair [\;, [;] as the reduction in hypervolume when that pair is removed from
the solution set S = {[\;,;]};=;. Formally, HVC ([\;,l;]) = HV (S,rs) — HV (S\ [\, ;], rs),
where r, = s"dir 4 (.1 . (snadir — gideal) jg the reference point computed from the nadir point s"ir
and the ideal point s'% of the set S. The final solution for Eq. (2) is chosen as x93P(3) = x95P,
where i* = argmax;_; __, HVC([)\;,1;]). This procedure ensures the selected solution achieves
a balance between a high \ value and a close proximity to the line £. Since each MOBO-OSD
subproblem in Eq. (2)) is solved independently, all subproblems (for different 3) can be processed in

parallel to improve computational efficiency.

4.3 Pareto Front Estimation

For each MOBO-OSD subproblem (corresponding to a point on the approximated CHIM U(3)),
we obtain a solution x°5°(3) (in Eq. (2)). Instead of discretizing the approximated CHIM into a
large number of points U/ (3), we propose to leverage a Pareto Front Estimation (PFE) technique
to explore the local region around the current solution x°5P(3) and generate additional data points
that are expected to be Pareto optimal. One successful approach is the First Order Approximation
technique [46, 33]], which computes a local exploration space 7 around a current Pareto optimal
solution. Specifically, we consider the First Order Approximation problem, in which the surrogate
model is used to estimate the exploration space 7 around the solution x°5P(3). See Appendix
for an overview of the First Order Approximation method. In particular, solving the First Order
Approximation problem results in a set of directions v, which define the space 7. Then we estimate



Algorithm 1 The MOBO-OSD Algorithm

1: Input: Objective function f(.), evaluation budget T', batch size b, number of weight vectors ng
2: Qutput: The Pareto set P,

3: Initialize data points and append to the observed dataset D

4: whilet < T do

5: Compute approximated CHIM and define ng OSDs > Sec. [ZLI']
6.

7

8

Train GPs for each objective function f,,
for each point 2{(3) on the approximated CHIM do
Optimize the MOBO-OSD subproblem to generate a candidate x°5°(3) > Eq.
(3)

9: Estimate the Pareto front around x°5P(/3) to explore more candidates x"'£(3) > Eq.
10: Append X, + X, U xFE(B)
11: end for
12: Select a batch of b solutions from X, and evaluate them; Increase t <t + b > Eq. @)

13: end while
14: Return P, from dataset D

the Pareto Front by randomly sampling n. data points in 7 such that,

XTE(B) = {x"(B)} = {xPP(B) + wiv} fori =1,....ne, 3)
where u; is the i-th random perturbation term to shift the solution x°SP along the directions v. This
PFE step generates additional candidate points around the current expected Pareto optimal candidates
x95P from the previous step. This also helps to avoid solving an excessive number of MOBO-OSD
subproblems that are close to one another. See the ablation study in Sec.[5.2] for details.

This step is repeated for all MOBO-OSD subproblems, i.e., for each point on the approximated CHIM
U(B), resulting in a set of candidates X, = | J;?, XFFE(3,), where ns denotes the number of weight

vectors 3 on the approximated CHIM. In general, |X.| = ng x n..

4.4 Batch Selection Strategy

Having generated ng x n. candidate solutions X, we use the Hypervolume Improvement (HVI)
of the posterior mean as the acquisition function to determine the most promising solutions to be
evaluated - solutions that are expected to maximize the hypervolume contribution [9, 33]. Given the
current approximate Pareto front Py computed from the observed dataset D and a reference point r,
the HVI acquisition function is defined as apvi(x; Py, r) = HV(u(x) U Py, r) — HV(Py, r), where
p(.) is the posterior mean function. For batch selection, the goal is to pick a batch of b data points
X, that achieve high HVI values while maintaining diversity among the chosen solutions. To address
the problem, first, we apply the Kriging Believer (KB) method [22] to improve the posterior mean
estimation given unobserved data points during batch selection. In particular, after selecting a data
point x; for i € [1,...,b], we re-train the GP models on the aggregated dataset D U {x;, pu(x;)}.
Secondly, we boost the diversity by choosing candidate points coming from different exploration
spaces 7. This is because the approximated candidate points from a single exploration space 7 tend
to be close to one another [46], therefore exhibiting similar contributions to the hypervolume. Denote
¥(8,,X) as a function that counts the number of candidates x € X originating from the exploration
space T around x5 (3;). Hence, the batch selection mechanism is formulated as follows,

X, = argmax apvi(x; Py, r) suchthat max 9(8;,X,) — min (8;,Xp) <1. (4
X, X, i=1,...,ng i=1,...,ng

The constraints in Eq. (4) are designed to ensure that the number of data points selected from different
exploration spaces differs by at most one. In practice, we solve Eq. sequentially to select b data
points X, from the candidate set X.. In each iteration, after re-training the GP models (as required
by KB) and selecting the best candidate point based on ayyy, we remove from X, all other candidates
originating from the same exploration space, then repeat the process to select the next point in the
batch. If the candidate set X . becomes empty, all previously removed but unselected candidate points
are reintroduced, and the process is repeated.
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Figure 2: Comparison of MOBO-OSD against the SOTA baselines on 5 synthetic and 4 real-world
benchmark problems in sequential setting (batch size 1). Note that DGEMO does support problems
with M > 3 objectives. Overall, MOBO-OSD outperforms the baselines.

4.5 Opverall Algorithm

The overall MOBO-OSD algorithm is described in Alg. I, MOBO-OSD operates in an iterative
fashion. In each iteration, based on the observed dataset D, we compute M boundary points P,
the approximated CHIM U/, and the ng OSDs (line . Subsequently, for each point #/(3) on
the approximated CHIM, we optimize the MOBO-OSD subproblem to generate a Pareto optimal
candidate x©5P, and then locally explore the space around x°5 to generate additional Pareto optimal
candidates x"'F (lines —EI). We then use the aggregated set of candidates X from all ng OSDs to
select a batch of b solutions using the aygyy acquisition function and the exploration space constraint
(line[T2). The process is repeated until the evaluation budget is exhausted, and the final Pareto front
P and Pareto set P, are computed from the observed dataset D.

S Experiments

Now we empirically evaluate our proposed method, MOBO-OSD, against the state-of-the-art methods
on an extensive set of synthetic and real-world benchmark problems.

Experimental Settings and Baselines. We evaluate the proposed algorithm MOBO-OSD against
a comprehensive set of baselines: qParEGO [31], USeMO [5], DGEMO [33], PDBO [1], JES [52],
qEHVI [13], NSGA-II [16] and NBI [11]]. For USeMO, we select the EI acquisition function
as it has good performance and is commonly used in other works. For qParEGO, we use the
batch implementation developed by Daulton et al. [[13]. For DGEMO, we note that the authors’
implementation only supports problems with M = 2 and M = 3 objectives. For JES, due to its
prohibitive computational cost (Appendix [A.TT)), we only compare under the sequential optimization
setting (batch size 1). For NBI, to the best of our knowledge, no open-source implementation of the
method currently exists; therefore, we re-implemented it following the procedure described in [[11].
Detailed implementations of MOBO-OSD and the baselines can be found in Appendix [A.7]

For the comparison metrics, we compute the logarithmic hypervolume difference between the
hypervolume of the best accumulated observed Pareto front and the maximum hypervolume. The
hypervolume is calculated using the reference points r specified in Appendix [A.6] We report the
mean and the standard error across 10 independent runs.
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Figure 3: Comparison of MOBO-OSD against the SOTA baselines on 5 synthetic and 4 real-world
benchmark problems in batch setting (batch size 4). Overall, MOBO-OSD outperform the baselines.

Benchmark Problems. We conduct experiments on five synthetic and four real-world multi-
objective benchmark problems. The number of objectives ranges from two to six, which is common
in the MOBO literature. For synthetic benchmark problems, we use DTLZ2 with different objective
settings M € {2,3, 4} [17], ZDT1I [15]], and VLMOP?2 [53]. For real-world benchmark problems, we
use various problems from the RE problem suite [50] including Speed Reducer, Car Side Design,
Marine Design, and Water Planning. The dimensionality and number of objective settings for each
function are given in Table |Zl These problems are widely used in the MOBO literature [5} 9} [13} 12,
11 33]]. Details of the benchmark problems can be found in Appendix [A.6]

5.1 Comparison with Baselines

Sequential Optimization. Fig. 2] shows the performance of all baselines on all nine benchmark
problems in the sequential setting (batch size 1). Across all benchmark problems, both synthetic
and real-world, MOBO-OSD consistently outperforms other state-of-the-art methods. gEHVI shows
competitive performance in most cases, yet eventually finds suboptimal solutions. DGEMO also
shows strong performance, but is outperformed by MOBO-OSD on VLMOP2 and Speed Reducer.
Moreover, it is limited to problems with at most three objectives M < 3. NSGA-II often cannot
compete with the MOBO algorithms in the case of limited evaluation budget. These results indicate
the efficiency of MOBO-OSD in achieving fast convergence towards the Pareto front.

Batch Optimization. We conduct experiments in batch settings, with batch size b = {4,8,10}.
Fig. 3| shows the performance of all baselines across all nine benchmark problems with batch size
4, whereas additional batch results can be found in Appendix [A:8] Similar to the batch size 1
setting, MOBO-OSD consistently outperforms other state-of-the-art methods. gEHVI and DGEMO
remain the two strongest baselines after MOBO-OSD, achieving hypervolume results close to those
of MOBO-OSD. This result further emphasizes the efficiency of MOBO-OSD, even in the batch
setting. Furthermore, we provide a theoretical time complexity analysis for MOBO-OSD, along with
a runtime comparison between MOBO-OSD and the baselines in Appendix [A.TT] demonstrating the
scalability of MOBO-OSD to an arbitrary number of objectives in both sequential and batch settings.

5.2 Ablation Study

In this section, we conduct a study on the effect of the ng parameter - the number of points on
the approximate CHIM U(/3) - on the performance of MOBO-OSD. A larger ng corresponds
to a denser set of points on the approximated CHIM. We evaluate MOBO-OSD using varying
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Figure 4: Ablation study on the effect of parameter n . Full results can be found in the Appendix @]
Overall, MOBO-OSD is robust against ng.

values of ng € {10, 50,100} on all nine benchmark problems and compare to the default setting
(ng = 20). Four representative results are shown in Fig. [Zl_f], while the remaining results can be found in
Appendix[A.9] Fig.[dshows that MOBO-OSD’s overall performance remains stable across different
values of ng, indicating the robustness of the proposed algorithm with respect to this parameter.

We hypothesize that this robustness can be attributed to the Pareto Front Estimation (PFE) component
(Sec. [£.3), which facilitates the generation of additional Pareto optimal candidates. Without the
component, MOBO-OSD would require more I/((3) points, thus solving a larger number of MOBO-
OSD subproblems to achieve a comparable set of Pareto optimal candidates. To validate this
hypothesis, we conduct a study by removing the PFE component and run the resulting MOBO-OSD
variant with varying values of ng € {20, 100,200, 500}. As shown in Table increasing ng leads
to performance improvements. This finding suggests that although PFE enhances the efficiency of
MOBO-OSD, it is not an essential component, as similar performance can be attained by increasing
the density of the U/ (3) set.

Table 1: Ablation results (in HV) on the effect of ng on MOBO-OSD without the PFE component.

MOBO-0OSD method

DTLZ2-M2

VLMOP2

Car Side Design

W/o PEE (nz = 20)
W/o PFE (ng = 100)
W/o PFE (nj = 200)
W/o PFE (ng = 500)
Default (with PFE)

0.4041 £+ 0.0004
0.4118 £ 0.0001
0.4142 £+ 0.0001
0.4164 £+ 0.0001
0.4217 £+ 0.0000

0.2713 + 0.0020
0.2978 + 0.0011
0.3076 £ 0.0006
0.3159 £ 0.0004
0.3383 4 0.0000

145.1195 £ 0.3340
154.3249 £ 0.2662
157.2311 £ 0.2095
160.2797 £ 0.2118
177.4782 £ 0.2310

6 Conclusions

In this paper, we address the multi-objective Bayesian optimization problem for expensive black-box,
vector-valued objective functions. We propose MOBO-OSD, a novel algorithm that aims to generate a
well-distributed set of solutions via multiple subproblems defined along orthogonal search directions.
To further enrich the diversity of the solutions, we perform local exploration around current Pareto
optimal candidates, generating additional Pareto optimal candidate solutions. These candidates are
scored using the Hypervolume Improvement acquisition function, while batch selection is guided
by the Kriging Believer strategy and the exploration space information. Our experimental results
show that MOBO-OSD outperforms state-of-the-art methods across various synthetic and real-world
benchmark problems with varying number of objectives, in both sequential and batch settings.

Limitations. One limitation of our approach is that it focuses on noiseless observations, a common
assumption in various existing works. Future work could address this limitation by employing
acquisition functions that can handle noise and by improving the MOBO-OSD subproblem - for
example, by integrating the uncertainty of previous observations when defining the projection.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We propose a multi-objective Bayesian Optimization algorithm, which can
outperform the state-of-the-art methods. We provide experiments and analysis to support
our claim.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We provide the limitation in the Conclusion section (Sec. [6)
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: There is no theoretical result.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.

The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide the settings for our proposed method and baselines in the Appendix

Guidelines:

The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide the code in the supplementary materials. We will also make the
code public after acceptance.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The experiment settings, including the hyperparamters for the methods and the
details of benchmark functions are presented in Sec. [5|and Appendix

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: In all our experiments, we provide the error bar to represent the randomness of
the experiments.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We present the computing resources used for all experiments in the Appendix

A0l
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Our work comply with the NeurIPS Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper propose an optimization algorithm. There should be no direct
societal impacts that must be specifically highlighted here.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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11.

12.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: We believe our work does not pose any risk.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All the baseline implementation are open access. All the real-world benchmark
problems are also open access.

Guidelines:
» The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new asset.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Our work does not involve crowdsourcing or research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not pose any risks.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Technical Appendices and Supplementary Material

A.1 Normal Boundary Intersection

In this section, we provide more details on the Normal Boundary Intersection (NBI) [L1]] method,
which is a general MOO technique that aims to generate a uniformly distributed set of Pareto optimal
solutions. The key insight of the NBI method is that, given a MOO problem, the intersection points
between the boundary of the objective space and the vectors orthogonal to the convex hull of individual
minima (CHIM) of the objectives could be Pareto optimal solutions. Given the MOO problem in Eq.
(1), the NBI method first determines the individual optima of each objective £, = f(x},) where x},, =

argmin, . y fm(x) form =1,..., M. Denote a column matrix F* = [f},f5, ..., f;/]T, the CHIM
is constructed by a set of points {U/(3)} such that 4 (3) = {F*3 = Zf\il Bifi | B € RM, Zf\il =
1,8; > 0}, where 3 = [B1, . .., Bas] is a convex combination weight vector to construct points on

CHIM. For each point /(3), NBI defines a constrained optimization problem, referred to as the
NBI subproblems, along the direction normal to CHIM, i.e., (x*, \*) € maxyer xex A subject to
U(B) + An = f(x), where n is the normal vector of CHIM. Solving this constrained optimization
problem results in a data point x* corresponding to the intersection point f(x*) that is expected to
be Pareto optimal. As a result, by solving multiple NBI subproblems defined over a set of well-
distributed points I/ (/3) on the CHIM, the NBI method is expected to result in a set of well-distributed
np Pareto optimal solutions for the MOO problem in Eq. (I). The geometric intuition ensures
uniform spacing of solutions and is particularly suitable for problems with complex, non-convex
Pareto fronts. However, solving the NBI problem requires evaluating the objective functions f(x)
for the constraint term, which is impractical for expensive objective functions and limited evaluation
budget as in MOBO.

In NBI, the set of well-distributed 3 = [(1, . .., ] is constructed using a structured approach as
follows. Given an integer number denoting the number of partition n,, possible values for each 3;
are {0,0,26,...,1} where § = 1/n,, is the step-size. Then, we sequentially select each §; such

that they satisfy vail B; = 1. In practice, the possible values for 3; corresponding to 5; = m;6
fori=1,...,7—1land j =2,...,M — 1 are {0,5,25,...,(pfzz:—llm,;)(;}. Because of this
formulation, the number of convex combination weight vectors 3 (and the number of points on
CHIM U([3)) is determined via the binominal coefficients as ng = (A”pp*l). As a result, this
structured formulation cannot generate any arbitrary number of ng, as it ultimately depends on the
number of partitions p instead. Our proposed MOBO-OSD algorithm leverages a different point

generation method (Sec [4.T) that can handle any arbitrary number of 1, while maintaining the
desired well-distributed property.

A.2 Pareto Front Estimation via First Order Approximation

This section summarizes the First Order Approximation technique [46]] to estimate the Pareto front of
a MO problem. In MOO, discovering the entire Pareto front Py can be challenging, however, once we
find a Pareto optimal solution x* € Py, it is easier to find nearby Pareto optimal solutions by locally
exploring around x* [46 33]]. Pareto Front First Order Approximation technique [46] leverages this
fact to approximate the Pareto front from a previously discovered Pareto optimal solution. Given the
MOO problem in Eq. and an observed Pareto optimal input x* found so far, the key idea is to
construct a local exploration space 7 C X around x*. In particular, 7 is a linear combination of a
set of exploration vectors v which are obtained by solving the following equation:

{Hv € Im(Jr(x*)) & Im (Jg(x*)),
J&(x*)v =0,

where H = Zf\il a;Hy (x*) + Zkl,(zl BrHg, (x*) corresponds to the derivatives of the stationarity
KTT condition; Jr and Jg are the Jacobian matrix of all objectives f and K active constraints g,
respectively; H,, is the Hessian matrix of an arbitrary function v and o = [a, ...,y ] and B =
[B1,...,BKk] are the Lagrange multipliers (dual variables) associated with the KKT conditions [24]
of the MOO problem in Eq. (1)) . The first equation in Eq. (5) ensures that moving x* along direction
v still preserves the stationarity KKT conditions, ensuring the Pareto optimality of the resulting
solutions. Additionally, the second equation ensures the feasibility of active constraints g that
appear when x* is very close to a boundary of X'. Overall, this technique can help to discover more

&)
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solutions nearby the current Pareto optimal solution f(x*). Schulz et al. [46] shows that, generally,
dim(7) = min(M — 1, D). Having the local exploration space 7 with exploration vectors v, we
can generate additional Pareto optimal solutions around the previously discovered Pareto optimal
solutions x*.

A.3 Details on the Proposed Orthogonal Search Directions

This section presents the details when computing the normal direction of the approximated CHIM
(Sec. @ In MOBO-OSD, following Das and Dennis [[11]], instead of using the exact normal direction
n where PnT = 0, we employ quasi-normal directions for consistent scaling across all objectives,
preventing potential ill-conditioning. Specifically, the proposed orthogonal search direction n for
MOBO-OSD is defined as = —Pe where e is a column vector of all ones. The formula computes
an equally weighted linear combination of the boundary points p,,,, then multiplied by -1 to ensure
the normal vector points to the origin. Then we normalize normal vector to unit length n = i/||na|].
The quasi-normal direction can be interpreted as applying a normalization to remove the difference in
scaling among the objectives, while maintaining similar results of subproblems, i.e., the intersection
points found.

A4 Advantages of OSD Subproblems Compared to Other Scalarization Techniques

In this section, we provide a discussion on the advantages of our propose OSD subproblem formulation
compared to the most closely related scalarization technique - linear scalarization (LS) [41]. First,
LS generates search directions at random, which can be less efficient than the data-driven search
directions proposed in our OSD formulation. Second, even when LS weight vectors are well-
distributed (e.g., using Riesz s-Energy [8]), LS is limited to finding solutions on the convex regions of
the Pareto front [38]. In contrast, our proposed OSD formulation is capable of identifying solutions
on the Pareto front of arbitrary shape, including both convex and non-convex regions. Note that due to
this limitation, LS has been superseded by the most widely used scalarization technique - Tchebychev
scalarization (TCH) [41]]. TCH can handle non-convex PF and has been widely selected in other
works when evaluating scalarization techniques [41} 31,13} 133]]. However, one critical drawback of
TCH lies in its non-smooth formulation caused by the maximization operator, which makes TCH
suffers from non-differentiability and slow convergence [36]]. On the other hand, the MOBO-OSD
subproblem formulation is differentiable, either analytically under common kernels or by automatic
differentiation via computational graphs, as described in Sec.[d.2] Empirically, our proposed method
consistently outperforms baselines employing TCH, such as qParEGO. Figures [5and [6] show
that MOBO-OSD outperforms qParEGO across different benchmark functions with diverse PF
characteristics, including convex (ZDT1) and concave (DTLZ2).

A.5 Comparison To Other Line-based BO Algorithms

As our proposed MOBO-OSD algorithm conducts search for Pareto optimal solution along one-
dimensional guiding lines, in this section, we discuss the key differences compared to other recent
line-based BO algorithms, such as LineBO [30] and BOIDS [40]]. The primary distinction lies in the
formulation of these one-dimensional lines: both LineBO and BOIDS construct search directions
with some degree of randomness, whereas MOBO-OSD relies on deterministic OSD directions that
are orthogonal to the approximated CHIM. Additionally, another key difference is in the search
domain: LineBO and BOIDS define one-dimensional lines in the input space, while our MOBO-
OSD formulates one-dimensional search directions in the output space. Furthermore, LineBO and
BOIDS are primarily designed to make high-dimensional problems tractable, while MOBO-OSD
focuses on generating a well-distributed set of Pareto optimal points on the Pareto front. Therefore,
LineBO and BOIDS are fundamentally different approaches and are not compatible with the MOBO
settings. In contrast, MOBO-OSD is specifically designed for MOBO problems, with the core
purpose of generating orthogonal search directions relative to the approximated CHIM to ensure a
well-distributed coverage of the Pareto front.

A.6 Details of Benchmark Problems

We present the details of all benchmark problems in Table [2] The reference points for synthetic
problems are similar to many MOBO works [[13}[14}[1]. To compute the reference point for real-world
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problems, we follow a common rule [[13} 33} |50] and generate a pool of observed data points to
compute the reference point via the pool’s nadir and ideal points as r = y"4ir 4 (.1 5 (y"adir — ysideal)
All baselines use similar reference points both when running the code implementation (if required)
and when computing the hypervolume difference as comparison metric.

Table 2: Details of 5 synthetic (ZDT1, VLMOP2, DTLZ2-M2, DTLZ2-M3, DTLZ2-M4) and 4
real-world (Speed Reducer, Car Side Design, Marine Design, Water Planning) benchmark problems.

Problem D M Reference Point

DTLZ2-M2 5 2 (1.1,1.1)

DTLZ2-M3 5 3 (1.1,1.1,1.1)

DTLZ2-M4 5 4 (1.1,1.1,1.1,1.1)

ZDT1 5 2 (11.0,11.0)

VLMOP2 5 2 (1.0,1.0)

Speed Reducer 7 3 (6735.9,1761.17,402.34)

Car Side Design 7 4 (38.89,4.44,12.94, 8.87)

Marine Design 6 4 (—210.44,18970.82,24111.07,11.36)
Water Planning 3 6 (84349,1461,3101484, 12442800, 67030, 1.59)

A.7 Detailed Implementation

We implemented MOBO-OSD and all baselines in Python (version 3.10). The detailed implementation
are as follows.

MOBO-OSD. For the surrogate model, we implement the GPs via GPyTorch [20] and BoTorch [3].
We follow [33] and use Matérn 5/2 kernel with the ARD length-scales in the interval v/ 10—3,+/103

and signal variance in the interval v/10~3,4/103. The Gaussian likelihood is modeled with standard
homoskedastic noise in the interval [107¢,1073].

For the number of points on approximated CHIM, we set the default value ng = 20 and present
an ablation study of other settings in Sec.[5.2] For the scaling of confidence region, we use the
common 95% confidence interval, i.e., § = 1.96 [21]]. For the number of starting points when
solving MOBO-OSD subproblem, we set ny, = 4. Our code implementation can be found at
https://github.com/LamNgol/mobo-osd.

PDBO [1]. We use the default hyperparameter settings from the paper, including the Hedge
algorithm for selecting acquisition functions, the pool of acquisition functions EI, UCB, TS and
Identity (i.e., the posterior mean function). We use the open-sourced implementation at https:
//github.com/Alaleh/PDBO.

qEHVI [13]. We use the default hyperparameter settings from the paper. This includes the batch
selection strategy that use sequential greedy approach to integrate over the unobserved outcomes. We
use the open-sourced implementation at https://github.com/pytorch/botorch.

DGEMO [33]. We use the default hyperparameter settings from the paper, including the number
of buffer cells, max number of samples in each cell, buffer origin, graph-cut hyperparameters and
solver NSGA-II hypeparameters. We use the open-sourced implementation at https://github|
com/yunshengtian/DGEMO,

USeMO [5]. We use the default hyperparameter settings from the paper. For the acquisition
function, we use the EI [37] as it has the overall best performance and is widely compared in other
works. We use the open-sourced implementation at https://github. com/belakaria/USeMO.

qParEGO [31]. qParEGO is a novel extension from ParEGO [31] that is developed by Daulton
et al. [[13] to leverage batch setting. We use the settings as follows: augmented Tchebychev scalariza-
tion [39], EI acquisition function with gradient solver and sequential greedy batch selection strategy.
We use the open-sourced implementation at https://botorch.org/docs/tutorials.
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JES [52]. We use the default hyperparameter settings from the paper. This includes the number of
random initialization points for optimizing JES, and the NSGA-II hyperparameter settings for solving
the Pareto front. We use the open-sourced implementation athttps://github.com/benmltu/JES.

NSGA-II [16]. We use NSGA-II implementation from pymoo [[7]. We use the default settings as
follows: population size of 100, binary tournament selection, simulated binary crossover (probability
p = 0.9, exponential distribution parameter 7 = 15) and polynomial mutation (probability p = 0.9,
exponential distribution parameter 7 = 20). We use the open-sourced implementation at https:
//pymoo.org/algorithms/moo/nsga2.html|

NBI [11]. To the best of our knowledge, there is no available open-source implementation for
NBYI, therefore we recreated the implementation based on [[11] as follows. At first, we sequentially
optimize each objective f,, to obtain the individual minima. Then the convex hull of individual
minima (CHIM) can be computed via the convex combination weight vectors 3. We use the same
Riesz s-Energy method [i8] as in MOBO-OSD to generate exact ng = 20 combination weight
vectors, since the default point generation strategy cannot work with arbitrary n5. See Appendix[A.T|
for details. Then, for each of ng NBI subproblems defined at each point on the CHIM, we solve
the NBI subproblem to compute the intersections between the CHIM and the NBI normal search
directions. Until the evaluation budget depletes, we solve ng NBI subproblems again (with new
random initialization) to obtain new solutions. We aggregate all observations found, including when
optimizing for the individual minima, when optimizing NBI subproblems and when evaluating the
NBI subproblem constraints. Finally, from the observed dataset, we construct the approximate Pareto
front for hypervolume comparison against other baselines.

As NBI requires evaluating objective functions for the constraints, the method is not sample-efficient.
In fact, in our experiments, NBI often depletes the budget even when not having finished the first
round of ng subproblems. We illustrate this statistics by presenting the number of function evaluations
required to complete the individual minimum optimization and the first round of g NBI subproblems
given two types of solver, gradient-based SQLSP [35] and gradient-free COBYLA [43]]). Details are
shown in Table [3] We also present the performance of NBI given these two solvers in Fig.[0]

A.8 Additional Results for Baseline Comparison

On top of the comparison results between MOBO-OSD and the baselines shown in Sec. [5.1] we
provide extra results for other batch settings b = {8, 10}, which are shown in Figsand@ respectively.
Note that gEVHI has limited iterations due to the prohibitively high computational cost (exceeding
12 hours runtime) and memory required (exceeding 64 GB) on problems with M > 4 objectives and
batch size b = {8,10}. MOBO-OSD and other baselines can finish the experiments within the given
similar resources.

A.9 Additional Results for Ablation Study

Figs[7)and | present the full results of the ablation study on n parameter on all benchmark problems,
on both sequential and batch settings, respectively. Overall, all variants have relatively similar
performance, indicating the robustness of MOBO-OSD with respect to ng parameter.

A.10 Computing Infrastructure

We run experiments on a computing server with a Dual CPU of type AMD EPYC 7662 (total of
128 Threads, 256 CPUs). Each experiment is allocated 8 CPUs and 64GB Memory. The server is
installed with Ubuntu (20.04.3 LTS) Operating System.

A.11 Computational Complexity

We provide the theoretical computational complexity analysis as follows. Let N and n denote
the number of surrogate model training and testing points, respectively, and let D and M denote
the number of dimensions and objectives, respectively. The computational complexity for the
approximated CHIM and OSD formulation is O(NN M) as these steps require iterating over N data
points with M -dimensional output. The GP training cost is well-known to scale cubically with the
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Figure 5: Comparison of MOBO-OSD against the SOTA baselines on 5 synthetic and 4 real-world
benchmark problems in batch setting (batch size 8). Note that gEVHI has limited iterations due to the
prohibitively high computational cost and memory required on problems with A/ > 4 objectives.
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Figure 6: Comparison of MOBO-OSD against the SOTA baselines on 5 synthetic and 4 real-world
benchmark problems in batch setting (batch size 10). Note that gEVHI has limited iterations due to
the prohibitively high computational cost and memory required on problems with M > 4 objectives.
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Figure 7: Ablation study on the effect of ng parameter (batch = 1). Overall, all variants have similar
performance, indicating the robustness of MOBO-OSD with respect to ng parameter.
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Figure 8: Ablation study on the effect of ng parameter (batch = 4). Overall, all variants have similar
performance, indicating the robustness of MOBO-OSD with respect to ng parameter.
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Table 3: Number of required function evaluations to complete the first round of ng NBI subproblems,
including finding individual optima and solving ng NBI subproblems. Gradient-based solver cost
significantly more budget due to gradient computation via finite difference method. Generally, NBI
depletes all 200 evaluation budget before finishing the first round of optimization.

Individual Subproblems Subproblems
Objectives (Gradient-free solver) (Gradient-based solver)
VLMOP2 139.20 + 32.06  259.20 £ 32.06 8049.70 £ 1750.33
ZDT1-M2 24.00 £ 0.00 144.00 + 0.00 720.20 £ 29.50
DTLZ2-M2 30.00 £+ 9.30 150.00 +9.30 898.20 4+ 22.52
DTLZ2-M3 36.60 £+ 1.80 156.60 + 1.80 1118.90 4+ 213.97
DTLZ2-M4 54.00 £ 8.90 174.00 &+ 8.90 2050.80 + 1176.62
Speed Reducer 72.00 £ 25.04 232.00 + 25.04 7680.70 £+ 1023.34
Car Side Design  109.60 £+ 10.15  269.60 &+ 10.15 5141.30 & 1105.41
Marine Design 139.30 +=22.45 279.30 +22.45 7859.30 &+ 1032.65
Water Planning  44.00 + 0.00 124.00 £ 0.00 124.00 £ 0.00
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Figure 9: Performance of NBI when using different solvers for the NBI subproblems. Overall, no
variant is consistently better than the other.

number of training samples, resulting in a computational complexity of O(N?). The computational
complexity for solving each MOBO-OSD subproblem is O(D? + N2n), which comprises of two
dominated components: the SLSQP solver with cost of O(D?), and the approximated cost of O(N?n)
associated with evaluating the mean vector, standard deviation vector, and their corresponding
gradients. For the Pareto Front Estimation step, following Schulz et al. [46]] and Konakovic Lukovic
et al. [33]], the computational cost is O(D? + Nn). Finally, for the batch Hypervolume Improvement
acquisition function, following Daulton et al. [13], the computational complexity is O(M K (2° — 1)),
where K is the number of disjoint partitions for box decompositions and b is the batch size.

Additionally, we provide the empirical runtime for the proposed method and all baselines in Ta-
bles @ andfor batch size b = {1,4, 8, 10}, respectively. Note that gEHVI is significantly more
computationally (in terms of runtime and required memory) than other baselines and MOBO-OSD,
especially when b = {8, 10}, hence can only have partial results on problems with M > 4 objectives.
All NSGA-II runs cost less than 0.01s, so we exclude the method from the results. Moreover, symbol
"-" indicates the method is not applicable for the corresponding baseline, according to the authors’
implementation.
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Table 4: Runtime comparison (seconds per iteration) for batch size 1. Overall, our proposed method,
MOBO-OSD, have affordable time complexity. JES is significantly more computational expensive
even in sequential setting. Symbol "-" indicates the method is not applicable for the corresponding

benchmark problems.

MO%?;SSD PDBO qEHVI  JES DGEMO Ufgll\;lo qParEGO
VLMOP2 16.18 3202 214  67.30 9.46 1.89 0.60
ZDT1-M2 750 2247  1.89  40.67 11.84 2.28 0.50
DTLZ2-M2 834 2374 295 4699 8.74 1.91 0.50
DTLZ2-M3 11,72 1538 1032 53.69 10.63 275 0.68
DTLZ2-M4 1985 1466 5527 12697 - 375 0.88
Speed Reducer 17.18 1338 691 115.07 16.31 2.67 0.71
Car Side Design 2484 1565 1631 105.03 - 4.00 0.92
Marine Design 2272 17.03  17.17  91.56 - 3.50 1.81
Water Planning 30.16  73.66 150.93 846.36 - 5.34 1.72

Table 5: Runtime comparison (seconds per iteration) for batch size 4. Overall, our proposed method,
MOBO-OSD, have affordable time complexity. gEHVI is significantly more computational expensive
with increasing batch size. Symbol "-" indicates the method is not applicable for the corresponding

benchmark problems.

MOBO-OSD

USeMO

(Ours) PDBO gEHVI DGEMO (EI) qParEGO
VLMOP2 4.34 8.23 2.20 233 0.69 0.45
ZDT1-M2 2.31 5.86 1.63 2.81 0.65 0.39
DTLZ2-M2 2.51 7.23 2.60 2.13 0.53 0.39
DTLZ2-M3 3.80 4.95 8.82 2.86 0.78 0.52
DTLZ2-M4 10.58 4.45 31.73 - 1.14 0.65
Speed Reducer 4.65 3.84 14.06 3.96 0.72 0.53
Car Side Design 13.90 5.11 71.46 - 1.23 0.66
Marine Design 10.03 5.38 57.27 - 1.05 1.83
Water Planning 2425 2147 272.16 - 2.06 1.11

Table 6: Runtime comparison (seconds per iteration) for batch size 8. Overall, our proposed method,
MOBO-O0SD, have affordable time complexity. qEHVI is significantly more computational expensive
with increasing batch size. Symbol "-" indicates the method is not applicable for the corresponding

benchmark problems.

Mo(ggr'gw PDBO qEHVI DGEMO Ufgl\;lo qParEGO
VLMOP2 169 398 7.5 1.07 0.28 0.35
ZDT1-M2 L1l 305 447 1.35 0.42 0.34
DTLZ2-M2 114 356  10.00 1.03 0.33 0.34
DTLZ2-M3 171 222 100.07 1.43 0.55 0.46
DTLZ2-M4 242 233 44926 - 0.66 0.56
Speed Reducer 242 236 6635 2.16 0.36 0.46
Car Side Design 250 322 554.83 - 0.78 0.55
Marine Design 313 297 37485 - 0.50 1.64
Water Planning 11.64 11.97 651.57 - 0.97 0.79
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Figure 10: Comparison using IGD indicator of MOBO-OSD against the baselines on 5 synthetic and
4 real-world benchmark problems with batch size 1.

Table 7: Runtime comparison (seconds per iteration) for batch size 10. Overall, our proposed method,
MOBO-OSD, have affordable time complexity. gEHVI is significantly more computational expensive
with increasing batch size. Symbol "-" indicates the method is not applicable for the corresponding
benchmark problems.

Mo(ggr'SSD PDBO qEHVI DGEMO Ug/)[o qParEGO
VLMOP2 171 320 4584 090 038 0.41
ZDTI-M2 113 257 1872 11 067 0.41
DTLZ2-M2 115 292 5772 082 045 0.40
DTLZ2-M3 178 189 229.09 125 046 0.55
DTLZ2-M4 273 207 44687 - 100 0.70
Speed Reducer 249 189 15863 167 042 0.54
Car Side Design 277 247 49851 - 087 0.67
Marine Design 3.48 2.35 468.98 - 0.61 242
Water Planning 2178 1120 710,14 - L19 0.94

A.12 Other Comparison Metrics

We compare the performance of MOBO-OSD and the baselines using other comparison metrics,

including IGD [10], IGD+ [23] and e-indicator [60]]. Figs and[T3|show the IGD metrics.
Figs[[4} [13] [I6]and [T7] show the IGD+ metrics. Figs[T§] and[21]show the e-indicator. Overall,
MOBO-0SD shows competitive performance regardless of performance metrics.
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Figure 11: Comparison using IGD indicator of MOBO-OSD against the baselines on 5 synthetic and
4 real-world benchmark problems with batch size 4.
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Figure 12: Comparison using IGD indicator of MOBO-OSD against the baselines on 5 synthetic and
4 real-world benchmark problems with batch size 8.
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Figure 13: Comparison using IGD indicator of MOBO-OSD against the baselines on 5 synthetic and
4 real-world benchmark problems with batch size 10.
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Figure 14: Comparison using /GD+ indicator of MOBO-OSD against the baselines on 5 synthetic
and 4 real-world benchmark problems with batch size 1.
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Figure 15: Comparison using IGD+ indicator of MOBO-OSD against the baselines on 5 synthetic
and 4 real-world benchmark problems with batch size 4.
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Figure 16: Comparison using /GD+ indicator of MOBO-OSD against the baselines on 5 synthetic
and 4 real-world benchmark problems with batch size 8.
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Figure 17: Comparison using /GD+ indicator of MOBO-OSD against the baselines on 5 synthetic
and 4 real-world benchmark problems with batch size 10.

0 VLMOP2 (M=2) ZDT1 (M=2) DTLZ2-M2
105 o 0
- 1 001 "‘""’;w/v\fﬁ‘:~$~’.‘~;x.x,‘:~v:.:_
210y B
A 10 3
o
1074 10 4
MOBO-0OSD
0 100 200 0 100 200 0 100 200 ™ (ours)
DTLZ2-M3 DTLZ2-M4 Speed Reducer (M=3) PDBO
—e— DGEMO
—=— EHVI
—¥— JES
USEMO-EI
1 e qParEGO
0 100 0 100 200 —e— NSGA-II
Car Side Design (M=4) Water Planning (M=6) NBI
(grad-based)
10°4H\
104
0 100 200 0 100 200 0 100 200
Number of evaluations Number of evaluations Number of evaluations

Figure 18: Comparison using e-indicator of MOBO-OSD against the baselines on 5 synthetic and 4
real-world benchmark problems with batch size 1.

34



Epsilon

ZDT1 (M=2)

DTLZ2-M2

VLMOP2 (M=2)

0

100
Marine Design (M=4)

100 200
Water Planning (M=6)

o
Daaasst o rerees

0

100
Number of evaluations

200

100 200

Number of evaluations

0

100 200

Number of evaluations

MOBO-OSD
(ours)

PDBO
DGEMO
qEHVI
USEMO-EIL
qParEGO
NSGA-II

Figure 19: Comparison using e-indicator of MOBO-OSD against the baselines on 5 synthetic and 4
real-world benchmark problems with batch size 4.
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Figure 20: Comparison using e-indicator of MOBO-OSD against the baselines on 5 synthetic and 4
real-world benchmark problems with batch size 8.
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Figure 21: Comparison using e-indicator of MOBO-OSD against the baselines on 5 synthetic and 4
real-world benchmark problems with batch size 10.
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