Under review as a conference paper at ICLR 2025

DIVERSE GRAPH-BASED NEAREST NEIGHBOR SEARCH

Anonymous authors
Paper under double-blind review

ABSTRACT

Nearest neighbor search is a fundamental data structure problem with many ap-
plications in machine learning, computer vision, recommendation systems and
other fields. Although the main objective of the data structure is to quickly report
data points that are closest to a given query, it has long been noted (Carbonell
& Goldstein, [1998) that without additional constraints the reported answers can
be redundant and/or duplicative. This issue is typically addressed in two stages:
in the first stage, the algorithm retrieves a (large) number 7 of points closest to
the query, while in the second stage, the r points are post-processed and a small
subset is selected to maximize the desired diversity objective. Although popular,
this method suffers from a fundamental efficiency bottleneck, as the set of points
retrieved in the first stage often needs to be much larger than the final output.

In this paper we present provably efficient algorithms for approximate nearest
neighbor search with diversity constraints that bypass this two stage process. Our
algorithms are based on popular graph-based methods, which allows us to “piggy-
back” on the existing efficient implementations. These are the first graph-based
algorithms for nearest neighbor search with diversity constraints. For data sets
with low intrinsic dimension, our data structures report a diverse set of k points
approximately closest to the query, in time that only depends on % and log A, where
A is the ratio of the diameter to the closest pair distance in the data set. This bound
is qualitatively similar to the best known bounds for standard (non-diverse) graph-
based algorithms. Our experiments show that the search time of our algorithms is
substantially lower than that using the standard two-stage approach.

1 INTRODUCTION

Nearest neighbor search is a classic data structure problem with many applications in machine
learning, computer vision, recommendation systems and other areas (Shakhnarovich et al., 2006)).
It is defined as follows: given a set P of n points from some space X equipped with a distance
function D(-, -), build a data structure that, given any query point ¢ € X, returns a point p € P that
minimizes D(q, p). In a more general version of the problem we are given a parameter k, and the
goal is to report k points in P that are closest to ¢. In a typical scenario, the metric space (X, D) is
the d-dimensional space, and D(p, q) is the Euclidean distance between points p and q.

Since for high-dimensional point sets the known exact nearest neighbor search data structures are not
efficient, several approximate versions of this problem have been formulated. A popular theoretical
formulation relaxes the requirement that the query algorithm must return the exact closest point p,
and instead allows it to output any point p’ € P that is a c-approximate nearest neighbor of ¢ in
P,ie., D(q,p") < ¢D(q,p). In empirical studies, the quality of the set of points reported by an
approximate data structure is measured by its recall, i.e., the average fraction of the true k nearest
neighbors returned by the data structure.

Although maximizing the similarity of the reported points to the query is often the main objective, it
has long been noted (Carbonell & Goldstein, |1998) that, without additional constraints, the reported
answers are often redundant and/or duplicative. This is particularly important in applications such as
recommendation systems or information retrieval, where many similar variants of the same product,
product seller or document exis To avoid reporting a long list of redundant answers, the search

"For example, an update to the search results listing algorithm implemented by Google in 2019 ensurers “no
more than two pages from the same site” (Liaison} 2019).

Under review as a conference paper at ICLR 2025

problem is reformulated to ensure that the reported answers are sufficiently diverse, according to
some metric p (typically different from D). For example, the paper by |Carbonell & Goldstein|(1998)
proposed to augment the search objective so that, in addition to minimizing the dissimilarity between
the query and the reported set S, it also maximizes the pairwise dissimilarity p between the elements
in The paper stimulated the development of the rich area of diversity-based reranking, which
became the dominant approach to this problem. The approach proceeds in two stages. In the first
stage, the data structure retrieves r points closest to the query, where r can be much larger than
the desired output k. In the second stage, the r points are post-processed to maximize the diversity
objective of the reported k points.

Although popular, the reranking approach to diversifying nearest neighbor search suffers from a
fundamental efficiency bottleneck, as the data structure needs to retrieve a large enough set to ensure
that it contains the k diverse points. In many scenarios, the number r of points that need to be
retrieved can be much larger than % (see e.g., Figure|l|and the discussion in the experimental section).
In the worst case, it might be necessary to set r = €2(n) to ensure that the optimal set is found. This
leads to the following algorithmic question:

Q: Is it possible to bypass the standard reranking pipeline by directly reporting the
k diverse points, in time that depends on k and not r?

This question has been studied in a sequence of papers (Abbar et al., 2013a:b)). In particular (Abbar
et al., 2013b)) presented the following “diversified version” of the Locality-Sensitive Hashing (LSH)
algorithm due to |Indyk & Motwani| (1998). Let X contain all binary vectors of dimension d, the
metric D be the Hamming distance between points in X, and let p be an arbitrary diversity metric on
X. Furthermore, let R > 0 be the “search radius”, ¢ > 1 be the approximation factor, and k be the
target size of the output. Suppose that the data structure is given a query ¢ and let S be the set of
points in P within distance R from q. Define
div(S) = max min P
(5) 5/C8,|S'|=min(k,|S|) p,p’ €S’ p(pp)
to be the measure of the diversity of S. Then the output S” of the data structure of (Abbar et al.|
2013b) consists of min(k, |S|) points within distance cR from g, such that
div(S") > div(S)/6

The running time of the query procedure is (d + k -+ logn)?()n!/¢, while the space used by the data
structure is at most(d + k + log n)o(l)n”l/ ¢. Note that the dependence of the query time and space

bounds on the data set size n is the same as for the standard Hamming LSH algorithm of (Indyk &
Motwani, |1998)).

This result shows that the answer to the above question () is positive. However, the algorithm suffers
from several limitations. First, the distance functions D are limited to Hamming distance or its variants
like the Jaccard similarity (Abbar et al.| [2013a). Although it is plausible that the result could be
extended to other distances that are supported by LSH functions, not all distance functions satisfy this
constraint. Furthermore, the last decade has witnessed the development of a class of highly efficient
algorithms that do not rely on LSH. These algorithms are “graph-based”: the data structure consists
of a graph between the points in P, and the query procedure performs greedy search over this graph
to find points close to the query. Graph-based algorithms such as HNSW (Malkov & Yashunin| 2018)),
NGT (Iwasaki & Miyazakil 2018)), and DiskANN (Jayaram Subramanya et al.,[2019) have become
popular tools in practice, often topping Approximate Nearest Neighbor benchmarks (Aumueller
et al.| [2024). In addition, they are highly versatile, as they do not put any restrictions on the distance
function D. This raises the following variant of above question:

Q’: is it possible to adapt graph-based algorithms so that they directly report k
diverse points, in time that depends on k and not r ?

Our results. In this paper we give a positive answer to this question, by designing a variant of
the DiskANN algorithm that reports approximate nearest neighbors of a given query satisfying

Technically, the paper used the notion of similarity as opposed to dissimilarity, so the objective was
formulated in a dual manner. Please see the original paper for more details.

Under review as a conference paper at ICLR 2025

diversity constraints. Our theoretical analysis of these variants follow the setup of (Indyk & Xul
2023). Specifically, we assume that the input point set P has bounded doubling dimensio d, and
that its aspect ratio (the ratio of the diameter to the closest pair distance) is at most A. Under this
assumption, we show that the query time of our data structures is polynomial in k, log n and log A.

To state our results formally, we need some notation. We say that a set S of k£ points from X is
C-diverse if min, ,rcg p(p,p") > C. We further generalize this notion to allow the set to contain at
most k&’ > 1 points that are similar to each other. Specifically, we say that a set S is (k’, C)-diverse if
for any p € S there are at most & — 1 other points p’ € S such that p(p,p’) < C.

We consider two dual variants of the diverse nearest neighbor search problem, both of which use two
approximation factors: ¢ > 1 is the “dissimilarity” approximation factor with respect to D, and a > 1
is the “diversity” approximation factor with respect to p.

For a query ¢, let S(q) = {p1, ..., pr} be alist of k points from P, sorted according to their distance
from g. We use S(q); to denote the distance of p; from g. We drop the argument ¢ when its value is
clear from the context.

* Primal version: Given a value C, find a set of k points that are approximately closest to the
query while maintaining the desired level of diversity C'. Formally, for any ¢ € X, if OPT
isa (K, C)-diverse set of k points which minimizes OP T\, then the data structure outputs
ALG that is (k¥', C'/a)-diverse such that ALGy < c¢- OPTy.

* Dual version: Given a radius R, find a set of k points that approximately lie within the
radius R, while maximizing the diversity. Formally, for any ¢ € X, let Bp(q, R) be
the set of points in P within distance R from ¢ and let OPT be a (k/, C)-diverse set of
k* = min(k, | Bp(q, R)|) points from Bp(q, R) that maximizes C. Then the data structure
outputs ALG of size k* that is (k', C/a)-diverse such that ALGy~ < cR.

Note that the dual version is analogous to the problem addressed in the prior work (Abbar et al.|
2013b) described in the introduction.

Our main theoretical result is captured by the following theorem, which specifies the approximation
and running time guarantees for our algorithm solving the primal version of the diverse nearest
neighbor problem.

Theorem 1.1. Ler OPT = {p},....,p;} be a (k',C)-diverse solution that minimizes OPT\.
Given the graph constructed by Algorithm [l| the search Algorithm 2| finds a (K',C/12)-diverse

solution ALG with ALG, < (% —|—e) OPTy in O (kloga %) steps, where each step takes
O ((k*/K')(8a)* log A) time. The data structure uses space O(n(k/k")(8c)? log A).

We note that the approximation factor with respect to D, as well as the running time bounds, are
essentially the same as the bounds obtained in (Indyk & Xul |[2023)) for a “slow-preprocessing” variant
of the DiskANN algorithm. The main difference is that the bound in (Indyk & Xu, [2023)) does not
depend on k or £/, as these parameters do not exist in the standard nearest neighbor formulation.

From the practical perspective, an important special case is the “colorful” version of the problem,
where the diversity metric p is uniform. That is, each point p has a “color” (e.g., the seller id, the
website id, etc.) denoted by col[p], while the metric p is such that p(p;, p;) = 0 for col[p;] = col[p;]
and p(p;, p;) = 1 otherwise. This is the version that is solved by the practical implementation of
Algorithms [T]and 2] Note that the approximation factor w.r.t. p plays no role in this setting, as all
distances are either zero or non-zero.

We also give an improved analysis of Algorithm [2| for the case where ¥’ = 1 (Theorem [B.1).
Specifically, we show an improved bound on the number of steps (by a factor of k); also we obtain
an “entrywise” guarantee, where ALG; < O(OPT;) for every i = 1...k, not just ¢ = k. Finally,
we analyze Algorithm [3|for the dual version of the problem (assuming &’ = 1) and give essentially
the same complexity and approximation bounds as for the primal version. Compared to the prior,
LSH-based algorithm for the dual version given in|Abbar et al.[(2013b), our algorithm has exponential
dependence on the doubling dimension (similarly to other algorithms for this setting (Indyk & Xul

3Doubling dimension is a measure of the intrinsic dimensionality of the pointset - see Preliminaries for the
formal definition.

Under review as a conference paper at ICLR 2025

2023))), but avoids the polynomial dependence on n (which is standard for LSH-based algorithms). In
addition, our algorithm works for arbitrary metric spaces, not only the “LSH-able” ones.

Experimental results. For our experiments, we adapt our algorithms in two ways. First, we devise
fast heuristic approximations of the graph construction algorithm (this is much like the differences
between the fast- and slow-preprocessing algorithms in Disk ANN (Jayaram Subramanya et al.,|2019;
Indyk & Xu| [2023))). Second, we restrict our implementation to cater to the colorful case. As one
can see from the plots in Figures 2] and [3] both the new indexing and the search methods play a
crucial role in improving the overall search quality. For example, to achieve 95% recall@100 for the
product dataset, the baseline reranking approach retrieving r > k nearest neighbors followed by
post-processing has latency upwards of 8ms, while the improved search algorithm alone brings it
down to approximately Sms. Making both indexing and search diverse further brings this down to
around 1.5ms, resulting in an improvement upwards of 5X.

2 PRELIMINARIES

Let (X, D) be the underlying metric space, with distance function D. We use Bp(p,) to denote a
ball centered at p with radius r, i.e., Bp(p,r) = {u € X : D(u,p) < r}. Similarly, the ball B,(p,r)
is defined. We will drop the subscript D if the metric is clear from the context.

We have a point set P with n points p1, ...p,. We say a point set P has doubling dimension d if for
any point p and radius 7, the set B(p, 2rr) N P can be covered by at most 2¢ balls with radius 7.

Lemma 2.1. Consider any point set P C X with doubling dimension d. For any ball B(p,r)
centered at some point p € P with radius v and a constant k, we can cover B(p,r) N P using at
most m < O(k?) balls with radius smaller than r /k, i.e. B(p,7) N P C Ui, B(pi,r/k) for some
P1-..Pm € X.

We define A = % to be the aspect ratio of the point set P where D, 4. (Dpin, r€SP.) represents

the maximal (minimal, resp.) distance between any two points in the point set P.

The following definition recaps the discussion in the introduction.

Definition 2.2 ((k¥', C)-diverse). Let S be a point set in a metric space (X, p) where p(p1,p2)
measures the diversity of two points p1,pa. We say S is (k', C)-diverse if for any point p € S, we
have |B,(p,C) N S| < k.

Let ALG = {p1,...,px} and OPT = {p7, ..., p;} be any two sets consisting of k points. We write
ALG < OPT if for any i, ALG; < OPT;, where (as defined earlier) ALG; (respectively OPT)) is the
distance of the ith closest point in ALG (respectively OPT) to the query q.

In the experimental section, we will consider a simplified version of the problem where the diversity
metric p is uniform. That is, we use col[p] to denote the color of a point p, and define p(p;,p;) =0
for col[p;| = col[p;] and p(p;, p;) = 1 otherwise.

Definition 2.3 ((k’-colorful). Let P be a point set. For each p € P, we use col[p] to denote its color.
A set of points ALG = {p1, ..., pr.} is k'-colorful if within the multi-set {col[p1], ..., col[pk]}, no color
appears more than k' times.

For simplicity, we assume k is a multiple of &'.

3 ALGORITHMS

In this section we describe our algorithms.

The preprocessing algorithm. The indexing algorithm, which is the same for both the primal and
dual versions of the problem, is shown in Algorithm[I] Line 12 of the algorithm uses the greedy
algorithm of |Gonzalez| (1985), defined below.

Gonzales’ greedy algorithm. Given a set of n points and a parameter m, the algorithm picks m
points as follows. The first point is chosen arbitrarily. Then, in each of m — 1 steps, the algorithm
picks the point whose minimum distance w.r.t. p to the currently chosen points is maximized. It is

Under review as a conference paper at ICLR 2025

Algorithm 1 Indexing algorithm for diverse NN

1: Input: A set of n points P = {p1, ..., pn }. k is the size of the output. k¥’ is the parameter in the
diversity definition. « is the parameter used for pruning.

2: Output: A directed graph G = (V, E) where V = {1, ..., n} are associated with the point set P.

3: for each point p € P do

4: Sort all points v € P based on their distance from p and put them in a list £ in that order
5 while £ is not empty do

6: u < argmin D(u, p)

uel

7: Initialize bag[u] «+ {u}

8: for each point v € £ in order do

9: if D(u,v) < D(p,u)/(2a) then
10: bag[u] + bag[u] Uv
11: remove v from £
12: rep[u] use the greedy algorithm of Gonzales to choose k/k’ points in bag[u] to

approximately maximize the minimum pairwise diversity distance.

13: add edges from p to rep[u]
14: Remove u from £

known |Gonzalez| (1985)) that this algorithm provides a 2-approximation for the problem of picking
a subset of size m which maximizes the minimum pairwise diversity distance between the picked
points. Moreover, the picked set has an anti-cover property which we will discuss in Proposition [3.4]

Primal Search Algorithm. Algorithm[2]shows the search algorithm for the primal version of diverse
nearest neighbor. The algorithm has a different condition for &’ = 1 as in this case we can slightly
improve the performance of the algorithm as shown in Section[B.I] The general case of the algorithm
is analyzed in Section[3.1] The initialization step of line 3, can be done using the following algorithm.

Algorithm 2 Search algorithm for primal diverse NN

1: Input: A graph G = (V, E) with N,,;(p) be the out edges of p, query ¢, optimization step T,
diversity lower bound C.

2: Output: A set of £k points ALG.

3: Initialize ALG = {p1, ..., pi } to be the k points satisfying (k’, 0.1C')-diverse constraint using the
initialization step proved in Lemma 3.2

4: fori =1to T do

5: U<+ U (Nowt(p)Up) and sort U based on their distance from ¢
pEeALG

6: if ¥/ = 1 then

7: ALG =0

8: else

9: ALG < the closest £ — 1 points in ALG
10: for each point v € U in order do
11: if ALGJwis (k',0.1C)-diverse then
12: ALG + ALGUu
13: if |ALG| = k then
14: Break

15: Return ALG

The initialization step. Given a set P of n points equipped with metric distance p, and parameters &’
and k, and lower bound diversity C, the goal is to pick a subset S C P of size k which is (k¥', C/4)
diverse or otherwise output that no (k’, C')-diverse subset S exists. We use the following algorithm

* Initialize SOL = ()
» While there exists a point p € P such that the ball B = B,(p, C'/4) has k’ points in it, (i.e.,
|BNP|> k),
— Add an arbitrary subset of B N P of size k' to SOL.
— Remove all points in 2B = B,(p, C'/2) from P.

Under review as a conference paper at ICLR 2025

* Add all remaining points in P to SOL.

o If |SOL| > K, return an arbitrary subset of it of size k, otherwise return ‘no solution’.

Lemma 3.1. If P has a subset OPT of size k that is (k', C)-diverse, our initialization algorithm
finds a (K, C/4)-diverse subset of size k. (Proof in Appendix@)

Dual Search Algorithm. Algorithm [3|shows the search algorithm for the dual version of the diverse
nearest neighbor problem. We provide the analysis in Section[B.2]

3.1 ANALYSIS OF THE PRIMAL DIVERSE NN ALGORITHM

In this section we prove Theorem [I.T| that gives the approximation and running time guarantees for
Algorithm[T]and Algorithm

Lemma 3.2. The graph constructed by Algorithm|1|has degree limit O((k/k")(8c)? log A).

Proof. Let’s first bound the number of points not removed by others, then according to Line 12 in
Algorithm [} the degree bound will be that times k/k’.

We use Ring(p,r1,72) to denote the points whose distance from p is larger than 7, but smaller than
7. For each i € [log, A], we consider the Ring(p, Dz /2%, Dinas/27") separately. According to
Lemma we can cover Ring(p, Dinaz /2%, Dinaz/2' 1) N P using at most m < O((8)?) small

balls with radius 2D+—2”& According to the pruning criteria in Line 9, within each small ball, there will

be at most one point remaining. This establishes the degree bound of O((k/k’)(8a)?log A). [

Lemma 3.3. Suppose OPT = {p},...,p}} is a (K, C)-diverse solution with minimized OPT and
ALG = {p1,...,pr} be the current solution (ordered by distance from q). If pr, ¢ OPT, there
exists a point p* € OPT \ ALG such that |B,(p*,C/2) N (ALG \ px)| < k" and ALG \ py |Jp* is
(K',C/4)-diverse.

Proof. We use B, (p,) to denote the ball in the (X, p) metric space. Because p,, ¢ OPT, we have
OPT = OPT \ ALG # @. We repeatedly perform the following operation until OPT gets empty:
select a point p from OPT, get 2 = B,(p, C/2) N OPT, and remove z from OPT. By doing this, we
can get a list of points {p7, ..., p, } and a partition of OPT \ ALG = z; U 25... U z,,. By definition,
we have the following properties:

e {pi, .., pLINALG =g
s ziNzj =@ fori #j
* > ;12| =|OPT \ ALG| = |ALG \ OPT]
Now let w; = B,(p},C/2) N (ALG \ pi \ OPT). Because all the B,(p}, C/2) balls are disjoint,

> i lwil <JALG\ pi \ OPT| < |OPT \ ALG| = >, |2/, there must exist an such that |w;| < |z].
For that 7, we have that | B,(p;}, C'/2) N (ALG \ ps)| is equal to

=|B,(p;,C/2) N (ALGN OPT)| + |B,(p;,C/2) N (ALG \ pi \ OPT)] (Because py, ¢ OPT)
=[B,(pi,C/2) N (ALGNOPT)[+ |wi| < |B,(pi,C/2) N (ALG N OPT)| + |z

<|B,(p;,C/2) N (ALGNOPT)| + | B,(p;,C/2) N (OPT \ ALG)| = |B,(p;,C/2) N OPT| <k
Therefore, we get B,(pf,C/2) N (ALG \ pr) < k. Now, for any point p € B,(p},C/4),

|B,(p, C/4) N (ALG \ pr.)| < |B,(pf,C/2) N (ALG \ pi)| < k', so we know that ALG \ p U p} is
(k',C/4)-diverse.

O

The following is the well-known anti-cover property of the greedy algorithm of Gonzales whose
proof we include in Section [A]for the sake of completeness.

Under review as a conference paper at ICLR 2025

Proposition 3.4. In Line 12 of Algorithm[l} let rep[u] be the output of greedily choosing k/k’ points
in baglu| maximizing pairwise diversity. If a point p € bag[u] \ rep[u], we have mir[l]p(p, v) <
verep(u
min]p(vl,vg). (Proof in Appendix@)

v1,v2Ereplu

Lemma 3.5. There always exists a point p' connected from some point w € ALG such that
1. ALG\ pr. Up' is (K, C/12)-diverse
2. D(p',q) < D(pr,q)/a+ OPT(1 4+ 1/a)

Proof. According to Lemma 3.3] for any current solution ALG with py, ¢ OPT, there exists a point
p* € OPT \ ALG such that ALG \ py U p* is (k¥', C'/4)-diverse. Let w € ALG be the closest point to
p*. If there exists an edge from w to p*, replacing py, with p* is a potential update. We set p’ = p*
and D(p', q) < OPT satisfies the distance upper bound above.

Otherwise, we let u be the point where p* € bag[u] but not selected into rep[u]. For any point
p’ € baglu], D(p',u) < D(w,u)/(2a), so D(p',p*) < D(w,u)/a < D(w,p*). This means that
all points in bag[u] are closer to p* than w, so they can’t belong to ALG. In the following, we

consider two cases depending on whether mir[l | p(p*,v) > C/3. In each case, we will find a
verep|u

desired p’ € rep[u] and it is connected to w.

1. mi?]p(p*, v) < C/3: In this case, there exists another point p’ € rep[u] with D(p*,p’) <
verep|u

D(p*,u) + D(u,) < D{w,u)/acand p(p*,) < C/3. Because |B, (p*, C/2) (YALG |
pr)| < k', we have |B,(p', C/6) (ALG \ px)| C |B,(p*,C/2) N(ALG \ p)| < K/, so
the addition of such p’ satisfies that ALG \ py, U p’ is (k', C/12)-diverse.

2. mir[l]p(p*,fu) > (C/3: In this case, according to Proposition (3.4} we have rep[u] =
verep|u

{z1,. 2/} € B(u, D(u,w)/(2c)) all with diversity distance at least C'/3 from each
other. Therefore, for any p; € ALG \ py, there can’t exist two z; and z;/ s.t. p(p;, z;) <
C/6 and p(p;,z;:) < C/6. By a counting argument, we can find at least one z; s.t.
|B,(zi,C/6) N (ALG\ pr)| < K'. Finally, we let p’ = z; where ALG \ p,, Up' is (k’, C/12)-
diverse.

We have proved that the p” we found satisfies the (k’, C'/12)-diverse criteria. Now we will bound its
distance upper bound.

D(p',q) < D(p*,q) + D(p',p*) < D(p",q) + D(p',u) + D(p*, u)
< D(p*,q) + D(w,u)/(2a)) + D(w,u)/(2a) (Line 9 in Algorithm [T])
< D(p*,q) + D(w,u)/c
< D(p*,q) + D(w,p")/cx (Because w is ordered earlier than p*)
< D(p",q) + D(w,q)/a+ D(p*,q)/o < D(pk, q)/c + OPTy (1 + 1/cx)

O

Proof of Theorem Regarding the running time, the total number of edges connected from any
point in ALG is bounded by |U| < O((k2/k")(8a)%log A). In each step, the algorithm first sorts
all these edges and then checks whether each of them can be added to the new ALG set. The total
time spent per step is O(k|U| + |U| log |U|). Usually, we assume & >> log |U|, and we can have the
overall time complexity to be O ((k*/k’)(8a;)?log A) per step.

To analyze the approximation ratio, at time step ¢, we use ALG' = {pt, ..., pt} to denote the
current unordered solution. We denote ALG| = m?’:](D(pt,q). According to Algorithm [2| and
iclk

Lemma , if p; is updated at time step ¢, we have D(pt, q) < D(pﬁ_l, q)/a+ OPTy(1+ 1/a).
By an induction argument, if a point p; is updated by ¢ times at the end of time step 7', we have

D(pf,q) < 220 1 atlopT,,

[e3

Under review as a conference paper at ICLR 2025

We now prove that ALG] < max Da(’T’ig;’,f) + 9ELOPTy. Leti € [k] be the index achieving the
ax =

maximal distance upper bound. For the sake of contradiction, if ALG] > DCEZT);;’,?) + C“'H 1OPT,,

this means that p! was updated for at most 7/k — 1 times. By a counting argument, there exists
another index j which was updated for at least T'/k + 1 times. However, at the time ¢ when p§- was

0
already updated for T'/k times, D (p}, q) < D@E?@}Cq) 4ELOPT, < ALG] < ALGE, so the algorithm
wouldn’t have chosen pé» to optimize cause it couldn’t have the maximal distance at that time, leading

to a contradiction. Therefore, we prove that ALG] < max D(p : a) 4 2L OPT,.
1

Now we consider the following three cases depending on the value of the maximal D(p?, ¢). The
case analysis here is similar to the proof in Theorem 3.4 from (Indyk & Xul 2023).

Case 1: D(pY,q) > 2Dyqz. Let p} be the point havmg the maximal distance from ¢ in an opt1mal
solution OPT. We know that for any p?, we have D(p},q) > D(p?,q) — D(p?, p}) >
DY, q) — Diaz > D(p?, q)/2. Therefore, the approximation ratio after 7' optimization

ALG] D(p?,q 1 2 1
steps is upper bounded by D q) < D(p(q)a)T/k + 2%1 < Ziw t ;"—J_rl

calculation shows that we can get a (2£1 + €) approximate solution in O(k log,, %) steps.

A simple

Case2: D(pY,q) < 2D, and OPT > (QH)Dmm- To satisfy Da(;;i?/,kq) + 2ELOPT, < (25 +

€)OPTy, we need (il/kq) < eOPTy. Applying the lower bound OPTy >

2(a+1)A
(a—1)e

-1
4&+1) Dmin’ we

can get that T' > klog,, suffices.

Case 3: D(pY,q) < 2D, and OPT < 4(04 +11) D,,in. In this case, we must have k = 1, because

otherwise D(p},p;) < 2D(p},q) < Dmin,violating the definition of D,,;,. Suppose
k = 1 and the problem degenerates to the standard nearest neighbor search problem. After
T optimization steps, if p? is still not the exact nearest neighbor, we have D(p?,q) >

D(pT,pt) — OPTy > Lain Applying the upper bound of D(pf, q) and OPT;, we have
—D"Q“'" < DT, q) < L(f;’q) + %OPTl < 7D(§;’q) + "“" . This can happen only if
T < log, %. O

4 EXPERIMENTS

In this section we provide an empirical evaluation of our algorithm. We focus on the special case of
the k’-colorful nearest neighbor problem as in Deﬁnition Recall that in this setting, we use col[p]
to denote the color of a point p, and we define p(p;, p;) = 0 for col[p;] = col[p;] and p(p;,p;) =1
otherwise. In other words, we seek & nearest neighbors, such that no more than &’ belong to any single
color. Although restrictive, this case is of great practical interest in many settings, including shopping
and search. In both of these applications, the data points represent products (resp. documents)
and a color of a vector corresponds to seller (resp. domain) of the product. It is then desirable to
output results from a diverse set of sellers or domains (Liaison, 2019). Intuitively, displaying diverse
results would lead to increased competition between the sellers, and also simultaneously higher click
probabilities, thereby leading to increase in revenue of the exchange.

For our experiments, we adapt our algorithms from Section [3]in two ways: one, we devise fast
heuristic approximations of the graph construction algorithm (this is much like the differences
between the fast- and slow-preprocessing algorithms in Disk ANN (Jayaram Subramanya et al.,|2019;
Indyk & Xul[2023)), and second, we restrict our implementation to cater to the special case of the
k’-colorful version of the problem as defined in Definition The pseudo-code of our efficient
algorithms are described in Appendix |C] All experiments were run on a Linux Machine with AMD
Ryzen Threadripper 3960X 24-Core Processor CPU’s @ 2.3GHz with 48 vCPUs and 250 GB RAM.
All query throughput and latency measurements are reported for runs with 48 threads.

4.1 DATASETS AND ALGORITHMS

Under review as a conference paper at ICLR 2025

We consider three datasets for evaluation: one real-world
dataset and two semi-synthetic datasets.

Seller 6
Seller 5

Real-world dataset: Our real world data set comprises of
64-dimensional vector embeddings of different products
from a large advertisement corpus. Each product/vector
is additionally associated with a seller, which becomes its
color in our setting. There are 20 million base vectors and
5000 query vectors. The fraction of products correspond-
ing to the top 20 sellers is shown in Figure[I] As shown
in the figure, a small number of sellers constitutes more
than 90% of the data, motivating the need for enforcing Figure 1: Seller distribution in real-
diversity in the search results. world data set.

Seller 4

Seller 1 Seller 3

Seller 2

Semi-synthetic dataset: We also consider the publicly available real-world Arxiv dataset
[2024) which contains OpenAl embeddings of around 2 million paper abstracts into 1536 dimensional
vectors and the classical SIFT dataset of 1M vectors in 128 dimensions. These datasets do not
contain any color information, so we synthetically add this information into the data set. Specifically,
we generate the color information as follows: for each vector, with probability 0.9, we assign a
color selected from the set {1, 2, 3} uniformly at random, and with 0.1 probability we assign a color
selected uniformly at random from the set {4, ..., 1000}. Therefore the number of distinct colors is
at most 1000 in this data set. For the SIFT dataset, we sampled one dominant colors with probability
0.8 and had a uniform distribution over 999 other colors with probability 0.2.

As for algorithms, since our algorithms are enhancements of the DiskANN algorithm, we use that as
a natural baseline to compare against.

Standard DiskANN Build + Post-Processing (Baseline): In this baseline, we build a regular
DiskANN graph without any diversity constraints. To answer a query, we first invoke the regular
DiskANN search algorithm to retrieve r >> k candidates, again without any diversity constraints.
Then we iterate over the retrieved elements in sorted order of distances to the query, and greedily
include the ones which do not violate the &k’ diversity constraint, until we have k total elements.

Standard DiskANN Build + Diverse Search: In this improvement, we use our diversity-preserving
search Algorithm [5discussed in the Appendix [C] but the index construction remains the standard
DiskANN algorithm.

Diverse DiskANN Build + Diverse Search: For our complete algorithm, we additionally use our
diversity-aware index construction Algorithm [7] (Appendix [C) which ensures sufficient edges are
present to nodes of different colors in any neighborhood.

For all of the above algorithms, we use the parameters of list-size L. = 200 and graph-degree 64 when
building the graphs. For search, we search for ¥ = 100 nearest neighbors with a diversity constraint
of no more than &' = 10 and k¥’ = 1 results per color. We vary the list size L at search time to get
varying quality search results and plot the recall @ IO(ﬂ vs average query latency.

4.2 DISCUSSION

As one can see from the plot in Figure [2] (left), both of our algorithmic innovations play a crucial
role in the overall search quality on the real-world dataset. For example, to achieve 95% recall@ 100
in the real-world dataset, the baseline approach has latencies upwards of 8ms, while the improved
search algorithm brings it down to ~ 4.5ms. Making both build and search diverse further brings this
down to around ~ 1.5ms, resulting in an improvement upwards of 5X.

The plot in Figure 2| (middle) reveals an interesting phenomenon: for high recalls (say 90%) on the
semi-synthetic arXiv dataset, the post-processing approach has a latency of around 90ms, while the
diverse search algorithm when run on the standard graph has a latency of around 135ms. This is

*Recall @100 is the size of the intersection of the algorithm’s 100 returned results with the true 100 closest
diverse candidates, averaged over all queries. The ground-truth set of top 100 diverse NNs for any query can be
computed by iterating over all the vectors in sorted order of distances to the query, and greedily including the
ones which do not violate the k’ diversity constraint, until we have accumulated k total elements.

Under review as a conference paper at ICLR 2025

Real Dataset, Max Per Color = 10 100 ARXIV Dataset, Max Per Color = 10 SIFT Dataset, Max Per Color = 10
100 _e-——— @ ————8—--—-8 oo ANV 100
" - == 1 BT L R
M - % P S %
- Al -4
90 - x’r* >
v 80 A x 80
g 80 / g - < g
— — 7’ ~ 70
® J ® 70 v ®
= / = , =
T /] ’ T 60
g 70 v M / g
& ! & 60 X &
/ - 50
60 H -e- Diverse Build + Diverse Search 50 ,' -e- Diverse Build + Diverse Search ,/ -e- Diverse Build + Diverse Search
H Standard Build + Diverse Search e Standard Build + Diverse Search 40 S Standard Build + Diverse Search
! . y " .] y L, .] y ;
s0{ ¥ w- Standard Build + Post-Processing w0l v ¥~ Standard Build + Post-Processing 0] v ¥~ Standard Build + Post-Processing
1 2 3 a 5 6 7 8 20 40 60 80 100 120 2 3 a 5 6 7 8
Mean Latency (ms) Mean Latency (ms) Mean Latency (ms)

Figure 2: Recall vs Latency for real-world (left), ArXiv (middle) and SIFT (right) datasets with
k' = 10.

Real Dataset, Max Per Color = 1 ARXIV Dataset, Max Per Color = 1 SIFT Dataset, Max Per Color = 1
P Sahatl SEUEE] =G ———® 100
90 P -- P r:&
« — — o« - 90
80 - —— e 80 g —n
- a7 80
70 - x
o =) e o
S 60 S 60 o > 8 7
®] ‘ ® 60
T 50 = " X H
[S . 3
24 ,,’" 240 X 2 50
30 7 -e- Diverse Build + Diverse Search ,,f' -e- Diverse Build + Diverse Search 40 /7 —e- Diverse Build + Diverse Search
2] 4 #- Standard Build + Diverse Search 2 x #- Standard Build + Diverse Search 30 P #- Standard Build + Diverse Search
v -¥- Standard Build + Post-Processing v’ -¥- Standard Build + Post-Processing 2 v ~¥- Standard Build + Post-Processing
10
0 5 10 15 20 25 20 40 60 80 100 120 140 2 3 4 5 6 7 8 9
Mean Latency (ms) Mean Latency (ms) Mean Latency (ms)

Figure 3: Recall vs Latency for real-world (left), ArXiv (middle) and SIFT (right) datasets with
K =1.

perhaps because the standard graph construction might not have sufficiently many edges between
nodes of different colors to ensure that the diverse search algorithm converges to a good local
optimum. On the other hand, running the diverse search on the graph constructed keeping diversity
in mind during index construction fares the best, with a latency of only around 25ms. A similar
phenomenon occurs in the SIFT semi-synthetic dataset as well.

Build Diversity Parameter Ablation. In our heuristic graph construction algorithm (see Algo-
rithms [and [7)), the graph edges are added by considering both the geometry of the vectors and the
corresponding colors. Loosely, the a-pruning rule of Disk ANN dictates that an edge (u, v) is blocked
by an existing edge (u, w) if d(w,v) < d(u,v)/a. In the original DisKANN algorithm, any edge
(u,v) which is blocked is not added. In our setting, we additionally enforce that an edge needs to be
blocked by edges of m different colors to not be added to the graph, where m is a tuneable parameter.
We now perform an ablation capturing the role of m in the graph quality using the SIFT dataset.

SIFT Dataset, Max Per Color = 10 SIFT Dataset, Max Per Color = 1
100 —@--z-- B e 100 —@-—go= P
e--—" T TIIIEETTTTET T T e
98 d
-] _
96 1 /,‘.,_—— 95 P -
g 941 . 8 ,/""‘
® B *0
3 x - gl
3 90 / 3 /
& S’ & 85 /
881 /I s
J -8- m=10 P -8- m=10
86 1 ’ — 4 _
J/ m=2 80 1 / m=2
84 " -¥- m=1 V’ -¥- m=1
3 4 5 6 7 8 9 3 4 5 6 7 8 9
Mean Latency (ms) Mean Latency (ms)

Figure 4: Recall vs Latency for SIFT dataset with k' = 10 (left) and &’ = 1 (right) by varying the
diversity parameter m during index construction. Higher m implies more diversity.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Sofiane Abbar, Sihem Amer-Yahia, Piotr Indyk, and Sepideh Mahabadi. Real-time recommendation
of diverse related articles. In Proceedings of the 22nd international conference on World Wide
Web, pp. 1-12, 2013a.

Sofiane Abbar, Sihem Amer-Yahia, Piotr Indyk, Sepideh Mahabadi, and Kasturi R Varadarajan.
Diverse near neighbor problem. In Proceedings of the twenty-ninth annual symposium on Compu-
tational geometry, pp. 207-214, 2013b.

Martin Aumueller, Erik Bernhardsson, and Alec Faitfull. Ann benchmarks. https:https/
//ann—-benchmarks.com, 2024.

Jaime Carbonell and Jade Goldstein. The use of mmr, diversity-based reranking for reordering
documents and producing summaries. In Proceedings of the 21st annual international ACM SIGIR
conference on Research and development in information retrieval, pp. 335-336, 1998.

Arxiv OpenAl Embeddings. Openai embeddings of arxiv abstracts, 2024. URL
https://github.com/harsha-simhadri/big-—ann—-benchmarks/commit/
dfleb3aa3cd9cd29cba%daf24ce2e64271fa%dl.

Teofilo F Gonzalez. Clustering to minimize the maximum intercluster distance. Theoretical computer
science, 38:293-306, 1985.

Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: towards removing the curse of
dimensionality. In Proceedings of the thirtieth annual ACM symposium on Theory of computing,
pp. 604-613, 1998.

Piotr Indyk and Haike Xu. Worst-case performance of popular approximate nearest neighbor search
implementations: Guarantees and limitations. In Advances in Neural Information Processing
Systems, volume 36, pp. 66239-66256, 2023.

Masajiro Iwasaki and Daisuke Miyazaki. Optimization of indexing based on k-nearest neighbor
graph for proximity search in high-dimensional data. arXiv preprint arXiv:1810.07355, 2018.

Suhas Jayaram Subramanya, Fnu Devvrit, Harsha Vardhan Simhadri, Ravishankar Krishnawamy, and
Rohan Kadekodi. Diskann: Fast accurate billion-point nearest neighbor search on a single node.
Advances in Neural Information Processing Systems, 32, 2019.

Suhas Jayaram Subramanya, Fnu Devvrit, Harsha Vardhan Simhadri, Ravishankar Krishnawamy, and
Rohan Kadekodi. Diskann. https://github.com/microsoft/DiskANN, 2023.

Search Liaison. Google announces site diversity change to search results, 2019. URL https:
//www.searchenginejournal.com/google—-site—-diversity—change/
311557/L

Yu A Malkov and Dmitry A Yashunin. Efficient and robust approximate nearest neighbor search using
hierarchical navigable small world graphs. IEEE transactions on pattern analysis and machine
intelligence, 42(4):824-836, 2018.

Gregory Shakhnarovich, Trevor Darrell, and Piotr Indyk. Nearest-neighbor methods in learning and
vision. MIT press, 2006.

A OMITTED PROOFS FROM SECTION[3]

Lemma 3.1. If P has a subset OPT of size k that is (k', C)-diverse, our initialization algorithm
finds a (K', C/4)-diverse subset of size k. (Proof in Appendix@)

Proof. Note that it is straightforward to see why the set SOL that we get at the end is (k’, C'/4)-
diverse. This is because first of all, each time we pick %’ points in a ball B and add them to SOL,
we make sure that no additional point will ever be picked in 2B and thus within distance C/4 of the
points we pick there will be at most &’ points in the end. Second, at the end, every remaining ball

11

https:https://ann-benchmarks.com
https:https://ann-benchmarks.com
https://github.com/harsha-simhadri/big-ann-benchmarks/commit/df1e53aa3cd9cd29c6a9daf24ce2e64271fa9ed1
https://github.com/harsha-simhadri/big-ann-benchmarks/commit/df1e53aa3cd9cd29c6a9daf24ce2e64271fa9ed1
https://github.com/microsoft/DiskANN
https://www.searchenginejournal.com/google-site-diversity-change/311557/
https://www.searchenginejournal.com/google-site-diversity-change/311557/
https://www.searchenginejournal.com/google-site-diversity-change/311557/

Under review as a conference paper at ICLR 2025

of radius C'/4 has less than or equal to k' points in it. Therefore, we can pick all such points in the
solution and everything we picked will be (k’, C/4) diverse.

Next we argue that we are in fact able to pick at least k points in total which completes the argument.
We do it by following the procedure of our algorithm and comparing it with OPT. At each iteration
of the while loop that we remove P N 2B, we add exactly k" points from P N 2B to our solution SOL.
Now note that the optimal solution OPT cannot have more than &’ points in 2B because by triangle
inequality any pair of points in 2B have distance at most C, and picking more than &’ points in this
ball contradicts the fact that OPT is (k¥’, C') diverse. Thus we can have an one-to-one mapping from
each point in OPT N 2B to the k" points in P N 2B added to SOL. At the end of the while iteration,
we know any unmapped point in OPT still exists in P, so we just map it to itself. By doing this, we
can have an one-to-one mapping from OPT to SOL, which means that |[SOL| > |OPT| = k. O

Proposition 3.4. In Line 12 of Algorithm let rep[u] be the output of greedily choosing k/k' points
in bag[u]| maximizing pairwise diversity. If a point p € bag[u] \ rep[u], we have min p(p,v) <

vEreplu] -
min],0('01,’1}2). (Proof in Appendixﬁ)

v1,v2€replu

Proof. For the sake of contradiction, suppose min p(p,v) > min p(v1,vs), and the pair-
vEreplu] v1,v2 Ereplu]

wise diversity minimizer is achieved by =~ min :]p(ul, vg) = p(z,y). Without loss of general-
v1,V2€rep|u

ity, we assume x is added to rep[u] before y. At the time step ¢ when y was added to rep;[u],

min p(y,v) = p(z,y) and min p(p,v) > min p(p,v) > p(z,y), so y wouldn’t have been
vErep[u] vErept[u] vEreplu]

chosen by the greedy algorithm. Therefore, we have derived a contradiction. O

B ANALYSIS OF OTHER ALGORITHMS

B.1 IMPROVED ANALYSIS FOR THE PRIMAL ALGORITHM WHEN k' =

In this section we give an improved analysis for the Algorithm[2|when we have k' = 1. First of all
the algorithm has an improved number of steps and thus the runtime by a factor of k. Second, the
solution provides an entrywise guarantee, where for each i < k D(q,p;) < (Z—ﬂ +¢)D(q,p})

Theorem B.1. Given the graph constructed by Algorithm the search Algorithm nds a(1,0.10)-
diverse solution ALG satisfying ALG < (g—ﬂ + e) - OPT for any (1, C)-diverse solution OPT in
T = O(log, %) steps and each step takes O((8a))?k? log A) time.

Lemma B.2. Let OPT = {p}, ..., p; } be any (1, C)-diverse NN solution, and ALG = {px, ..., pi. }
be any (1,0.1C)-diverse NN solution. There exists another (1,0.2C)-diverse NN solution ALG' =
{pi,.... D} } such that

1. p. € Nout(pi) for any p; € ALG'.

2. D(pi,q) < D(pi;q)/or+ OPTi(1 + 1/a).
Proof. For any point p; € ALG, we let u be the point where p; € bag|u] at the time we are
constructing p;’s our neighbors in Algorithm[I] We consider the following three cases.
Case 1: p} € replul.

Case2: min p(w,p}) <0.4C
werep[u]

Case 3: min[]p(w,pf) > 0.4C
werep|u

We construct the desired ALG’ in a specific order. For any index i that satisfies case 1, we
know (p;,pf) € E, so we directly set p; = p;. For any index i that satisfies case 2, we set
pi = z € replu] to be the point satisfying p(z,p}) < 0.4C, which is connected to p;. Next,

12

Under review as a conference paper at ICLR 2025

because all the balls {B,(p}, C/2), ..., B,(p),C/2)} are disjoint, the selected points up to now
satisfy the (1,0.2C)-diverse criteria. Then, we consider each remaining index 7 satisfying case

3 (in any order). Let rep[u] = {z1,...,21}. Because min[]p(x,y) > 0.4C, their balls
x,yErep|u

{B,(21,0.2C), ..., B,(z,0.2C)} are disjoint. By a counting argument, there must exist at least one
z; whose ball B,(z;,0.2C') contains no other pre-selected p’’s before index ¢. We then set p; = z;,
which is also connected to p;. Now we get a solution ALG’ = {p1, ..., p}. } which is (1,0.2C)-diverse
and each p; € N,:(p;). To prove the distance bound, for an index ¢ satisfying case 1, p} = p, so
the distance bound is valid. Otherwise we have the following:

D(p;»q) < D(p;, q) + D(pi, p)
pi,u)/(2a) + D(p;, u)/(2c) (Line 9 in Algorithm2)

Pi,D;)/ (u is ordered earlier than p})

IAIAIA A IA
SO0 T T

O

Lemma B.3. Let OPT = {pi, ..., p;} be any (1, C)-diverse NN solution, ALG* = {p!, ..., pi.} be
the solution found by the search Algorithm[2|on step t. We have the following guarantee:

1. ALG' is (1,0.1C)-diverse

2. D(pt,q) <D " q)/a+OPTi(1+1/a).

Proof. For the solution ALG* ! at step t — 1, by Lemma|[B.2} we know that there exists a (1,0.2C)-
diverse solution ALG’ = {p1, ...p} } where p} € N,u:(p!~"). In the following, we will prove that the
solution ALG' = {p!, ..., p}. } found by the search Algorithm |2} ordered based on increasing distance
from g, is no worse than ALG’ entry-wise, i.e. D(p!,q) < D(p}, q).

Let U = U Nowt(pi™!). We start from the solution SOL® = ALG’ and iterate over
piTleALGt-1

the set U = {uq,..., U} in the order of increasing distance from ¢. At each iteration i < m,
we define SOL'. We will inductively show that, at the time after we consider w;, the current
solution SOL' N {uy,...,u;} = ALG* N {uy,...,u;}. Suppose this conclusion holds up to i — 1
and we are considering u;. We decmopose SOL'~! into PRE = SOL'~! N {uy, ...u;_1,u;} and
SUF = SOL"=* N {w; 1, ..., uy, }, based on whether the point has distance to ¢ smaller or larger than
D(u;, q). First, if Algorithm [2|has already added k points to ALG, we simply set SOL' = SOLI~!
from now on. Otherwise, Algorithmwould try to add u; to ALG! if it is not conflicting with the
(1,0.1C)-diverse criteria. If u; € SOL™!, PRE C SOL'~* is (1, 0.1C)-diverse, so Algorithmwill
add u; to ALG" as well. We simply set SOL' = SOL'~! and the instruction follows. If the current
u; ¢ SOLI—1, we have the following two cases:

Case 1: PRE U, is not (1,0.1C)-diverse. In this case u; won’t be added to ALG', and we keep the
same SOL' = SOL' L.

Case 2: PREUu; is (1,0.1C)-diverse. In this case u; will be added to ALG*. Because SUF C ALGj,
is (1,0.2C)-diverse, there exists at most one point v € SUF s.t. p(u;,v) < 0.1C. If such v
doesn’t exist, we let v to be the point with the maximal distance from ¢ in set SUF. Then, we
let SOL' = SOL™™1 \ v U u;, which is still (1,0.1C)-diverse. Because D(u;,q) < D(v, q),
we have SOL! < SOL'-1,

Therefore, in the end we have SOL™ = ALG" and by the transtivity property, we know ALG" < ALG'.
Applying the distance bound for ALG’ from Lemma|[B.2] we can get the same distance bound for
ALG". The (1,0.1C)-diverse property of ALG" is maintained throughout the algorithm process. [J

13

Under review as a conference paper at ICLR 2025

Proof of Theorem[B1] By Lemma we know that for any fixed (1, C)-diverse NN solution
OPT = {p},...,p}}. at each time step ¢, we can find a new (1,0.1C')-diverse solution ALG" and

D(pt,q) < D', q)/a+ D(p},q)(1 + 1/a) for any i € [k]. Following the same proof argument
as in Theorem applied to every index ¢, we can get a similar entry-wise approximation bound

ALGT < (% + 6) -OPTinT = O (log, £) steps. The O((8)%*log A) time spent on each

step is to get all the connected points in set U and check whether each of them can be added to
ALG. =

B.2 ANALYSIS FOR THE DUAL DIVERSE NN ALGORITHM

In this section we analyze Algorithm 3]

Algorithm 3 Search algorithm for dual diverse NN

1: Input: A graph G = (V, E) with N,,;(p) be the out edges of p, query ¢, distance bound R,
distance approximation error €

2: Output: A set of k points ALG.

3: ALG < {p1, ..., pr} picked by the greedy algorithm of Gonzales for approximately maximizing
the minimum pairwise diversity distance.

4: C«+ 4 minLG p(pi, p;)

pi,pj EA
5: while pIélEﬁ% D(p,q) > (2t} +¢)- Rdo
6: C <+ CJ/2
7: forizltocdoga%do
8: U+ U (Now(p)Up)and sort U based on their distance from ¢
peALG
9: ALG + o
10: for each point u € U in order do
11: if ALGJwis (1,0.1C)-diverse then
12: ALG + ALGUu
13: if |ALG| = then
14: Break

15: Return ALG

Theorem B.4. Given the graph constructed by Algorithm|l| the search Algorithm nds a(1,0.05C)-
diverse NN solution ALG satisfying ALG) < (% +¢)-RinO ((8a)dl<:3 log %) time, if there
exists a (1, C)-diverse solution OPT with OPT, < R.

Proof. For the initial solution ALG = {py, ..., px} selected by the greedy algorithm of Gonza-
les, we know there doesn’t exist a set of k£ points with minimum pairwise distance greater than

2 min _p(pi, p;). Therefore, for the initialization C =4 min _p(p;, p;), we have C/2 > C
pi,p;j EALG pi,pj EALG

where there exists a (1, C)-diverse solution OPT with OPTy < R.

Then our Algorithm [3]is basically adding a binary search to Algorithm 2} Invoking the analysis from
Theorem B.1] if there exists a (1, C)-diverse solution OPT = {pj, ..., p;;} with OPT, < R, we can

find a (1,0.1C)-diverse solution ALG = {py, ..., 1.} with ALG), < (g—j} + e) . Rin O(log, 2)

steps where each step takes O((8a)%k® log A) time. As a result, each time when the algorithm enters
the while loop on Line 5 in Algorithm we know that there doesn’t exist a (1, C')-diverse solution

with maximal distance smaller than R. When we exit the while loop, the current C value is at least
1/2 of the optimal C value, and the current ALG solution we get is at least (1, 0.05C)-diverse. [

C ALGORITHM IMPLEMENTATION

To conduct our experiments, we provide the heuristic algorithm that we designed for the k’-colorful
nearest neighbor problem, based on the provable algorithms provided in the main paper. The provable

14

Under review as a conference paper at ICLR 2025

indexing algorithm () has a runtime which is quadratic in the size of the data set and is slow in
practice. This situation mimics the original Disk ANN algorithm (Jayaram Subramanya et al.,[2019)),
where the “slow preprocessing” algorithm has provable guarantees (Indyk & Xul |2023) but quadratic
running time, and was replaced by a heuristic “fast preprocessing” algorithm used in the actual
implementation (Jayaram Subramanya et al.,|2023). Here, Algorithm [/|offers a fast method tailored
for the k’-colorful case, using several heuristics to improve the runtime. In the following section, we
present the pseudocode for the procedures: search, index build, and the pruning procedure required
for the index build.

Diverse Search Our diverse search procedure, is a greedy graph-based local search method. In
our search method, in each step, we maintain a list of best and diverse nodes, ensuring that at most
k' points are selected in the list per color. In each iteration of our search algorithm, we choose
the best unexplored node and examine its out neighbors. From the union of our current list and
the out neighbors, we select the best diverse set of nodes while satisfying the &’-colorful diversity
constraint—meaning no color can have more than &’ points in the updated list. To identify the optimal
diverse set from the union, we use a priority queue designed to accommodate the diversity constraint.
Below, we present the pseudocode for this diverse priority queue.

Algorithm 4 Insert (p, d, ¢) into DiversePriorityQueue (Q, L, k)

1: Input: Current queue @, tuple (p, d, ¢) of (point, distance, color) for new insertion, maximum
size L of the queue, maximum size k' per color.

2: Output: Updated queue () after inserting (p, d, ¢) which maintains the best set of at most L
points and at most &’ points of each color.

3: Let count(c) < number of elements in) with the color c.

4: Let maxDist(c) +— maximum distance of element in () with color c.

5: if count(c) < k' or d < maxDist(c) then

6: Insert (p, d, ¢) into @

7 if count(c) > k' then

8: Remove the element with the maximum distance in () having color c.

9: if |Q| > L then
10: Remove the element with the maximum distance in Q.

Building on the previous explanation of the diverse priority queue, we outline the description of our
diverse search procedure as follows.

Algorithm 5 DiverseSearch(G, s, q, k', k, L)

1: Input: A directed graph G, start node s, query ¢, max per color parameter k', search list size L.

2: Output: A set of k points such that at most k" points from any color.

3: Initialize DiversePriorityQueue £ + {(s, D(s,q), col[s])} with color parameter k" and size
parameter L.

4: Initialize a set of expanded nodes V < ()

5: while £\ V # () do
6: Let p* + argmin D(p, q)
pEL\V
7: V<« VU{p*}
8 Insert {(p, D(p,q), col[p]) : p € Now(p*)} to L
9: Return [top k NNs from £; V]

Diverse Prune: A key subroutine in our index-building algorithm is the prune procedure. Given a
node p and a set of potential outgoing edges V), the standard prune procedure removes an edge to a
vertex w if there exists a vertex u such that an edge p — wu exists and the condition D (u, w) < @
is satisfied. Intuitively, this means that to reach w, we would first reach u, thus making multiplicative
progress and eliminating the need for the edge p — w, which contributes to the sparsity of the graph.

15

Under review as a conference paper at ICLR 2025

However, to account for diversity, the outgoing edges from the node must also be diverse and enable
access to multiple colors. To address this requirement, we modify the standard prune procedure to
incorporate the diversity constraint. The details of our revised algorithm are provided next.

Algorithm 6 DiversePrune(p, V, «, R, m)

1: Input: A point p, set V, prune parameter «, degree parameter R and diversity parameter m.
2: Output: A subset V' C V of cardinality at most R to which edges are added.
3: Sort all points u© € V based on their distances from p and add them to list £ in that order.
4: Initialize sets blockers[u] <— () for each u € V.
5: while £ is not empty do
6: u < argmin D(u, p)
uel
7 V'« V' U{u}and £ « L\ {u}
8: if V| = R then break
9: for each point w € £ do

10: if D(u,w) < D(p,w)/« then

11: blockers[w] <— blockers[w] U {col(u)}

12: if |blockers[w]| = m or col(u) = col(w) then
13: L+ L\ {w}

14: Return V'

Diverse Index: Our indexing algorithm follows the same approach as the Disk ANN “fast prepro-
cessing” heuristic implementation (Jayaram Subramanya et al.| 2023, but we replace the search and
prune procedures in their implementation with our diverse search and diverse prune procedures. The
details of our index-building procedure are provided below.

Algorithm 7 DiverseIndex(P, a, L, R, m)

1: Input: A set of n points P = {pu, ..., pn}, prune parameter «, search list size L, degree parameter R and
diversity parameter m.

2: Output: A directed graph G over P with out-degree at most R.

3: Let s denote the estimated medoid of P.

4: Initialize G with start node s.

5: for each p; € P do

6 Let [£; V)] < DiverseSearch (G, s,p;, k' = L/m, L, L)

7 Let V' = DiversePrune (p;, V, a, R, m).
8: Add node p; to G and set Now(p;) = V' (out-going edges from p; to V').
9

10

11

12

for p € Nou:(p:) do
Update Nouw(p) < Nou(p) U {p:}.
if [Nou(p)| > R then
Run DiversePrune(p, Now(p), o, R, m) to update out-neighbors of p.

16

	Introduction
	Preliminaries
	Algorithms
	Analysis of the Primal Diverse NN Algorithm

	Experiments
	Datasets and Algorithms
	Discussion

	Omitted proofs from Section 3
	Analysis of other algorithms
	Improved Analysis for the Primal Algorithm when k'=1
	Analysis for the Dual Diverse NN Algorithm

	Algorithm Implementation

