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Abstract

Retrosynthesis is the task of proposing a series of chemical reactions to create a
desired molecule from simpler, buyable molecules. While previous works have
proposed algorithms to find optimal solutions for a range of metrics (e.g. shortest,
lowest-cost), these works generally overlook the fact that we have imperfect knowl-
edge of the space of possible reactions, meaning plans created by the algorithm may
not work in a laboratory. In this paper we propose a novel formulation of retrosyn-
thesis in terms of stochastic processes to account for this uncertainty. We then pro-
pose a novel greedy algorithm called retro-fallback which maximizes the probability
that at least one synthesis plan can be executed in the lab. Using in-silico bench-
marks we demonstrate that retro-fallback generally produces better sets of synthesis
plans than the popular MCTS and retro* algorithms. We encourage the reader to
view the full version of this paper at https://arxiv.org/abs/2310.09270.

1 Introduction

Retrosynthesis (planning the synthesis of organic molecules via a series of chemical reactions) is
a common task in chemistry with a long history of automation (Vleduts, 1963; Corey and Wipke,
1969). Although the combinatorially large search space of chemical reactions makes naive brute-force
methods ineffective, recently significant progress has been made by developing modern machine-
learning based search algorithms for retrosynthesis (Strieth-Kalthoff et al., 2020; Tu et al., 2023).
However, there remain obstacles to translating the output of retrosynthesis algorithms into real-world
syntheses. One significant issue is that these algorithms have imperfect knowledge of the space
of chemical reactions. Because the underlying physics of chemical reactions cannot be efficiently
simulated, retrosynthesis algorithms typically rely on data-driven reaction prediction models which
can “hallucinate” unrealistic outputs (Zhong et al., 2023), akin to hallucinated outputs in other
domains (OpenAI, 2023). This results in synthesis plans which cannot actually be executed.

Although future advances in modelling may reduce the prevalence of infeasible reactions, we think
it is unlikely that they will ever be eliminated entirely, as even the plans of expert chemists do not
always work on the first try. One possible workaround to failing plans is to produce multiple synthesis
plans instead of just a single one: the other plans can act as backup plans in case the primary plan
fails. Although existing algorithms may find multiple synthesis plans, they are generally not designed
to do so, and there is no reason to expect the plans found will be suitable as backup plans (e.g. they
may share steps with the primary plan and thereby fail alongside it).

In this paper, we present several advancements towards retrosynthesis with backup plans. First, in
section 3 we explain how uncertainty about whether a synthesis plan will work in the wet lab can
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be quantified with stochastic processes. We then propose an evaluation metric called successful
synthesis probability (SSP) which quantifies the probability that at least one synthesis plan found
by an algorithm will work. This naturally captures the idea of producing backup plans. Second, in
section 4 we present a novel search algorithm called retro-fallback which greedily optimizes SSP, and
explain qualitatively how it avoids potential failure modes of other algorithms. Finally, in section 6
we demonstrate quantitatively that retro-fallback outperforms existing algorithms on an in-silico
benchmark. Together, we believe these contributions form a notable advancement towards translating
results from retrosynthesis algorithms into the lab. Note that this is an abbreviated version of a paper
under review of another venue. The full version will be linked to at a later time.

2 Background: what is retrosynthesis?

LetM represent the space of molecules andR represent the space of reactions, where each reaction
transforms a set of reactant molecules in 2M into a product molecule inM. Retrosynthesis is usually
formalized as a search problem on a graph G, defined implicitly via a backward reaction model
B :M 7→ 2R which defines all possible reactions for a given molecule. Because G is combinatorially
large, most search algorithms only store a small explicit subgraph G′ ⊆ G. We refer to nodes which
may have children in G but have no children in G′ as tip nodes.2 In general, search algorithms alternate
between selecting tip nodes in G′ and querying B to add new nodes to G′ until the computational
budget is exhausted (a process called expansion).

There are multiple ways to define the nodes and edges of G. We choose G to be an AND/OR graph:
a directed graph containing nodes for molecules and reactions. Edges exist only from reactions to
their reactant molecules and from molecules to reactions that produce them, making G bipartite.3
Examples of AND/OR graphs are shown in Figure 1. Reactions can be naturally associated with
“AND nodes” because all of their reactant molecules must be synthesized for the reaction to work,
while molecules are associated with “OR nodes” because any reaction can be used to synthesize it.
However, to avoid confusion we will simply refer to the nodes of G as molecules and reactions.

Given a target molecule mt ∈M, the primary goal of retrosynthesis algorithms is to find synthesis
plans: subtrees T ⊆ G rooted at mt containing at most one reaction to produce each molecule. For
these plans to be executable, all tip nodes of T must be contained in an inventory I ⊆M of buyable
molecules. Among all synthesis plans, those with minimum cost or highest quality are preferred,
commonly formalized with a scalar cost/value function (Segler et al., 2018; Chen et al., 2020).

3 A formulation for retrosynthesis with uncertainty

3.1 Stochastic processes over reaction uncertainty

To account for synthesis plans not working in the lab, we must first define what it means for a
synthesis plan to “work”. As mentioned in the introduction, the most obvious failure mode is that
one of the reactions in the plan cannot be performed. This could happen for a variety of reasons: it
may not produce the desired product, produce dangerous by-products, have a low yield, or require
specialized expertise or equipment. Rather than trying to explicitly model these factors, we propose
to collapse all nuance into a binary outcome: a reaction is either feasible or infeasible. Not only is
this easier to model, we note that ultimately if a chemist performs a reaction they will either move to
the next step in the synthesis plan or admit defeat and abandon the synthesis plan (a binary outcome).
Therefore, for a given chemist and lab, we postulate the existence of a binary “feasibility” function
f∗ : R 7→ {0, 1} which we will use to create and evaluate synthesis plans.

A second reason why a synthesis plan may not work is the inability to buy one of the starting
molecules. This is usually not a significant issue since vendors update their inventories in real time
and offer fast delivery, especially for common chemicals. However, this is not always the case: for
example, some companies offer large “virtual libraries” with billions of molecules which they believe
they can synthesize upon request, but not with 100% reliability. To account for this, we therefore
define a binary “buyability” function b∗ :M 7→ {0, 1} analogously to f∗.

2In contrast with leaf nodes which have no children in G, e.g. molecules where no reactions are possible.
3Note that in retrosynthesis, the edges go in the opposite direction of the chemical reactions.
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If we knew f∗ and b∗ then retrosynthesis would simply be a search problem (albeit a large one).
However, in practice they are unknown. A natural response is therefore to model our epistemic
uncertainty about f∗ and b∗. One approach is to model point-wise uncertainties, using some mecha-
nism to predict P (f∗(r) = 1) and P (b∗(m) = 1) for all r and m. Unfortunately, this approach is
fundamentally incapable of capturing beliefs about correlations between different outcomes. Instead,
we propose to model uncertainty about f∗ and b∗ directly in function space using stochastic processes
(essentially distributions over functions). We define a feasibility model ξf to be a binary stochastic
process over R, and define a buyability model ξb to be a binary stochastic process overM. This
model class is very general: the fully-deterministic formulation from is a special case where ξf
and ξb are degenerate distributions4, while independent outcomes are a special case where f /b are
independent Bernoulli random variables at all points. Other more interesting stochastic processes
which induce correlations could be constructed by putting a prior over the parameters of a model (e.g.
Bayesian neural networks (MacKay, 1992)) or using non-parametric models like Gaussian processes
(Williams and Rasmussen, 2006).

3.2 New evaluation metric: successful synthesis probability

Given f and b, a successful synthesis plan T ⊆ G must have f(r) = 1 for all r ∈ T and b(m) = 1
for every tip molecule in T . However, if we are uncertain about f and b then the distinction between
“successful” and “unsuccessful” synthesis plans is not binary: every T could have some probability of
succeeding. What then should be the goal of retrosynthesis?

There is no objectively correct answer to this question. Although one could try to find the synthesis
plan with the highest probability of succeeding, we instead propose the goal of maximizing the
probability that any synthesis plan T ⊆ G′ is valid. Assuming that a chemist would be willing to try
all the synthesis plans in G′, this goal not only captures the spirit of finding good synthesis plans, but
backup plans too. Specifically, let s(m;G′, f, b) represent the successful synthesis of a molecule m: 1
if m can be bought or synthesized using only feasible reactions in G′, otherwise 0. We write s(m)
when G′, f, b are clear from context. If s(mt;G′, f, b) = 1, this implies there is a successful synthesis
plan for the target molecule. We then define the successful synthesis probability (SSP) as

s̄(m;G′, ξf , ξb) = Pf∼ξf ,b∼ξb [s(m;G′, f, b) = 1] (1)
and propose using SSP to evaluate the success of retrosynthesis algorithms. Figure 1 illustrates
this and contrasts it with the traditional binary view of retrosynthesis, wherein every node is either
“solved” or “unsolved”. The formulation with stochastic processes implies a non-binary degree of
“solvedness” for each node, representing the fraction of scenarios where each node is solved. SSP is
the “solvedness” of the root node.

3.3 Computing successful synthesis probability

Unfortunately, SSP is not easy to compute exactly: we prove in Appendix B.1 that it is NP-hard to
compute (the proof essentially shows that a known NP-hard problem can be formulated as calculating
SSP in a suitably-chosen graph). Although this result may appear to show that SSP is not a practical
evaluation metric, it does not preclude the existence of an efficient randomized algorithm to estimate
SSP. This is exactly what we propose. First, note that given f/b, if we define a similar concept of
success for reactions then s can be defined recursively in terms of its children in G′ (provided by the
function ChG′ ):

s(m;G′, f, b) = max

[
b(m), max

r∈ChG′ (m)
s(r;G′, f, b)

]
(2)

s(r;G′, f, b) = f(r)
∏

m∈ChG′ (r)

s(m;G′, f, b) . (3)

This suggests that dynamic programming can be used to compute s(mt;G′, f, b) in polynomial time
(we prove this in Appendix B.2). Second, observe that if f ∼ ξf , b ∼ ξb then s(mt;G′, f, b) is a
Bernoulli random variable with mean s̄(mt;G′, ξf , ξb). This suggests a natural estimator:

ŝ(mt;G′, ξf , ξb, k) =
1

k

k∑
i=1

s(mt;G′, fk, bk) f1, . . . , fk ∼ ξf , b1, . . . , bk ∼ ξb . (4)

4Specifically, ξf contains only f(r) = 1∃m:r∈B(m) and ξb contains only b(m) = 1m∈I .
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Figure 1: Illustration of retrosynthesis with and without uncertainty. Left: Traditional binary
formulation: molecules are either buyable or not. All synthesis routes which use only buyable
molecules are “solutions.” Here, mt is solved via both r2 and r3. Right: Formulation with stochastic
processes, where each reaction may fail and molecules may or may not be buyable. Each sample
from ξf , ξb implies that each node is either solved or unsolved (top). Averaging over these samples
produces a non-binary “solvedness” value for each node, indicated in shades of green (bottom).
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Figure 2: AND/OR graph illustrating how maximizing SSP can be different from finding individually
successful synthesis plans (cf. 4.1). Green nodes are part of a synthesis plan, red nodes are not.

4 Retro-fallback: a greedy algorithm to maximize SSP

4.1 Existing algorithms can fail to maximize SSP

Before introducing a new algorithm, we examine what shortcomings (if any) a new algorithm should
be designed to overcome. In theory, there is nothing preventing existing algorithms from effectively
maximizing SSP. One could run any algorithm independently of ξf , ξb, compute SSP post hoc, and
potentially get a high value. However, to try to ensure a high SSP value, it is natural to explicitly
try to maximize SSP by suitably configuring the “objective” of existing algorithms. Unfortunately,
existing algorithms do not have an “objective” which can be set arbitrarily. For example, retro* has
an independent cost for each reaction and molecule (Chen et al., 2020), MCTS uses a reward function
for individual plans (Segler et al., 2018), while algorithms like breadth-first search or proof-number
search (Kishimoto et al., 2019) have no customizable rewards or costs of any kind. Because SSP
depends on an entire graph and distributions over reaction feasibilities and molecule buyabilities
(which may involve correlations), we think it is not generally possible to set SSP as the objective of
previously-proposed retrosynthesis algorithms. For most algorithms, we believe the closest proxy
for maximizing SSP is to optimize for individually successful synthesis plans, or plans containing
individually feasible reactions and buyable molecules.

Although these objectives may seem similar, it is not difficult to imagine cases where they differ.
Figure 2 illustrates such a case, wherein a synthesis plan with reactions r1, r2 has been found and
the algorithm must choose between expanding m3 or m4. Individually either molecule could be
promising, but any new synthesis route proceeding via r3 will also use r1 and is therefore prone to
fail alongside the existing plan if r1 turns out to be infeasible. Even though m4 may not be the best
choice in general, an algorithm maximizing SSP would clearly need to account for the interaction
between existing and prospective synthesis plans in its decision making, which simply is not possible
by reasoning about individual synthesis plans in isolation. This provides compelling motivation to
develop algorithms which account for interactions between synthesis plans.
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4.2 Ingredients for an informed, greedy search algorithm

A natural starting point for an algorithm specifically designed to maximize SSP is to estimate how
different actions might affect SSP, and choose actions accordingly. Theorem B.1 suggests that
computing this exactly will scale poorly to larger search graphs, and therefore we assert that the
basis of any efficient algorithm must be samples from ξf , ξb. Furthermore, equations 2–3 show how
the success of any given node in G′ can be computed reasonably efficiently in terms of the success
values of other nodes. This broadly suggests it might be possible to modify equations 2–3 to perform
counterfactual reasoning: i.e. predicting what s(mt;G′, f, b) could be if G′ were modified.

We take inspiration from the greedy retro* algorithm (Chen et al., 2020) and instead consider the
counterfactual of simultaneously expanding all tip nodes on an entire synthesis plan T ⊆ G′. For
a tip molecule m, we have that s(m;G, f, b) = b(m) from equation 2. If b(m) = 1 then expanding
m cannot change s(m) (it is already at its maximum value), but if b(m) = 0 then it is possible
that s(m) will change to 1 upon expansion. This is a natural entry point for a search heuristic: let
h :M 7→ [0, 1] be a heuristic function mapping molecules to probabilities that s(m) will become 1
upon expansion (assuming b(m) = 0).

We then assume that expanding a synthesis plan T amounts to setting s(m) = 1 for all non-buyable
tip nodes m ∈ T with s(m) = 0 independently with probability h(m). For any m ∈ G′, we define
ψ(m;G′, f, b, h) to be the largest expected value of s(m) obtained across synthesis plans T ⊆ G′
for m under the expansion scenario above and use ψ(m) when G′, f, b, h are clear from context.
Critically, because all tip nodes are considered independently under the expansion process, the
optimal plan for every molecule m, that is, the plan that maximizes the expectation of s(m) under the
expansion of its tip nodes, will consist of sub-plans which are also individually optimal. This allows
us to define ψ implicitly with the recurrence relation:

ψ(m;G′, f, b, h) =
{
max [b(m), h(m)] (Tip molecule)
max

[
b(m),maxr∈ChG′ (m) ψ(r;G′, f, b, h)

]
(Non-tip molecule)

(5)

ψ(r;G′, f, b, h) = f(r)
∏

m∈ChG′ (r)

ψ(m;G′, f, b, h) . (6)

Equations 5–6 effectively propagate information “up” the graph towards mt, until ψ(mt) contains
a useful quantity: the expected value of s(mt) upon optimal expansion. A similar technique can
be used to propagate this information “down” the graph towards the tip nodes to decide which tip
node(s) to expand. For any m ∈ G′, let ρ(m;G′, f, b, h) represent the maximum expected value of
s(mt) upon expansion across all synthesis plans T ⊆ G′ that contain both mt and m. We call a plan
achieving ρ(m;G′, f, b, h) a constrained optimal plan for m, while a plan achieving ψ(m;G′, f, b, h)
is called an unconstrained optimal plan for m. The assumption of independence implies that the
constrained optimal plan for node n can be formed by replacing part of the constrained optimal plan
for the parent of n with the unconstrained optimal plan for n, leading to the following recursive
definition of ρ:

ρ(m;G′, f, b, h) =
{
ψ(m;G′, f, b, h) m is root node
maxr∈PaG′ (m) ρ(r;G′, f, b, h) all other m

(7)

ρ(r;G′, f, b, h) =

{
0 ψ(r;G′, f, b, h) = 0

ρ(PaG′(r)) ψ(r)
ψ(PaG′ (r))

ψ(r;G′, f, b, h) > 0
(8)

Here, PaG′ yields node’s parents in G′. The last remaining question is how ψ and ρ can be computed.
If G′ is acyclic then ψ and ρ can be calculated in linear time by iterating equations 5–6 from tip nodes
to the root, then iterating equations 7–8 from root to tip nodes. If there are cycles then the cost could
potentially be larger, but in Appendix B.2 we prove it is at most quadratic. In any case, it is clear that
ψ and ρ can form the basis for an efficient search algorithm.

4.3 Retro-fallback: a full greedy algorithm

Creating a full greedy algorithm requires aggregating information across many samples from ξf and
ξb to decide which tip node to expand at each step. Recalling our motivation of producing synthesis
plans with backup plans, we propose to greedily expand molecules which are predicted to form
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Algorithm 1 Retro-fallback algorithm
Require: target molecule mt, max iterations L, backward reaction model B, search heuristic h
Require: samples f1, . . . , fk ∼ ξf , b1, . . . , bk ∼ ξb

1: G′ ← mt

2: for i in 1, . . . , L do
3: for j in 1, . . . , k do
4: Compute s(·;G′, fj , bj) for all nodes using equations 2–3
5: Compute ψ(·;G′, fj , bj , h) for all nodes using equations 5–6
6: Compute ρ(·;G′, fj , bj , h) for all nodes using equations 7–8
7: end for
8: E ← all tip nodes in G′
9: Terminate early if |E| = 0 OR s(mt;G′, fj , bj) = 1∀j

10: me ← argmaxm∈E α(m;G′, ξf , ξb, h) (cf. equation 9, breaking ties arbitrarily)
11: Add all reactions and molecules from B(me) to G′
12: end for
13: return G′

successful synthesis plans in scenarios where all existing synthesis plans currently fail. Specifically,
we propose to choose molecules by maximizing the objective

α(m;G′, ξf , ξb, h) = Ef∼ξf ,b∼ξb
[
1s(mt;G′,f,b)=0 [ρ(m;G′, f, b, h)]

]
, (9)

which is proportional to the expected value of ρ(m) conditioned on s(mt) = 0. We call the
resulting algorithm retro-fallback (from “retrosynthesis with fallback plans”) and state it explicitly
in Algorithm 1. The sections are colour-coded for clarity. After initializing G′ to just the target
molecule, the algorithm performs L iterations of expansion (although this termination condition
could be changed as needed). In each iteration, first the values of s, ψ, and ρ are computed for
each sample.5 Next, the algorithm checks whether there are no nodes to expand or whether the root
molecule is synthesized for every sample, and if so terminates (both of these conditions mean no
further improvement is possible). Finally, a tip node maximizing equation 9 is chosen and used to
expand G′.

5 Related Work

Mechanistically, retro-fallback most closely resembles retro* (Chen et al., 2020): both perform a
bottom-up and top-down update to determine the value of each potential action and select actions
greedily. In fact, if costs are defined to be negative log probabilities then the updates for ψ and ρ are
essentially equivalent to the “reaction number” and “retro* value” updates from (Chen et al., 2020).
The key difference is that retro-fallback performs parallel updates using many samples from ξf and
ξb and combines information from all samples to make a decision, while retro* uses only a single
cost. This difference is what allows retro-fallback to directly optimize SSP, while retro* cannot. This
ability also distinguishes retro-fallback from other search algorithms such as MCTS (Segler et al.,
2018) and proof-number search (Kishimoto et al., 2019).

Works outside of multi-step planning are only tangentially related. Works proposing search heuristics
for retrosynthesis search algorithms complement rather than compete with our work: such heuristics
could also be applied to retro-fallback. Generative models to produce synthesis plans effectively also
function as heuristics. Finally, methods to predict individual chemical reactions are sometimes also
referred to as “retrosynthesis models”. Retro-fallback solves a different problem: it is a multi-step
search algorithm which would use a reaction prediction model to define the search graph.

5This order is chosen because s depends only on f & b, ψ depends on s, and ρ depends on ψ. Because the
optimal algorithm to compute s, ψ, ρ may depend on G′, we only specify this computation generically.

6



100 101 102

num. calls to B

0.0

0.2

0.4

0.6

av
er

ag
e 

SS
P

f: C, I (non-trivial mols)
retro-fb
BFS
retro*
MCTS

100 101 102

num. calls to B

f: R, I (non-trivial mols)

100 101 102

num. calls to B

f: C, G (non-trivial mols)

100 101 102

num. calls to B

f: R, G (non-trivial mols)

Figure 3: Results with optimistic heuristic on “non-trivial” molecules. C and R refer to constant and
rank marginal probabilities, while I and G refer to independent and GP-induced correlations. Solid
lines are sample means (averaged across molecules), with error bars representing standard errors.

6 Experiments

6.1 Experiment Setup

We test retro-fallback on four retrosynthesis tasks using four different feasibility models. We base
all of our feasibility models on the pre-trained template classifier from Chen et al. (2020) restricted
to the top-50 templates. We vary our feasibility model across two axes: the marginal feasibility
assigned to each reaction and the correlation between feasibility outcomes. Marginally, we consider
a constant value (C) and a value which decreases with the rank (R) for marginal feasibility. For
correlations we consider all outcomes being independent (I) or determined by a latent GP model (G)
which positively correlates similar reactions. Details of these models are given in Appendix C.1.1.
Analogous to Chen et al. (2020), we create a buyability model based on eMolecules library, although
we use the September 2023 version and exclude molecules with excessively long shipping times
(details in Appendix C.1.2).

We compare retro-fallback to breadth-first search (an uninformed search algorithm) and heuristic-
guided algorithms retro* (Chen et al., 2020) and MCTS (Segler et al., 2018; Genheden et al., 2020;
Coley et al., 2019b). MCTS and retro* were re-implemented and adapted to maximize SSP, which
most notably entailed replacing costs or rewards from the backward reaction model B with quantities
derived from ξf and ξb (see Appendix C.1.4 for details) and standardizing their search heuristics.
All algorithms are run with a budget of 200 calls to B. The presence of heuristics makes comparing
algorithms difficult because the choice of heuristic will strongly influence an algorithm’s behaviour.
We decided to use an optimistic heuristic and a heuristic based on the synthetic accessibility (SA)
score (Ertl and Schuffenhauer, 2009), which has been shown to be a good heuristic for retrosynthesis
in practice despite its simplicity (Skoraczyński et al., 2023).

We test all algorithms on 500 molecules randomly selected from the GuacaMol test set (Brown et al.,
2019), which contains drug-like molecules known to be synthesizable, but with a wide range of
difficulties (details in Appendix C.1.3). Our primary evaluation metric is the SSP values estimated
with k = 10 000 samples, averaged over the 500 molecules.

6.2 How effective is retro-fallback?

Since retro-fallback is designed to maximize SSP, the most basic question is whether it does so
more effectively than other algorithms. We found that a minority of molecules are “trivial”, and all
algorithms achieve a SSP of ≈ 1 within a few iterations. In Figure 3 we plot the average SSP for
all “non-trivial” test molecules as a function of number of reaction model calls using an optimistic
heuristic for all feasibility models. Retro-fallback clearly outperforms the other algorithms in all
scenarios by a wider margin than the error bars. The difference is larger for the feasibility models
with independent reactions than with GP-correlated reactions. We suspect this is because there are
many synthesis plans with similar reactions: when reaction outcomes are uncorrelated these synthesis
plans act as backup plans for each other, but not when they are correlated. The same trends can be
seen when using the SA heuristic function (shown in Figure C.1). Overall, this result shows us what
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we expect: that retro-fallback maximizes the metric it was specifically designed to maximize more
effectively than baseline algorithms.

A natural follow-up question is whether retro-fallback also performs well by metrics other than SSP.
In Figures C.2–C.3 we show that for both the optimistic and SA score heuristics retro-fallback is able
to find potential solutions for more molecules and produce “best” solutions whose quality closely
matches other algorithms. This suggests that it functions as an effective search algorithm even just
considering the metrics from past papers.

7 Discussion, Limitations, and Future Work

In this paper we presented a novel evaluation metric for retrosynthesis algorithms called “successful
synthesis probability” (SSP), proposed a novel algorithm called retro-fallback to greedily maximize
SSP, and showed experimentally that retro-fallback is more effective than previously-proposed
algorithms. Together, these contributions compensate for the limited ability of existing algorithms to
explicitly account for reaction failure and propose backup plans.

One challenge for deploying retro-fallback in practice is the lack of established feasibility and
buyability models. To our knowledge, retro-fallback is the first algorithm which can fully utilize
uncertainty on the function level, so it is not surprising that not much work has been done in this
area before. We therefore do not view this as a limitation of our work, but rather as motivation
for subsequent research into quantifying the uncertainty of reaction models (especially by domain
experts).

Our contributions also have some important conceptual limitations. First, chemists care about the
cost and length of synthesis plans in addition to whether they will work, and we do not see a way
to incorporate these directly into either our stochastic process formalism or retro-fallback. Second,
while our definition of SSP considers an arbitrary number of plans, in practice chemists are unlikely
to try more than ≈ 10 plans before moving on to something else. Nonetheless, all algorithms make
assumptions which are untrue, and we are optimistic that the assumptions made by retro-fallback are
sufficiently benign that the algorithm can still be useful in practice.

Finally, since retro-fallback uses a search heuristic there is potential to learn this heuristic using the
results of past searches (“self-play”). We naturally expect this to improve performance and view this
as an exciting direction for future work.
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A Summary of Notation

Although we endeavoured to introduce all notation in the main text of the paper in the section where
it is first used, we re-state the notation here for clarity.

General Math

2S Power set of set S (set of all subsets of S)

1event Indicator function: 1 if “event” is True, otherwise 0

O(Np) Big-O notation (describing scaling of an algorithm)

Õ(Np) Big-O notation, omitting poly-logarithmic factors (e.g.
O(N logN) is equivalent to Õ(N))

Molecules and reactions

m a molecule

r a reaction (assumed to be single-product)

M space of molecules

R space of reactions

I Inventory of buyable molecules

B backward reaction model

Search Graphs

G implicit search graph with molecule (OR) nodes inM and
reaction (AND) nodes inR

G′ explicit graph stored and expanded for search. G′ ⊆ G
PaG′(x) The parents of molecule or reaction x in G′.
ChG′(x) The children of molecule or reaction x in G′.
T A synthesis plan in G or G′

Feasibility and Buyability

f Feasible function (assigns whether a reaction is feasible)

b Buyable function (assigns whether a molecule is buyable)

ξf feasibility stochastic process (distribution over f )

ξb buyability stochastic process (distribution over b)

s(m;G′, f, b) Whether a molecule is synthesizable using reactions/starting
molecules in G′, with feasible/buyable outcomes given by
f, b. Takes values in {0, 1}. Defined in equations 2–3

s(m) Shorthand for s(m;G′, f, b) when G′, f, b are clear from
context.

s̄(m;G′, ξf , ξb) Expected value of s(m;G′, f, b) when f ∼ ξf , b ∼ ξb. De-
fined in equation 1.

s̄(m) Shorthand for s̄(m;G′, ξf , ξb) when G′, ξf , ξb are clear from
context

ŝ(m;G′, ξf , ξb) Estimate of s̄(m) from samples (equation 4)

Retro-fallback
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mt the target molecule (at the root of G′)
h Search heuristic functionM 7→ [0, 1]

ψ(m;G′, f, b, h) Estimate of potential s(m) if one plan under m is expanded.
Defined in equations 5–6

ρ(m;G′, f, b, h) Estimate of potential for s(mt) if one plan under m is ex-
panded. Defined in equations 7–8

We also use the following mathematical conventions throughout the paper:

• log 0 = −∞
• maxx∈∅ f(x) = −∞ (the maximum of an empty set is always −∞)
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B Proofs and Theoretical Results

This appendix contains proofs of theoretical results from the paper.

B.1 Computing SSP is NP-hard

First, we formally state this result as a theorem:

Theorem B.1. Unless P = NP , there does not exist an algorithm to compute s̄(mt;G′, ξf , ξb) for
arbitrary ξf , ξb whose time complexity grows polynomially with the number of nodes in G′.

Theorem B.1 is a corollary of the following theorem, which we prove below.

Theorem B.2. Unless P = NP , there does not exist a polynomial time algorithm to determine
whether s̄(mt;G′, ξf , ξb) > 0 whose time complexity grows polynomially with the number of nodes
in G′ for arbitrary ξf , ξb.

Note that Theorem B.2 is distinct from Theorem B.1: the latter is a hardness result about computing
SSP, while the former considers only the binary problem of determining whether SSP is zero or
non-zero. We now state a proof of Theorem B.2:

Proof. We will show a reduction from the Boolean 3-Satisfiability Problem (3-SAT) to the problem
of determining whether SSP is non-zero. As 3-SAT is known to be NP-hard (Karp, 1972), this will
imply the latter is also NP-hard, completing the proof.

To construct the reduction, assume an instance I of 3-SAT with n variables x1, ..., xn, and m clauses
c1, ..., cm, each cj consisting of three literals (where a literal is either a variable or its negation) We
will construct an AND-OR graph G(I) with size O(n+m), alongside with distributions ξf (I) and
ξb(I), such that the SSP in the constructed instance is non-zero if and only if I is satisfiable.

In our construction we first set ξf ≡ 1, i.e. assume all reactions described below are always feasible.

We then construct a set P of 2n potentially buyable molecules, corresponding to variables xi as
well as their negations ¬xi; to simplify notation, we will refer to these molecules as xi or ¬xi. We
then set ξb(I) to a uniform distribution over all subsets S ⊆ P such that ∀i|S ∩ {xi,¬xi}| = 1; in
other words, either xi or ¬xi can be bought, but never both at the same time. Note that with this
construction it is easy to support all necessary operations on ξb, such as (conditional) sampling or
computing marginals.

It remains to translate I to G(I) in a way that encodes the clauses cj . We start by creating a root
OR-node r, with a single AND-node child r′. Under r′ we build m OR-node children, corresponding
to clauses cj ; again, we refer to these nodes as cj for simplicity. Finally, for each cj , we attach 3
children, corresponding to the literals in cj . Intuitively these 3 children would map to three molecules
from the potentially buyable set P , but formally the children of cj should be AND-nodes (while P
contains molecules, i.e. OR-nodes); however, this can be resolved by adding dummy single-reactant
reaction nodes.

To see that the reduction is valid, first note that r is synthesizable only if all cj are, which reflects
the fact that I is a binary AND of clauses cj . Moreover, each cj is synthesizable if at least one of
its 3 children is, which translates to at least one of the literals being satisfied. Our construction of
ξb allows any setting of variables xi as long as it’s consistent with negations ¬xi. Taken together,
this means the SSP for G(I) is non-zero if and only if there exists an assignment of variables xi that
satisfies I , and thus the reduction is sound.

Corollary B.3. If a polynomial time algorithm did exist to compute the exact value of s̄(mt;G′, ξf , ξb),
this algorithm would clearly also determine whether s̄(mt;G′, ξf , ξb) > 0 in polynomial time,
violating Theorem B.2. This proves Theorem B.1.

B.2 Computing “success” quantities in polynomial time

Retro-fallback, and more generally the calculation of SSP rely on solving a system of recursively-
defined equations: equations 2–3 for s, equations 5–6 for ψ, and equations 7–8 for ρ. Exactly how
these equations are solved is detached from the actual algorithms: all that matters is that they are
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solved. Depending on the structure of G′, different algorithms with different scaling properties may
be applicable. Currently we are uncertain about what the overall “best” algorithm is, and therefore do
not advocate for a particular method in this paper. In this section we merely aim to prove a minimal
result: that these quantities can always be computed in polynomial time (with respect to the size of
the graphs).

First, we state a general theorem applicable to all graphs.
Theorem B.4. Let |G′| = N (i.e. G′ has N nodes) and that the number of outgoing edges from any
node is at most K < N . There exists an algorithm with Õ(N2) time complexity to compute s, ψ, and
ρ.

Proof. Our proof builds on a result from Chakrabarti (1994) which gives an algorithm to compute
minimum costs in an algorithm called AO*, which performs minimum-cost search on AND/OR
graphs. Let ct(n) denote the terminal cost of a node (analogous to its purchase cost). This will
generally be ∞ for nodes which are non-terminal (e.g. non-purchasable molecules), and a non-
negative real number otherwise. Let c∗ denote the optimal cost of a node, and ce denote the edge cost
between two nodes. AO* defines the following cost function:

c∗(n) = min

[
ct(n), min

n′∈ChG′ (n)
[c∗(n′) + ce(n, n

′)]

]
(OR node) (10)

c∗(n) =
∑

n′∈ChG′ (n)

[c∗(n′) + ce(n, n
′)] (AND node) (11)

Chakrabarti (1994) presents an algorithm called Iterative_revise whose worst case time com-
plexity is Õ(N2). Critically, unlike previous algorithms for AO*, the algorithm from Chakrabarti
(1994) does not assume a tree or acyclic graph, making it very general. Our proof strategy is to
transform the equations for s, ψ, and ρ to resemble equations 10–11, making Iterative_revise
applicable and proving our result.

First, define s′(·;G′, f, b) = − log s(·;G′, f, b). The resulting recursive equations are:

s′(m;G′, f, b) = min

[
− log b(m), min

r∈ChG′ (m)
s′(r;G′, f, b)

]
s′(r;G′, f, b) = − log f(r) +

∑
m∈ChG′ (r)

s′(m;G′, f, b)

Setting ct(m) = − log b(m), ce(m, r) = 0, and ce(r,m) = − log f(r) these equations clearly match
equations 10–11, and the convention that log 0 = −∞ the costs are guaranteed to be non-negative,
making the result applicable. The same transformation and correspondence can be achieved for ψ by
defining ψ′(·;G′, f, b, h) = − logψ(·;G′, f, b, h) and defining ct(m) = − logmax [b(m), h(m)].

Second, define ρ′(·;G′, f, b, h) = log ψ(mt;G′,f,b,h)
ρ(·;G′,f,b,h) . This results in the recursive equations:

ρ′(m;G′, f, b, h) =
{
0 m = mt

minr∈PaG′ (m) ρ
′(r;G′, f, b, h) all other m

ρ(r;G′, f, b, h) =

{
∞ ψ(r;G′, f, b, h) = 0

ρ′(PaG′(r)) + log
ψ(PaG′ (r))

ψ(r) ψ(r;G′, f, b, h) > 0

If the directions of all edges are flipped (so parents become children and children become parents),
then these equations correspond to equations 10–11 with ct(n) = 0 for mt only, ce(m, r) = 0, and
ce(r,m) = log ψ(m)

ψ(r) (which is non-negative because of the max in equation 5).

This completes the proof for all three quantities.

Theorem B.4 assumes that the number of outgoing edges in each node is bounded. This is a realistic
assumption in retrosynthesis: most reactions involve 1–2 reactants. Reactions with 3 or more reactants
are less common, and more than ≈ 10 is essentially unheard of. Although there may be a large
number of possible reactions that can be done on a given molecule, a backward reaction model B
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usually limits the number of reactions which are added to the graph. Many previous works have used
a limit of 50 (Segler et al., 2018; Chen et al., 2020). Therefore we think this assumption is realistic in
practice.

One implication of Theorem B.4 is that Iterative_revise could be used to directly compute
s, ψ, and ρ. However, in some cases this is likely sub-optimal: for example, if G′ is acyclic then
these quantities can be computed in linear time using a single pass over all nodes. Although the
presence of reversible reaction (e.g. A→ B and B → A) make it unlikely that strictly acyclic graphs
will be encountered in practice during retrosynthesis, cyclic plans will not yield optimal plans we
expect very few cycles to be explored in G′. Therefore we propose in practice to initialize s, ψ, ρ to 0
and then iterate their recursive relations until convergence. At this time we do not have any proofs
for the time complexity of this procedure, but in practice it appears to be sub-linear. However, in
Collorary B.5 we show that computing ρ, which is the last phase of the algorithm, can indeed be done
in linearithmic time. As this optimization is not applicable to computing ψ, it does not improve the
overall complexity of the algorithm.
Corollary B.5. Let |G′| = N (i.e. G′ has N nodes) and that the number of outgoing edges from any
node is at most K < N . There exists an algorithm with O(N logN) time complexity to compute ρ
from ψ.

Proof. Recall the reduction of computing ρ to minimum-cost search in an AND/OR graph from the
proof of Theorem B.4. Note that the AND nodes in the resulting graph always have at most one child
(corresponding to the node parent in the original tree), thus the sum-over-children component seen
for AND nodes in general AND/OR graph search does not appear. Consequently, it is easy to see this
particular search problem is equivalent to finding a shortest path from mt to every other node, which
can be done using Dijkstra’s algorithm in O(N logN) time.

B.3 Errors for estimating Bernoulli random variables

Errors of i.i.d random variables are well-studied. The rate at which the sample mean “concentrates”
around its expected value can be bounded using any number of concentration bounds. For example,
applying the Chernoff bound using k = 10 000 yields:

P (|̂s(m;G′, ξf , ξb, k)− s̄(m;G′, ξf , ξb)| > 0.025) < 10−5 ∀G′, ξf , ξb
This means that with 10 000 samples, the SSP can be placed within a 5% interval with near-certainty
in all settings. We believe that a higher level of accuracy is not likely to be useful for chemists: if
s̄(m) is reasonably large than a 5% error is relatively small, while if s̄(m) is near zero then a chemist
will probably just choose not try to make the molecule (and therefore the distinction between 0.1%
and 5% is not actually that important).
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C Extended experiment section

C.1 Details of experimental setup

C.1.1 Feasibility models

As stated in section 6, we examined four feasibility models for this work, which assign different
marginal feasibility values and different correlations between feasibility outcomes. The starting
point for our feasibility models was the opinion of a trained organic chemist that around 25% of the
reactions outputted by the pre-trained template classification model from Chen et al. (2020) were
“obviously wrong”. From this, we proposed the following two marginal values for feasibility:

1. (C) A constant value of 1/2 for all reactions. This is an attempt to account for the 25% of
reactions which were “obviously wrong”, plus an additional unknown fraction of reactions
which seemed plausible but may not work in practice. Ultimately anything in the interval
[0.2, 0.6] seemed sensible to use, and we chose 1/2 as a nice number.

2. (R) Based on previous work with template classifiers suggesting that the quality of the
proposed reaction decreases with the softmax value (Segler and Waller, 2017; Segler et al.,
2018), we decided to assign higher feasibility values to reactions with high softmax values.
To avoid overly high or low feasibility values, we decided to values based on the rank of the
outputted reaction, designed the following function which outputs a high feasibility (≈75%)
for the top reaction and decreases to (≈10%) for lower-ranked reactions:

p(rank) =
0.75

1 + rank/10
. (12)

Note that “rank” in the above equation starts from 0.

We then added correlations on top of these marginal feasibility values. The independent model (I) is
simple: reaction outcomes are sampled independently using the marginal feasibility values described
above. To introduce some correlations without changing the marginal probabilities, we created the
following probabilistic model which assigns feasibility outcomes by applying a threshold to the value
of a latent Gaussian process (Williams and Rasmussen, 2006):

outcome(z) = 1z>0 (13)
z(r) ∼ GP (µ(·),K(·, ·)) (14)

µ(r) = Φ−1 (p(r)) (15)
K(r, r) = 1 ∀r (16)

Here, Φ represents the CDF of the standard normal distribution and p(r) represents the desired
marginal probability function. Because of equation 16, the marginal distribution of each reaction’s
z value is N (Φ−1(p(r)), 1) which will be positive with probability p(r). This ensures consistency
with any desired marginal distribution for any kernel K with diagonal values of 1. If K is the identity
kernel (i.e. K(r1, r2) = 1r1=r2) then this model implies all outcomes are independent. However,
non-zero off-diagonal values of K will induce correlations (positive or negative).

We aimed to design a model which assigns correlations very conservatively: only reactions involving
similar molecules and which induce similar changes in the reactant molecules will be given a high
positive correlation; all other correlations will be near zero. We therefore chose a kernel as a product
of two simpler kernels:

Ktotal(r1, r2) = Kmol(r1, r2)Kmech(r1, r2) .

We chose Kmol(r1, r2) to be the Jaccard kernel k(x, x′) =
∑
imin(xi, x

′
i)∑

imin(xi, x′i)
between the Morgan fin-

gerprints (Rogers and Hahn, 2010) with radius 1 of the entire set of product and reactant molecules.6
We chose Kmech(r1, r2) to be the Jaccard kernel of the difference between the product and reactant
fingerprints individually. This is sensible because the difference between fingerprint vectors cor-
responds to a set of subgraphs which are added/removed as part of the reaction. Reactions which
perform the same kinds of transformation will induce the same kinds of difference vectors.

6This is the same as adding the fingerprint vectors for all component molecules.
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C.1.2 Buyability Models

Following Chen et al. (2020) we based our buyability models on the inventory of eMolecules: a
chemical supplier which acts as a middleman between more specialized suppliers and consumers.
According to eMolecule’s promotional material they offer 6 “tiers” of molecules:

0. (Accelerated Tier). “Delivered in 2 days or less, guaranteed. Most reliable delivery service.
Compound price is inclusive of a small service fee, credited back if not delivered on time.
Available in the US only.”

1. “Shipped within 1- 5 business days. Compounds from suppliers proven to ship from their
location in < 5 days.”

2. “Shipped within 10 business days. Compounds from suppliers proven to ship from across
the globe in < 10 days”

3. “Shipped within 4 weeks. Shipped from suppliers further from your site and often with more
complex logistics. Synthesis may be required using proven reactions.”

4. “Shipped within 12 weeks. Usually requires custom synthesis on demand.”

5. “Varied ship times. Requires custom synthesis for which a quote can be provided on request.”

Much like machine learning researchers, chemists usually want to complete experiments as quickly
as possible and probably would prefer not to wait 12 weeks for a rare molecule to be shipped to
them. Such molecules could arguably be considered less “buyable” on this subjective basis alone,
so we decided to create buyability models based on the tier of molecule. Unfortunately, the public
repository for retro* does not contain any information on the tier of each molecule, and because their
inventory was downloaded in 2019 this information is no longer available on eMolecules’ website.
Therefore we decided to re-make the inventory using the latest data.

We downloaded data from eMolecules downloads page7, specifically their “orderable” molecules
and “building blocks” with quotes. After filtering out a small number of molecules (31407) whose
SMILES were not correctly parsed by rdkit we were left with 14903392 molecules with their
associated purchase tiers. Based on this we created 2 buyability models:

• Basic: all molecules in tiers 0-2 are purchasable with 100% probability. Corresponds to
realistic scenario where chemists want to do a synthesis and promptly.

• Complex: molecules are independently purchasable with probability that depends on the
tier (100% for tiers 0-2, 50% for tier 3, 20% for tier 4, 5% for tier 5). These numbers
were chosen as subjective probabilities that the compounds would be delivered within just 2
weeks (shorter than the longer times advertised). This still corresponds to a chemist wanting
to do the synthesis within 2 weeks, but being willing to risk ordering a molecule whose
stated delivery time is longer.

The experiments in section 6 use only the basic buyability model. We performed some preliminary
experiments with the complex buyability model but found that in most cases there was no difference.
This makes sense: eMolecules is a real, profit-driven company and there is a clear financial incentive
to quickly ship molecules which are useful for a wide range of syntheses. Molecules with longer
shipping times are used more rarely, so one would expect them to only be useful in a smaller number
of cases. Because of the page limit for conference papers, we decided to prioritize other experiments
for this manuscript, and therefore do not show any results for this buyability model.

In the future, we believe that better buyability models could be formed by introducing correlations
between molecules coming from the same supplier, but we do not investigate that here (chiefly
because the eMolecules data we downloaded does not contain information about suppliers).

C.1.3 Test molecules

The test molecules were generated with the following procedure:

1. Download the publicly available test set from Brown et al. (2019)

7Downloaded 2023-09-08.
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2. Filter our all molecules available in the eMolecules inventory (C.1.2)

3. Shuffle all molecules and take the first 500

Code to reproduce this process, and the entire test set in shuffled order is included in our supplementary
material.

We note that although many previous works have evaluated their methods on the 190 molecule test
set from Chen et al. (2020), this test set is small and contains only molecules where finding any single
synthesis plan is difficult, which only occurs for a small minority of molecules. It was unclear to
us whether this would be a good test set: in particular, it is likely that the set of molecules where
finding one synthesis plan is hard does not completely overlap with the set of molecules where finding
multiple synthesis plans is hard. By using a more “typical” set of molecules we avoid this bias.

C.1.4 Algorithm configuration

Retro-fallback was run with k = 1000 samples from ξf , ξb. We configured other algorithms to try to
maximize the closest proxy to SSP: In particular, this means:

• Breadth-first search was run with no modifications.

• retro* was run using − logEf [f(r)] as the reaction cost and − logEb[b(m)]

• MCTS was run using ŝ(m;T, ξf , ξb) as the reward for finding synthesis plan T (i.e. the
empirical SSP for individual synthesis plans). To allow the algorithm to best make use of its
budget of reaction model calls, we only expanded nodes after they were visited 10 times. The
marginal feasibility value of reach reaction was used as the policy in the upper-confidence
bound. We used an exploration constant of c = 0.01 to avoid “wasting” reaction model calls
on exploration, and only gave non-zero rewards for up to 100 visits to the same synthesis
plan to avoid endlessly re-visiting the same solutions.

We chose not to compare with proof-number search (Kishimoto et al., 2019) because we did not see a
way to configure it to optimize SSP. We chose not to compare with algorithms requiring some degree
of learning from self-play due to computational constraints, and because it seemed inappropriate to
compare with self-play methods without also learning a heuristic for retro-fallback with self-play.

Because retro-fallback runs on a minimal AND/OR graph, we used a modified version of retro*
which also operates on an AND/OR graph. This modified version is not our original creation (it is
explained in section 3.5 of Chen et al. (2020)) and is fully consistent with the original tree-based
version in that it estimates the same costs and expands the same nodes, it just does not store large
duplicate subtrees and uses an alternative shortest-path algorithm to perform updating. We also run
breadth-first search on the minimal AND/OR graph (although this requires no special modifications).

C.1.5 Heuristic functions

The heuristic obviously plays a critical role in heuristic-guided search algorithms! Ideally one would
control for the effect of the heuristic by using the same heuristic for different methods. However,
this is not possible when comparing algorithms from different families because the heuristics are
interpreted differently! For example, in retro-fallback the heuristic is interpreted as a SSP in [0, 1]
(higher is better), while in retro* it is interpreted as a cost between [0,∞) (lower is better). If we
used literally the same heuristic it would give opposite signals to both of these algorithms, which is
clearly not desirable or meaningful. Therefore, we tried our best to design heuristics which were “as
similar as possible.”

Optimistic heuristic Heuristics which predict the best possible value are a common choice of naive
heuristic. Besides being an important baseline, optimistic heuristics are always admissible (i.e. they
never overestimate search difficulty), which is a requirement for some algorithms like A* to converge
to the optimal solution. For retro-fallback, the most optimistic heuristic is hrfb(m) = 1, while for
retro* it is hr*(m) = 0, as these represent the best possible values for SSP and cost respectively. For
MCTS, the heuristics is a function of a partial plan T ′ rather than a single molecule. We choose the
heuristic to be Ef∼ξf [minr∈T ′ f(r)], which is the expected SSP of the plan T ′ if it were completed
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by making every tip molecule buyable.8 In practice this quantity was estimated from k samples (same
as retro-fallback).

SA score heuristic SA score gives a molecule a score between 1 and 10 based on a dictionary
assigning synthetic difficulties to different subgraphs of a molecule (Ertl and Schuffenhauer, 2009).
A score of 1 means easy to synthesize, while a score of 10 means difficult to synthesize. For
retro-fallback, we let the estimated SSP decrease linearly with the SA score:

hrfb(m) = 1− SA(m)− 1

10
.

Because the reaction costs in retro* were set to negative log feasibility values, we thought a natural
extension to retro* would be to use hr*(m) = − log hrfb(m). This choice has the advantage of
preserving the interpretation of total cost as the negative log joint probability, which also perfectly
matches retro-fallback’s interpretation of the heuristic (recall that in section 4.2 the heuristic values
were assumed to be independent). We designed MCTS’s heuristic to also match the interpretation of
“joint probability”:

hMCTS(T
′) = Ef∼ξf


 min

r∈T ′
f(r)︸ ︷︷ ︸

reactions feasible

 ∏
m∈tip(T ′),b(m)=0

hrfb(m)


which is the expected SSP of the plan if all non-purchasable molecules are made purchasable
independently with probability hrfb(m).

C.1.6 Analysis

Our primary analysis metric was the SSP. For algorithms that use AND/OR graphs (e.g. retro-fallback,
retro*), we computed the SSP using equations 2–3 with k = 10 000 samples from ξf , ξb.

For algorithms which use OR trees the best method for analysis is somewhat ambiguous. One option
is to extract all plans T ⊆ G′ and calculate whether each plan succeeds on a series of samples fi, bi.
A second option is to convert G′ into an AND/OR graph and analyze it like other AND/OR graphs.
Although they seem similar, these options are subtly different: an OR graph may contain reactions in
different locations which are not connected to form a synthesis plan, but could form a synthesis plan
if connected. The process of converting into an AND/OR graph would effectively form all possible
synthesis plans which could be made using reactions in the original graph, even if they are not
actually present in the original graph. We did implement both methods and found that converting to
an AND/OR graph tends to increase performance, so this choice does make a meaningful difference.
We think the most “realistic” option is unclear, so for consistency with other algorithms we chose to
just convert to an AND/OR graph.

C.1.7 Software Implementation

Our code is included in the supplementary material of this paper. We built our code around the open-
source library SYNTHESEUS9 and used its implementations of retro* and MCTS in our experiments.
The exact template classifier from Chen et al. (2020) was used by copying their code and using their
model weights. Our code benefitted from the following libraries:

• pytorch (Paszke et al., 2019), rdkit and rdchiral (Coley et al., 2019a). Used in the
template classifier.

• networkx (Hagberg et al., 2008). Used to store search graphs and for analysis.
• numpy (Harris et al., 2020), scipy (Virtanen et al., 2020), and scikit-learn (Pedregosa

et al., 2011). Used for array programming and linear algebra (e.g. in the feasibility models).

C.2 Additional plots for section 6.2

See Figures C.1, C.2, C.3. These figures are discussed in section 6.2.
8Note that the min function will be 1 if all reactions are feasible, otherwise 0. Using

∏
r instead of minr

would yield the same output.
9https://github.com/microsoft/syntheseus/
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Figure C.1: Average SSP for algorithms using SAscore heuristic (interpretation is the same as
Figure 3).
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Figure C.2: Alternative success metrics for algorithms with optimistic heuristic.
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Figure C.3: Alternative success metrics for algorithms with SAscore heuristic.
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