
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

BACKPROPAGATION-FREE LEARNING THROUGH GRA-
DIENT ALIGNED FEEDBACKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep neural networks heavily rely on the back-propagation algorithm for optimiza-
tion. Nevertheless, the global sequential transmission of gradients in the backward
pass inhibits its scalability. The Direct Feedback Alignment algorithm has been
proposed as a promising approach for parallel learning of deep neural networks,
relying on fixed random feedback weights to project the error on every layer in
a parallel manner. However, it notoriously fails to train networks that are really
deep and that include compulsory layers like convolutions and transformers. In this
paper, we show that alternatives to back-propagation may greatly benefit from local
and forward approximation of the gradient to better cope with the inherent and
constrained structure of such layers. This directional approximation allows us to de-
sign a novel algorithm that updates the feedback weights called GrAPE (GRadient
Aligned Projected Error). A first set of experiments are carried out on image classi-
fication tasks with feedforward and convolutional architectures. The results show
important improvement in performance over other backpropagation-free algorithms,
narrowing the gap with backpropagation. More importantly, the method scales
to modern and deep architectures like AlexNet, VGG-16 and Transformer-based
language models where the performance gains are even more notable.

1 INTRODUCTION

After many decades, the back-propagation algorithm (Rumelhart et al., 1986) is still a cornerstone in
training deep neural networks. Some important issues with this algorithm arose with the increase in
depth. For most of them, the proposed solutions have induced transformations in the architectures,
without modifying the algorithm itself. For instance, residual connections (He et al., 2016) along with
Batch and Layer Norm (Ioffe & Szegedy, 2015; Ba et al., 2016) changed the archictecture design to
stabilize the training. However, with the exponential growth of architectures, the computational cost
of BP raises questions about its efficiency and the opportunity of exploring other approaches.

The memory footprint and the execution time clearly represent limitations when training modern
architectures, and the BP algorithm significantly contributes to the high energy consumption, when
training large or huge models. Reducing this burden is therefore an important challenge, as is using
specialized hardware with limited resources. This paves the way to exploring alternative algorithms
that better take into account environmental consequences and practical hardware considerations.

The study of the learning phase for biological neural networks emphasizes the differences with the BP
algorithm (Grossberg, 1987). First, the exact weight symmetry between the forward and backward
passes does not align with biological observations. Furthermore, the global transmission of errors
and the sequentiality of updates also make it highly implausible in reality (Lillicrap et al., 2020).
Although this is no critical issue for machine learning (ML), this mismatch may inspire other kinds
of learning algorithms by investigating new learning dynamics (Amato et al., 2019; Baydin et al.,
2022; Hinton, 2022; Lillicrap et al., 2020; Mostafa et al., 2018; Meulemans et al., 2020).

The BP essentially consists of two phases, the forward pass that computes the output and the
backward pass which propagates the error back through the network (also called feedback) to update
the parameters. Many recent approaches focus only on changing the the feedback phase. The goal is to
simplify the weight update process, namely how information about errors or targets is communicated
to each layer. Notably, the Feedback Alignment (FA) algorithm (Lillicrap et al., 2016) showed
that random feedback paths could be used to train deep networks, without the need for symmetric

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

weights. Nøkland (2016) even showed that this idea could be used to avoid sequentiality, leading to a
parallelized training of neural networks with the Direct Feedback Alignment (DFA) algorithm. These
algorithms, though simple, have shown promising results with simple feed-forward architectures,
but fail with more structured layers and therefore cannot be applied to deep convolutional networks
(Bartunov et al., 2018; Launay et al., 2019; Moskovitz et al., 2018; Crafton et al., 2019). Some
refinements have recently tried to reduce the gap of performance with the BP (Akrout et al., 2019;
Xiao et al., 2018; Lansdell et al., 2020; Guerguiev et al., 2020; Kunin et al., 2020).

A complementary line of work makes the opposite choice. An approximation of the gradients derives
from a modified forward pass using directional derivatives (Baydin et al., 2022; Silver et al., 2021;
Margossian, 2019; Fournier et al., 2023). These methods rely on the Jacobian-vector product during
the forward pass, reducing the backward pass to a straightforward update of the parameters. However,
the high variance of the estimation inhibits its scalability even when local losses are introduced as a
remedy (Ren et al., 2022; Belouze, 2022; Fournier et al., 2023).

Furthermore, recent developments propose a noteworthy alternative based on forward only algorithms,
for which a second and modified forward pass replaces the standard backward phase. Seminal works
in this field are the Forward-Forward algorithm (FF) and the Present the Error to Perturb the Input To
Modulate the Activity learning rule (PEPITA) proposed by Hinton (2022); Dellaferrera & Kreiman
(2022). These algorithms, though relatively new and not yet widely studied have exhibited promising
results and similarities with adaptive-feedback-alignment algorithms (Srinivasan et al., 2023).
In this paper, we draw inspiration from these promising approaches to design a new training algorithm
for deep neural networks and our contributions are the following:

• The Zoutendijk theorem on line search convergence allows us to reconsider the weakness of
previous feedback alignment methods and to design a method to align the random matrices
for different kind of architectures.

• The alignment of the feedback matrices uses a forward gradient estimate, which is carefully
used to avoid possible perturbation due to the high variance.

• We introduce a learning algorithm called GrAPE (GRadient Aligned Projected Error)
that can handle and scale to modern architectures like deep convolutional networks and
Transformer-based models.

• Empirical results show very promising results with models like VGG16 (Simonyan &
Zisserman, 2014), trained on CIFAR100. To the best of our knowledge, this the first time.

• GrAPE reaches training losses that are on par with BP. A convergence towards poorer
solutions could explain the lower test performance, leaving room for further improvement.

In the next section, we introduce the notations and discuss related work. Then the GrAPE algorithm
is described in section 3, just before the empirical results presented in section 4

2 BACKGROUND AND RELATED WORKS

Let f(x; θ) be a neural network with L layers, where x ≡ h0 is the input, θ denotes its parameters.
The output ŷ of the network is computed sequentially as ŷ = σL(aL), with al = Wlhl−1 and
hl = σl(al), where σl,l∈[1,L] is a non-linearity1. Given a loss function L, ∇Ll ≡ ∂L/∂al denotes the
gradient of the loss with respect to the pre-activation of a specific layer l. The BP aims at computing
this term incrementally, starting from the output layer. In particular e ≡ ∇LL defines the error of
the network made on the input x, and simplifies to e = ŷ − y for the Mean Squared Error (MSE)
loss. The update of the output layer can be written δWL = −ηeh⊤

L−1, for a learning rate η. With ⊙
denoting the Hadamard product, the update for the other layers are computed as follows:

δWl = −ηδaBP
l hT

l−1, with δaBP
l = ∇Ll =

(
WT

l+1δal+1

)
⊙ σ′

l (al) ∀l. (1)

Hence, the update of a layer l depends on the error computation (or propagation) of all the {L,L−
1, ..., l+1} subsequent layers. This involves the corresponding weight matrices to "transport" the error
signal from a layer to the previous one, as illustrated in Figure 1. This symmetric (the same weight

1With this notation, we encompass both linear layers and convolutional layers, followed by a non-linearity.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

- e

a. BP

- e

b. FA

- e

c. DFA

- e

d. Forward-only propositions

---- - e

e. GAEP

-

Input Layer

Output Layer

First Layer

Second Layer

ŷ ŷ ŷ ŷ ŷ

(Pepita)

(Forward-Forward)

Figure 1: Overview of different error transportation configurations, inspired by Dellaferrera &
Kreiman (2022). a) Back-propagation (BP). b) Feedback-alignment (FA). c) Direct feedback-
alignment (DFA). d) Forward Only propositions (PEPITA and Forward-Forward). e) Gradient
Aligned Projected Error (GrAPE). Green arrows indicate forward paths and orange arrows indicate
error paths. Weights that are adapted during learning are denoted as Wl, and feedback weights are
denoted as Bl if specific to a layer (FA, DFA, GrAPE). The blue arrows indicate the activity perturbed
forward gradient estimation ga,l(x) as described by Ren et al. (2022).

matrix) and sequential nature of BP explains its limited effectiveness for parallelization. As state-of-
the-art networks attain increasing size and depth, alternative methods that allow non-symmetric error
transmission and enable parallelized training have emerged.

2.1 FEEDBACK ALIGNMENT (FA)

Feedback Alignment (FA) introduces a paradigm-shifting and biologically plausible alternative to
gradient back-propagation (Lillicrap et al., 2016). At the core of this method, random feedback
matrices drastically simplify the weight update process and break the symmetry. FA multiplies the
output error by the random feedback matrices in order to obtain the error at each layer, which is in
turn used to update the weights. The random matrices replace the term∇Ll. However, the sequential
aspect of the update remains, as the error is still propagated from layer to layer through the random
feedback projections. With Bl the fixed random feedback matrix of the l-th layer, the update can be
estimated as follows:

δaL = (BLe)⊙ σ′
L(aL), ∀l ∈ [1, L− 1], δal = (Blδal+1)⊙ σ′

l(al)

This method draws its inspiration from biological neural networks, which do not exhibit symmet-
ric weight transport during learning (Lillicrap et al., 2020), making this learning paradigm more
biologically plausible. Nøkland (2016) went even a step further when presenting Direct Feedback
Alignment (DFA). During training, the error signal is directly projected from the output layer to every
hidden layers without modification or intermediate calculations. With this additional simplification,
the updates can be easily parallelized.

∀l ∈ [1, L], δal = (Ble)⊙ σ′
l(al) (2)

FA and DFA have been shown to perform reasonably well on certain tasks and architectures, especially
when considering its profound shift from the backpropagation method. While they do not consistently
outperform or even compete with backpropagation, their simplicity along with biological plausibility
stimulate research to scale up their use, as well as exploration to understand their key limitations.
Bartunov et al. (2018) for example, show empirically that FA variants perform significantly worse on
CIFAR-10 and ImageNet than BP, especially for convolutional networks. This is further analyzed by
Launay et al. (2019) in which they exhibit a bottleneck effect that prevents learning in narrow layers,
especially in the case of convolutional networks. As a workaround, some variants of FA showed
promising performances on deep CNNs (Moskovitz et al., 2018). A seminal work by Akrout et al.
(2019) for example used weight mirroring to adapt the feedback matrices during training, matching

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

BP performances. However these approaches stay sequential and similar approaches to DFA with
target projection, for example DRTP (Frenkel et al., 2021) do not compete with BP on more complex
convolutional networks.

In this paper, our ambition is to bridge the gap between the backpropagation and DFA for modern
architecture, including convolution and tranformer layers. The work of Launay et al. (2020) showed
promising results for transformer models trained with DFA. However, this is done according two
settings: the ’macro’ setting in which the feedback is applied after every encoder block and the
’micro’ setting, in which it is done after every layer in those blocks. As explained by Launay et al.
(2020) in Appendix D, backpropagation is still and always used through the attention mechanism
itself, even in the ’micro’ setting. Their training process therefore still relies on backpropagation
within transformer layers, without reaching the same perplexity levels as full BP training. Our method
allows us to better this proposition towards backpropagation-free training of modern architectures by
providing blocks and/or layers a more useful feedback signal.

In their papers Nøkland (2016) and Refinetti et al. (2021) analyse the underlying dynamics in the
FA-like algorithms to better explain their ability and unability to learn. A key lesson is that the angle
between the feedback matrices and the true gradient must be lower than ±π/2. Equivalently, if we
denote ωl this angle and Bl, the l-th layer’s feedback matrix, Equation 3 must be fulfilled:

∀l ∈ [1, L], cos(ωl) =
∇Ll

TBl

∥∇Ll∥ · ∥Bl∥
> 0 (3)

We recognize a particular case of the Zoutendijk theorem (Nocedal & Wright, 1999), which ensures
global convergence when the search direction makes an angle with the steepest descent direction
bounded away from π/2. This theorem requires that the step length satisfies either the Goldstein or
strong Wolfe conditions, and this is typically the case with standard learning rates. However, let us
stress that the considered convergence is towards local minima and stationary points.

As previously mentioned, the recent work of (Akrout et al., 2019) revisits the idea to learn the
feedback by emulating a Kolen-Pollack algorithm (Kolen & Pollack, 1994) or with an estimate of
the transpose matrix. This idea facilitates the learning process of FA while reducing the angles ωl.
This first attempt clearly shows that adaptive feedbacks enable the learning of networks on which
FA previously failed. It also emphasizes the importance of Zoutendijk’s theorem, even though the
sequential learning process inherited from the FA still inhibits the potential improvements.

2.2 FORWARD ONLY CALCULATIONS

To design a backward free algorithm, a double forward method may provide a solution: the first
forward pass is used to optimize the feedback matrices, while the second one compute the updates
of the forward weights. The recent paper (Srinivasan et al., 2023) follows this trend and exhibits
similarities between two forward-only frameworks, Forward-Forward and PEPITA (Hinton, 2022;
Dellaferrera & Kreiman, 2022). Furthermore, it shows that those algorithms can be well-approximated
by a feedback-alignment algorithm with adaptive feedback (AF) weights, modulated by the upstream
network weights. As illustrated Figure1, PEPITA learning rule essentially is: δWl = (hl − herr

l )⊙
(herr

l−1
T ), with herr

0 = x− Fe, where F can be interpreted as a feedback matrix on the input.

Focusing on forward calculations, recent works explore unbiased estimations of the gradients, thanks
to directional derivatives (Fournier et al., 2023; Baydin et al., 2022). The Forward Gradient (FG)
algorithm, introduced by Baydin et al. (2022) and Silver et al. (2021) employs Forward-Mode
Automatic Differentiation (AD) as proposed in Margossian (2019) to estimate gradients without
relying on backpropagation, but rather on the Jacobian-vector product. These gradients are then used
to update the weights in a similar fashion as in standard BP but using the forward gradients instead of
the backward ones.

Let F : Rm → Rn be a differentiable function, v ∈ Rm be a vector and ∇F be the Jacobian of F ,
which is a matrix of size n×m. Forward-Mode AD calculates the directional gradient d = ∇F · v
of F along v, evaluated at point x: ∇F.v ≡ lim

δ 7→0

F (x+δv)−F (x)
δ .

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Our goal is to approximate the Jacobian of the loss function, with respect to the weights. Baydin et al.
(2022) showed that the forward gradient of the loss with respect to the weights at layer l, evaluated at
point x ∈ Rn, gW,l : Rn×m → Rn×m as: gW,l(x) = (

∑L
i=1

∂L(x)
∂Wi

Vi) ·Vl is an unbiased estimator
of the gradient∇Ll, where every Vl ∈ Rnl×nl−1 are sampled from a multivariate Gaussian.

However, Ren et al. (2022) highlights the poor scalability of such methods with respect to the
the number of parameters. To mitigate this issue, they introduced the Activity-Perturbed Forward
Gradient algorithm inspired by Le Cun et al. (1988) and Widrow & Lehr (1990). A perturbation
vector of the activations Ul ∈ Rnl is drawn from a multivariate standard normal distribution for each
layer l ≤ L and the activity-perturbed forward gradient ga,l(x) of the loss with respect to the l-th
layer is estimated by Forward-Mode AD as:

ga,l(x) ≡
∂hl

∂Wl

L∑
i=1

(
∂L(x)
∂hi

Ui)⊗Ul. (4)

As the number of neurons n is usually considerably lower than the number of weights, this method
reduces the number of derivatives to estimate, thus reducing the variance in the gradient estimation
as the guessing space goes from O(n2) to O(n). However, the authors showed that the variance of
the estimation is still high and increases with the number of neurons of the network. They propose
the introduction of local losses to improve the quality of estimates. In Fournier et al. (2023), the
authors notably extend this model with small local models and local auxiliary losses to provide a
better estimation of the forward gradients than uncorrelated noise. In order to avoid relying on BP to
learn the local models however, we will rely on the estimation given in equation 4 in our method.

It has to be noted that Forward-Mode AD uses dual numbers theory, meaning the FG calculations are
theoretically done in parallel during the forward phase. The implementation proposed by Baydin
et al. (2022) showed a computational overhead of 43% over standard forward phase, and a running
time between 0.6 to 0.8 the time of full BP (forward+backward). Since then however, Pytorch has
released a beta version of their implementation of Forward-Mode AD but no reliable information
is available on the overhead of the forward phase. The implementation could also be optimized by
using a dedicated library, such as is done by Ren et al. (2022) where they use JAX, which is known to
be more efficient than Pytorch for this kind of computation.

3 GRADIENT ALIGNED PROJECTED ERROR (GRAPE)

In this section, we describe our main contribution: the GrAPE algorithm (Gradient Aligned Projection
Error). Our contribution relies on the efficient use of forward gradients of each layer to adapt the
feedback matrices. By combining both of these ingredients, the algorithm ensures the learning ability
on more challenging tasks and with more complex models.

3.1 LIMITATIONS OF FIXED RANDOM FEEDBACK MATRICES

In the context of line search algorithms, the angle between the search direction and the negative
gradient direction is a crucial factor. As mentionned in Section 2, the analogy for DFA is between the
feedback path with and the gradient. This standard optimization problem is also pivotal in FA-like
methods but the standard methods do not have access to the necessary information regarding the
gradient. In the case of convolutional layers, the operation can be written as a block Toeplitz matrix
(d’Ascoli et al., 2019). This constrained structure is impossible to reproduce with a fixed randomly
sampled feedback matrix. This argument, developed by Refinetti et al. (2021), explains the failure of
vanilla DFA on convolutional networks as shown by Launay et al. (2019), the convolutional weights
being unable to capture the projected information correctly. However, if the projected information
was aligned with the gradients of the corresponding weights, this issue could be resolved.

3.2 USE OF FORWARD GRADIENTS ESTIMATIONS

In this work, we use foward estimated gradient information to align the search direction and the
gradient direction. More precisely, we extend the DFA framework to explicitly align the feedback
matrices with the estimated gradient direction of each layer. The Zoutendijk theorem ensures

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

convergence as we constrain the search directions to be parallel to an unbiased estimate of the
gradient.

More specifically, we use the activity perturbed forward gradient ga,l of every layer defined by
Equation 4 to update the corresponding feedback matrix towards the right direction before updating
the forward weights using the DFA learning rule defined by Equation 2. Figure 1 represents our
proposition along with other learning algorithm to better stress the key differences. By rewriting
Equation 3 with the forward gradients, we can define the angle ω̄l as the angle between the forward
gradient and the feedback matrix of the l-th layer, thus having:

∀l ∈ [1, L], cos(ω̄l) ≡
ga,l

TBl

∥ga,l∥ · ∥Bl∥
.

Assuming that the forward gradient method is accurate enough, we can ensure the alignment of the
feedback matrices with the forward gradients, hence unlocking the learning. This assumption will be
verified experimentally in Section 3.4. Therefore the learning condition of Equation 3 can be simply
rewritten as following, discarding the sequential calculation of the true gradients:

∀l ∈ [1, L], cos(ω̄l) > 0, (5)

3.3 LEARNING RULE AND ALGORITHM

Given the previous learning condition, we propose a new update rule for the direct feedback matrices
to align their directions with the corresponding gradients. The goal of this update is thus to minimize
the orthogonal directions while improving the gradient alignment:

Bt+1
l ← Bt

l − ηBl
(1− cos(ω̄l)) ∗Bt

l , (6)
where 0 < ηBl

≤ 1 plays the role of the learning rate associated with the feedback-matrix. This
update ensures for each layer that parallel directions with the gradients are promoted for the error
projection. Note that the feedback matrices could be scaled by taking into account the respective
gradients’ norms in order to respect the magnitude of the update that would have been conveyed by
gradient descent. We leave this idea for future works, only ensuring in the present work a constant
norm of each feedback matrices by a simple rescaling of the matrices at each iteration 2. The complete
learning method is summarized in Algorithm 1.

3.4 ALGORITHMIC DESIGN CHOICES

In this section, we discuss the validity of our algorithmic design choices and assumptions. The
cornerstone concerns the gradients approximations using forward calculations. Baydin et al. (2022)
and Ren et al. (2022) showed that an unbiased estimation of the gradients could be obtained using
forward gradients calculated thanks to jacobian vector products. However, if we consider the original
JVP formulation, the expectation of the forward gradient can be written as follows:

E(ga,l) = E((∇LlUl)⊗ Ul) = E(UlU
T
l )∇Ll = Cov(Ul)∇Ll.

For an unbiased estimate of the gradient, the covariance matrix of the perturbations must be the identity
matrix in the subspace that the gradients lie in, for every layer. The choice of usable perturbations is
thus rather limited. To meet this requirement, we draw perturbations from a multivariate standard
normal distribution for each layer. This allows us to ensure an identity covariance matrix for the
perturbations in Equation 4.

The high variance of forward gradients is the second challenge to address. This is especially the case
for large networks as illustrated by Fournier et al. (2023). However, our method only relies on the
direction of the gradients and not on their magnitude, meaning that if the cosine similarity between
the forward gradient and the true gradient is high, our method should facilitate the learning. We
experimentally verify this assumption in Figure 5, showing that the cosine similarity between the
forward gradients and the true gradients is high enough to get useful information about the direction.
One easy condition is to set the a large batch size. We will thus use a standard 256 batch size for our
experiments when possible, downgrading to 128 for larger networks, due to computational constraints.
We also mitigate this issue by averaging the gradients through the learning phase with a cumulative
moving average, taking inspiration of the recycle procedure used by Miyato et al. (2018).

2This solution was already proposed in the original DFA learning rule (Nøkland, 2016)

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Algorithm 1 GrAPE algorithm
1: Input : Training data D
2: Randomly initialize weights w(l)

ij for all l, i, and j.
3: Initialize Bl for all l.
4: For a number of epochs, do :
5: for all x in D do
6: Set h(0) = x and d(0) = 0.
7: for l = 1 to L do
8: Propagate the input signal forward :
9: Pre-activation signal : a(l) = W(l)h(l−1) Activation signal : h(l) = σ(a(l)).

10: Directional derivative : d(l) = (W(l)d(l−1))⊙ σ′(a(l)).
11: if l < L then
12: Sample normal perturbations : v(l) ∼ N (0, I).
13: d(l) = d(l) + v(l).
14: end if
15: end for
16: Compute e = ∂L(x)

∂h(L) .
17: end for
18: Update output layer weights:
19: W(L) = W(L) − λe⊗ h(L−1).
20: for l = 1 to L− 1 do
21: Update Bl using equation 6
22: Update the parameters with the learning rate λ: W(l) = W(l)−λ(eB(l)⊙σ′(a(l)))⊗h(l−1).
23: end for

100 101 1020.0

0.2

0.4

0.6

0.8

1.0

C
os

in
e

si
m

ila
ri

ty

a. 2 layers

100 101 102

Iterations

b. 8 layers

100 101 102

c. 32 layers Batch size
512
256
128
64
32
16
8
4
2
1

Figure 2: Cosine similarity between the forward gradients and the true gradients of the first layer
for different batch sizes and network depths when averaging over the batch. Iterations indicate the
number of JVP calculations executed for each batch. Synthetic data on feedforward neural networks
was used for this experiment. From left to right, the rest of the networks are composed of 2, 8 and 32
layers. The batch size varies from 1 to 512.

4 EMPIRICAL EVALUATION

4.1 EXPERIMENTAL SETTING

A crucial aspect to BP alternatives is to ensure that they are rigorously implemented and evaluated on
an equal footing and with the same conditions as BP. As they are still in their infancy when compared
to BP, we believe it is critical for their development and future adoption to have a fair comparison.
We thus implement our method on Biotorch (Sanfiz & Akrout, 2021) to make it accessible and
to ensure the implementation does not contain any BP-related updates. We plan on releasing our
code upon acceptance. It has to be noted that even though our algorithm allows a parallelized
training of each layer, as modern deep learning frameworks are built for BP, the parallelization of the
whole training process is not yet possible. This implementation heavily relies on conv2d_input,
conv2d_weight, and conv2d_bias from the torch.nn.grad library to correctly adapt
DFA and GrAPE to convolution related calculations.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

We test our approach with simple 3 layers Feedforward Neural Networks (FFNNs), with hidden size
1024 and shallow convolutional neural networks on standard tasks, namely MNIST, CIFAR10 and
CIFAR100. The shallow convolutional network follows the architectural details of LeNet-4 (LeCun
et al., 1998). We compare our proposed GrAPE algorithm with standard FA and DFA, DRTP from
Frenkel et al. (2021) and PEPITA from Dellaferrera & Kreiman (2022), with improvements recently
developped by Srinivasan et al. (2023). However this promising algorithm is particularly young and
does not yet apply to convolutional networks. For GrAPE, we draw the feedback weights from a
normal distribution as they gave better results than using the uniform Kaiming initialization scheme
and report the obtained results. Each network is trained for 100 epochs using Adam (Kingma &
Ba, 2014) optimizer and the softmax cross-entropy loss function. Vanilla SGD is used to update
the feedback weights. The initial learning rates used are λ = 10−4, ηBl

= 10−3 ; no further
regularization or data augmentation was applied and a learning rate decay of 0.95 after every epoch
was used. For PEPITA, we used the hyper-parameters provided by Srinivasan et al. (2023), noting
that the performance get worse with more layers. All the experiments were done on a single GPU.

In Tables 2 and 3 we further extend GrAPE to deeper and more modern architectures, namely Alexnet,
VGG-16 and Tranformer-based model. For this last instance we use the exact same experimental
setup as proposed by Launay et al. (2020). We report in the Tables the average over 10 runs of the
best test performance.

Table 1: Performances of a shallow convolutional network (CNN) and a 3 layer Multi Layer Per-
ceptron (MLP) trained on the MNIST and CIFAR10 datasets with different learning algorithms (in
percentages)

Method Parallelizable MNIST CIFAR10 CIFAR100

MLP CNN MLP CNN MLP CNN

BP No 98.73± 0.04 99.03± 0.02 54.09± 0.14 74.66± 0.08 28.18± 0.45 44.22± 0.19

FA No 98.36± 0.04 98.7± 0.07 52.18± 0.15 71.05± 0.18 24.54± 0.22 35± 0.27
DRTP Yes 95.7± 0.12 98.5± 0.17 47.55± 0.12 64.73± 0.62 18.63± 0.43 30.54± 0.12
DFA Yes 98.21± 0.07 98.6± 0.04 51.32± 0.32 69.34± 0.4 22.44± 0.23 34.53± 0.42
PEPITA Yes 98.01± 0.08 NA 52.01± 0.13 NA 21.87± 0.25 NA
GrAPE (ours) Yes 98.35± 0.02 98.7± 0.09 52.8± 0.02 72.07± 0.13 25.02± 0.63 37.21± 0.43

Table 2: Performances of AlexNet and VGG-
16 on CIFAR100.

Method AlexNet VGG-16

BP 60.43%± 0.35 73.15%± 0.61

DFA 29.75%± 0.58 1%
GrAPE (ours) 40.43%± 0.23 32.4%

Table 3: Best validation perplexity after 20
epochs of a Transformer trained on WikiText-
103 (lower is better).

DFA GrAPe BP

Macro 52.0 45.6 29.8Micro 93.3 84.8

4.2 RESULTS ANALYSIS

The results reported in Tables 1, 2 and 3 show the superiority of our method over the other local and
parallel learning approaches. First of all, GrAPE clearly betters the performances of DFA when it is
possible on small networks, showing that the alignment of the feedback matrices with the forward
gradients is a promising way of improving the learning of FA-like algorithms. It also helps bridging
the performance gap of parallel learning algorithms with BP, beating DRTP, PEPITA and DFA on
every tasks. However our results show that we are still lagging behind BP even on small networks.

Our method also shows promising results on larger networks, such as AlexNet, VGG-16 and even a
Transformer. The performance gap with DFA is here even more notable. The training of deep convo-
lutional networks like VGG-16, which was showed to be untrainable through DFA by Launay et al.
(2019) can be achieved with our method, unlocking new architectures for parallel learning algorithms.
On the other hand, the gap with BP is still important, showing room for major improvement. We note
a positive effect of batch normalization and the impact of the feedback initialization shows us that,
even though the effect of these operations are well-studied for standard BP, much work is yet needed
to understand their way of functioning and optimize them for feedback learning.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

When it comes to training a Transformer, we adopt the same paradigm as done by Launay et al.
(2020). Following their training principles, we trained under two settings: Macro where the feedback
is applied after every transformer layer, implying BP inside the layer, and Micro where the feedback
is applied after every sub-layer. We reported the results on DFA with the best hyper-parameters
found in the original paper and used the same setting to train with the GrAPE learning rule. The
results presented in Table 3 show a clear improvement of GrAPE over DFA when training modern
architectures, however still largely lagging behind BP in terms of validation performance.

We illustrate this in Figure 3. There is a wider gap between the training loss and the test loss for
GrAPE than for the other learning algorithms. While GrAPE still largely surpasses DFA as seen in
Table 2, the loss curves indicate that GrAPE performances on the training set are on par with BP, and
that GrAPE suffers from more over-fitting than the other algorithms. A thorough analysis of how to
transpose standard and widely studied regularization techniques from BP to GrAPE could thus vastly
reduce the generalization gap of our method. In this way, the impact of standard hyper-parameters
such as activation functions, is also to be studied, which we leave for future work.

0 20 40 60 80 100
Epochs

2.0

2.5

3.0

3.5

4.0

4.5
Loss

train
test

0 20 40 60 80 100
Epochs

10%

20%

30%

40%

50%

60%
Test accuracy

BP
DFA
GrAPE (ours)

Figure 3: Training Dynamics of BP, DFA and GrAPE when training AlexNet on CIFAR 100 with
batch size 128.

5 LIMITATIONS AND DISCUSSION

Experimental results show that the alignment of the feedback matrices with the forward gradients is a
promising way of improving the learning of FA-like algorithms. This alignment allows the feedback
to follow directions nearly parallel to the gradient direction. This makes the difference between
GrAPE and previous work, when we consider deep architectures such as AlexNet and VGG16 on
CIFAR100 (Bartunov et al., 2018; Launay et al., 2019).

Our approach also performs better than PEPITA, even in its recent and augmented version (Srinivasan
et al., 2023). Borrowing ideas from the seminal work of Akrout et al. (2019), their method can be
considered as a tailored feedback-alignment algorithm with adaptive feedback weights. The major
difference with our work is that we have a feedback matrix for each layer, which enables a local
injection of the error signal. We can therefore use GrAPE on much deeper architectures, since this
prevents the error signal to become more and more distorted through the second forward pass.

However our method is still lagging behind BP, especially on larger networks. A couple of decades
were necessary to reach such performances with BP. Our line of work is much more recent and
requires further improvements to bridge this gap. For instance, the poor generalization we observed
in Figure 3 calls for the design of adapted regularization techniques. Furthermore, the high variance
of forward gradients increases with the number of neurons in the network (Ren et al., 2022). Hence,
the forward gradients differs from the true gradients, as showed in Section 3.4, thus perturbing the
learning direction. This could be mitigated either with iterative calculations of the forward gradients,
or with local losses Fournier et al. (2023), but at the expense of a higher computational cost. On
the optimization side, it is worth noticing that the Zoutendijk theorem only ensures convergence
towards a stationary point, which could be a saddle point. Our method could benefit from second
order information, gathered for instance in the forward pass, to improve the convergence guarantee.

Lastly, we showed with this method that DFA could be adapted to take into account inherent gradient
structure for particular calculations. In order to fully train modern architectures as Transformers with

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

a parallel algorithm, it would thus be interesting to take into account the structure of some underlying
operations such as residual connections (He et al., 2016) and self-attention. The former was motivated
to address the vanishing gradient issue (due to BP), while the latter is dedicated to structured inputs.
We leave the adaptation of feedback-projection to these operations for future work. The presented
results on Transformers Table 3 also opens up new avenues for parallel training of networks, dividing
it into smaller chunks that would receive gradient-aligned feedback information.

6 CONCLUSION

The GrAPE algorithm presented in this work emerges as a promising local alternative to conventional
BP. It successfully mitigates challenges posed to the DFA by using approximations of the gradient
calculated during the forward phase and enables parallel updates of all the parameters through the
network. We showed its ability to learn complex tasks with deep architectures. The adaptive feedback
allows the training algorithm to align its direction with the gradients. Hence with GrAPE, we can
reach training losses that are on par with BP, while the generalization capacity must be improved. By
turning the backward pass into a feedback projection, the information propagation in GrAPE follows
the forward-only paradigm. This interstingly brings our method closer to biological models of the
brain and the real-time constraints inherent to neuromorphic systems.

Our findings also show that in order to scale parallel learning algorithms to modern networks, a
theoretical and empirical work is still needed to understand how all the deep-learning ingredients that
interact with the BP recipe can be also used with DFA-like algorithms. These ingredients include
initialization schemes, architectural operations like Batch or Layer Normalization, as well as residual
connexions and dropout.

REFERENCES

Mohamed Akrout, Collin Wilson, Peter Humphreys, Timothy Lillicrap, and Douglas B Tweed. Deep
learning without weight transport. Advances in neural information processing systems, 32, 2019.

Giuseppe Amato, Fabio Carrara, Fabrizio Falchi, Claudio Gennaro, and Gabriele Lagani. Hebbian
learning meets deep convolutional neural networks. In Image Analysis and Processing–ICIAP
2019: 20th International Conference, Trento, Italy, September 9–13, 2019, Proceedings, Part I 20,
pp. 324–334. Springer, 2019.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization, 2016. URL
https://arxiv.org/abs/1607.06450.

Sergey Bartunov, Adam Santoro, Blake Richards, Luke Marris, Geoffrey E Hinton, and Timothy Lilli-
crap. Assessing the scalability of biologically-motivated deep learning algorithms and architectures.
Advances in neural information processing systems, 31, 2018.

Atılım Güneş Baydin, Barak A Pearlmutter, Don Syme, Frank Wood, and Philip Torr. Gradients
without backpropagation. arXiv preprint arXiv:2202.08587, 2022.

Gabriel Belouze. Optimization without backpropagation. arXiv preprint arXiv:2209.06302, 2022.

Brian Alexander Crafton, Abhinav Parihar, Evan Gebhardt, and Arijit Raychowdhury. Direct feedback
alignment with sparse connections for local learning. Frontiers in Neuroscience, 13:525, 2019.

Stéphane d’Ascoli, Levent Sagun, Giulio Biroli, and Joan Bruna. Finding the needle in the haystack
with convolutions: on the benefits of architectural bias. Advances in Neural Information Processing
Systems, 32, 2019.

Giorgia Dellaferrera and Gabriel Kreiman. Error-driven input modulation: solving the credit assign-
ment problem without a backward pass. In International Conference on Machine Learning, pp.
4937–4955. PMLR, 2022.

Louis Fournier, Stéphane Rivaud, Eugene Belilovsky, Michael Eickenberg, and Edouard Oyallon.
Can forward gradient match backpropagation? In International Conference on Machine Learning,
pp. 10249–10264. PMLR, 2023.

10

https://arxiv.org/abs/1607.06450


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Charlotte Frenkel, Martin Lefebvre, and David Bol. Learning without feedback: Fixed random
learning signals allow for feedforward training of deep neural networks. Frontiers in neuroscience,
15:629892, 2021.

Stephen Grossberg. Competitive learning: From interactive activation to adaptive resonance. Cogni-
tive Science, 11(1):23–63, 1987.

Jordan Guerguiev, Konrad Kording, and Blake Richards. Spike-based causal inference for weight
alignment. In International Conference on Learning Representations, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Geoffrey Hinton. The forward-forward algorithm: Some preliminary investigations. arXiv preprint
arXiv:2212.13345, 2022.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International conference on machine learning, pp. 448–456.
pmlr, 2015.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

John F Kolen and Jordan B Pollack. Backpropagation without weight transport. In Proceedings of
1994 IEEE International Conference on Neural Networks (ICNN’94), volume 3, pp. 1375–1380.
IEEE, 1994.

Daniel Kunin, Aran Nayebi, Javier Sagastuy-Brena, Surya Ganguli, Jon Bloom, and Daniel LK
Yamins. Two routes to scalable credit assignment without weight symmetry. arXiv preprint
arXiv:2003.01513, 2020.

Benjamin James Lansdell, Prashanth Prakash, and Konrad Paul Kording. Learning to solve the credit
assignment problem. In International Conference on Learning Representations, 2020.

Julien Launay, Iacopo Poli, and Florent Krzakala. Principled training of neural networks with direct
feedback alignment. arXiv preprint arXiv:1906.04554, 2019.

Julien Launay, Iacopo Poli, François Boniface, and Florent Krzakala. Direct feedback alignment
scales to modern deep learning tasks and architectures. Advances in neural information processing
systems, 33:9346–9360, 2020.

Yann Le Cun, Conrad Galland, and Geoffrey E Hinton. Gemini: gradient estimation through matrix
inversion after noise injection. Advances in neural information processing systems, 1, 1988.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Timothy P Lillicrap, Daniel Cownden, Douglas B Tweed, and Colin J Akerman. Random synaptic
feedback weights support error backpropagation for deep learning. Nature communications, 7(1):
13276, 2016.

Timothy P Lillicrap, Adam Santoro, Luke Marris, Colin J Akerman, and Geoffrey Hinton. Backprop-
agation and the brain. Nature Reviews Neuroscience, 21(6):335–346, 2020.

Charles C Margossian. A review of automatic differentiation and its efficient implementation. Wiley
interdisciplinary reviews: data mining and knowledge discovery, 9(4):e1305, 2019.

Alexander Meulemans, Francesco Carzaniga, Johan Suykens, João Sacramento, and Benjamin F
Grewe. A theoretical framework for target propagation. Advances in Neural Information Processing
Systems, 33:20024–20036, 2020.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization for
generative adversarial networks. arXiv preprint arXiv:1802.05957, 2018.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Theodore H Moskovitz, Nicholas A Roy, and Jonathan W Pillow. A comparison of deep learning and
linear-nonlinear cascade approaches to neural encoding. BioRxiv, pp. 463422, 2018.

Hesham Mostafa, Vishwajith Ramesh, and Gert Cauwenberghs. Deep supervised learning using local
errors. Frontiers in neuroscience, 12:608, 2018.

J Nocedal and SJ Wright. Numerical optimization springer-verlag. New York, 1999.

Arild Nøkland. Direct feedback alignment provides learning in deep neural networks. Advances in
neural information processing systems, 29, 2016.

Maria Refinetti, Stéphane d’Ascoli, Ruben Ohana, and Sebastian Goldt. Align, then memorise: the
dynamics of learning with feedback alignment. In International Conference on Machine Learning,
pp. 8925–8935. PMLR, 2021.

Mengye Ren, Simon Kornblith, Renjie Liao, and Geoffrey Hinton. Scaling forward gradient with
local losses. arXiv preprint arXiv:2210.03310, 2022.

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning representations by back-
propagating errors. Nature, 323:533–536, 1986. URL https://api.semanticscholar.
org/CorpusID:205001834.

Albert Jiménez Sanfiz and Mohamed Akrout. Benchmarking the accuracy and robustness of feedback
alignment algorithms, 2021.

David Silver, Anirudh Goyal, Ivo Danihelka, Matteo Hessel, and Hado van Hasselt. Learning by
directional gradient descent. In International Conference on Learning Representations, 2021.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Ravi Francesco Srinivasan, Francesca Mignacco, Martino Sorbaro, Maria Refinetti, Avi Cooper,
Gabriel Kreiman, and Giorgia Dellaferrera. Forward learning with top-down feedback: Empirical
and analytical characterization. arXiv preprint arXiv:2302.05440, 2023.

Bernard Widrow and Michael A Lehr. 30 years of adaptive neural networks: perceptron, madaline,
and backpropagation. Proceedings of the IEEE, 78(9):1415–1442, 1990.

Will Xiao, Honglin Chen, Qianli Liao, and Tomaso Poggio. Biologically-plausible learning algorithms
can scale to large datasets. Technical report, Center for Brains, Minds and Machines (CBMM),
2018.

12

https://api.semanticscholar.org/CorpusID:205001834
https://api.semanticscholar.org/CorpusID:205001834


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A APPENDIX

Figure 4: Cosine similarity variations between different matrix using learning rule Equation 6 and
a fixed gradient matrix of sizes (4× 4). In practice we add random noise of small magnitude with
respect to the norm of the matrix to ensure updates even when cosine similarity is 0.

Figure 5: Comparison of the convergence of average cosine similarity of different learning rules over
50 training steps. Results are averaged over 10 runs.

13


	Introduction
	Background and Related Works
	Feedback Alignment (FA)
	Forward only calculations

	Gradient Aligned Projected Error (GrAPE)
	Limitations of Fixed Random Feedback Matrices
	Use of Forward Gradients Estimations
	Learning Rule and Algorithm
	Algorithmic Design Choices

	Empirical Evaluation
	Experimental Setting
	Results Analysis

	Limitations and Discussion
	Conclusion
	Appendix

