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ABSTRACT

Electronic Health Records (EHR) can be represented as temporal sequences that
record the events (medical visits) from patients. Neural temporal point process
(NTPP) has achieved great success in modeling event sequences that occur in
continuous time space. However, due to the black-box nature of neural networks,
existing NTPP models fall short in explaining the dependencies between different
event types. In this paper, inspired by word2vec and Hawkes process, we propose
an interpretable framework inf2vec for event sequence modelling, where the event
influences are directly parameterized and can be learned end-to-end. In the exper-
iment, we demonstrate the superiority of our model on event prediction as well as
type-type influences learning.

1 INTRODUCTION

Event sequence is a ubiquitous data structure in real world, such as user behavior sequences, error
logs, purchase transaction records and electronic health records (Mannila et al., 1997; Liu et al.,
1998; Zhou et al., 2013; Choi et al., 2016; Liu & Huang, 2023). An event can be generally repre-
sented as a tuple, including the event type and occurrence time, e.g., (well-child visit, 2024/02/01).
Inside the event sequence, various types of events often exhibit complex temporal patterns, making
the type-type influences discovering even challenging. Temporal point process has been a popular
and principled tool for event sequence modeling Shchur et al. (2021). Due to the high capacity
of deep networks, neural temporal point process models have been intensively devised and have
demonstrated superior performance for tasks such as event prediction (Du et al., 2016; Omi et al.,
2019; Waghmare et al., 2022; Soen et al., 2021; Zhou & Yu, 2023; Mei & Eisner, 2017; Chen et al.,
2018). However, their black-box nature makes most of them lack transparency and prevents them
from explaining their decisions (Danilevsky et al., 2020; Minh et al., 2022; Linardatos et al., 2020).

Some attempts are made to make the event sequence model more explainable. AutoNPP (Zhou
& Yu, 2023) adopts the additive form of the intensity function to capture the historical impacts,
like Hawkes process. NRI-TPP (Zhang & Yan, 2021) leverages the variational inference to recover
the underlying event dependencies by message passing graph and recurrent neural network (RNN).
CAUSE (Zhang et al., 2020b) learns the Granger causality between event types by attribution meth-
ods, namely integrated gradients. Attention mechanism is also widely used (Zuo et al., 2020; Zhang
et al., 2020a; Choi et al., 2016; Dash et al., 2022; Gu, 2021). However, these models either trade
accuracy and efficiency for interpretability, or are only designed for discovering the token-wise in-
flucences, or are model-specific, i.e., can not be applied to other models. Moreover, for the mostly
widely used attention mechanism, there exists layer and head inconsistency about its interpretability,
i.e., different attention layers and heads have different attention scores, which undermines its practi-
cal utility. To learn type-type influences, we draw inspiration from word2vec (Mikolov et al., 2013),
which learns semantic vector representations that can help group similar words. Though this vanilla
interpretability can not indicate the type-type influences, the mutual influences could be reflected if
we take a further step: create a vector space for each event type. As a result, distributed representa-
tions of event types in the vector space of event type k can help group event types that have similar
influences on k.
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2 METHOD

In this section, we detail the proposed type-type influences learning framework, namely inf2vec.
The event sequence model has three modules: the embedding layer, the sequence encoder, and the
event decoder. Besides word2vec, our model also draws inspiration from Hawkes process (Hawkes,
1971a;b). Both of us model the event dynamics as an influence-driven process in the view of event
types. To capture the impacts of historical events {(ki, ti)|ti < t}, Hawkes process specifies the
conditional intensity function as follows,

λk(t) = µk +
∑
ti<t

αk,ki exp(−βk,ki(t− ti)) (1)

where µk ≥ 0 is the base intensity, αk,ki
≥ 0 is the coefficient indicating how significantly event ki

will influence the occurrence of event k, and βk,ki
≥ 0 shows how the influence decays over time.

The schematic representation of our model is illustrated in Fig.1.

2.1 EMBEDDING LAYER

Global vs local embedding. In conventional neural temporal point process models, the embed-
ding layer assigns each event type a vector representation and the learned type representations can
naturally group similar event types. However, it’s hard for this kind of embedding to explain the de-
pendencies between different event types. For example, which event type influences the given event
type k most? One may turn to techniques like dot product to find the most influencing event type but
again, it can only find the most similar rather than influencing event type. In fact, the conventional
embedding can be considered as the global embedding, i.e., the vector representations of different
types are in the same vector space. Our idea is to create K vector spaces and in each, an event
type will have a vector representation, which we call local embedding. This kind of embedding can
naturally reflect the relationships between different event types. An event type can have different
vector representations in different vector spaces, indicating that it can have different influences on
different event types. Moreover, given the vector space of event type k, close vector representations
in this space indicate that the corresponding event types have similar impacts on event type k.

The local embedding is inspired by Hawkes process (Eq.1), where the impact of historical event
(ki, ti) on the occurrence of event k is explicitly characterized by two learnable parameters αk,ki

and βk,ki . From the perspective of embedding, the two parameters [αk,ki , βk,ki ] can be considered
as the vector representation of event type ki in the vector space of event type k, with the embedding
dimension being 2. More generally in this work, we set the embedding dimension as a hyperparam-
eter d and use notation zk

m(ki) ∈ Rd to denote the embedding of event type ki in the vector space
of event type k. And we use temporal embedding function zk

t (ti) to embed the timestamp ti. Then
in the context of event type k, we obtain the event embedding by concatenating the type and time
embedding,

ek(i) = zk
m(ki)||zk

t (ti) (2)

2.2 SEQUENCE ENCODER

Global vs local encoding. To capture the impacts of historical events {(kj , tj)}ij=1, existing se-
quence encoders encode them into one singe vector, which can be summarized as follows:

hi = Seq2V ec(e(1) · · · , e(j), · · · , e(i)) (3)

where e(j) is the embedding of event (kj , tj) and the backbone network Seq2V ec is usually realized
by RNN (Chung et al., 2014) or Transformer (Vaswani et al., 2017). The conventional encoder is
devised specifically for the global event embedding, which we call global encoding. To handle the
local event embedding, we here propose type-wise encoder:

hk
i = Seq2V eck(ek(1) · · · , ek(j), · · · , ek(i)) (4)

which performs separate history encoding for different event types. The underlying rationale for the
type-wise encoder is that each event type can concentrate on the historical events of its own interests,
which we call local encoding. For example, if only the event (kj , tj) has impact on the occurrence
of event k, then the history encoding hk

i can only encode the information from ek(j) and ignore
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Figure 1: An overview of our proposed type-type influences learning framework. The framework
creates separate embedding, encoding and decoding space for each event type. In the illustrated
example, brighter color in the embedding layer means stronger influence and we see event of type 2
is more likely to occur.

the other uninterested events. As a comparison, the conventional encoder tries to summarize all
historical information into one single vector hi. From this point of view, we can regard the local
encoding {hk

i }Kk=1 as the information decoupling (from the perspective of event types) of the global
encoding hi, with each local encoding hk

i only containing the historical information that the event
type k is interested in.

2.3 EVENT DECODER

Global vs local decoding. With history representation obtained from the sequence encoder, we are
about to decode the next event (the (i + 1)-th event). In existing neural temporal point process
models, the next event distribution is mostly characterized by the conditional intensity function,
which we summarize as follows,

λk(t) = σ(NNk(hi, t)) (5)

where σ is an activation function to ensure the positive constraint of the intensity function and NNk

is a neural network, e.g., multi-layer perceptron. We see that in the conventional decoder, the global
history encoding hi is shared across different intensity decoders {NNk}Kk=1, which we call global
decoding. Each intensity decoder takes out the information of interests from the global history
encoding hi and generate the corresponding intensity λk(t). But in our framework, extracting in-
formation of interests is unnecessary as the global history encoding has already been decoupled into
local history encoding in the view of event types in the encoding stage. Therefore, we can simply
replace the global history encoding as the local history encoding, i.e.,

λk(t) = σ(NNk(h
k
i , t)) (6)

we call it local decoding. In temporal point process, the next event distribution can be also described
by cumulative hazard function (Omi et al., 2019), probability density function (Shchur et al., 2021),
etc. They have quite different functional formulations comparing to Eq.5. But without loss of
generality, we can accordingly adapt them to our framework.

3 EXPERIMENT

In this part, we design experiments to answer the following questions: Q1, What’s the performance
of inf2vec on standard prediction tasks? Q2, How’s the quality of the learned type-type influences?

3.1 DATASETS

Three publicly available EHR datasets are used, namely SynEHR1, SynEHR2, and MIMIC (En-
guehard et al., 2020; Waghmare et al., 2022). Each dataset has a number of event sequences and
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Table 1: Comparison of weighted F1 score and mean absolute error on event prediction. The results
are averaged by 10 runs and we use bold numbers to indicate the best performance.

Model Haw9 HawC9 SynEHR1 SynEHR2 MIMIC
F1 MAE F1 MAE F1 MAE F1 MAE F1 MAE

NHP 22.8 0.46 36.5 0.41 56.3 1.93 53.3 3.11 62.3 0.41
FullyNN 22.6 0.40 36.2 0.38 59.4 1.35 56.0 2.42 63.9 0.30
SAHP 22.5 0.44 36.3 0.39 58.9 1.85 55.7 2.81 63.3 0.33
THP 23.7 0.43 37.4 0.39 58.7 1.77 55.3 2.73 63.5 0.35
JTPP 23.1 0.39 38.5 0.34 59.6 1.05 56.1 2.11 64.9 0.27

Inf2vec 24.5 0.37 39.1 0.36 60.2 1.11 56.4 2.01 65.3 0.24
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Figure 2: The illustration of our learned local embeddings (after dimension reduction) over dataset
Haw5, Haw9 and HawC9 (the first three plots), coordinates (x, k) denotes the embedding of event
type x in the context of event type k. The last three plots are the ground truth influences and
coordinates (x, k) denotes the influence of x on k, brighter color means stronger influence.

each sequence records the medical events from a patient. They have 6, 178, and 75 event types,
respectively. To evaluate the quality of the learned type-type influences, we additionally use three
synthetic datasets, Haw5, Haw9 and HawC9, which are all simulated by Hawkes process (Eq.1)
but have different parametric settings. Technically, we use the open-source python library tick 1 to
simulate the Hawkes process. These three Hawkes datasets have 5, 9 and 9 event types, respec-
tively. Each dataset is split into training, validation, and testing data according the number of event
sequences, with each part accouting for 60%, 20% and 20%, respectively.

3.2 COMPARED MODELS AND IMPLEMENTED INF2VEC

The compared models are state-of-the-art baselines. RNN based models include NHP (Mei & Eis-
ner, 2017), FullyNN (Omi et al., 2019) and JTPP (Waghmare et al., 2022). Transformer based
models include SAHP (Zhang et al., 2020a) and THP (Zuo et al., 2020). In the decoding stage,
NHP, SAHP and THP model the intensity function, FullyNN models the cumulative hazard func-
tion and JTPP models the probability density function. We adapt JTPP to our framework, i.e., to
implement inf2vec, we use RNN as our encoder, characterize the time distribution using probability
density function, and train the model by maximum likelihood estimation. To reduce parameters, one
single RNN (Seq2vec) is shared across different event types (Eq.4).

3.3 PREDICTION RESULTS

The predictive ability of one NTPP model can be evaluated by predicting the next event, includ-
ing the event type and occurrence time, given the historical events. As datasets used exhibit class
(type) imbalance, we use weight F1 score to report the accuracy of event type prediction. For time
prediction, we use mean absolute error as the evaluation metric. The results for the five datasets
are summarized in Table 1 (Haw5 is not compared due to space limit). We can see that inf2vec
outperforms the baselines in all datasets (except for JTPP). We use JTPP’s encoder and decoder, and
adapt them to our framework. We see the implemented inf2vec performs better than JTPP in most
datasets. Compared with these baselines, our model conducts information decoupling in the view of
event types, gaining more effectiveness in events embedding, encoding and decoding.

1https://x-datainitiative.github.io/tick/modules/hawkes.html
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3.4 TYPE-TYPE INFLUENCES LEARNING

inpatient outpatient urgentcare ambulatory emergency wellness

Figure 3: The illustration of our learned local
embeddings over dataset SynEHR1. The first
and second row show how other events influ-
ence ”wellness” and ”ambulatory”, respectively.
Brighter color indicates stronger influence.

In Hawkes process (Eq.1), the coefficients αk,∗
and βk,∗ indicate how other event types in-
fluence event type k, against which we can
compare our learned type-type influences. In
our framework inf2vec, the local embedding
zk
m(ki) can naturally reflect the relationship be-

tween event type ki and k. And in the vec-
tor space of event type k, close vector repre-
sentations indicate that the corresponding event
types have similar impacts on event type k.
To evaluate the quality of type-type influences
learning of our framework, for our learned lo-
cal embeddings zk

m(∗) ∈ Rd and the ground
truth influences [αk,∗, βk,∗] ∈ R2, we reduce
the vector dimension to 1 by techniques like
principle component analysis (PCA) Abdi & Williams (2010) and visualize them. Fig.2 illustrates
the results on the three synthetic Hawkes datasets, showing that our learned local embeddings ex-
hibit a high consistency with the ground truth influences, which validates the effectiveness of our
proposed framework. Over EHR dataset SynEHR1, we show the learned event influences for event
type ”wellness” and ”ambulatory” in Fig.3. The results show that our learned event influences are
mostly consistent with human experience.

4 CONCLUSION

In this paper, we present a type-type influences learning framework Inf2vec for neural temporal
point process, where the influences are directly parameterized and are learned end-to-end. Com-
pared with conventional NTPP approaches, our framework conducts information decoupling from
the perspective of event types, leading to more efficient embedding, encoding and decoding. Our
framework is quite general for not posing any restriction on model’s encoder and decoder architec-
ture. Experimental results on both synthetic and real-world EHR datasets demonstrate the superior
performance of our model in terms of event prediction and influence learning task.

REFERENCES

Hervé Abdi and Lynne J Williams. Principal component analysis. Wiley interdisciplinary reviews:
computational statistics, 2(4):433–459, 2010.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in Neural Information Processing Systems, 31, 2018.

E. Choi, Mohammad Taha Bahadori, Jimeng Sun, Joshua A. Kulas, Andy Schuetz, and Walter F.
Stewart. Retain: An interpretable predictive model for healthcare using reverse time atten-
tion mechanism. In Neural Information Processing Systems, 2016. URL https://api.
semanticscholar.org/CorpusID:948039.
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