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ABSTRACT

Multimodal pre-trained models (e.g., ImageBind), which align distinct data modal-
ities into a shared embedding space, have shown remarkable success across down-
stream tasks. However, their increasing adoption raises serious security concerns,
especially regarding targeted adversarial attacks. In this paper, we show that ex-
isting targeted adversarial attacks on multimodal pre-trained models still have
limitations in two aspects: generalizability and undetectability. Specifically, the
crafted targeted adversarial examples (AEs) exhibit limited generalization to par-
tially known or semantically similar targets in cross-modal alignment tasks (i.e.,
limited generalizability) and can be easily detected by simple anomaly detection
methods (i.e., limited undetectability). To address these limitations, we propose
a novel method called Proxy Targeted Attack (PTA), which leverages multiple
source-modal and target-modal proxies to optimize targeted AEs, ensuring they
remain evasive to defenses while aligning with multiple potential targets. We
also provide theoretical analyses to highlight the relationship between generaliz-
ability and undetectability and to ensure optimal generalizability while meeting
the specified requirements for undetectability. Furthermore, experimental results
demonstrate that our PTA can achieve a high success rate across various related
targets and remain undetectable against multiple anomaly detection methods. Our
anonymous code is on https://anonymous.4open.science/r/PTA-E53F.

1 INTRODUCTION

With the rapid expansion of data availability, computational resources, and advancements in model
architectures, multimodal pre-trained models (e.g., Imagebind (Girdhar et al., 2023)) have demon-
strated remarkable success (Wang et al., 2023a; Su et al., 2023; Xing et al., 2024; Girdhar et al.,
2023), which typically leverage contrastive learning to align multiple modalities into a shared latent
space. As powerful multimodal encoders, these models have been widely employed as foundational
building blocks integrated into high-level systems for various downstream applications, including
creative content generation (Xing et al., 2024; Su et al., 2023; Huang et al., 2024; Li et al., 2023) and
cross-modal tasks (Jiang et al., 2024; Chi et al., 2024; Lerner et al., 2024). However, the widespread
adoption of these multimodal pre-trained models has introduced new security threats (Zhao et al.,
2024b; Schulhoff et al., 2023; Fan et al., 2024). One of the most serious threats is targeted adversarial
attacks (Zhang et al., 2024b; Zhao et al., 2024b), which specifically exploit the shared embedding
space of such encoders to degrade the performance of downstream cross-modal matching tasks.

Previous work has focused on crafting targeted adversarial examples (AEs) by exploiting the shared
embedding space of multimodal models to maximize the cosine similarity between each AE and
its intended target embedding, which can be cross-modal (Zhang et al., 2024b; Zhao et al., 2024b;
Inkawhich et al., 2023) or same-modal (Zhao et al., 2024b; Dou et al., 2024). While optimizing the
AE towards a same-modal target experimentally results in poor performance in cross-modal tasks,
methods adopting a cross-modal target1 can achieve a high attack success rate under ideal conditions.
However, we notice that the so-called Illusion Attacks suffer a sharp performance drop when tested
on unseen targets, limiting their practical applicability. For example, as shown in Figure 1(a), in

1In this paper, we refer to such methods as Illusion Attacks and implement them with Zhang et al. (2024b).
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I will align this adversarial image with “A 
photo of an elephant” in the embedding space 
to attack text-to-image retrieval task.
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…
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Attack Fail!

adversary

“A photo of an elephant”

“A photo of a cow”

“A photo of a bird”

“A photo of a dog”

“A huge elephant”

“A lit bomb”

“A flying bird”
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(exact prompt)

I will align this adversarial image with “A 
photo of an elephant” in the embedding space 
to attack classification task.

(a) Text-to-image retrieval task (b) Classification task 
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Figure 1: Limited generalizability of the current targeted adversarial example. An adversarial
example crafted by Illusion Attack to align with “A photo of an elephant” (a) ranks top for that exact
query in retrieval task but drops sharply on semantically similar queries like “A walking elephant.”
Likewise, in classification (b), it successfully fools the model with the exact prompt but fails on a
slight variation (i.e., “A huge elephant”), underscoring its poor generalization to unseen targets.

the text-to-image retrieval task, an AE crafted for the query “A photo of an elephant” ranks first for
that exact query but significantly drops in ranking with the similar query of “A walking elephant.”
Similarly, Figure 1(b) shows that in classification tasks, the AE successfully fools the model with the
identical prompt but performs poorly when slight variations like “A huge elephant” are introduced.
Notably, in real-world scenarios, adversaries typically possess only partial knowledge of the user’s
input (e.g., relevant keywords or semantically similar examples) rather than the exact information.
Thus, targeted AEs must generalize beyond a single target to be effective in practice. Moreover, such
generalizable targeted AEs used as poison samples in the gallery of multimodal retrieval systems can
inflict greater harm, as the ability to match a broader range of potential targets allows them to degrade
system performance more effectively with fewer injected samples compared with untargeted AEs or
conventional targeted AEs. To summarize, improving the generalizability of targeted AEs (i.e., the
ability to generalize to partially known or semantically similar targets) is essential for conducting
successful and impactful cross-modal alignment attacks.

In addition to limited generalizability, we observe that the Illusion Attack also pushes AE embeddings
outside the benign data manifold (see Figure 2(a)), making them susceptible to anomaly detection
(Angiulli & Pizzuti, 2002; Breunig et al., 2000; Liu et al., 2008; Hoffmann, 2007). Further, attempts
to improve generalizability using multiple target examples widen the discrepancy between AE
embeddings and the source-modal reference embeddings, making AEs even more conspicuous (see
Figure 2(b)). Hence, it is challenging to craft an AE that is both generalizable and undetectable.

In this paper, we aim to improve both the generalizability and undetectability of targeted adversarial
examples. Specifically, we theoretically explore their underlying connection and propose a novel
method, called Proxy Targeted Attack (PTA). PTA leverages not only target-modal proxies but also
source-modal proxies to ensure that AEs are sufficiently similar to the latent target, while simultane-
ously concealing them within source-modal peers. As a result, PTA improves both the generalizability
and undetectability of AEs in cross-modal alignment tasks (see Figure 2(c)). Comprehensive theoreti-
cal analysis and experimental results demonstrate that PTA significantly enhances generalizability
and the undetectability of AEs in cross-modal alignment tasks, advancing both the practicality and
evasiveness of targeted adversarial attacks on multimodal pre-trained models.

2 ANALYSIS OF THE TWO LIMITATIONS

This section introduces the threat model and defines generalizability and undetectability of targeted
AEs, exposing limitations of previous work. Related work is in Appendix A due to space constraints.

2.1 THREAT MODEL

In this part, we formalize the capabilities and objectives of the adversary in cross-modal matching
tasks (i.e., classification and retrieval). Let us first denote by DS the data distribution for a source
modality and DT the corresponding target modality distribution.

2
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Source-Modal References Source-Modal Proxies Target-Modal Queries Target-Modal Proxies Adversarial Example Adversarial k-dist

(a) Vanilla Attack (c) Our Proxy Targeted Attack(b) Vanilla Attack with Multiple Targets
ASR: 29.4% ASRD: 64.8%ASRD: 7.2%ASR: 87.1%ASRD: 5.5% ASR: 82.9%

Illusion Illusion

Figure 2: t-SNE visualization of embedding space for three targeted attack strategies. (a) Illusion
Attack optimized with a single target (Zhang et al., 2024b): low attack success rate (ASR) with
different but semantically similar targets, and low ASR after anomaly detection (ASRD). (b) Adding
target-modal examples improves generalizability but worsens undetectability, causing low ASRD.
(c) Our Proxy Targeted Attack uses both source-modal and target-modal proxies to keep the AE close
to benign data while remaining aligned with cross-modal targets, achieving high ASR and ASRD.

Adversary’s objective. The adversary’s objective is to manipulate the sample x within an ϵ-ball to
generate the targeted adversarial example xδ that can mislead the model’s matching output toward a
desired target yt ∼ DT (i.e., a class prompt in classification and a user query in retrieval). Formally,
the adversary aims to maximize the matching score: τ (fθS(xδ), fθT(yt)), where fθS and fθT represent
the multimodal encoders for the source and target modalities, respectively. τ denotes the matching
measure (cosine similarity in this paper). Moreover, the adversary should consider the effectiveness
of AEs under possible defenses such as anomaly detection.

Adversary’s capability. The adversary can select examples from the source modality and generate
AEs from them. Unlike in traditional classifiers, where the target is a fixed class label, multimodal
pre-trained models involve targets from rich modalities (e.g., text or image), which are inherently
dynamic and semantically rich. For example, in classification task, while the target class is static
in the closed label space of traditional supervised classifier, multimodal pre-trained models allow
downstream practitioners to dynamically specify class prompts (e.g., “A photo of an elephant” or
“A huge elephant”) behind one particular class (e.g., elephant).2 Thus, the prior assumption that the
exact target is accessible to the adversary becomes unrealistic in multimodal systems: in practice, the
adversary lacks direct access to the true target yt and relies on limited prior knowledge about it. This
scenario necessitates attacks generalizable to targets not precisely known to the adversary.

2.2 INSUFFICIENT GENERALIZABILITY OF THE TARGETED ATTACK

Illusion Attack

Figure 3: Comparison of attack performance in
terms of generalizability and undetectability.
ASR* represents the attack success rate when the
true target is known (ideal situation), ASR corre-
sponds to the attack success rate when the true tar-
get is unknown (measures generalizability), and
ASRD denotes the attack success rate when the
true target is unknown and anomaly detection is
applied (further measures undetectability).

In this part, we define the concept of generaliz-
ability for targeted AEs in cross-modal matching
tasks and analyze the limitations of the existing
method in this aspect.

Although the adversary does not have direct ac-
cess to the true target yt, we assume there ex-
ists a prior knowledge Q which can be used
to define a potential distribution of true tar-
gets, denoted as Ptarget(Y ∼ DT|Q), such that
yt ∼ Ptarget(Y ∼ DT|Q). The goal for the ad-
versarial example xδ is to generalize across pos-
sible samples within Ptarget(Y ∼ DT|Q). Thus,
the generalizability of AEs can be measured as:

Ey∼Ptarget(Y∼DT|Q) [τ (fθS(xδ), fθT(y))] .

For example, if the adversary lacks knowledge
of the precise caption in a text-to-image retrieval
task, the adversarial image should be able to deceive semantically similar textual descriptions that
match certain known keywords. For clarity, generalizability here refers to the ability of AEs to match

2More details of threat model based on retrieval and classification are provided in Appendix B.
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partially known or semantically similar cross-modal targets. This differs from transferability, which
measures the ability of AEs generated for one model to also fool another model (Gu et al., 2023).

In Figure 3, we illustrate the ASR of existing targeted attacks to match multiple semantically similar
cross-modal targets. The results show that AEs crafted by the current method struggle to effectively
align with multiple similar targets, which restricts their applicability in practical scenarios. This
observation motivates us to explore strategies for improving the generalizability of AEs.

2.3 LIMITED UNDETECTABILITY OF THE TARGETED ATTACK

In what follows, we provide a general framework for detecting AEs in the embedding space and
analyze adversarial undetectability using anomaly detection.

To well quantify the undetectability of AEs, we summarize a detection framework to identify the
outliers likely to be adversarial. The detected outliers can be formalized as:

Doutlier = {xi | si > Quantile(S, 1− r)}Ni=1 ,

where r is a pre-given anomaly ratio in unsupervised anomaly detection, S = {s1, s2, . . . , sN}
denotes a set of anomaly scores, and Quantile(·, 1− r) returns the value at the specified quantile of
the anomaly scores. It is noteworthy that the calculation of the anomaly score s varies depending on
the detection method employed (Angiulli & Pizzuti, 2002; Breunig et al., 2000; Hoffmann, 2007; Liu
et al., 2008), identifying those with higher scores as outliers.

Table 1: Average anomaly score ranks (↑ %)
of AEs predicted by anomaly detectors (with 100
reference points used). The AEs were generated
for LanguageBind (Zhu et al., 2024). A larger
rank indicates higher undetectability.

Task Attack kNN LOF Forest PCA

Classification Illusion Attack 1.00 1.01 1.00 1.00
PTA (Ours) 35.64 21.78 71.29 28.71

Retrieval Illusion Attack 1.01 1.03 1.10 1.07
PTA (Ours) 9.30 8.71 3.07 6.18

Illusion Attack generates embeddings that lie
far outside the benign data manifold (see Fig-
ure 2(a)), making them vulnerable to anomaly
detectors. In Table 1, we show that existing
targeted AEs can be effectively detected using
simple anomaly detection methods such as kNN
(Angiulli & Pizzuti, 2002), LOF (Breunig et al.,
2000), Isolation Forest (Liu et al., 2008), and
PCA (Hoffmann, 2007) in the embedding space,
leading to a low Attack Success Rate (ASR) af-
ter anomaly detection (ASRD) as illustrated in
Figure 3. This observation motivates us to explore methods to enhance the undetectability of AEs.

2.4 THE RELATIONSHIP BETWEEN THE GENERALIZABILITY AND UNDETECTABILITY

Here, we analyze how adversaries can generate AEs that achieve both high undetectability and
generalizability in multimodal models. Since AEs lose their effectiveness once detected as anomalies,
the adversary aims to maximize generalizability while remaining as undetectable as possible. If
adversaries model the defender’s anomaly detection algorithm in the embedding space as a distance-
based outlier filtering problem (Angiulli & Pizzuti, 2002), the adversary’s optimization objective for
AE generation under anomaly detection defense can be formally defined as:

min
xδ

Ey∼Ptarget(Y∼DT|Q) [d (fθS(xδ), fθT(y))]

s.t. Ex∼Ptarget(X∼DS|Q) [d (fθS(xδ), fθS(x))] ≤ βtrue,

where d(·) denotes a distance metric used in the anomaly detection algorithm, and βtrue is a threshold
that distinguishes benign from anomalous examples. The objective aims to maximize the generaliz-
ability of xδ while ensuring it remains undetectable. However, in practice, adversaries do not know
the exact value of βtrue set by the defender. Instead, they can only estimate β as an approximation
of the detection threshold. For analytical convenience, we employ the L2 distance as the distance
measure between the feature vectors, reformulating the optimization problem as:

min
xδ

Ey

[
∥fθS(xδ)− fθT(y)∥22

]
s.t. Ex

[
∥fθS(xδ)− fθS(x)∥22

]
≤ β.

(1)

By solving Equation (1), the following relationship between generalizability and undetectability can
be established, and the proof of Theorem 1 is provided in Appendix C:

4
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Theorem 1. Let v = fθS(xδ) and define generalizability L(v) = Ey

[
∥v − fθT(y)∥22

]
), we have:

min
v

L(v) =
(
max

{
∥∆∥2 −

√
β − σS, 0

})2
+ σT,

where σT = tr (Var [fθT(y)]) and σS = tr (Var [fθS(x)]), and ∆ = Ey[fθT(y)] − Ex[fθS(x)]
represents the modality gap, as verified in Liang et al. (2022).

Theorem 1 indicates that the optimal generalizability L(v) is influenced by the modality gap ∥∆∥2
and the estimated detection threshold β. Specifically, as ∥∆∥2 decreases or β increases, L(v) reduces,
enhancing the generalizability of the optimal AE. Furthermore, Theorem 1 reveals an interesting
trade-off between generalizability and undetectability. Therefore, focusing only on target-modal data
to improve generalizability inevitably compromises undetectability, as illustrated in Figure 2 (b).
However, by incorporating source-modal targets to create multimodal proxies for optimizing the AEs,
we are expected to derive AEs whose generalizability approaches the theoretical upper bound L(v),
while maintaining a fixed level of undetectability. This insight motivates us to design a new attack
method that effectively balances these two factors, as discussed in the next section.

3 PTA: PROXY TARGETED ATTACK

In Sections 2.2 and 2.3, we identified the limitations of the existing targeted attack on undetectability
and generalizability. Furthermore, Section 2.4 presents a theoretical analysis that reveals a limitation:
these two challenges cannot be perfectly addressed simultaneously. To address these challenges, we
propose Proxy Targeted Attack (PTA), endowing the AEs with both generalizability and undetectabil-
ity. It introduces two key innovations: (i) leveraging multiple proxy targets to enhance generalizability,
and (ii) optimizing AEs with respect to source-modal targets to improve undetectability.

To improve generalizability, we define the optimization loss LG with xδ as:

LG(xδ) = 1− 1

Nc

∑Nc

j=1
τ (fθS(xδ), fθT(ŷj)) , (2)

where {ŷ1, ..., ŷNc} denotes a set of target-modal proxies that are sampled from the estimated
ground-truth distribution Ptarget(Y ∼ DT|Q). Note that Nc is a hyperparameter. We utilize this set
of proxy targets to serve as surrogates for the unknown true target yt. By maximizing the cosine
similarity, we can enhance the generalizability of AEs across multiple cross-modal targets, thereby
increasing the likelihood of successful attacks on the true targets.

To improve undetectability, we define the undetectability optimization loss LD for xδ as:

LD(xδ) =
1

Ns

∑Ns

i=1
∥fθS(xδ)− fθS(x̂i)∥2 , (3)

where {x̂1, ..., x̂Ns
} denotes a set of source-modal proxies that is sampled from the estimated

distribution Ptarget(X ∼ DS|Q) and Ns is the number of source-modal proxies. The objective is to
position the AEs as close as possible to these source-modal proxies in the embedding space. Ideally,
the AEs should lie within or near the convex polytope formed by benign examples, thereby enhancing
concealment and minimizing the likelihood of detection.

Combining Equation (2) and Equation (3), the final optimization objective is defined as:

argmin
xδ

LG(xδ) + αLD(xδ), s.t., ∥xδ − x∥∞ ≤ ϵ, (4)

where x denotes the original example corresponding to xδ and the perturbation is constrained by a
maximum perturbation limit ϵ. The parameter α serves as a balancing factor between LG, and LD,
allowing control over the dominance of the two abilities.

Furthermore, we demonstrate that using multiple proxies {ŷj}Nc
j=1 and {x̂i}Ns

i=1 can guarantee a lower
bound on the generalizability performance of the AE, comparable with directly targeting the true
target. We formalize this theoretical result by considering the effectiveness of source-modal proxies
{x̂i}Ns

i=1 in approximating the true target yt, in the following theorem:

Theorem 2. Let xδ be the AE generated by using multiple source-modal proxies {x̂i}Ns
i=1 and target-

modal proxies {ŷj}Nc
j=1. Let us denote by BNs the empirical lower bound of the cosine similarity

5
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between source-modal proxies and the true target, i.e., BNs
= mini∈[Ns] τ (fθS(x̂i), fθT(yt)). If xδ

is an interior point of the convex polytope formed by the source-modal proxies {x̂i}Ns
i=1, then the

similarity between the AE and the true target will be lower bounded by BNs
, i.e.,

τ (fθS(xδ), fθT(yt)) ≥ BNs
.

Theorem 2 provides theoretical support for the effectiveness of using multiple source-modal proxies to
approximate the true target. It ensures that AEs maintain a high level of cosine similarity to the target
distribution, thereby enhancing their generalization to unseen targets. Similarly, a corresponding
theorem also holds for target-modal proxies. The formal proof and details are provided in Appendix D.

4 EXPERIMENTS

Overview. In this section, we first introduce our experimental setup. Then, we present a comparative
analysis of our method against baseline approaches, focusing on the undetectability and generaliz-
ability of different adversarial attacks. Next, we discuss the effectiveness of PTA in more challenging
scenarios (black-box attacks, textual or audio AEs, and potential defenses beyond anomaly detection).
Finally, we analyze hyperparameter factors that could potentially affect our PTA.

4.1 EXPERIMENTAL SETTINGS

Models, downstream tasks and datasets. We use three recent multimodal pre-trained models:
ImageBind (Girdhar et al., 2023), LanguageBind (Zhu et al., 2024), and One-PEACE (Wang et al.,
2023a). ImageBind and LanguageBind support six modalities, while One-PEACE handles three
modalities: image, text, and audio. As for downstream tasks, our experiments encompass two
cross-modal matching tasks: classification and retrieval. For classification, we use ImageNet (Deng
et al., 2009) and XmediaNet (Peng et al., 2018). For retrieval, we perform evaluations on MSCOCO
(Lin et al., 2014) and XmediaNet. For these tasks, we generate AEs from the image modality, with
true targets located in the text modality. We also evaluate situations where the AE are text or audio.
Further details about models, tasks and datasets are provided in Appendix E.1.
Compared baselines. We compare PTA with prevailing targeted and untargeted attacks on multi-
modal pre-trained models. For targeted attacks, in addition to Illusion Attack (Zhang et al., 2024b),
we also incorporate CrossFire (Dou et al., 2024) and MF-ii (Zhao et al., 2024b), which optimize AEs
with the source-modal example generated based on the cross-modal target. For untargeted attacks,
we compare PTA with Sep-Attack (Madry et al., 2019; Li et al., 2020a), Co-Attack (Zhang et al.,
2022), SGA (Lu et al., 2023), and CMI-Attack (Fu et al., 2024) from the perspective of poisoned
retrieval system performance degradation. Details of these baselines are in Appendix E.2.
Metrics. For classification, we assess the adversarial attacks using the Classification Attack Success
Rate (Cls ASR), which quantifies the percentage of AEs successfully classified as the target class.
In retrieval, we evaluate performance using the Recall at Rank K Attack Success Rate (R@K ASR),
measuring the proportion of AEs retrieved within the top-K results that match the true target. With
anomaly detection methods: Angiulli & Pizzuti (2002); Breunig et al. (2000); Liu et al. (2008);
Hoffmann (2007) enabled, we report Cls ASRD and R@K ASRD, i.e., the corresponding ASR
computed over undetected AEs. Specifically, we evaluate the effectiveness of PTA along two axes:
• To evaluate the generalizability, we test the performance (Cls ASR or R@K ASR) of AEs in zero-shot

classification (text as prompt) and text-to-image retrieval tasks.
• To measure the undetectability, we apply traditional anomaly detection methods along with our

proposed anomaly detection approach in Section 2.3. We assess the performance (Cls ASRD or
R@K ASRD) of AEs that bypass detection.

More details of the evaluation metrics are provided in Appendix E.3.
Hyperparameters. For all the anomaly detection methods, we set K = 50 to denote the number of
top-K samples, with the filtering ratio r = 1 − Nadv

K , where Nadv is the number of AEs within the
selected top-K range for evaluation convenience. All results are reported as the average performance
across three runs with different random seeds. We use the PGD attack (Madry et al., 2019) under the
L∞-norm with 100 iterations and ϵ = 8/255 for both classification and retrieval tasks; More details
on the hyperparameters are provided in Appendix E.4. Specifically, experiments in Sections 4.2
and 4.3 both follow these settings unless otherwise stated.
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Table 2: Comparison of generalizability and undetectability of AEs in classification task. Perfor-
mance is reported by Cls ASR (%) and Cls ASRD (%) when anomaly-detection defense is used.

XmediaNet ImageNet Average
Attack Defense ImageBind LanguageBind One-PEACE ImageBind LanguageBind One-PEACE

MF-ii ✗ 30.890.63 48.004.71 36.673.31 17.3315.04 57.7810.75 32.900.61 37.26
CrossFire ✗ 31.330.54 45.566.49 38.003.93 12.896.07 53.333.93 29.600.49 35.12

Illusion Attack ✗ 99.580.59 100.000.00 97.500.00 77.440.21 95.060.69 89.500.64 93.18
PTA (Ours) ✗ 99.580.59 100.000.00 98.750.59 94.220.47 99.720.20 97.610.78 98.31

MF-ii ✓ 20.897.78 43.692.70 36.673.31 6.677.62 35.332.37 28.700.52 28.66
CrossFire ✓ 31.330.54 42.164.79 35.972.74 9.338.56 41.789.11 25.100.40 30.95

Illusion Attack ✓ 18.330.00 18.331.18 66.250.59 0.420.59 2.500.00 14.420.15 20.04
PTA (Ours) ✓ 92.920.59 95.420.59 87.920.59 77.541.31 95.820.73 55.421.33 84.17

Table 3: Comparison of generalizability and undetectability of AEs in retrieval task. Performance
is reported by R@1 ASR (%) and R@1 ASRD (%) when anomaly-detection defense is used.

XmediaNet MSCOCO Average
Attack Defense ImageBind LanguageBind One-PEACE ImageBind LanguageBind One-PEACE

MF-ii ✗ 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 0.00
CrossFire ✗ 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 0.00

Illusion Attack ✗ 77.050.47 85.801.72 56.761.33 20.331.30 29.410.75 9.590.18 46.49
PTA (Ours) ✗ 95.360.27 96.750.04 85.140.12 71.310.71 87.090.13 30.690.18 77.72

MF-ii ✓ 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 0.00
CrossFire ✓ 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 0.00

Illusion Attack ✓ 15.980.33 2.530.80 45.060.18 10.390.11 5.471.72 9.590.18 14.84
PTA (Ours) ✓ 74.942.67 76.640.20 76.220.24 50.110.64 64.750.35 28.130.09 61.80

Table 4: Comparison of text-to-image retrieval degradation by injecting varying fractions of AEs.
Injection Ratio is the proportion of AEs to all images. Results are reported as R@1 (%) after injection
(↓ drop in R@1 (%)). Here, R@1 (Recall@1) is the fraction of queries whose top-ranked result is its
corresponding ground-truth image. Lower R@1 indicates stronger disruption brought by AEs.

Attack (Injection ratio) ImageBind LanguageBind One-PEACE

No Attack (0) 41 .02 39 .62 37 .47
Sep-Attack (10%) 38.54 (↓ 2.48) 37.38 (↓ 2.24) 35.73 (↓ 1.74)
Co-Attack (10%) 37.34 (↓ 3.68) 35.69 (↓ 3.93) 34.31 (↓ 3.16)

SGA (10%) 36.86 (↓ 4.16) 35.54 (↓ 4.08) 33.91 (↓ 3.56)
CMI-Attack (10%) 36.90 (↓ 4.12) 36.00 (↓ 3.62) 33.80(↓ 3.67)

Illusion Attack (1%) 37.42 (↓ 3.60) 34.55 (↓ 5.07) 36.55 (↓ 0.92)
Our PTA (0.1%) 33.27 (↓ 7.75) 36.23 (↓ 3.39) 37.26 (↓ 0.21)
Our PTA (0.5%) 23.29 (↓ 17.73) 15.47 (↓ 24.15) 33.55 (↓ 3.09)
Our PTA (1%) 20.04 (↓ 20.98) 12.26 (↓ 27.36) 32.83 (↓ 4.64)

4.2 THE EFFECTIVENESS OF PTA
In this part, we evaluate the generalizability and undetectability of AEs generated by PTA in a
white-box setting. To evaluate the generalizability, we optimize AEs knowing the targeted estimated
distribution Ptarget(Y ∼ DT|Q) but without complete details about the true targets. We select two
disjoint subsets from the distribution to serve as proxy targets and true targets, allowing us to assess
the generalizability performance of the AEs. Also, we evaluate the undetectability of AEs by applying
our anomaly detection tailored for multimodal embeddings. Detailed settings are in Section 4.1.

Classification task. As shown in Table 2, PTA surpasses the adopted baselines by a large margin.
We also observe that multimodal classification systems are more vulnerable than retrieval systems
(shown in Table 3). We conjecture that it is because the target distribution in classification (i.e.,
class prompts) is less sparse than in retrieval (i.e., user queries), making alignment feasible even
for less generalizable AEs. This suggests that increasing the variety and diversity of class prompts
could potentially improve adversarial robustness against generalized AEs. More discussion of this
vulnerability and possible explanation is provided in Appendix F.1.
Retrieval task. As shown in Table 3, our approach substantially improves both ASR and ASR
under anomaly detection (ASRD) over multiple baselines (Zhang et al., 2024b; Dou et al., 2024; Zhao
et al., 2024b). This is because using multiple cross-modal proxy targets enhances AE generalizability
to semantically similar texts, while incorporating source-proxy targets tightens alignment with
the source modality and improves embedding stealthiness. Further, we quantify the risk of highly
generalizable AEs in retrieval systems by considering injecting AEs into the image gallery as poison to
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Table 5: Comparison results of generalizability of AEs in black-box attacks. Results are reported
for different tasks (Cls ASR (%) for classification and R@1 ASR (%) for retrieval).

Classification Retrieval

XmediaNet ImageNet XmediaNet MSCOCO

Attack Queries ImageBind LanguageBind ImageBind LanguageBind ImageBind LanguageBind ImageBind LanguageBind

Illusion Attack 104 49.581.77 65.000.00 33.111.27 49.510.93 36.960.74 39.571.72 7.860.11 8.220.53
PTA (Ours) 104 51.671.18 68.752.95 34.750.89 52.440.88 60.725.10 61.741.39 20.771.43 27.632.80

Illusion Attack 2 · 104 75.000.00 87.080.59 59.871.35 75.960.02 61.350.00 60.930.00 11.560.00 11.640.64
PTA (Ours) 2 · 104 78.330.00 91.670.00 64.323.54 81.751.45 84.720.00 83.000.00 41.810.00 50.141.22

Table 6: Comparison results of generalizability and undetectability of textual or audio AEs. We
report the performance of AEs by Cls ASR (%) (Cls ASRD (%) with defense) and R@1 ASR (%) (Cls
ASRD (%) with defense) for classification and retrieval.

Task Method Source Modality: Text Source Modality: Audio
No Defense With Defense No Defense With Defense

Classification Illusion Attack 26.010.35 10.540.21 100.000.00 21.450.55
PTA (Ours) 37.320.29 25.880.40 100.000.00 91.030.78

Retrieval Illusion Attack 10.670.03 1.350.15 0.260.04 0.050.01
PTA (Ours) 24.330.27 18.910.32 65.330.17 48.170.25

compromise the overall retrieval performance on MSCOCO (Lin et al., 2014). Specifically, different
from Table 3, we test the system with all queries in examples of MSCOCO. Unlike untargeted AEs,
which typically break only the link between their single query, generalized targeted AEs attract many
more semantically related queries. As a result, PTA causes markedly larger performance degradation
with fewer injected AEs (Table 4) than four recent untargeted attacks (Madry et al., 2019; Li et al.,
2020a; Zhang et al., 2022; Lu et al., 2023; Fu et al., 2024) and Illusion Attack (Zhang et al., 2024b),
demonstrating its high attack effectiveness and efficiency.

4.3 THE EFFECTIVENESS OF PTA UNDER MORE CHALLENGING CONDITIONS

Here, we assess PTA’s performance in tougher conditions: (i) in black-box settings, (ii) with textual
or audio AEs, and (iii) against defenses of adversarial training, data augmentation, or adversarial
purification. Since source-modal target optimization methods (Dou et al., 2024; Zhao et al., 2024b)
perform poorly even in the easiest settings, they will not be considered in this part.

Black-box attacks. In scenarios where the adversaries have query access to the encoder but no
direct access to the model weights, AEs can still be generated using a limited number of queries.
This bypasses the need for gradient information, making it possible to conduct a black-box attack
through estimated gradients or random search techniques. In our black-box setting, we experiment
with gradient-free Square Attack (Andriushchenko et al., 2020) under the L∞-norm with ϵ = 16/255.
We evaluate our approach against Illusion Attack under an equal query budget, with results in Table 5.
Across classification and retrieval tasks, our method also achieves superior performance, highlighting
its superior generalizability even in black-box scenarios.

Textual or audio adversarial examples. For textual AEs, we use Bert-Attack (Li et al., 2020b)
with a perturbation budget of 10% of tokens and evaluate image-text retrieval and text classification
on MSCOCO (for classification, images serve as labels). For audio AEs, we apply PGD with an
ℓ∞ budget of 0.01 and evaluate audio-text retrieval and audio classification on XmediaNet (for
classification, text prompts serve as labels). Results in Table 6 show that discrete text AEs are indeed
harder to optimize than image AEs, yielding lower ASR. Nevertheless, PTA consistently improves
both generalizability and undetectability. In addition, continuous audio AEs are as effective as image
AEs, and PTA again brings substantial gains in both generalizability and undetectability.

Table 7: R@1 ASR (%) under three defenses: Ad-
versarial training (AT), data augmentation (DA)
and adversarial purification (AP).

Method Defense
AT DA AP

Illusion Attack 62.310.24 12.440.13 9.830.07
PTA (Ours) 78.030.20 89.330.31 71.970.37

Possible defenses. Here, we also evaluate
the effectiveness of PTA under possible de-
fense methods in addition to anomaly detec-
tion. Specifically, we adopt three prevailing
defenses against adversarial attacks in retrieval
tasks: (i) TeCoA (Mao et al., 2023), a state-of-
the-art method for adversarial training on pre-
trained vision-language models. (ii) Data aug-
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mentation that augments input to disrupt adversarial features. We use Gaussian Blur here. (iii)
DiffPure (Nie et al., 2022) that adopts diffusion models (Ho et al., 2020) for adversarial input purifi-
cation. The results are shown in Table 7, which reflects the effectiveness of PTA against not only
anomaly detection, but also other defenses. We hypothesize that this stems from PTA’s generalizabil-
ity: by aligning to a distribution of semantically consistent targets via proxies, PTA maintains high
ASR even when brittle adversarial features are attenuated by defense. Due to space constraints, we
defer the experiment configurations and extended results in Appendix E.5.

We also study the effectiveness of PTA with limited adversarial prior knowledge (Appendix F.2),
audio target modality (Appendix F.3), and unknown target modality (Appendix F.4) in the Appendix.

4.4 ABLATION STUDIES

Figure 4: Attack performance with different number of
target-modal proxies (Nc) and source-modal proxies (Ns).

Number of proxy targets. Figure 4
shows that increasing the number of
target-modal or source-modal proxies
can improve the attack effectiveness
of AEs. In specific, increasing target-
modal proxies markedly boosts ASR
in retrieval but only modestly in clas-
sification, likely due to the lower sim-
ilarity between target-modal proxies
in retrieval tasks, making the training
samples more versatile. In summary,
a few dozen proxies suffice for strong
performance in both retrieval and clas-
sification. We also analyze the cost of gathering and optimizing with proxies in Appendix F.5.
Balancing factor α. In Equation (4), α is critical for controlling the alignment of AEs with the
target modality versus the source modality. The ASR-ASRD trade-off observed in Figure 5 aligns with
our theoretical analysis in Section 2.4 and gives practitioners a way to precisely tune their objective:
lower α emphasizes broad cross-target matching, whereas higher α emphasizes stealth. The effect
is more pronounced for retrieval, where targets are more dispersed (empirically demonstrated in
Appendix F.1), but the same tuning rule holds across tasks. To summarize, practitioners can set a
lower α to prioritize generalizability and a higher α to prioritize undetectability.

ImageNet XmediaNet

Classification, α ∈ {0, 0.2, 0.4, 0.6, 0.8, 1.0}

MSCOCO XmediaNet

Retrieval, α ∈ {0, 0.2, 0.4, 0.6, 0.8}

Figure 5: Analysis of the balancing factor α. We present results for two metrics: ASR (Attack
Success Rate (%)) and ASRD (Attack Success Rate after anomaly Detection (%)). ASR (red)
quantifies the generalizability of AEs, while ASRD (purple) measures their undetectability.

5 CONCLUSION

In this paper, we investigated targeted adversarial attacks in cross-modal matching tasks by examining
both undetectability and generalizability. Our anomaly detection analysis in the embedding space
reveals that existing targeted AEs are vulnerable to detection and exhibit poor generalization to
semantically similar or partially known targets. To address these challenges, we proposed Proxy
Targeted Attack (PTA), which leverages multimodal proxies to achieve both superior undetectability
and generalizability. In addition, our theoretical findings highlight the interplay between these two
limitations of AEs and demonstrate how PTA achieves an optimal balance between them. Experiments
validate PTA’s effectiveness in generating undetectable AEs while maintaining a high success rate
against semantically similar targets, underscoring its potential for real-world adversarial scenarios.
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ETHICS STATEMENT

This work examines targeted adversarial attacks on multimodal pre-trained models to better under-
stand and mitigate security risks in multimodal systems. We highlight the risks observed in this paper
(e.g., generalizable and hard-to-detect AEs) to alert practitioners that such attacks are feasible and to
motivate stronger defenses. No production systems or personal data are involved.

REPRODUCIBILITY STATEMENT

An anonymized repository accompanies this paper with code to reproduce results. Experiments rely
on public datasets (ImageNet, MSCOCO, XmediaNet) with standard splits and official checkpoints
of ImageBind, LanguageBind, and One-PEACE. Default hyperparameters, precise metric definitions,
and step-by-step evaluation procedures are provided in the paper and the repository.
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Appendix for Improving Generalizability and Undetectability for
Targeted Adversarial Attacks on Multimodal Pre-trained Models

We summarize the Appendix as follows:

• Appendix A Related Work: A comprehensive review of related works, covering various
aspects of adversarial attacks and defense mechanisms for multimodal models.

• Appendix B Explanations of the Threat Model: More explanations of the adversary’s
capability in our more realistic threat models, for classification and retrieval, respectively.

• Appendix C Proof of the Relationship between Undetectability and generalizability
Proof of the relationship between these two abilities in targeted adversarial attacks, providing
the proof of Theorem 1.

• Appendix D Proof of Effectiveness for Proxy Targets: Proof of the effectiveness of proxy
targets, providing the proof of Theorem 2.

• Appendix E Implementation Details: Implementation details of our experiments cover
several aspects:

– Appendix E.1 Models, Task and Dataset Settings: Details on model, task, and dataset
settings used in the experiments.

– Appendix E.2 Compared Baselines: Details on the compared baselines of targeted
and untargeted adversarial attacks on the multimodal pre-trained models.

– Appendix E.3 Evaluation Metrics: Explanation of the evaluation metrics applied to
assess attack and attack (with or without defense) performance.

– Appendix E.4 Hyperparameter Settings: Information on hyperparameter configura-
tions.

– Appendix E.5 Settings and Results for Potential Defense: Experimental settings and
additional results for defenses and attacks in evaluating PTA’s effectiveness against
potential defenses.

• Appendix F Additional Experiments: Additional experiments for different attack diffi-
culty in retrieval and classification & (2) PTA’s effectiveness with limited adversarial prior
knowledge and unknown target modality.

– Appendix F.1 Explanation of the Vulnerability of Classification System: Details
about the variance of source- and target- modal embeddings in retrieval and classifica-
tion, and ablation studies about different class prompts in the classification task.

– Appendix F.2 PTA’s Effectiveness with Limited Adversarial Prior Knowledge:
Experiments showing PTA’s effectiveness when the prior information accessible to the
adversary is even more limited.

– Appendix F.3 PTA’s Effectiveness with Audio Target Modality: Experiments of
PTA’s effectiveness when the target modality is audio, which is continuous.

– Appendix F.4 PTA’s Effectiveness with Unknown Target Modality: Experiments of
PTA’s effectiveness when the adversary does not know the target modality.

– Appendix F.5 Additional Cost of PTA: Experiments demonstrating the proxies re-
quired by PTA do not introduce significant additional cost.

• Appendix G Use of LLMs: Discussion of the usage of LLMs in our research.
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A RELATED WORK

A.1 MULTIMODAL PRE-TRAINED MODELS

Multimodal pre-trained models have garnered increasing interest for their ability to integrate diverse
input modalities, such as images, text, and audio, into a unified latent space. These models serve
as foundational representation encoders, enabling various downstream applications (Girdhar et al.,
2023; Zhu et al., 2024; Wang et al., 2023a; Guzhov et al., 2022), or as multimodal processing
modules integrated into high-level models (Su et al., 2023; Xing et al., 2024). Typically, these models
are trained using contrastive learning (van den Oord et al., 2019) on multimodal paired datasets,
such as image-text or audio-text pairs (Schuhmann et al., 2021; Kim et al., 2019). By maximizing
the similarity between positive pairs while minimizing it for negative pairs, these models learn
effective representations in the embedding space, where semantically similar inputs are mapped
closer together. To enhance flexibility and model capacity, existing multimodal pre-trained models
often employ dedicated encoders for each modality. For instance, ImageBind (Girdhar et al., 2023)
and LanguageBind (Zhu et al., 2024) use separate transformers (Vaswani et al., 2017) for their six
supported input modalities. Alternatively, models like One-PEACE (Wang et al., 2023a) adopt a
hybrid approach, incorporating both modality-specific parameters and shared cross-modal parameters
to process multimodal inputs. In this work, we evaluate both types of models in our experiments.

A.2 ADVERSARIAL ATTACKS ON MULTIMODAL MODELS

Adversarial attacks and related security challenges on multimodal models have drawn significant
attention (Tu et al., 2023; Vatsa et al., 2023). Compared with traditional single-modal models, the
complexity and diversity of multimodal models make them more susceptible to adversarial attacks
(Fan et al., 2024; Liu et al., 2024b; Zhao et al., 2024b). Prior research has predominantly focused
on untargeted adversarial attacks against multimodal models (Zhang et al., 2022; Zhou et al.,
2023; Lu et al., 2023; Wang et al., 2024a; 2023b), particularly Vision-Language Models (VLMs)
like CLIP (Radford et al., 2021). These attacks typically perturb both text and image inputs to
force the model into incorrect predictions or undesirable output. In this work, we focus on targeted
adversarial attacks, where the adversary has a specific goal and aims to steer the model’s output
toward a designated target. Targeted attacks are more challenging than untargeted attacks (Zhao et al.,
2024c; Li et al., 2020c), as they require precise alignment across multiple modalities to generate
highly adversarial examples. Pioneering work (Zhang et al., 2024b) first explored the generation of
targeted AEs for multimodal models, demonstrating their feasibility and effectiveness.

A.3 DEFENSE MECHANISMS FOR MULTIMODAL MODELS

The multimodal models have highlighted their sensitivity to adversarial attacks, driving the develop-
ment of defense mechanisms tailored to them (Zhao et al., 2024a; Liu et al., 2024a). Unlike single-
modal models, multimodal systems must account for the interactions between different modalities,
necessitating specialized defense strategies. Previous studies have primarily focused on adversarial
fine-tuning for multimodal pre-trained models. These approaches include partial fine-tuning, such
as text prompt tuning (Li et al., 2024; Zhang et al., 2024a) and visual prompt tuning (Mao et al.,
2023), as well as full-parameter fine-tuning of the models (Wang et al., 2024b; Mao et al., 2023;
Schlarmann et al., 2024; Waseda & Tejero-de-Pablos, 2024; Zhou et al., 2024). For instance, the
pioneering work TeCoA (Mao et al., 2023) employs a text-guided contrastive adversarial training
loss to fine-tune pre-trained multimodal models, enhancing their zero-shot adversarial robustness.
However, a persistent challenge with adversarial fine-tuning is the trade-off between robustness and
performance on benign examples (Mao et al., 2023; Zhang et al., 2019; Raghunathan et al., 2019).
Our work adopts a novel perspective by emphasizing the detection of AEs as a defense strategy,
mitigating their influence on the model’s outputs.

B EXPLANATIONS OF THE THREAT MODEL

B.1 THREAT MODEL IN CLASSIFICATION

In classification tasks, the adversary injects adversarial perturbations into a user input to steer the
prediction toward a target class. Unlike conventional supervised classifiers, where each target is
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a fixed label, multimodal classifiers induce class embeddings via class prompts dynamically and
privately specified by downstream practitioners. For example, the class elephant may be encoded
by prompts such as “A photo of an elephant” or “A huge elephant”, which are inaccessible to
the adversary. Consequently, we assume the adversary knows only the coarse class concept (e.g.,
elephant) rather than the exact prompt design, reflecting a limited prior-knowledge scenario. Under
this assumption, the goal is to craft AEs that generalize across a distribution of plausible prompt
formulations rather than overfit to a single, known prompt.

A practical example is content moderation systems that raise alarms for sensitive categories (e.g.,
weapons, explicit content) and remain silent for non-sensitive classes (e.g., animals, people). The
textual prompts defining these categories (e.g., “a person,” “a photo of an elephant,” “a pistol”) are
typically private to enhance coverage and robustness. An attacker cannot access the exact prompts;
nevertheless, an adversarially perturbed handgun image that generalizes across unseen prompts may
be misclassified into a benign class (e.g., “a person” or “an elephant”), suppressing the alarm and
exposing users to prohibited content.

B.2 THREAT MODEL IN RETRIEVAL

In retrieval tasks, the adversary seeks to cause queries for a target concept to retrieve attacker-
controlled AEs injected into the gallery of a multimodal retrieval system. Crucially, AEs must be
crafted prior to the user’s dynamic query target and thus it is impossible for the adversary to know
the exact phrasing of the user query. Accordingly, as in classification, the adversary is assumed
to know only the coarse concept of plausible queries (e.g., elephant), not their precise prompt
formulations—again reflecting limited prior knowledge.

A practical instance is multimodal search (e.g., systems built with Amazon OpenSearch Service and
Titan Multimodal Embeddings), where sellers upload product images to an open catalog and users
issue text queries. The system embeds text and images into a shared vector space for text-to-image
retrieval. An adversary as a seller can upload adversarially crafted images and probe embeddings
via APIs; by optimizing these images (e.g., with PTA) toward a broad concept (e.g., handbag),
legitimate queries related to that concept are more likely to retrieve the attacker’s pre-crafted AEs.
This manipulation diverts attention from authentic items and can lead to exposure of counterfeit
goods, unfair competition, and misinformation.

C PROOF OF THE RELATIONSHIP BETWEEN UNDETECTABILITY AND
GENERALIZABILITY

For a random vector y and a given vector x, we have the following lemma:
Lemma C.1.

Ey

[
∥x− y∥22

]
= ∥x− Ey[y]∥22 +Var[y].

Proof 1.
Ey

[
∥x− y∥22

]
= Ey

[
∥x− Ey[y] + Ey[y]− y∥22

]
= Ey

[
∥x− Ey[y]∥22 + 2(x− Ey[y])

⊤(Ey[y]− y)

+∥Ey[y]− y∥22
]

= ∥x− Ey[y]∥22 + 2(x− Ey[y])
⊤Ey[Ey[y]− y]

+ Ey
[
|Ey[y]− y∥22

]
= ∥x− Ey[y]∥22 + tr (Var[y])

For the purpose of facilitating the derivation process, we denote Ex as Ex∼Ptarget(X∼DS|Q) and Ey as
Ey∼Ptarget(Y∼DT|Q). Then, we can reformulate the optimization objective as follows:

min
xδ

Ey

[
∥fθS(xδ)− fθT(y)∥22

]
s.t. Ex

[
∥fθS(xδ)− fθS(x)∥22)

]
≤ β.
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According to Lemma 1, we have:

min
v

L(v) = ∥v − µT∥22 + σT

s.t. ∥v − µS∥22 + σS ≤ β.

where v = fθS(xδ), µT = Ey [fθT(y)], µS = Ex [fθS(x)], σT = tr (Var [fθT(y)]) and σS =
tr (Var [fθS(x)]). By applying the Lagrange multiplier method, we construct the Lagrangian function
as follows:

F (v⋆, λ,m) = ∥v − µT∥22 + σT

+ λ
(
∥v − µS∥22 + σS +m2 − β

)
.

By taking the derivative with respect to each variable and setting the result equal to zero, we obtain
the solution as follows:

v =

{
β∆

∥∆∥2
+ µS if ∥∆∥2 >

√
β − σS

µT if ∥∆∥2 ≤
√
β − σS.

where ∥∆∥2 = ∥µT − µS∥2 denotes the modality gap. Therefore, the minimum value of L(v) is:

L(v⋆) =
(
max

{
∥∆∥2 −

√
β − σS, 0

})2
+ σT,

D PROOF OF EFFECTIVENESS FOR PROXY TARGETS

D.1 THEOREM 2 FOR SOURCE-MODAL PROXIES

Since xδ is an interior point of the convex polytope formed by the source-modal proxies, we can
express xδ as a convex combination of the proxy targets:

xδ =

Ns∑
i=1

βix̂i, (5)

where βi ≥ 0 for all i, and
∑Ns

i=1 βi = 1.

For the dot product xδ · yt, expressing xδ with Equation (5), we have:

xδ · yt =

(
Ns∑
i=1

βix̂i

)
· yt =

Ns∑
i=1

βi (x̂i · yt) . (6)

Given that τ (x̂i,yt) ≥ BNs
for all i ∈ [Ns] and τ representing the cosine similarity, it follows that:

x̂i · yt ≥ BNs
∥x̂i∥∥yt∥ for all i ∈ [Ns]. (7)

Substituting x̂i · yt in Equation (6) with Equation (7), we obtain inequality:

xδ · yt ≥
Ns∑
i=1

BNs
βi∥x̂i∥∥yt∥. (8)

The cosine similarity between xδ and yt can be represented with Equation (8) as:

τ (xδ,yt) =
xδ · yt

∥xδ∥∥yt∥
≥ BNs

∑Ns

i=1 βi∥x̂i∥
∥xδ∥

. (9)

Additionally, from Equation (5), we know that:
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∥xδ∥ =

∥∥∥∥∥
Ns∑
i=1

βix̂i

∥∥∥∥∥ . (10)

Thus, Equation (9) can be further represented as:

τ (xδ,yt) ≥ BNs

∑Ns

i=1 βi∥x̂i∥∥∥∥∑Ns

i=1 βix̂i

∥∥∥ . (11)

According to the triangle inequality in vector spaces, we have
∥∥∥∑Ns

i=1 βix̂i

∥∥∥ ≤
∑Ns

i=1 βi∥x̂i∥.
Therefore, we derive:

τ (xδ,yt) ≥ BNs
·m, where m ≥ 1. (12)

This result demonstrates that when effective source-modal proxies maintain a high cosine similarity
with the true target, the adversarial example xδ will also achieve a high cosine similarity with the
true target after optimization.

D.2 THEOREM 3 FOR TARGET-MODAL PROXIES

For target-modal proxies, we can derive a similar theorem under slightly adjusted conditions:

Theorem 3. Let xδ be the adversarial example generated by using multiple source-modal proxies
{x̂i}Ns

i=1 and target-modal proxies {ŷj}Nc
j=1. Let us denote by BNc

the empirical lower bound of
the cosine similarity between the adversarial example and the target-modal proxies, i.e., BNc

=
minj∈[Nc] τ (fθS(xδ), fθT(ŷj)). If yt is an interior point of the convex polytope formed by the target-
modal proxies {ŷj}Nc

j=1, then the similarity between the adversarial example and the true target will
be lower bounded by BNc

, i.e.,

τ (fθS(xδ), fθT(yt)) ≥ BNc
.

The proof of Theorem 3 follows the same steps as Theorem 2. Theorem 3 implies that, if we
set effective and comprehensive target-modal proxies such that the convex polytope encloses the
true target, the adversarial example xδ will generalize to the true target. This result highlights the
importance of designing high-quality proxies to improve the performance of AEs.

Combining Theorems 2 and 3, we can conclude that improving the effectiveness of the proxy targets
(source-modal or target-modal) can enhance the generalizability of AEs.

E IMPLEMENTATION DETAILS

Overview of classification settings: In this task, our goal is to determine whether the AEs could
be classified as the target class when the true targets are used as classification prompts. Here, the
estimated distribution Ptarget(Y ∼ DT|Q) which contains true targets are constructed by different
text descriptions representing the same entity class. These descriptions are generated using various
methods, including manually designed templates with varying styles and descriptions produced by
Large Language Models. We evaluate the performance of AEs by measuring their Classification ASR
(Cls ASR) against true prompts.

Overview of retrieval setting: In this task, the objective is to determine if AEs could align more
strongly with true targets than benign examples, thus achieving effective targeted attacks. Here,
Ptarget(Y ∼ DT|Q) corresponds to a scene with multiple entity classes, and we measure the success
rate of retrieving AEs within this target scene. For example, in text-to-image retrieval, the attacker may
only know a single keyword in the true target, like “dog”, which results in a high-variance estimated
distribution, or three keywords, such as “dog”, “person”, and “boat”, leading to a lower-variance
distribution. Adversarial performance is evaluated using R@1 ASR against the true target.
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E.1 MODEL, TASK AND DATASET SETTINGS

We evaluate our method on both classification and retrieval tasks. The experimental setup for each
dataset is detailed below. For all datasets, we pre-select specific entity classes or class combinations
as base and target classes for generating AEs. The base classes include potentially harmful categories
(e.g., firearms and explosives) to simulate real-world adversarial scenarios.

E.1.1 DETAILED OF EXPERIMENTED MODELS

ImageBind. ImageBind (Girdhar et al., 2023) learns a single shared embedding space by using
images as the central hub to align heterogeneous modalities. It supports six modalities (image,
text, audio, depth, thermal, IMU) and trains modality-specific encoders with CLIP-style contrastive
objectives so that each non-image modality is bound to the image space via available pairwise datasets
(e.g., image-text, image-audio), without requiring all modalities to be co-observed. Architecturally,
it employs modality encoders with projection heads into a common d-dimensional space. This
design enables zero-shot cross-modal retrieval and classification, including transfer between modality
pairs that were never directly paired during training, while performance depends on the quality and
coverage of image-centric pairs and remains encoder-only (non-generative).

LanguageBind. LanguageBind (Zhu et al., 2024) uses language as the pivot, mapping multiple
modalities into a language-aligned embedding space so that text serves as a universal interface for
cross-modal retrieval and zero-shot classification. It typically adapts modality encoders to align
with a strong text encoder using contrastive learning on text-image, text-audio, and related pairs,
sometimes adding lightweight adapters to preserve upstream priors. The approach is compatible with
prompt engineering and instruction-tuned language models, often improving interoperability when
labels, queries, or control signals are textual.

One-PEACE. One-PEACE (Wang et al., 2023a) provides a unified pretraining framework for image,
text, and audio within a single backbone, combining discriminative alignment (contrastive) with
representation objectives (masked/sequence modeling). A shared transformer with modality-aware
embeddings and projection heads supports both unimodal and cross-modal tasks, offering a compact
alternative to separate encoders while covering three major modalities. This unified design yields
competitive zero-shot retrieval and classification across the supported modalities, though it covers
fewer modalities than image- or language-pivot models and requires careful objective balancing to
prevent any single modality from dominating capacity.

E.1.2 ATTACK SETTINGS FOR RETRIEVAL TASKS

We perform text-to-image and audio-to-image retrieval tasks using the MSCOCO and XmediaNet
datasets. Adversarial settings simulate varying levels of prior knowledge about the user’s query.

MSCOCO: The MSCOCO dataset provides extensive image-text pairs, making it suitable for
text-to-image retrieval tasks. In this task, text descriptions serve as user queries, and the images act
as retrieval targets.

Text-to-image retrieval:

• Knowledge of Adversary: The adversary is assumed to know specific keywords from the
user’s query, such as “[“car”, “person”, “boat”]”, “[“boat”, “person”]”, “[“person ’, “bird”]”,
or “[“boat”]”. These are entity categories that occurred in the true queries.

• Setup: For each keyword combination, we extract text captions from MSCOCO that include
the keywords. These captions are divided into two disjoint sets:

1. Target-Modal Proxies: Text samples approximating the user’s input, representing
samples drawn from the estimated distribution Ptarget(Y ∼ DT|Q).

2. True Queries: Representing the actual text input by the user.

• Source-Modal Proxies: Corresponding images associated with target-modal proxies serve
as source-modal proxies sampled from Ptarget(X ∼ DS|Q).
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XmediaNet: XmediaNet is a multimodal dataset labeled by categories, enabling both cross-modal
retrieval and classification tasks. We perform both text-to-image and audio-to-image retrieval tasks
on XmediaNet.

1. Text-to-Image Retrieval:
• Knowledge of Adversary: The adversary knows the category of the user’s query, such

as “airplane”, “bear”, “bomb”, and “rifle” but does not have access to the full query
sentences.

• Setup: Text descriptions for each category are partitioned into two disjoint sets:
(a) Target-Modal Proxies: Text approximations of the user’s query, representing

samples drawn from Ptarget(Y ∼ DT|Q).
(b) True Queries: Representing the actual text input by the user.

• Source-Modal Proxies: Corresponding images belonged the known category serve as
source-modal proxies sampled from Ptarget(X ∼ DS|Q).

Audio-to-image retrieval:
2. • Knowledge of Adversary: The adversary knows category-level information (“air-

plane”, “bear”, “bomb”, and “rifle”) but lacks access to the full query from the user
(audio instance).

• Setup: Audio instances belonging to each category (e.g., bomb explosion sound
represents category “bomb”) are partitioned into two disjoint sets:
(a) Target-Modal Proxies: Audio approximations of the user’s query, representing

samples drawn from Ptarget(Y ∼ DT|Q).
(b) True Queries: Representing the actual audio input by the user.

• Source-Modal Proxies: Corresponding images belonged the known category serve as
source-modal proxies sampled from Ptarget(X ∼ DS|Q).

E.1.3 ATTACK SETTINGS FOR CLASSIFICATION TASKS

We conduct zero-shot classification tasks using ImageNet and XmediaNet datasets. In these tasks, we
assume the adversary has some knowledge about the user’s classification prompt, such as specific
categories, but lacks detailed information about the exact prompts.

ImageNet: ImageNet, a widely used dataset for image classification, consists of 1000 categories.
We perform zero-shot classification using text as prompts.

Zero-shot classification (text as prompts):

• Adversarial Knowledge: The adversary is aware of the categories ( “Shetland Sheepdog”,
“tree frog”, “cannon”, “rifle”) of the prompts but lacks detailed knowledge about the user’s
exact prompts.

• Target-Modal Proxies: Text prompts representing various descriptions of the same category,
synthesized using handcrafted prompt templates (Radford et al., 2021) and LLM-generated
descriptions (Menon & Vondrick, 2022), are used as proxies sampled from the estimated
distribution Ptarget(Y ∼ DT|Q).

• True Prompt: Additional text descriptions for the same category, generated by LLM
(Menon & Vondrick, 2022), serve as the user’s true input.

• Source-Modal Proxies: Image instances corresponding to the same category serve as
proxies sampled from Ptarget(X ∼ DS|Q).

XmediaNet: XmediaNet is a multimodal dataset comprising 200 categories, with each category
containing text, image, and audio samples. We evaluate both text and audio prompts for zero-shot
classification tasks.

1. Zero-Shot Classification (Text as Prompts):
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• Adversarial Knowledge: The adversary knows the categories (“airplane”, “bear”,
“bomb”, “rifle”) of user prompts but does not have access to the exact classification
prompts from the user.

• Target-Modal Proxies: Text prompts generated using handcrafted templates (Radford
et al., 2021), representing different descriptions for the same category, serve as proxies
sampled from Ptarget(Y ∼ DT|Q).

• True Prompt: A generic prompt “a photo of a {class}”, serves as the user’s true input.
• Source-Modal Proxies: Image instances corresponding to the same category are used

as proxies sampled from Ptarget(X ∼ DS|Q).

2. Zero-Shot Classification (Audio as Prompts):

• Adversarial Knowledge: The adversary knows category-level information of the
prompt (“airplane”, “bear”, “bomb”, “rifle”) but lacks access to the exact audio prompt
from the user.

• Target-Modal Proxies: Audio instances from the category serve as proxies sampled
from Ptarget(Y ∼ DT|Q).

• True Prompt: Another disjoint set of audio instances from the category is used as the
user’s true input.

• Source-Modal Proxies: Image instances corresponding to the same category are used
as proxies sampled from Ptarget(X ∼ DS|Q).

E.2 COMPARED BASELINES

Illusion Attack (Zhang et al., 2024b). This targeted, cross-modal attack perturbs a source (e.g.,
image or audio) so that its embedding closely matches an adversary-chosen target in another modal-
ity (e.g., text), thereby “hallucinating” the target semantics in a shared embedding space. The
optimization is cosine-similarity based and model-agnostic (works with CLIP-like encoders and
other multi-modal embedding models). Empirically, it is highly effective when the evaluation target
matches the optimization target, but generalization to unseen targets can drop.

CrossFire (Dou et al., 2024). CrossFire addresses cross-modal mismatch by first converting the
attacker-chosen target into the same modality as the source (e.g., render the target text into an
image/audio surrogate by generative models), then minimizing the L2 distance between the converted
normalized target embedding and the normalized perturbed source embedding. This “modality
matching” prior often improves optimization stability relative to directly chasing a cross-modal target
and is instantiated as a cosine/angle minimization problem.

MF-ii (Zhao et al., 2024b). MF-ii (multi-facet, image-image) is a targeted transfer attack widely used
in VLM robustness studies: given a target text, it first synthesizes a target image (e.g., via diffusion
or find an image in the public dataset) conditioned on that text, then crafts an adversarial image by
minimizing the cosine feature distance to the generated target image, thus turning the cross-modal
objective into an image-image matching problem that transfers across VLMs.

Sep-Attack (Madry et al., 2019; Li et al., 2020b). Sep-Attack is a strong untargeted baseline that
independently perturbs each modality without cross-modal coupling: PGD (or MI-PGD) is applied
on images and BERT-Attack (token substitutions under semantic/fluency constraints) on texts; the
two are then combined for multi-modal tasks. It is simple, scalable, and transferable, but typically
underuses cross-modal interactions compared with later multimodal-coordinated methods.

Co-Attack (Zhang et al., 2022). Co-Attack perturbs both image and text jointly with explicit
cross-modal coupling so that gradients and constraints reflect alignment behavior in VLP models
(e.g., ALBEF, TCL). This coordinated optimization improves white-box effectiveness and can boost
transfer over purely separate attacks, serving as a common multimodal baseline in retrieval and VE
tasks. Open-source code is available.

SGA (Lu et al., 2023). SGA targets adversarial transferability by leveraging set-level cross-modal
interactions and alignment-preserving augmentations. Instead of optimizing against a single pair, SGA
aligns a set of text-image pairs to better capture many-to-many multimodal correspondences in VLPs,
substantially improving black-box transfer on image-text retrieval benchmarks over Sep-/Co-Attack.
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CMI-Attack (Fu et al., 2024). CMI-Attack explicitly exploits modality interactions during optimiza-
tion, e.g., using embedding-level text perturbations that preserve semantics and interaction-guided
image gradients to constrain both modalities. This yields stronger cross-model transfer and improved
cross-task generalization in vision-language retrieval relative to prior baselines.

We follow the original settings of each baseline whenever possible, unless otherwise noted.

E.3 EVALUATION METRICS

E.3.1 CLASSIFICATION TASKS

We evaluate attack effectiveness using the Classification Attack Success Rate (Cls ASR, %), defined
as:

Cls ASR (%) =
|Asuccess \A′

success|
Ntotal

× 100, (13)

where Asuccess is the set of AEs classified as the target class after the attack, A′
success is the set already

classified as the target class before the attack, and Ntotal is the total number of generated AEs. A
higher ASR indicates a more effective attack.

When anomaly detection is enabled, let Adetected ⊆ Asuccess \A′
success denote the subset of successful

AEs that are detected. The Classification Attack Success Rate after anomaly Detection (Cls ASRD,
%) is:

Cls ASRD (%) =
|(Asuccess \A′

success) \Adetected|
Ntotal

× 100, (14)

so a higher ASRD indicates greater effectiveness in the presence of anomaly detection.

E.3.2 RETRIEVAL TASKS

We measure performance using the Recall@K Attack Success Rate (R@K ASR, %), defined as:

R@K ASR (%) =
|Asuccess \A′

success|
Ntest

× 100, (15)

where Asuccess is the set of test queries for which injected AEs are retrieved within rank K after
the attack, A′

success is the set already retrieved within rank K before the attack, and Ntest is the total
number of test queries.

With anomaly detection, let Adetected ⊆ Asuccess \A′
success be the set of successful yet detected cases.

The Recall@K after anomaly Detection (R@K ASRD, %) is:

R@K ASRD (%) =
|(Asuccess \A′

success) \Adetected|
Ntest

× 100, (16)

where a higher ASRD indicates stronger attack effectiveness under anomaly detection.

E.3.3 ANOMALY DETECTION SETTINGS

For anomaly detection, we use the same datasets and task configurations as those in the attack
evaluations to assess the detection performance of AEs generated in these scenarios. The detection
framework focuses on analyzing the top-K samples retrieved by the model, identifying the most
suspicious samples that may be adversarial. In addition to our proposed anomaly detection method, we
compare its performance with some unsupervised anomaly detection techniques, including Isolation
Forest (Liu et al., 2008), PCA (Hoffmann, 2007), and kNN (Angiulli & Pizzuti, 2002). These baseline
methods are also applied to the top-K samples for consistent evaluation. For implementation, we use
the off-the-shelf functionality provided by the PyOD library (Zhao et al., 2019) for these techniques.

E.4 HYPERPARAMETER SETTINGS

For our detection approach, the number of iterations is set to T = 2, as performance converges
quickly. For the proposed attack method PTA, the number of source-modal proxies (Ns) is set to 20
for retrieval tasks and 25 for classification tasks, while the number of target-modal proxies (Nc) is
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set to 50 for retrieval tasks and 10 for classification tasks, unless otherwise specified. The balancing
factor α is chosen based on the task and defense scenario. When anomaly detection is applied
as a defense, we focus on ASRD performance with α = 0.4 for retrieval tasks and α = 1.0 for
classification tasks. In cases without anomaly detection, α is set to 0 to prioritize the generalizability
of attack and focus on ASR performance.

E.5 SETTINGS AND RESULTS FOR POTENTIAL DEFENSE

TeCoA: We adversarially trains CLIP ViT/B-32 (Radford et al., 2021) to attenuate the adversarial
features using TeCoA (Mao et al., 2023). In the main paper we report the result when the adversarial
budget of 16/255 in retrieval task of XmediaNet and extended results are provided in Table 8.

Table 8: Impact of adversarially fine-tuned CLIP VIT/B-32 on Cls ASR (%) and R@1 ASR (%)
performance of attacks for classification and retrieval tasks.

Classification Task Retrieval Task

Attack ϵ XmediaNet ImageNet XmediaNet MSCOCO

Illusion Attack 8/255 22.080.59 10.570.13 9.720.36 3.940.04
PTA (Ours) 8/255 22.500.00 13.730.05 14.200.35 4.640.07

Illusion Attack 16/255 80.420.59 44.740.01 62.310.24 10.890.02
PTA (Ours) 16/255 78.160.00 51.560.02 78.030.20 24.300.15

Illusion Attack 32/255 99.580.59 68.720.09 87.520.00 22.550.29
PTA (Ours) 32/255 100.000.00 74.000.16 97.780.08 64.420.11

Data augmentation: Following Zhang et al. (2024b), we use data augmentations of Gaussian Blur,
JPEG, and Random Affine to disrupt adversarial features of AEs generated for LanguageBind on
XmediaNet. Specifically, we optimize the adversarial noise by integrating differentiable approxi-
mations of these transformations and using Kornia (Shi et al., 2020) to compute gradients during
backpropagation. We report the result of GaussianBlur of retrieval tasks in the main paper and
extended results are provided in Table 9.

Table 9: Impact of data augmentation on R@1 ASR (%) for the retrieval task on XmediaNet with
LanguageBind.

Retrieval Task

Method GaussianBlur JPEG RandomAffine

Illusion Attack 12.440.13 9.871.12 11.000.48
PTA (Ours) 89.330.31 52.192.24 63.050.16

DiffPure: The diffusion-based purification (Nie et al., 2022) is used against AEs for LanguageBind
in XmediaNet.. Because purification can introduce non-differentiability and stochasticity, we also
test an adaptive attack using BPDA+EOT (Hill et al., 2021) to avoid gradient masking. We report the
result of result of retrieval task in the main paper and extended results are provided in Table 10.

Table 10: Impact of DiffPure on R@1 ASR (%) for retrieval task on XmediaNet with LanguageBind.

Method Classification Task Retrieval Task

Illusion Attack 10.310.09 9.830.07
PTA (Ours) 67.620.12 71.970.37

F ADDITIONAL EXPERIMENTS

F.1 EXPLANATION OF THE VULNERABILITY OF CLASSIFICATION SYSTEM

From the main content’s Tables 2 and 3, ASR/ASRD in classification are consistently higher than in
retrieval. We hypothesize this is because, in classification, the (estimated) target distribution is more
concentrated (class prompts), whereas retrieval involves more variable scenes and queries, yielding a
more dispersed distribution. To support this, we compute the mean cosine similarity among samples
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drawn from the estimated source/target distributions and the trace of their covariance matrices,
tr(ΣT) and tr(ΣS) for both tasks, shown in Table 11. Retrieval exhibits markedly lower mean cosine
similarity for both source- and target-modal proxies and higher covariance traces, indicating a broader
spread. Thus, the estimated distributions Ptarget(X∼DS | Q) and Ptarget(Y∼DT | Q) are more
dispersed in retrieval. This explains why the retrieval system is more robust with generalized AEs.

Table 11: Comparison of the mean cosine similarity and the trace of covariance matrix between the
estimated target-modal and source-modal distribution for classification and retrieval.

Task Type Cosine Similarity Trace of Cov. Matrix

Target-Modal Source-Modal σT σS

Classification 0.7782 0.7247 0.1107 0.2753
Retrieval 0.3983 0.4246 0.5868 0.5706

Varying prompt variety. Building on this observation, we vary the diversity of Ptarget(Y∼DT |
Q) by using different prompt templates for ImageNet class prompts:

• Standard: “a photo of a {class}.”
• Waffle: Prompts with random words/characters (Roth et al., 2023).
• Manual: 80 manually curated generic prompts (Radford et al., 2021), e.g., “a drawing of

the {class}.”

Table 12 reports Cls ASR (%) for AEs trained/tested under different prompt sets. When test prompts
are more diverse (e.g., Manual), ASR drops, supporting our conjecture and suggesting the defense of
increase prompt variety to reduce target concentration and hinder generalized targeted attacks.

Table 12: Comparison of Cls ASR (%) across different train/test prompts with ϵ = 4/255 on
ImageNet.

Train \Test Standard Waffle Manual

Standard 99.58 95.18 80.51
Waffle 99.58 95.28 79.95
Manual 99.58 95.48 83.57

F.2 PTA’S EFFECTIVENESS WITH LIMITED ADVERSARIAL PRIOR KNOWLEDGE

In retrieval, constructing the estimated true target distribution Ptarget(Y∼DT | Q) depends on prior
knowledge (e.g., known entity keywords in the user query). We assess PTA’s effectiveness with
limited prior knowledge to different extents by varying how many entity classes are known to the
attacker: one keyword (low prior), two (medium), and three (higher) on MSCOCO.

Table 13 shows that PTA maintains high success even with a single known keyword (“boat”), and its
performance scales gracefully as prior knowledge increases, whereas Illusion Attack stays low at
one/two keywords and only rises at three keywords. This demonstrates that PTA is effective under
limited prior knowledge and improves further as knowledge grows.

F.3 PTA’S EFFECTIVENESS WITH AUDIO TARGET MODALITY

We further test PTA when the target shifts from discrete text to continuous audio on XmediaNet,
evaluating audio-target generalizability for retrieval (R@1 aud ASR) and classification (Cls aud ASR)
under the same protocol (Table 15. Additional settings are provided in Appendix E.1).

Across all three models and two tasks, PTA substantially exceeds the baseline. These results indicate
that PTA does not depend on text-specific discretization effects. Rather, its proxy-driven objective
transfers to continuous targets, where increased proxy diversity continues to provide versatile training
signals and yields robust cross-target success without task-specific retuning.
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Table 13: R@1 ASR (%) under varying amounts of prior knowledge (number of known entity classes)
for Illusion Attack vs. PTA on MSCOCO.

Known Ent. Attack ImageBind LanguageBind One-PEACE

“boat” Illusion Attack 12.500.88 17.380.53 6.380.23
PTA (Ours) 69.940.97 89.042.21 23.310.09

“boat”, “person” Illusion Attack 12.880.88 21.750.00 6.060.43
PTA (Ours) 68.620.88 88.251.77 25.380.53

“boat”, “person”,
“car”

Illusion Attack 34.941.86 49.001.52 19.880.35
PTA (Ours) 80.440.80 88.000.52 53.120.33

Table 14: Comparison results of unknown-modal generalizability. We report audio modality attack
success rates (Cls aud ASR (%) and R@1 aud ASR (%)) on XmediaNet.

Task Method ImageBind LanguageBind One-PEACE

Classification Illusion Attack 8.780.00 13.130.00 13.670.00
PTA (Ours) 11.080.06 17.000.39 17.640.05

Retrieval Illusion Attack 9.110.00 4.550.00 13.650.00
PTA (Ours) 9.330.11 39.750.44 19.650.07

F.4 PTA’S EFFECTIVENESS WITH UNKNOWN TARGET MODALITY

Beyond the generalizability paradigm discussed in the main text, we further explore a more challeng-
ing scenario: unknown-modal generalizability. In real-world cross-modal matching tasks, models
often accept inputs from multiple modalities, meaning the adversary may not know the specific
modality of the user’s input. In such cases, we denote PUM

target(U|Q) as the distribution of potential
targets constructed by the adversary when the target modality is unknown. The generalizability of
AEs to unknown-modal targets is thus defined as:

GUM(xδ) = Eu∼PUM
target(U|Q) [τ (fθS(xδ), fθU(u))] ,

where fθU represents the encoder of the unknown modality, and u is a sample drawn from the
estimated distribution of the unknown modality. For example, adversarial images created for text-
to-image retrieval tasks may generalize to unknown modalities to the adversary, enabling them to
function across various multimodal tasks, such as audio-to-image or image-to-image retrieval, even
when the adversary lacks data from the unknown modality.

To evaluate the unknown-modal generalizability, we select audio modality as the adversary’s un-
known target modality, assessing the attack performance on audio-to-image retrieval and zero-shot
classification (audio as prompt). We assess AE performance when PUM

target(U|Q) is the estimated
distribution constructed by the adversary. In this scenario, we assume that the adversary only has
access to text and image modalities for optimization and lacks information about the audio modality.
We then test unknown-modal generalizability by evaluating performance on audio modality, using
the XmediaNet dataset for evaluation.

• Classification setting: In this task, the true targets consist of audio samples that represent
the semantically identical entity (e.g., dog barking sounds), serving as audio prompts for
image classification. In this scenario, the adversary has no access to audio data and relies
only on text and image data as proxy targets to generate AEs.

• Retrieval setting: In this task, the true targets are also audio samples. Similarly, the
adversary has access only to text and image data. We evaluate R@1 ASR in audio-to-image
retrieval tasks to determine if AEs achieve effective targeted attacks.

In Table 14, we illustrate the ASR for audio modality for both classification and retrieval. PTA
outperforms the Illusion Attack, which aligns with a single target in the text modality, in terms
of unknown-modal generalizability. These findings suggest that using multiple proxy targets and
source-modal optimization improves the generalizability of AEs across previously unseen modalities.
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Table 15: Comparison results of audio-target-modal generalizability. We report ASR (Cls aud ASR
(%) and R@1 aud ASR (%)) when the target modality is audio on the XmediaNet.

Task Method ImageBind LanguageBind One-PEACE

Classification Illusion Attack 30.460.00 50.920.00 34.970.00
PTA (Ours) 53.080.31 73.110.67 51.240.78

Retrieval Illusion Attack 40.510.00 58.560.00 42.370.00
PTA (Ours) 65.370.41 89.340.88 59.810.55

F.5 ADDITIONAL COST OF PTA

PTA introduces one extra component beyond normal adversarial attacks: a set of proxy embeddings.
Crucially, proxy collection and embedding computation are performed offline on high-performance
machines before any attack is executed. At attack time, the optimization only consumes a few
additional lookups/inner-products against the precomputed proxies, so the online overhead is neg-
ligible. In specific, in classification, AE optimization runs on the attacker’s device, while proxy
collection still happens offline without time constraints. In retrieval, the adversary collects proxies
and optimizes adversarial examples (AEs) offline (e.g., using generative models, public datasets,
or web sources), then uploads the finalized AEs to the gallery. All heavy computation occurs off
device, so the low-resource client does not run the optimization procedure. Since PTA only adds
precomputed proxy embeddings during optimization, the extra compute/memory cost is minimal.

As shown in Table 16, for ImageBind on an NVIDIA V100 with 100 target proxies and 50 source
proxies, PTA incurs only a 0.16% increase in optimization time per epoch and a 0.03% increase in
GPU memory versus a normal adversarial attack (PGD). These differences are practically negligible,
confirming that PTA remains suitable for low-compute settings.

Table 16: Compute overhead of PTA vs. a vanilla adversarial attack (no proxies). Numbers are
measured on ImageBind with 100 target proxies and 50 source proxies.

Method Optimization time per epoch GPU memory used
Normal adversarial attack 121.1 ms 6184 MB
PTA (Ours) 121.3 ms (↑ 0.16%) 6186 MB (↑ 0.03%)

G USE OF LLMS

We used LLMs solely as writing assistants for language refinement. Concretely, LLM prompts were
limited to grammar correction, style tightening, phrasing alternatives, and minor re-organization
of paragraphs for clarity and brevity. All LLM-suggested edits were reviewed and verified by the
authors, and all technical content is author-generated and author-validated.

26


	Introduction
	Analysis of the Two Limitations
	Threat Model
	Insufficient Generalizability of the Targeted Attack
	Limited Undetectability of the Targeted Attack
	The Relationship between the Generalizability and Undetectability

	PTA: Proxy Targeted Attack
	Experiments
	Experimental Settings
	The Effectiveness of PTA
	The Effectiveness of PTA under More Challenging Conditions
	Ablation Studies

	Conclusion
	Related Work
	Multimodal Pre-trained Models
	Adversarial Attacks on Multimodal Models
	Defense Mechanisms for Multimodal Models

	Explanations of the Threat Model
	Threat Model in Classification
	Threat Model in Retrieval

	Proof of the Relationship between Undetectability and Generalizability
	Proof of Effectiveness for Proxy Targets
	Theorem 2 for Source-Modal Proxies
	Theorem 3 for Target-Modal Proxies

	Implementation Details
	Model, Task and Dataset Settings
	Detailed of Experimented Models
	Attack Settings for Retrieval Tasks
	Attack Settings for Classification Tasks

	Compared Baselines
	Evaluation Metrics
	Classification tasks
	Retrieval tasks
	Anomaly Detection Settings

	Hyperparameter Settings
	Settings and Results for Potential Defense

	Additional Experiments
	Explanation of the Vulnerability of Classification System
	PTA’s Effectiveness with Limited Adversarial Prior Knowledge
	PTA's Effectiveness with Audio Target Modality
	PTA's Effectiveness with Unknown Target Modality
	Additional Cost of PTA

	Use of LLMs

