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Abstract
Randomized controlled trials (RCTs) generate
guarantees for treatment effects. However, RCTs
often spend unnecessary resources exploring sub-
optimal treatments, which can reduce the power of
treatment guarantees. To address this, we propose
a two-stage RCT design. In the first stage, a data-
driven screening procedure prunes low-impact
treatments, while the second stage focuses on de-
veloping high-probability lower bounds for the
best-performing treatment effect. Unlike existing
adaptive RCT frameworks, our method is sim-
ple enough to be implemented in scenarios with
limited adaptivity. We derive optimal designs
for two-stage RCTs and demonstrate how such
designs can be implemented through sample split-
ting. Empirically, we demonstrate that two-stage
designs improve upon single-stage approaches,
especially for scenarios where domain knowledge
is available through a prior. Our work is thus, a
simple yet effective design for RCTs, optimizing
for the ability to certify with high probability the
largest possible treatment effect for at least one of
the arms studied.

1. Introduction
Randomized controlled trials (RCTs) are the gold stan-
dard for measuring treatment effects (Hariton and Locascio,
2018). In a traditional single-stage RCT, the experimenter
fixes a set of treatments up front and randomizes the samples
across them using predetermined assignment probabilities.
While this design simplifies implementation and analysis, it
often spends significant samples exploring suboptimal arms.

Policy decisions on scaling or adopting programs often de-
pend on proving sufficient effectiveness. To that end, single
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stage RCTs are often deployed alongside policy programs
in order to quantify the policy’s direct impact. Since un-
derperforming arms are likely to be discontinued, precisely
quantifying their effect sizes at the cost of reducing the
statistical power for higher-quality treatments is not worth-
while. However, single-stage trials cannot allocate more
samples to high-performing arms to improve the estimate
precision.

Motivated by these limitations, a growing body of work
has focused on adaptive trials, which periodically update
the probability of assigning units to each arm in order to
focus on more promising arms. While adaptive designs
can enhance statistical performance, their implementation
in practice can be challenging. First, treatment assignment
probabilities must be updated dynamically, potentially af-
ter each sample, which imposes significant logistical de-
mands on practitioners conducting the trial. Furthermore,
high degrees of adaptivity may even be infeasible when
outcomes are delayed. For instance, in clinical trials for
chronic disease treatments, effect observations may occur
only after months or even years, making it impossible to re-
peatedly change assignment probabilities based on realized
outcomes.

In this work we question whether complex, adaptive designs
are needed for improved statistical performance. Instead, we
propose two-stage designs, which are deliberately simplified
yet still allow for enhanced statistical guarantees. In the first
stage, the experimenter uniformly explores arms and selects
a subset of arms to retain for the second stage. In the second
stage, the experimenter uniformly randomizes once more
over the arms that are retained and computes the highest
possible lower bound for one of the remaining treatments.
The goal is to return as large a lower bound as possible,
which requires both identifying arms with high rewards and
concentrating enough samples on these arms to quantify
(certify) its outcome accurately.

We make three main contributions. First, we design a novel
two-stage algorithm with the goal of computing a high prob-
ability lower bound for a high performant treatment effect.
We theoretically analyze this algorithm’s performance and
prove that it approximates the optimal two-stage design.
Second, we extend our formulation to the scenario where
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the experimenter has a prior over the arm means (Bayesian
setting). We present algorithms for this case and prove corre-
sponding approximation guarantees. Third, we empirically
demonstrate that our two-stage designs outperform single-
stage designs for both synthetic and real-world datasets, and
can outperform more complex adaptive designs even when
experimenters have access to an informative prior. 1

1.1. Related work

Naturally, our work is related to best-arm identification
(Jamieson and Nowak, 2014; Auer, 2002b) and top-K arm
identification (Bubeck et al., 2013). However, our approach
differs from these settings in two key ways: first, our initial
screening for good arms may not include all of the best ones
for a given size, and it may not even contain the best arm.
This is because our method is not designed for exhaustive
exploration if it sacrifices certifying the final estimated ef-
fect. An interesting comparison can be made though with
finding the ϵ best arms (Mason et al., 2020) setup. These
formulations output all arms within an ϵ distance of the best
one. However, once ϵ is fixed, the formulation remains ex-
haustive, as it aims to identify all good arms determined by
the hyperparameter. In contrast, our method is not designed
to optimize for exhaustive exploration in this way. Perhaps
closest to our work is Katz-Samuels and Jamieson (2020)
where they study the sample complexity inherent of ϵ best
arms and of finding a fixed number of arms larger than a
threshold. The second problem is somewhat related to our
setting as they don’t care about finding all good arms above
the given threshold, but instead just a subset of such arms.
However, they still fix an absolute hyperparameter, which is
the number of good arms they aim to identify (in addition
to a threshold defining the good arms). In contrast, our
work adaptively chooses the number of arms to generate the
largest certificate.

A current topic in adaptive trials literature is the study of
the two usually desired, yet conflicting goals, for adaptive
designs. One is to optimize for the cumulative regret, i.e.,
the benefit to the participants during the experiment. The
other is to optimize for the information gained via the exper-
iment for selection and deployment of the best arm after the
experiment. The latter can be quantified via, e.g., the simple
regret, of the precision with which treatment effects can be
estimated. Previous work (Bubeck et al., 2011) shows that
these goals are irreconcilable; designs with lower cumula-
tive regret trade off nearly one-for-one in the worst case
with information gain objectives. Our focus in this paper is
on designs which identify a high-performing arm with the
strongest statistical power possible for future deployment
(i.e., our aim is not to minimize cumulative regret). (Athey
et al., 2022; Li et al., 2010; Bastani et al., 2021; Kasy and
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Sautmann, 2021; Deshmukh et al., 2018; Chambaz et al.,
2017; Simchi-Levi and Wang, 2023; Fan and Glynn, 2021).

Finally, identifying estimands with statistically valid proper-
ties after an adaptive trial, such as our certification, remains
an active area of research. Due to the correlations intro-
duced by adaptive procedures, performing inference on esti-
mands obtained after the trial is concluded, without having
a follow-up independent data collection for the identified
arms, is not straightforward. Solutions to this problem have
emerged from safe anytime inference (Waudby-Smith et al.,
2021) or by imposing additional conditions, as in batch-only
inference (Chen and Andrews, 2023). Our goal, instead,
is to rely on the standard uniform allocation RCT, that is
widely accepted by practitioners, in each stage to generate a
certificate.

2. Problem Formulation
We introduce the problem of finding good certificates for
randomized control trials (RCTs) and propose our own two-
stage RCT.

2.1. Introducing Treatment Effects Certificates

Many real-world scenarios are more concerned in producing
a high probability lower bound on the impact of treatments
rather than guaranteeing optimality. For example, in policy
settings, practitioners aim to give a guarantee on the perfor-
mance of a policy (e.g. the policy has a certain positive treat-
ment effect) in order to justify a course of action dictated
by it. Formally, consider a set of n arms, each correspond-
ing to a treatment, with means µ = (µ1, µ2, . . . , µn) and
distributions Dµi

. Here, each i corresponds to a treatment
whose effect we estimate through an RCT. Our objective is
to produce a high-probability lower bound l for an arm µi.
We define a certificate as follows:

Definition 2.1. Certificate - Let l be an estimand such that
l ≤ µi with probability 1 − δ for some i ∈ [n]. Then l is a
certificate for µi.

By maximizing l, we ensure a certified high effect for some
arm i. Naturally, we can compute certificates in a single-
stage RCT by uniformly allocating data to each arm. Never-
theless, as we mentioned in the introduction, this approach
wastes samples on unpromising arms, thereby reducing the
tightness of l. On the other extreme, fully adaptive trials
are often infeasible to deploy as RCTs are typically run
in-batches with fixed budgets across many individuals.

Therefore, we propose a deliberately simplified two-stage
RCT that captures the benefits of adaptivity without intro-
ducing unnecessary complexity. In our approach, the first
stage filters out suboptimal arms using a policy π, while the
second stage computes the certificate l by allocating more
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interventions to the high-performing arms, resulting in a
more precise estimate of the certificate l.

Formally, let T be our total budget (which refers to the total
number of samples), s1 be our budget in the first stage, and
s2 be our budget in the second stage, with s1 + s2 = T .
We view s1, s2, and T as fixed parameters dictated by real-
world logistical constraints. Let our data for the first stage
be X1, X2, . . . , Xs1 , where Xi ∈ Rn and Y1, Y2, . . . , Ys2

the data for the second stage. For both the first and second
stages, we uniformly explore all arms, e.g. in the first stage,
we explore each arm ⌊ s1

n ⌋ times. We prune arms from the
first stage through a policy function, π(X1, X2, . . . , Xs1) ⊆
[n], which maps first-stage results to a set of surviving arms.
Let X = {X1, X2, . . . , Xs1} and Y = {Y1, Y2, . . . , Ys2}.
Our objective is then

fµ(π) = EX,Y∼µ

[
max

i∈π(X)
li(Y)

]
(1)

Our proposed objective focuses on neither finding the single
best arm nor any subset of the k-best arms, but rather on
obtaining the best possible policy π that leads to the highest
certificate in expectation. Intuitively, π(X) should discard
less promising arms from the first stage while using minimal
data. This approach frees up the budget for promising arms,
which can improve the tightness of certificates.

2.2. Certificate estimation

We estimate certificates l through concentration inequalities
on the second-stage data. Suppose that we have a policy
π(X) which selects a set of k arms. Let Y i denote the em-
pirical mean from the second stage for arm i, the reader
should recall that such average is taken over ⌊s2/k⌋ sam-
ples. Then when Y is bounded, we can estimate l through
Hoeffding’s inequality and the union bound by showing that
Ȳi concentrates near µi:

P

(
max
i∈[n]

|Y i − µi| <

√
k

2s2
log(2n

δ
)

)
≥ 1 − δ (2)

Our certificate is therefore l = max
i∈π(X)

Y i −
√

k
2s2

log( 2k
δ ).

A boundedness assumption is natural in many real-world
RCTs and applies to RCTs where rewards are binary.

Analyzing the certificate, we find that a two-stage approach
provides an advantage over a single-stage approach if:√

1
2|s2/k|

log
(

2k

δ

)
<

√
1

2|T/n|
log
(

2k

δ

)

We note that there are two competing terms when trying
to maximize l in Equation 2. Intuitively, a certificate is

maximized when a large set of arms is pruned, as this
minimizes k, while still leaving sufficient budget to ex-
plore more promising arms. Simplifying, this means that
⌊s2/k⌋ > ⌊T/n⌋; such a result occurs because single-stage
methods can use all T/n samples per arm due to its lack of
adaptivity, while we only use s2/k. Therefore, a policy π is
more effective when a small subset of the total arms can be
identified with a relatively small amount of data.

3. Finding optimal policies for Two-Stage
RCTs

Developing two-stage designs requires finding a policy π
that maximizes Equation 1. We focus our analysis on the
so-called top-k policies because they are well known to
have good performance in a wide variety of scenarios, and
because top-k policies are easy to explain to decision mak-
ers, making them ideal for practical implementation. In the
following sections, first we propose a top-k algorithm with
approximation guarantees for the optimal policy within the
top-k class. Second, we show the conditions under which
this policy class always contains an optimal policy.

3.1. Designing Top-K Policies

We begin by defining top-k policies.

Definition 3.1. Top-K Policy - Let σ(X) be the descending
ordering of arms by empirical mean from the first stage;
that is X̄σ(X)1 ≥ X̄σ(X)2 ≥ . . . ≥ X̄σ(X)n

, where ties are
broken randomly. A top-k policy outputs sets of the form
π(X) = {σ(X)1, σ(X)2...σ(X)k(X)} for some function
k(X).

Top-k policies are a natural approach to pruning arms, aim-
ing to keep the k best observed ones. However,the optimal
k, which we denote k∗, is unknown. We propose a sample
splitting design to estimate k∗.

We construct our sample splitting design by splitting the
data from the first stage into two halves: training (U ) and
validation (V ).

Our training half is used to compute empirical means and
sort arms, while our validation half is used to compute
certificate values for each value of k; essentially, we use the
validation set V to simulate the second stage.

We can then estimate the certificate value for different
choices of k and select the k which maximizes certificates.
We provide pseudocode below in Algorithm 1. To guarantee
the performance of our sample splitting design, we compare
our design against an optimal two-stage design that selects
k∗ arms.
Proposition 3.2. Let ∆ij = µσi

− µσj
. Let µ be such that

assumption 3.4 holds. Let σ be the permutation of the in-
dexes obtained from sorting the empirical means obtained in
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Algorithm 1 Sample splitting design
1: Input: s1 iid samples.
2: Output: Set π(X)
3: Split first stage data randomly into two sets: U =

{x1, ..., x s1
2

} and V = {z1, ..., z s1
2

}.
4: Compute Ū , which is the average per-arm using data

from U
5: Let σ be the ordering of arms according to Ū
6: Compute V̄ , which is the average per-arm using data

from V
7: for i = 1 to k do
8: set li = argmaxj∈[i] V̄σj −

√
i

2s2
log( 2n

δ )
9: end for

10: k = argmaxi∈[n] li
11: Let σ′(X) be ordering of arms according U ∪ V
12: return π(X) = {σ′(X)1, σ′(X)2, . . . , σ′(X)k}

the first stage in descending order. Let c(i) =
√

2log( 2i
δ ) i

s2
.

Then, conditioned on X for any top-k policy πk obtain as
an output of algorithm 1, the expected value of its certificate
f(πk) is bounded below by

f(π∗) −
k∗∑

i=1

exp
(

− [∆k∗i − (c(k∗) − c(i))]2 s1

n

)
× [∆k∗i − (c(k∗) − c(i))]

−
n∑

i=k∗+1

exp
(

−∆2
ik∗ s1

n

)
[∆k∗i − (c(k∗) − c(i))]

(3)

This result is analogous to guarantees on simple re-
gret (Bubeck et al., 2011), except gaps between means
are replaced with gaps between lower bounds. Notably,
although the bound depends on k∗ our design (and thus the
guarantee) does not, making our procedure adaptive. In
particular, if k∗ = n, the bound will be identical to the
one obtained from a single-stage approach. Notably, as a
consequence of the gaps being part of the bound, the ten-
sion between s1 and s2 becomes explicit; higher s1 leads to
exponential improvements on the bounds at the cost of the
loosening it by 1√

s2
.

3.2. Optimality of top-k policies

It remains an open question in this paper how to compute
an optimal policy for our two-stage design (whether or not
such a policy is top-k). However, despite the combinato-
rial complexity of finding the optimal policy, it turns out
that a simple yet sufficient condition guarantees the global
optimality of top-k policies.

Definition 3.3. First-order stochastic dominance A ran-
dom variable A is said to first order stochastically dominate

a random variable B if P (B ≥ x) ≤ P (A ≥ x) for all x.

Assumption 3.4. For any i, j such that µi ≥ µj , Dµi
first-

order stochastically dominates Dµj

We aim to show that when outcome distributions respect
stochastic domination, the optimal policy for Equation 1 can
be written as a top-k policy. To do so, we first demonstrate
that stochastic domination in the true means µi corresponds
to stochastic domination in the empirical means X̄i.

Lemma 3.5. Let σ be the descending ordering of arms by
empirical mean observed in the first stage. Then, for any
i < j, Dµσi(X) first-order stochastically dominates, Dµσi(X)

This allows us to translate any policy into a top-k counterpart
which achieves higher value for f(π). We prove this through
properties of stochastic domination and formally prove all
Theorems in Appendix F. We next show how this allows us
to convert any policy into a top-k variant of the policy.

Lemma 3.6. Fix an arbitrary policy π. Define it’s top-k
counterpart π′ to be the top-k policy with k(X) = |π(X)|.
That is, it selects the same number of arms as π does for
every realization of the trial, but it selects those arms to be
the ones with the largest empirical mean. Then fµ(π′) ≥
fµ(π).

The main idea is as follows: consider any set of arms π(X)
selected by the original policy. If there is an arm outside
of π(X) with strictly higher empirical mean than contained
within π(X), we can only do better by swapping in the arm
with higher empirical mean. Formally, this follows because
stochastic dominance implies a corresponding ordering on
any monotone function of a random variable, including
the max function which appears in our objective function.
Together, these results imply the existence of an optimal
top-k policy:

Theorem 3.7. Let π∗ the policy that maximizes fµ. There
exists a top-k policy π such that fµ(π∗) = fµ(π).

It is worth noticing that this result applies to a wide va-
riety of setups. For example, it holds when all treatment
arms have binary outcomes or when outcomes are normally
distributed with the same variance, both of which are com-
monly encountered in practice. Additionally, we present
satisfactory experimental results even for cases besides the
two previous mentioned ones, for example, where the arms
are normally distributed with different variances.

3.3. Incorporating Priors

So far, we have developed algorithms that do not rely on
any prior information about µ and aim to approximate the
optimal policy solely using information gathered during
the trial. In this section, we modify this setting slightly
by allowing for prior information on the treatment effects.
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Such a prior not only enables the creation of algorithms that
leverage Bayesian reasoning, but also removes the need for
the assumption of stochastic domination that was previously
required.

In many practical settings, the experimenter may have an
informative prior over µ given previous work in the domain.
For example, many meta-analyses have quantified the distri-
bution of reported effect sizes for interventions in domains
such as education (Evans and Yuan, 2022), medicine (Greis-
ing et al., 2009), and development (Iwasaki and Tokunaga,
2014). Although effect sizes for novel treatments are un-
known, the experimenter may be able to improve their de-
sign by modeling them as drawn from such a prior distribu-
tion.

Formally, we assume access to a joint prior, P , so
that the mean of each arm is distributed according to
µ1, µ2, . . . , µn ∼ P . Our goal then, is to find a policy
that maximizes the certificate when arms are distributed
according to the prior, that is finding the policy π∗ that
maximizes:

f(π) = Eµ∼P

[
EX,Y∼µ

[
max

i∈π(X)
li(Y)

]]
(4)

To find the optimal policy, we note that π∗ can be computed
for each X by optimizing over the posterior P(µ|X), in
other words by maximizing,

fX(π) = Eµ∼P(µ|X)

[
EY∼µ

[
max

i∈π(X)
li(Y)|X

]]
(5)

Importantly, this certificate l still has the same frequentist
coverage guarantees; the Bayesian prior is used only to
improve the power of the design.

We develop a prior-based design to greedily compute π(X),
assuming sampling access to the posterior distribution.
The sampling can be implemented through many differ-
ent Bayesian inference approaches; in this paper, we ignore
the specifics, and let this be a black box. The procedure
begins by sampling d values of µ from the posterior. Then,
for every set B1 = {b} ⊂ [n] of size 1, using the sample-
average certificate obtained from the posterior draw, we

estimate the value of EY∼µ

[
max
i∈B1

li(Y)
]

. This process is

repeated for all possible sets of size two, B2 = {b, i} for
i ∈ [n] \ {b}, to greedily construct B2, a candidate set of
size two. The design proceeds iteratively, adding elements
to Bi until |Bi| = n. We select the set, Bk, with the largest
estimated certificate, where such an estimate is done through
resampling from the posterior.

Through reduction to submodular optimization, we demon-
strate approximation guarantees for our design. Formally,

Theorem 3.8. Let π̂ be the policy obtained by our proposed
design using d samples from the posterior P(µ|X). Then

f(π̂) ≥ f(π∗)(1 − 1/e − ϵ), where ϵ = O
(√

log
( 1

δ

)
d
)

.

The idea behind the proof is to leverage the property that
greedy algorithms are 1 − 1/e optimal for monotonic sub-
modular optimization, and we demonstrate that our situation
does in fact match this type of problem. Furthermore, we
present a hardness result, showing that the 1 − 1/e bound is
tight; details on this result can be found in Appendix F.

4. Experiments
We assess our two-stage RCT design with both synthetic
and real-world datasets.

Synthetic Dataset and Setup We construct a synthetic
dataset to evaluate our two-stage RCT designs. We sam-
ple arm means, µ, from a uniform 0-1 distribution (we
experiment with other choices in Appendix E). Arms have
Bernoulli outcomes with mean µi, which simulates settings
where treatment are successful with probability µi. We fix
n = 10 (we find similar results for other n in Appendix D)
and δ = 0.1 (and find similar results for other δ in Ap-
pendix B). We compare the following RCT designs

1. Random - Two-stage top-k design + random k

2. Best Arm - Two-stage design with k = 1

3. Single-stage - A single-stage design which uniformly
randomizes the entire budget T over the arms.

4. Sample Split - Our proposed two-stage method uses
the first stage to prune arms and the second stage to
compute certificates

5. Omniscient -A two-stage method which computes
k∗ with knowledge of µ. In particular, k∗ =
argmaxi∈π(X) µi−

√
log( 1

δ ) i
2s2

. Such a design serves
as an upper bound on the performance of any two-stage
design.

We compare designs by measuring normalized certificates,
which is the ratio of l to max

i
µi. We average results over

15 seeds and 100 runs per seed; seeds sample values of µ,
while runs sample values for X and Y.

Comparison against Single-Stage Designs We compare
our two-stage design against baselines and find that our sam-
ple splitting methods improve upon baselines. In Figure 1,
we find that our sample splitting methods outperform single-
stage methods across first-stage percentages. When s1 is
30% of the budget, sample splitting methods outperform
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Figure 1. Our sample splitting design outperforms all baselines across first-stage sizes. The largest improvement occurs when the first
stage is small, as this leaves a budget for the second stage to compute certificates.
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Figure 2. Sample splitting designs perform well for all values of
T . When T is large, the sample splitting approaches the optimal
two-stage policy (omniscient).

single-stage methods by 7%, while when s1 is 70% of the
budget, sample splitting outperform single-stage methods
by only 1%. With s1 is large, s2 is smaller, and so sampling
splitting designs have less data to use for calculating certifi-
cates. However, when s1 and s2 are balanced, we can prune
many arms in the first stage, while leaving sufficient time to
find certificate values.

Impact of Budget To understand our designs across
choices of s1 and T , we compare performance across ex-
perimental designs, both when a) letting s1 = s2, while
varying T , and b) fixing T while varying s1.

In Figure 2, we find that sample splitting designs are
significantly better than all baselines when T ≤ 10000
(p < 10−11). While best arm designs are 3% better than
sample splitting designs for T = 40000, best arm designs
are 13% worse than sample splitting for T = 1000. When
comparing against the omniscient certificate, we see that
sample splitting designs approach the omniscient policy for
large budgets, as they are within 0.5% for T = 40000.

We compare our two-stage methods against baselines when
varying the ratio of s1 to T . In Figure 3, we show that
sample splitting excels with large first-stage sizes, whereas
single-stage methods perform best when s1

T ≥ 70%. When
the first stage is much larger than the second stage, two-
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First Stage %
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Random Best Arm Single-Stage Sample Split Omniscient

Figure 3. Single-stage methods perform best when between 20%
and 70% of the budget is spent in the first stage, as this allows for
arms to be pruned, and a certificate to be generated in the second
stage.

stage methods use only data from the second stage, while
single-stage methods use data from both stages. This occurs
due to the adaptivity from the second stage, which prevents
us from applying Hoeffdings bound to data from both stages
due to the lack of the iid property.

Comparison with Adaptive Designs We compare our
approach against adaptive designs which can potentially
improve the guarantees at the cost of complexity. We detail
the adaptive methods below:

1. Two-Stage Successive Elimination - We perform suc-
cessive elimination in-batch, by first doing uniform
exploration in the first stage, then running successive
elimination to prune arms (Even-Dar et al., 2006). We
then re-run uniform exploration in the second stage.

2. Two-Stage Thompson Sampling - In the first stage,
two-stage Thompson Sampling performs uniform ex-
ploration, and in the second stage, it performs non-
uniform exploration in the second round based on prob-
abilities from Thompson sampling probabilities with a
uniform prior (Russo et al., 2018).

3. Successive Elimination - We run the successive elimi-
nation algorithm, with a budget of T .
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Figure 4. Sample splitting designs can close the gap between single-stage and adaptive designs (such as UCB), and serve as a middle
ground in performance and complexity. This is best seen when the first stage is 30%, as sample split methods can capture up to 69% of
the improvement between single-stage and UCB designs.

4. UCB - We run the upper confidence bound (UCB)
algorithm with budget T (Auer, 2002a). Note that
UCB has a much higher degree of adaptivity: it updates
assignment probabilities T −1 times, compared to once
for the two-stage designs.

We compare our design to adaptive approaches in Figure 4.
We find that non-uniform allocation probabilities have lim-
ited benefits. Sample splitting performs within 1.5% of
two-stage Thompson Sampling. Sample splitting also per-
forms significantly better than both the two-stage and fully
adaptive versions of Successive Elimination. UCB is the
strongest fully adaptive design and can perform better than
less-adaptive designs. However, the best sample splitting de-
sign (where s1 is 30% of the budget) comes relatively close:
Sample Splitting performs within 3% of UCB, capturing up
to 69% of the improvement between the single-stage design
and UCB. Practioners can capture much of the value of the
most complex, highly adaptive design by using a properly
configured two-stage, framework.

Bayesian Setting We explore whether knowledge of a
prior distribution can improve the certificates discovered
by two-stage designs. We compare our prior-based design
against both sample splitting and baseline design on a syn-
thetic dataset. To construct such a dataset, we let µ be
distributed according to a β distribution, fixing α = 1 and
varying β ∈ {1, 2, 4}. Higher β indicates a more informa-
tive prior.

Figure 5 shows that informative priors (large β allow prior-
based methods to perform well, as they slightly exceed the
performance of UCB at β = 2 and improve upon UCB by
18% at β = 4. When available, informative priors of effect
sizes contribute more than the ability to incorporate high
degrees of adaptivity.

We compare the performance of our designs under prior mis-
specification by adding Gaussian noise to µ with α = β =
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Figure 5. When priors are informative, correlating to large β, prior-
based methods can improve upon all designs, including adaptive
designs such as UCB and two-stage Thompson Sampling.
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Figure 6. Prior-based designs are sensitive to the mean of the noise;
directional noise (corresponding to larger values for noise) leads to
degrading performance, especially compared with sample splitting
designs.

1. We fix the noise variance to be 0.01 and vary the mean
in {0.05, 0.1, 0.2}. In Figure 6, we see that when the prior
is minimally misspecified, prior-based designs outperform
sample split. However, prior-based designs fare poorly with
increasing misspecification, demonstrating that prior-based
are not robust to large degrees of misspecification.

Real-World Experiments We run semi-synthetic exper-
iments where effect sizes are drawn accordingly to a real-
world distribution drawn from a meta-analysis of treatments
in gerontology (Greising et al., 2009). We retrieved 75 effect
sizes from the meta-analysis and set the prior on µ to be
uniform over these values. Since effect sizes are reported as
Cohen’s d (a standardized metric), we model the outcome
distribution Dµi as a normal with mean µi and standard
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Figure 7. On a real-world genertology dataset, we see that using
prior-based methods improves the certificates generated by RCTs,
even compared to adaptive methods. This reflects the added benefit
we get when using domain knowledge for real-world RCTs.

deviation 1. For the certificate ℓ, we use the corresponding
tail bound for Sub-Gaussian variables:

P

(
|Ȳi − µi| ≤

√
2k

s2
log(2k

δ
)

)
≥ 1 − δ (6)

In Figure 7, we see that prior-based methods perform best,
beating even adaptive methods like UCB by 23%. Restrict-
ing our attention to prior-free designs, sample splitting per-
forms within 2% of UCB. This verifies that the main con-
clusions from the synthetic experiments continue to hold
on a real-world distribution: two-stage designs based on
our sample splitting procedure can nearly match the perfor-
mance of fully adaptive designs, and with access to the prior,
Bayesian two-stage designs perform significantly better.

5. Conclusion and Limitations
Traditional single-stage RCTs spend unnecessary resources
exploring sub-optimal arms, while fully adaptive proce-
dures are often costly. To improve on these designs, we
study two-stage RCTs, which improves guarantees from
single-stage RCTs, while deliberately maintaining simplic-
ity. We develop a top-k policy for designing such RCTs and
demonstrate the optimality of top-k two-stage designs under
a stochastic dominance ordering. We empirically demon-
strate that our two-stage RCT can significantly improve
guarantees compared with single-stage RCTs, and can even
outperform adaptive methods in Bayesian settings. By using
two-stage RCTs, real-world studies can improve guarantees
without increasing complexity. Better understanding the
level of adaptivity available can also instruct us how multi-
stage RCTs can be better designed. For example, with a
larger adaptivity budget can allow us to construct three or
four-stage RCTs, which could potentially improve the guar-
antees delivered by our algorithms. Our work demonstrates
the added benefits when introducing two-stage RCTs, and
how these methods can be customized depending on the
situation.

Impact Statement
Our work is highly robust to deployment, as it is designed
to certify, in the most data-efficient manner possible, a
worst-case scenario guarantee. However, the conclusions
drawn from the results, as well as the interpretive reasoning
(hermeneutics) behind a measured effect, will always de-
pend on practitioners with appropriate domain knowledge.
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A. Certificate Spread
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Figure 8. We compare the distribution of normalized certificates across various designs. Sample splitting designs have a lower spread and
higher average certificate compared with single-stage designs, showing that sample splitting improves upon single-stage designs.

To understand how the performance of our designs varies across random seeds, we plot the distribution of normalized
certificates in Figure 8 with s1 = s2 = 500. We find that our sample splitting design has a lower spread compared to
a single-stage design. In this scenario, even the 25th percentile for the sample splitting design does better than the 75th
percentile for the single-stage design, showing the advantage of using a sample splitting design.

B. Impact of Model Confidence
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Figure 9. We compare the performance across designs when varying δ. We find that for all values of δ, the sample splitting algorithm
performs best, with the gap between sample splitting and best arm becoming smaller for smaller δ.

The choice of δ impacts the probability with which the certificate serves as a lower bound. Lower δ corresponds to scenarios
where higher probability certificates are desired, which naturally leads to looser lower bounds. We compare the performance
of our designs across values of δ in Figure 9, and find that sample splitting policies perform well across choices of δ. As δ
becomes smaller, which corresponds to looser lower bounds, we find that the best arm policy approaches the performance of
sample splitting policies. However, the opposite scenario is seen with single-stage policies, which perform worse for smaller
δ. Such a trend occurs because smaller δ makes it more important to discard low-probability arms, as this can allow for
more budget to generate certificates.

C. Additional Stages
We evaluate the impact of extending two-stage designs to larger-stage designs. We compare designs in two ways; the first is
using our sample splitting algorithm, while only using the last stage to compute certificates, while the second is using our
sample splitting algorithm while using all the stages to compute certificates (which we call “sample split total”). While only
the last stage preserves the i.i.d property needed for concentration inequalities such as Hoeffdings, real-world applications
frequently use all the data collected to generate certificates.

In Figure 10, we find that using more stages is only helpful when using all the data to generate certificates. In the setting
when generating data from only the last stage, we find that two-stage designs are optimal. Moreover, while more stages can
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Figure 10. We extend two-stage methods up to five stages and compare the performance when using either (a) sample splitting methods,
generating certificates with only the last stage, or (b) sample splitting methods using all of the data. When using only the last stage data,
we find that two-stage designs are optimal, while when using all of the data, we find that using more stages increases performance.

improve certificates when using all stages to generate certificates, the impact of more stages diminishes quickly beyond two
stages.

D. Varying the number of arms
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Figure 11. We vary the number of arms, n, and find that sample splitting algorithms are the best design across choices of n. Larger n
leads to better performance for best arm designs compared with single-stage designs.

We vary the parameter n in Figure 11 and find that for all values of n, the best design is sample splitting. Comparing the
other designs, we find that for larger n, best arm designs tend to perform better than single-stage designs. This occurs due to
the increased importance of pruning bad arms for n large, as more budget is wasted on suboptimal arms if pruning does not
occur.

E. Varying distribution of arm means
We vary the distribution of µ for various uniform distributions, and plot our results in Figure 12. Adaptive policies perform
worse when the average of the uniform distribution is large, which might be because unnecessary time is spent exploring in
UCB policies. Moreover, when the distribution of arm means is near one, we find that sample splitting designs can even
outperform fully adaptive designs, and are the best-performing designs in that scenario.
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Figure 12. We vary the distribution of the underlying arm means distribution, and find similar performance for sample splitting designs
across distributions. When the average arm mean is closer to 1, we find that our sample splitting policies can even outperform fully
adaptive methods, such as UCB. .

F. Proofs
Proposition F.1. Let ∆ij = µσi

− µσj
. Let µ be such that assumption 3.4 holds. Let σ be the permutation of the indexes

obtained from sorting the empirical means obtained in the first stage in descending order. Let c(i) =
√

2log( 2i
δ ) i

s2
. Then,

conditioned on X for any top-k policy πk obtain as an output of algorithm 1, the expected value of its certificate f(πk) is
bounded below by

f(π∗) −
k∗∑

i=1

exp
(

− [∆k∗i − (c(k∗) − c(i))]2 s1

n

)
× [∆k∗i − (c(k∗) − c(i))]

−
n∑

i=k∗+1

exp
(

−∆2
ik∗ s1

n

)
[∆k∗i − (c(k∗) − c(i))] (3)

Proof. As a consequence of Theorem 1 and the stochastic dominance of Bernoulli arms, it suffices to analyze the error
against the top-k∗ policy. Let πk be the top k policy outputted by algorithm 1. Clearly

f(π∗) − f(πk) = E[ max
i∈π∗(X)

µi − c(k∗)] − E[ max
j∈πk(X)

µj − c(k)]

Case 1, k < k∗. In this scenario, c(k∗) − c(k) ≥ 0, hence if maxj∈πk(X) µj ≥ maxj∈π∗(X) µj that will contradict
the optimality of π∗, furthermore, this is true for every k < k∗, thus concluding that µσ∗(X) > µσi(X) and µσ∗(X) =
maxi∈π∗ µj . Additionally by optimality of k∗, µσ∗(X) − c(k∗) > maxj∈πk(X) µj − c(k). By definition of the alorithm 1,
V σk

− c(k) > V σk∗ − c(k∗) then given that c(k∗) − c(k) < µσ∗(X) − µk. In particular:

≤
k∗∑

i=1
P (V σk∗ − V σi − c(k∗) + c(i) < 0)[∆k∗i − (c(k∗) − c(i))]

≤
k∗∑

i=1
exp(−2[∆k∗i − (c(k∗) − c(i))]2s1

2n
)[∆k∗i − (c(k∗) − c(k))]

Case 2 k∗ < k, c(k∗) − c(k) < 0, thus as V k∗ − V k < c(k∗) − c(k) (Otherwise the index k would not have been picked)
then it must be concluded that V k∗ − V i < 0. Then we can bound these terms using the event P (V k∗ − V k < 0) in which
the traditional Hoeffding’s bound trick can be plugged.
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≤
n∑

i=∗+1
P (V k∗ − V i < 0)[∆k∗i − (c(k∗) − c(i))]

≤
n∑

i=k∗+1
P (V k∗ − V i − ∆k∗i < −∆k∗i)[∆k∗i − (c(k∗) − c(i))]

≤
n∑

i=∗+1
exp(−2∆2

ik∗s1

2n
)[∆k∗i − (c(k∗) − c(i))]

Note that although ∆k∗i might be negative, ∆k∗i − (c(k∗) − c(i)) is not as a consequence of the optimality of k∗.

Lemma F.2. Fix an arbitrary policy π. Define it’s top-k counterpart π′ to be the top-k policy with k(X) = |π(X)|. That is,
it selects the same number of arms as π does for every realization of the trial, but it selects those arms to be the ones with
the largest empirical mean. Then fµ(π′) ≥ fµ(π).

Proof. We conclude that since maxi∈π(X){µi} is a non-decreasing function in arguments {µi : i ∈ π(X)}, first-order
stochastic dominance implies (Is equivalent to the expectations matching for every non-decreasing function).

E[ max
i∈π′(X)

µi] ≥ E[ max
i∈π(X)

µi]

from which it follows that fµ(π′) ≥ fµ(π)

Theorem 3.7. Let π∗ the policy that maximizes fµ. There exists a top-k policy π such that fµ(π∗) = fµ(π).

Proof. Let π∗ be the optimal policy, as a consequence of Lemma 3.6 then there exists π′, a top-k policy, such that
f(π′) ≥ f(π). By optimality the of π∗ the result follows.

Lemma F.3. Let σ be the descending ordering of arms by empirical mean observed in the first stage. Then, for any i < j,
Dµσi(X) first-order stochastically dominates, Dµσi(X)

Proof. Fix a given t. We compare Pr(µσi(X) ≥ t) and Pr(µσj(X) ≥ t) via a coupling argument where we fix the mean of
every position in the permutation except for positions i and j. Formally, we decompose

Pr(µσi(X) ≥ t) − Pr(µσj(X) ≥ t) =
E[1[µσi(X) ≥ t] − 1[µσj(X) ≥ t]]

= E[E[1[µσi(X) ≥ t] − 1[µσj(X) ≥ t]|µσk(X), k ̸= i, j]].

We will show that the inner expectation E[1[µσi(X) ≥ t] − 1[µσj(X) ≥ t]|µσk(X), k ̸= i, j] is always nonnegative. After
conditioning on µσk(X), k ̸= i, j, there are two possible values for µσi(X) and µσj(X) (i.e., the means of the two arms that did
not appear in other positions of the permutation). Denote these values by µa and µb where µa ≥ µb refers to the larger of the
two. There are two cases. The first case is where either µa ≥ µb ≥ t or t ≥ µa ≥ µb. Denote this event as E1. By definition,
E[1[µσi(X) ≥ t] − 1[µσj(X) ≥ t]|E1, µσk(X), k ̸= i, j] = 0. The second case is that µa ≥ t > µb. Denote this event as E2.
Since i < j, σi(X) = a if and only if Xa > Xb, which in turn implies that µσi(X) ≥ t if and only if either Xa > Xb or
Xa = Xb and ra > rb. Because µa ≥ µb, the assumption of a stochastic dominance ordering on the arms combined with
the independence of the samples implies that Pr(Xa > Xb|E2, µσk(X), k ̸= i, j) ≥ Pr(Xb > Xa|E2, µσk(X), k ̸= i, j).
Moreoever, whenever Xa = Xb, Pr(ra > rb) = 1

2 by definition. Since conditioned on E2, 1[µσj(X) ≥ t] = 0 whenever
1[µσi(X) ≥ t] = 1, we conclude that E[1[µσi(X) ≥ t] − 1[µσj(X) ≥ t]|E2, µσk(X), k ̸= i, j] =≥ 0 and the lemma
follows.

Theorem 3.8. Let π̂ be the policy obtained by our proposed design using d samples from the posterior P(µ|X). Then

f(π̂) ≥ f(π∗)(1 − 1/e − ϵ), where ϵ = O
(√

log
( 1

δ

)
d
)

.
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Proof. We aim to show that π̂ is such that fµ(π̂) ≥ fµ(π∗)(1 − 1/e). We do so by reducing our problem to an instance
of cardinality-constrained submodular optimization, and then note that we can solve such a problem up to a 1 − 1/e
approximation in polynomial time (Nemhauser et al., 1978).

Let Bi be the set of size i obtained from the algorithm. Let Ẑ1, Ẑ2, . . . , Ẑd be d samples of the second stage pulls from
the posterior. We use slight abuse of notation, and let µ̂(Zj) be the set of empirical means, we then can approximate

f as ( 1
d

∑d
j=1 max

i∈B
µ̂(Zj)) − O(

√
i

s2
) with high-probability. Note that O(

√
i log( 1

δ )
s2

) turns our empirical mean into a

high probability certificate. We note that our interior optimization problem, 1
d

∑d
j=1 max

i∈B
µ̂(Zj) is a sum of monotonic

submodular functions (the maximum function), and therefore, our entire function is monotonic submodular.

To allow for our whole optimization problem to be monotonic and submodular, we consider all values of |Bi| ≤ n, and

can solve n such submodular optimization problems. We note that the outer function, −O(
√

i
s2

) is constant given i. We
therefore brute force all n values of i, and each such submodular optimization can be solved in O(nd). Our overall problem

can therefore be solved in O(n2d) to an approximation ratio of 1 − 1/e − ϵ with high probaility, where ϵ = O(
√

log( 1
δ )d).

Theorem F.4. Consider the problem of identifying a high probability certificate using a two-stage sample splitting method.
Let there be n arms, with the mean outcome for arm i, denoted µi, distributed according to a joint prior P . Next, consider
the problem of selecting an optimal subset of arms for the second stage, i.e., finding π∗. Then no polynomial time algorithm
can find a policy π̂, so that f(π̂) > f(π∗)(1 − 1/e) for all priors P .

Proof. We first sketch a relationship between this problem and the cardinality-constrained instance. Consider the problem
of max

|π(X)|≤r
E[ max

i∈π(X)
li] for some fixed r. By assumption, for fixed k = |π(X)|, we have that li = Xi − g(k) for some

function g that does not dependent on i. Any polynomial time algorithm that can solve our cardinality-constrained problem
can also solve the non-cardinality-constrained problem through an additional factor of n by searching through all values for
the budget.

We next demonstrate that no polynomial time algorithm achieves better than a 1 − 1/e approximation to the problem of
max

|π(X)|≤r
E[ max

i∈π(X)
Xi] when given access to the prior distribution P . We do so by reducing the maximum coverage problem

to this.

We consider the maximum coverage problem with sets C1, C2, . . . , Cn, where each set has elements taken from a universe
U of size d. Our goal is to produce a set of sets, C ′, with at most r sets, that maximizes:∣∣∣∣∣ ⋃

Ci∈C′

Si

∣∣∣∣∣ (7)

Alternatively, our objective can also be viewed as the number of elements in U covered by the sets C; that is, we can write
the objective as

d∑
i=1

1[∃j, Cj = 1, ui ∈ Cj ] (8)

To perform a reduction to our cardinality-constrained certificate problem, we consider the problem of selecting at most r
arms out of n for second-stage evaluation. We let s1 = 0, and only consider a second-stage evaluation. In this situation, the
posterior is the prior, P , so we select arms to maximize:

max
|π(X)|≤r

EP [max
i

Xi] (9)

The prior distribution, P , denotes the probability of selecting particular outcomes, which correspond to the vector µ. We let
the prior in this situation be uniformly distributed according to d vectors, v1, v2, . . . , vd, vi ∈ [0, 1]n. Here, let di,j = 1 if
Ui ∈ Cj , where Ui is the ith element in the universe U , and Cj is the jth set C. Because the expectation is uniform and
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taken over d elements, we rewrite the maximization problem as follows:

max
|π(X)|≤r

EP [max
i

Xi] = max
b∈{0,1}n,∥b∥≤r

1
d

d∑
i=1

max
j

bjdi,j

Because both bj and di,j are 0-1 values, our objective can also be seen as

max
j

bjdi,j = 1[∃j, bj = 1 ∧ di,j = 1] (10)

Because our objective is to find the largest such B, we drop the constant 1
d , and rewrite the objective as

max
π(X)

d∑
i=1

1[∃j, bj = 1 ∧ di,j = 1] (11)

This objective matches our objective for the coverage problem; if we view d as the matrix denoting which elements i are
contained in which sets j, then the objective for our certificate problem is the same as the objective for the coverage problem,
just off by 1

d . Therefore, if we can solve the certificate problem for this instance, then we can solve the coverage problem.
However, because the coverage problem has a 1-1/e lower bound, our cardinality-constrained certificate problem also has a
1-1/e lower bound (Feige, 1998).
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