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Abstract

Capturing similarity among cells is at the core of many tasks in single-cell tran-1

scriptomics, such as the identification of cell types and cell states. This problem2

can be formulated in a paradigm called metric learning. Metric learning aims to3

learn data embeddings (feature vectors) in a way that reduces the distance between4

similar feature vectors corresponding to cells of the same cell type, and increases5

the distance between feature vectors corresponding to cells of different cell types.6

As a variation of metric learning, deep metric learning uses neural networks to7

automatically learn discriminative features from the cells and then compute the8

distance. These (deep) metric learning approaches have been successfully applied9

to computational biology tasks like similar cell identification, and synthesis of het-10

erogeneous single-cell modalities. Here, we identify two computational challenges:11

precise distance measurement between cells, and scalability over a large amount of12

data in the applications of (deep) metric learning. We then propose our solutions:13

optimal transport and coreset optimization. Optimal transport has the potential to14

measure cell similarity more effectively, and coreset optimization is promising to15

train representation learning models more efficiently. Empirical studies in image16

retrieval and clustering tasks show the promise of the proposed approaches. We17

propose to further explore the applicability of our methods to cell representation18

learning.19

1 Introduction20

The success of machine learning algorithms largely depends on data representation. Metric learning21

learns data embeddings and feature vectors in a way that reduces the distance between feature vectors22

corresponding to objects belonging to the same class and increases the distance between the feature23

vectors corresponding to different classes. Deep metric learning, on the other hand, uses neural24
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Figure 1: Overview of the Deep Wasserstein Metric Learning Framework

networks to automatically learn discriminative features from the objects and then compute the metric.25

(Deep) metric learning falls into the broad umbrella of representation learning, whose quest for26

representation learning is motivating the design of more powerful representation [3, 13].27

These representation learning methods have achieved great successes in biology applications [40,28

43, 19, 23, 35, 56, 23, 50, 1, 11, 30, 14, 46, 47]. For example, Schema [40] uses a principled metric29

learning strategy to identify informative features in a modality to synthesize disparate modalities30

into a single coherent interpretation. It is used to infer cell types by integrating gene expression31

and chromatin accessibility data. Specifically, [53] presents an approach for integrating different32

modalities by learning a probabilistic coupling among them using autoencoders to map to a shared33

latent space. These methods can complement start of art single cell analytics tool such as Dynamo34

[38] to gain new insights into dynamic biological processes.35

The deep metric learning framework SCimilarity (Invited Talk “Design for Inference in Drug Discov-36

ery and Development” by Aviv Regev, ICML 2022), which employs a standard triplet loss design, has37

achieved impressive performance in identifying similar cells in a massive collection of scRNA-Seq38

datasets. The results can help answer questions like in which tissues and diseases we find fibrotic39

macrophage-like cells.40

[15] proposes the Deep Wasserstein Metric Learning Framework, as shown in Figure 1, which41

conducts multiple steps of adjustments over the original metric learning framework and achieves42

improved performance in image retrieval and clustering tasks. In the rest of the proposal, we introduce43

the adjustments accordingly and propose empirical studies for single-cell applications.44

2 Methods45

2.1 Representation Learning: Metric Learning and Deep Metric Learning46

Representation learning is a class of machine learning approaches that allow a system to discover the47

representations required for feature detection or classification from raw data [38, 53, 18, 24, 17, 10,48

26, 12, 55, 52, 42] The requirement for manual feature engineering is reduced by allowing a machine49

to learn the features and apply them to a given activity. Metric learning and deep metric learning,50

specifically, focus on similarity-based approaches to learning the representations. Thus the similarity51

measurement becomes very important. Previous work [7] studies similarity measurement in gene52

expression. Metric learning has only limited capability to capture non-linearity in the data, while53

deep metric learning captures non-linear features better by learning the non-linear transformation.54

The most widely used loss functions for deep metric learning are the contrastive loss and the triplet55

loss, both use euclidean distance to measure the distance between objects. A more comprehensive56

illustration of so-called “ranking-based” loss functions are summarized in Figure 2. Given an image57

pair, the contrastive loss minimizes their distance in the embedding space if their classes are the same,58

and separates them a fixed margin away otherwise. The triplet loss takes triplets of anchor, positive,59

and negative images, and enforces the distance between the anchor and the positive to be smaller than60

that between the anchor and the negative. The formation of contrastive loss is as the following. We61

first have embedding pairs P , which is sampled from a minibatch of size b. The pair contains an62

anchor ϕa from class ya and either a positive ϕp with ya = yp or a negative ϕn from a different class,63

ya ̸= yn. The distance function we utilize is the standard Euclidean distance de(x, y) = ∥x− y∥2.64
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Then the network ϕ is trained to minimize:65

Lcontrastive =
1

b

b∑
(i,j)∈P

Iyi=yj
de (ϕi, ϕj) + Iyi ̸=yj

[γ − de (ϕi, ϕj)]+ (1)

Triplets extend the contrastive formulation by providing a triplets T sampled from a mini-batch:66

Ltriplet =
1

b

b∑
(a,p,n)∈T
ya=yp ̸=yn

[de (ϕa, ϕp)− de (ϕa, ϕn) + γ]+ (2)

In the following, we present two adjustments that can improve (deep) metric learning’s performances,67

one is optimal transport [9], and one is coreset optimization [31].68

2.2 Optimal Transport69

Optimal transport (OT) is the general problem of moving one distribution of mass to another as70

efficiently as possible [41, 15, 34, 49]. Optimal transport has been used tremendously in computational71

biology [39, 37, 44, 45]. For example, [39] uses scRNA-seq data collected across a time course to72

infer how these probability distributions evolve over time, by using the mathematical approach of73

optimal transport.74

Wasserstein distance provides the mathematical tool to measure distances between functions, his-75

tograms, or more general objects in the optimal transport problem. Wasserstein distance is also called76

Earth Mover’s Distance, which is employed to develop PhEMD (Phenotypic Earth Mover’s Distance)77

[6], which is used to embed the space of drug perturbations on the basis of the drugs’ effects on cell78

populations. Wasserstein distance-based loss functions have shown superior performance in learning79

tasks [20]. Thus a new set of loss functions are proposed to replace the Euclidean distance with80

Wasserstein distance in original contrastive loss and triplet loss by defining81

dw(x, y) = W1(x, y) (3)

The new Wasserstein-contrastive (wcontrastive) loss and Wasserstein-triplet (wtriplet) loss can be82

formulated as [15]:83

Lwcontrastive =
1

b

b∑
(i,j)∈P

Iyi=yj
dw (ϕi, ϕj) + Iyi ̸=yj

[γ − dw (ϕi, ϕj)]+ , (4)

84

Lwtriplet =
1

b

b∑
(a,p,n)∈T
ya=yp ̸=yn

[dw (ϕa, ϕp)− dw (ϕa, ϕn) + γ]+ . (5)

We propose to apply the two new loss functions to similar cell identification and synthesis of85

heterogeneous modalities applications. In the similar cell identification task, the loss functions86

above can impose a discriminative constraint on the feature embedding to improve the similarity87

measurement [51].88

2.3 Coreset Optimization89

Coreset optimization is about data-efficient methods to find subsets of massive data that can generalize90

to the full data when trained on. In other words, a coreset is a subset of the original training set that91

is representative to train machine learning models [15, 54, 32, 28]. More specifically, Wasserstein92

measure coreset [8], is an extension of coresets that takes into account continuous data distribution93

and generalization. Recently coreset has been successfully applied to the purification of single-cell94

transcriptomics data [33]. It focuses on alleviating potential replicate-specific biases within single-cell95

datasets. The key is to select a “representative” subset (coreset) of cells from areas of the single-cell96

landscape where multiple replicates are represented. The approach [33] takes is solving the exemplar97

clustering problem, which minimizes the sum of pairwise dissimilarities between cells in the coreset98

and the rest of cells. We follow the idea in [33] but use Wasserstein distance to replace the Gaussian99
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Figure 2: Illustration of different ranking-based loss functions. Different colors (blue, yellow, green)
represent different classes. For simplicity, only 3 classes are shown. The left-most blue square is
an anchor (query). In Contrastive loss, the anchor is compared with only one positive example. In
Triplet loss, the anchor is compared with only one negative example and one positive example. In
Npair, ProxyNCA, and Lifted Struct losses, one positive example and multiple negative classes are
incorporated. Npair loss randomly selects one example per negative class. ProxyNCA loss pushes the
anchor away from negative proxies instead of negative examples. Lifted Struct loss uses all examples
from all negative classes [16, 27].

kernel to define similarity between cells. Here r|V | is the exemplar cells from the groundset V and S100

is the targeted coreset.101

S∗ ∈ argmax S ⊆ V
|S|≤r|V |

∑
x∈V

max
y∈S

dw(x, y) (6)

[40] processes data from a Slide-seq replicate (three modalities with 20823 transcriptomes * 17607102

genes) in 34 mins. [31] demonstrates a specific coreset optimization algorithm CRAIG can achieve103

the average speedup of 3x for similar loss residual and error rate. So we expect for the single cell104

synthesis task in [40], we can reduce data processing time from 34 mins to 11 mins. Furthremore,105

feature-efficient methods [1, 2, 48] can be applied to remove irrelevant variables during the training106

of coreset optimization algorithms.107

3 Experiments Design108

The experiments conducted on various datasets have demonstrated that optimal transport and coreset109

optimization can achieve superior performance on image retrieval and clustering tasks [15, 16]. In110

the following we lay out empirical studies to explore the applicability in building cell representations.111

The specific detail of computational studies is under investitation.112

3.1 Cell Similarity Identification113

For the cell similarity identification task, we plan to build on the datasets PBMC [25] and SLN-all114

[22] which are included in the phenomenal scvi-tools [21]. The PBMC dataset is measured with115

CITE-seq. The SLN-all dataset contains Immune cells from the murine spleen and lymph nodes.116

3.2 Multimodal Integration117

Regarding the multimodal integration challenge, we plan to follow the setup in [29] to apply the118

methods on multiple single-cell datasets including sci-CAR cell line [4], SNARE-seq cell line [5],119

and 10X Multiome T-cell depleted bone marrow [36] to validate the methods’ effectiveness and120

develop new computational and biological insights from the downstream tasks.121

4 Discussion122

In this essay, we propose to apply two computational methods: optimal transport and coreset123

optimization, which are successfully demonstrated usability in image representation learning [15, 16],124

to cell representation learning with applications in cell similarity identification and multimodal125

integration. We will report results and insights in empirical studies in follow-up research.126
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