

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 OSCILLATORS ARE ALL YOU NEED: IRREGULAR TIME SERIES MODELLING VIA DAMPED HARMONIC OSCIL- LATORS WITH CLOSED-FORM SOLUTIONS

Anonymous authors

Paper under double-blind review

ABSTRACT

Transformers excel at time series modelling through attention mechanisms that capture long-term temporal patterns. However, they assume uniform time intervals and therefore struggle with irregular time series. Neural Ordinary Differential Equations (NODEs) effectively handle irregular time series by modelling hidden states as continuously evolving trajectories. ContiFormers (Chen et al., 2023) combine NODEs with Transformers, but inherit the computational bottleneck of the former by using heavy numerical solvers. This bottleneck can be removed by using a closed-form solution for the given dynamical system - but this is known to be intractable in general! We obviate this by replacing NODEs with a novel linear damped harmonic oscillator analogy - which has a known closed-form solution. We model keys and values as damped, driven oscillators and expand the query in a sinusoidal basis up to a suitable number of modes. This analogy naturally captures the query-key coupling that is fundamental to any transformer architecture by modelling attention as a resonance phenomenon. Our closed-form solution eliminates the computational overhead of numerical ODE solvers while preserving expressivity. We prove that this oscillator-based parameterisation maintains the universal approximation property of continuous-time attention; specifically, any discrete attention matrix realisable by ContiFormer's continuous keys can be approximated arbitrarily well by our fixed oscillator modes. Our approach delivers both theoretical guarantees and scalability, achieving state-of-the-art performance on irregular time series benchmarks while being orders of magnitude faster.

1 INTRODUCTION

Transformers are widely used for modelling time series data (Zeng et al., 2022). However, they assume uniform sampling (Zeng et al., 2022), whereas many real world datasets, such as finance, astronomy, healthcare, and magnetic navigation, are often based on irregular time series (Rubanova et al., 2019). This data exhibits continuous behaviour with intricate relationships across continuously evolving observations (Lipton et al., 2016). Dividing the timeline into intervals of equal size can hamper the continuity of data. Neural Ordinary Differential Equations (NODEs) (Chen et al., 2019) address irregular time series by abandoning the fixed-layer stack and instead letting a neural network dictate how the hidden state moves through time. This keeps the representation on the exact observation times and preserves the natural topology of the input space (Dupont et al., 2019). The bottleneck of using NODEs is the high computational cost due to the use of numerical solvers (Oh et al., 2025). While there have been closed-form solutions for continuous RNNs (Hasani et al., 2022) that have addressed computational bottlenecks in continuous-time RNNs, these approaches still fall short of the efficiency that attention mechanisms provide for capturing both long-range dependencies (Niu et al., 2024).

This challenge of finding a closed-form solution for the ContiFormer motivated us to explore neural networks through the lens of physical systems (Hopfield, 1982), where efficient solutions can often emerge from exploiting underlying physical principles. Many neural architectures are inherently based on physical systems – Boltzmann Machines and Hopfield Networks are derived from statistical mechanics (Smart & Zilman, 2021). In fact, training of neural networks can be recast as

054 a control problem where Hamiltonian dynamics emerge from the Pontryagin maximum principle;
 055 transformers have been modelled as interacting particle systems (Evens et al., 2021).
 056

057 Instead of trying to find analytical solutions to complex differential equations, which is intractable
 058 in general, we model the dynamics of the ContiFormer architecture using forced damped harmonic
 059 oscillators (Flores-Hidalgo & Barone, 2011) because these systems provide closed-form solutions
 060 (Dutta et al., 2020). Furthermore, oscillators are a rich system which can be used to model dynamical
 061 systems (Herrero et al., 2012) – they have been used to solve Boolean SAT problems (Bashar et al.,
 062 2022), and have also been the inspiration for neural networks (Rohan et al., 2024) as well as state-
 063 of-the-art state-space models (Rusch & Rus, 2025).
 064

065 We model attention as resonance behavior of a forced harmonic oscillator, where query-key similarity
 066 creates high attention when frequencies align and low attention when they are misaligned. This
 067 mapping works because attention in ContiFormer is fundamentally a time-windowed inner product
 068 between query and key trajectories. When we model keys using a damped oscillator, the subsequent
 069 integral becomes a resonance detector that measures spectral overlap weighted by the oscillator’s
 070 transfer function $H(\omega) = \beta/(\omega_i^2 - \omega^2 + 2i\gamma_i\omega)$.
 071

072 Overall, our work makes the following main contributions:
 073

074 Firstly, we formulate a novel linear damped, driven harmonic oscillator analogy (with a closed-
 075 form solution) to replace the Neural ODE of the original ContiFormer. This helps us surmount the
 076 computational overhead of numerical solvers. We call our architecture “OsciFormer”.
 077

078 Secondly, we demonstrate that our Harmonic Oscillators can universally approximate any discrete
 079 attention matrix realizable by ContiFormer’s continuous keys thus maintaining the expressivity of
 080 original architecture. In fact, we show that any continuous query function and any collection of
 081 continuous key functions defined on compact intervals, can be approximated arbitrarily well using a
 082 shared bank of harmonic oscillators with different initial conditions.
 083

084 Thirdly, we discuss how the oscillator-based modeling would preserve equivariance properties of
 085 physical systems, which can be useful in spatiotemporal applications such as weather modelling. A
 086 detailed description of $E(3)$ -equivariance is given in appendix C.
 087

088 Finally, we provide the following detailed results: On event prediction, OsciFormer matches ContiFormer
 089 across six datasets in both accuracy and log-likelihood. On long-context UCR tasks it
 090 achieves top average accuracy (64.5%) with large margins on MI (91.8 ± 0.2), and on the clinical
 091 HR benchmark it obtains the lowest RMSE (2.56 ± 0.18) while ContiFormer runs out of memory. On
 092 synthetic irregular sequences, OsciFormer reaches 99.83 ± 0.32 accuracy with the fastest per-epoch
 093 time (0.56 min) among compared models.
 094

095 Code: <https://anonymous.4open.science/anonymize/contiformer-2-C8EB>
 096 Note: We have used LLMs to help reformat equations and text for L^AT_EX.
 097

098 2 PRELIMINARIES

099 Consider an irregular time series $\Gamma = \{(X_i, t_i)\}_{i=1}^N$ with ordered sampling times $0 \leq t_1 < t_2 <$
 100 $\dots < t_N \leq T$, which represents observations from an underlying continuous-time process. This
 101 time series arises from sampling a continuous-time path $X \in \mathcal{C}(\mathbb{R}_+; \mathbb{R}^d)$, where $\mathcal{C}(\mathbb{R}_+; \mathbb{R}^d) = \{g : \mathbb{R}_+ \rightarrow \mathbb{R}^d \mid g \text{ continuous}\}$ denotes the space of continuous functions mapping non-negative reals to
 102 d -dimensional vectors. (Schirmer et al., 2022)

103 To model this using a standard Transformer (Vaswani et al., 2017), let $Q = [Q_1; \dots; Q_N]$,
 104 $K = [K_1; \dots; K_N]$, $V = [V_1; \dots; V_N]$ denote the query, key, and value embeddings in the Trans-
 105 former. However, simply dividing the time steps into equally sized intervals can damage the con-
 106 tinuity of the data which is necessary for irregular time series modelling. To overcome the loss
 107 of temporal continuity caused by uniform time discretisation, ContiFormer (Chen et al., 2023) lets
 108 every observation (X_i, t_i) initiate a continuous key/value trajectory governed by a NODE.
 109

$$\begin{aligned}
108 \quad \mathbf{k}_i(t_i) &= \mathbf{K}_i, & \mathbf{k}_i(t) &= \mathbf{k}_i(t_i) + \int_{t_i}^t f(\tau, \mathbf{k}_i(\tau); \boldsymbol{\theta}_k) d\tau, \\
109 \quad \mathbf{v}_i(t_i) &= \mathbf{V}_i, & \mathbf{v}_i(t) &= \mathbf{v}_i(t_i) + \int_{t_i}^t f(\tau, \mathbf{v}_i(\tau); \boldsymbol{\theta}_v) d\tau.
\end{aligned} \tag{1}$$

115 Subsequently, the discrete self-attention computed via the query–key dot-product is extended to its
116 continuous-time counterpart by integrating the time-varying query and key trajectories: $\alpha_i(t) =$
117 $\frac{1}{t-t_i} \int_{t_i}^t q(\tau) k_i(\tau)^\top d\tau$.

118 Herein, each layer computes attention between *all* N queries and N keys. For each of the N^2
119 pairs, the integral is approximated with a numerical solver like RK4, where each step evaluates
120 two d -dimensional NODE vector fields, giving an $\mathcal{O}(d^2)$ cost per step. Thus one layer runs in
121 $T_{\text{layer}} = \mathcal{O}(N^2 S d^2)$.

3 HARMONIC OSCILLATOR BASED MODELLING

123 Due to page limits, we provide our detailed derivation and model in appendix A. What follows here
124 is a brief sketch.

125 We model the NODEs that govern keys and values in ContiFormer as *linear damped driven harmonic oscillators*. Keys are the solution of $\ddot{k}(t) + 2\gamma\dot{k}(t) + \omega^2 k(t) = F^k(t)$ where $\gamma \geq 0$ is the
126 learnable damping coefficient, $\omega > 0$ is the learnable natural frequency, and $F^k(t)$ is the driving force.
127 Likewise, values obey the same structure: $\ddot{v}(t) + 2\gamma_v\dot{v}(t) + \omega_v^2 v(t) = F^v(t)$ with independent
128 learnable parameters γ_v, ω_v and value-intrinsic drive $F^v(t)$.

129 Our damped driven oscillators are governed by the second-order ODE $\ddot{x} + 2\gamma\dot{x} + \omega^2 x = F(t)$.

130 We first convert this into a first-order ODE like the ones governing the keys and values; to do this,
131 we introduce the augmented state vector $z = \begin{bmatrix} x \\ p \end{bmatrix}$, $p = \frac{dx}{dt}$ and then write the second-order ODE in
132 matrix form as

$$\frac{dz}{dt} = \underbrace{\begin{bmatrix} 0 & 1 \\ -\omega^2 & -2\gamma \end{bmatrix}}_A z + \underbrace{\begin{bmatrix} 0 \\ F(t) \end{bmatrix}}_{B(t)}. \tag{2}$$

133 We derive the general solution for any t_0 , $z(t) = e^{A(t-t_0)} z(t_0) + \int_{t_0}^t e^{A(t-s)} B(s) ds$ with
134 the first term $z_h(t)$ (homogeneous) and the second term $z_p(t)$ (particular). We subsequently handle
135 $z_h(t)$ and $z_p(t)$ separately.

136 We first derive our homogeneous solution for $z_h(t) = e^{At} z_0$ by cases. Consider three cases: (1) Underdamped, $\gamma^2 < \omega^2$ ($\gamma < \omega$); (2) Critically damped: $\gamma^2 = \omega^2$ ($\gamma = \omega$); and, (3) Overdamped: $\gamma^2 > \omega^2$ ($\gamma > \omega$). This derivation is rather involved; we provide the details in appendix A.1.

137 We handle the particular solution $z_p(t) = \int_{t_0}^t e^{A(t-s)} B(s) ds$ similarly (appendix A.2), and then
138 provide a steady state solution for the damped, driven oscillator (appendix A.3).

139 **Query:** We expand the interpolation function in the oscillator basis up to a suitable number of
140 modes and obtain the coefficients A_k, B_k by a least-squares fit. This circumvents the absence of
141 a closed-form solution for the integral of the original cubic spline. $q(t) = \sum_{k=1}^N (A_k \cos(\omega_k t) +$
142 $B_k \sin(\omega_k t))$.

143 **Attention integral:** The complete derivation is available in appendix A.5. We compute the averaged
144 attention coefficient $\alpha_i(t) = \frac{1}{\Delta} \int_{t_i}^t \langle q(\tau), k_i(\tau) \rangle d\tau$, $\Delta := t - t_i > 0$ when the (vector) key
145 coordinates obey a *driven* damped oscillator, anchored at t_i with zero particular state. The total
146 key is $k_i = k_{i,\text{hom}} + k_{i,\text{part}} + c_i$, where the homogeneous part $k_{i,\text{hom}}$ was derived in section A.1,
147 and here we add the driven part $k_{i,\text{part}}$. We then derive the steady-state solution for the driven

162 oscillator, for underdamped, critical, and overdamped driven keys, combining the steady-state and
 163 transient contributions to find the driven contribution to the averaged attention (equation 74) and the
 164 complete logit.

166 **Averaged attention: decomposition.** Using equation 51, equation 68, and equation 70 with $s \in$
 167 $[0, \Delta]$:

$$\begin{aligned} 168 \int_{t_i}^t \langle q(\tau), k_{i,\text{part}}(\tau) \rangle d\tau &= \underbrace{\int_0^\Delta \langle q(t_i + s), x_{\text{ss},i}(t_i + s) \rangle ds}_{\mathcal{I}_i^{(\text{ss})}} + \\ 169 \quad & \underbrace{\int_0^\Delta e^{-\gamma s} \langle q(t_i + s), E_i \cos(\omega_d s) + F_i \sin(\omega_d s) \rangle ds}_{\mathcal{I}_i^{(\text{tr})}}. \end{aligned} \quad (3)$$

177 **Steady-state contribution $\mathcal{I}_i^{(\text{ss})}$:** Using the undamped kernels equation 58–equation 61:

$$\begin{aligned} 179 \mathcal{I}_i^{(\text{ss})} &= \sum_{j=1}^J \sum_{m=1}^{M_f} \left[\langle \tilde{A}_j, \tilde{C}_{i,m} \rangle I_{cc}(\Delta; 0, \omega_j, \varpi_m) + \langle \tilde{A}_j, \tilde{D}_{i,m} \rangle I_{cs}(\Delta; 0, \omega_j, \varpi_m) \right. \\ 180 \quad & \left. + \langle \tilde{B}_j, \tilde{C}_{i,m} \rangle I_{sc}(\Delta; 0, \omega_j, \varpi_m) + \langle \tilde{B}_j, \tilde{D}_{i,m} \rangle I_{ss}(\Delta; 0, \omega_j, \varpi_m) \right]. \end{aligned} \quad (4)$$

185 **Transient contribution $\mathcal{I}_i^{(\text{tr})}$.** Using the damped kernels equation 54–equation 57 with $\lambda_1 \in \{\omega_d\}$
 186 and $\lambda_2 \in \{\omega_j\}$:

$$\begin{aligned} 188 \mathcal{I}_i^{(\text{tr})} &= \sum_{j=1}^J \left[\langle E_i, \tilde{A}_j \rangle I_{cc}(\Delta; \gamma, \omega_d, \omega_j) + \langle E_i, \tilde{B}_j \rangle I_{cs}(\Delta; \gamma, \omega_d, \omega_j) \right. \\ 189 \quad & \left. + \langle F_i, \tilde{A}_j \rangle I_{sc}(\Delta; \gamma, \omega_d, \omega_j) + \langle F_i, \tilde{B}_j \rangle I_{ss}(\Delta; \gamma, \omega_d, \omega_j) \right]. \end{aligned} \quad (5)$$

193 **Final result.** The driven contribution to the averaged attention is
 194
$$\boxed{\alpha_i^{(\text{driven})}(t) = \frac{1}{\Delta} (\mathcal{I}_i^{(\text{ss})} + \mathcal{I}_i^{(\text{tr})})}$$
 where $\mathcal{I}_i^{(\text{ss})}$ and $\mathcal{I}_i^{(\text{tr})}$ are given by equation 4 and equation 5, respectively.

4 HARMONIC APPROXIMATION THEOREM

200 Due to page limits, we provide a detailed derivation in appendix B. What follows here is a brief
 201 sketch.

203 Start with a continuous function f on $[a, b] \rightarrow \mathbb{R}$ → Approximate it with trigonometric polynomials using
 204 Fejér → Shift the basis from $(t - a)$ to $(t - t_i)$ for each key. → Realize each term of the polynomial
 205 with an oscillator → Sum the oscillators to reconstruct the polynomial → Finally, show that the
 206 approximation error in keys leads to bounded error in attention weights using the Lipschitz property
 207 of softmax.

208 **Theorem 1.** Let $q \in C([a, b]; \mathbb{R}^{d_k})$ and continuous keys $\{k_i\}_{i=1}^N$ with $k_i : [t_i, b] \rightarrow \mathbb{R}^{d_k}$. For any
 209 $\varepsilon > 0$ there exists an integer M (depending on ε and the keys) and a single shared oscillator bank
 210 on the fixed grid $\{\omega_n\}_{n=0}^M$ with $\gamma_n = 0$ such that one can choose initial states $\{z_{i,0}\}_{i=1}^N$ with the
 211 property

$$\sup_{t \in [t_i, b]} \|k_i(t) - \tilde{k}_i(t)\|_2 < \varepsilon \quad \text{for all } i,$$

213 where $\tilde{k}_i(t) := C e^{\gamma(t - t_i)} z_{i,0}$ is the bank-generated key. Consequently, for all $j \geq i$,

$$215 |\alpha_i(t_j; q, k_i) - \alpha_i(t_j; q, \tilde{k}_i)| \leq \|q\|_\infty \varepsilon, \quad \|w(t_j) - \tilde{w}(t_j)\|_1 \leq \frac{\|q\|_\infty}{\sqrt{d_k}} \varepsilon.$$

216 *Proof.* Fix $\varepsilon > 0$. For each i , extend k_i continuously from $[t_i, b]$ to $[a, b]$ (e.g., set $k_i(t) = k_i(t_i)$ for
 217 $t \in [a, t_i]$). Apply Lemma 2 to this extension to obtain a vector trigonometric polynomial
 218

$$219 \quad P_i(t) = c_{i,0} + \sum_{n=1}^{N_i} (c_{i,n} \cos \omega_n(t-a) + s_{i,n} \sin \omega_n(t-a))$$

220 with $\sup_{t \in [a,b]} \|k_i(t) - P_i(t)\|_2 < \varepsilon/2$. Use Lemma 3 to rewrite P_i as
 221

$$222 \quad P_i(t) = c_{i,0} + \sum_{n=1}^{N_i} (\tilde{c}_{i,n} \cos \omega_n(t-t_i) + \tilde{s}_{i,n} \sin \omega_n(t-t_i)).$$

223 Let $N := \max_i N_i$ and take $M \geq N$. By Lemma 4 (with $\gamma_n = 0$), choose $z_{i,0}$ so that the shared
 224 bank realizes P_i exactly: $\tilde{k}_i(t) \equiv P_i(t)$ on $[t_i, b]$. Therefore $\sup_{t \in [t_i, b]} \|k_i(t) - \tilde{k}_i(t)\|_2 < \varepsilon/2 < \varepsilon$.
 225

226 For $t > t_i$,

$$227 \quad |\alpha_i(t) - \tilde{\alpha}_i(t)| \leq \frac{1}{t - t_i} \int_{t_i}^t \|q(\tau)\|_2 \|k_i(\tau) - \tilde{k}_i(\tau)\|_2 d\tau \leq \|q\|_\infty \varepsilon.$$

228 At $t = t_i$ the bound $|\langle q(t_i), k_i(t_i) - \tilde{k}_i(t_i) \rangle| \leq \|q\|_\infty \varepsilon$ is immediate. Applying the softmax
 229 Lipschitz Lemma 6 to the logits scaled by $1/\sqrt{d_k}$ yields the stated ℓ_1 bound. \square
 230

231 **Corollary 1.** *Under the hypotheses of Theorem 1, fix $\varepsilon > 0$ and construct the undamped realization
 232 above. Then there exists $\bar{\gamma} > 0$ such that, for any damped bank with $0 \leq \gamma_n \leq \bar{\gamma}$, one can reuse the
 233 same initial states $\{z_{i,0}\}$ and obtain*

$$234 \quad \sup_{t \in [t_i, b]} \|k_i(t) - \tilde{k}_i^{(\gamma)}(t)\|_2 < \varepsilon, \quad \|w^{(\gamma)}(t_j) - w(t_j)\|_1 \leq \frac{\|q\|_\infty}{\sqrt{d_k}} \varepsilon,$$

235 where the superscript (γ) denotes readouts from the damped bank. In particular, a small amount of
 236 damping does not affect universality.
 237

238 5 COMPUTATIONAL COMPLEXITY

239 We analyze (i) arithmetic operations, (ii) sequential depth, and (iii) activation memory for one layer.
 240 All complexity bounds are per attention head.

241 SETUP AND NOTATION

- 242 • N : sequence length.
- 243 • d : per-head feature dimension.
- 244 • S : number of vector-field/quadrature evaluations of the ODE solver on the normalized
 245 interval $[-1, 1]$ in one forward pass.
- 246 • $C_f(d)$: cost of one evaluation of the ODE vector field on a d -dimensional state; with dense
 247 linear maps, $C_f(d) = \Theta(d^2)$.
- 248 • The standard Q, K, V projections cost $O(Nd^2)$ per head and are listed explicitly.

249 5.1 NUMERICAL CONTINUOUS-TIME REALIZATION (BASELINE)

250 Each position $i \in \{1, \dots, N\}$ induces continuous key/value trajectories by solving an ODE on
 251 $[-1, 1]$. For every query-key pair (i, j) , the attention score is an integral of $\langle q_i(t), k_j(t) \rangle$ over
 252 $t \in [-1, 1]$, approximated by evaluating the ODE state and inner product at S nodes. The total work
 253 across all pairs and steps is:

$$254 \quad T_{\text{num}} = \Theta(N^2 S C_f(d)) + O(Nd^2) = \Theta(N^2 S d^2) + O(Nd^2),$$

$$255 \quad D_{\text{num}} = \Theta(S),$$

$$256 \quad M_{\text{num}} = \Theta(N^2 S d).$$

257 The first term in T_{num} accounts for N^2 pairs, S solver/quadrature nodes, and per-node cost $C_f(d) =$
 258 $\Theta(d^2)$. Depth is determined by the S time steps on the critical path. Activation memory stores d -
 259 dimensional states for S nodes per pair.

270 5.2 CLOSED-FORM REALIZATION
271

272 When the key/value ODEs admit closed forms, each query trajectory can be represented by a J -term
273 trigonometric expansion so that the attention integral decomposes into J modewise expressions, all
274 evaluable in closed form. This yields:

$$275 \quad T_{\text{cf}} = \Theta(N^2 Jd) + O(Nd^2), \\ 276 \quad D_{\text{cf}} = \Theta(1), \\ 278 \quad M_{\text{cf}} = \Theta(N^2 d).$$

279 Each query key pair involves computing J mode coefficients with d -dimensional features, con-
280 tributing $O(Jd)$ operations. The closed form eliminates time-stepping, yielding constant depth.
281 Activation memory stores only $O(d)$ values per pair for backpropagation.
282

283 5.3 COMPARISON
284

285 Ignoring the shared projection term $O(Nd^2)$ and constants, the dominant cost ratio is
286

$$287 \quad \frac{T_{\text{cf}}}{T_{\text{num}}} \asymp \frac{N^2 Jd}{N^2 Sd^2} = \frac{J}{Sd}.$$

289 The closed-form layer is asymptotically faster when $J \ll Sd$. It also achieves lower sequential
290 depth by a factor $\Theta(S)$ and requires $\Theta(S)$ -times less activation memory:
291

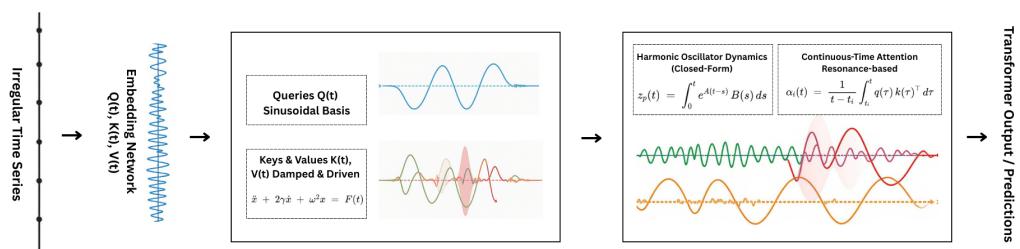
$$292 \quad \frac{M_{\text{cf}}}{M_{\text{num}}} \asymp \frac{1}{S}.$$

294 5.4 REPRESENTATIVE INSTANCE
295

296 With $S = 80$ (e.g., fixed-step RK4 on $[-1, 1]$), $d = 64$, and $J = 8$,
297

$$298 \quad \frac{T_{\text{cf}}}{T_{\text{num}}} = \frac{8}{80 \cdot 64} = \frac{1}{640},$$

300 meaning the dominant N^2 term is reduced by approximately three orders of magnitude, while se-
301 quential depth and activation memory decrease by a factor of S .
302

303 6 ARCHITECTURE
304314 Figure 1: Architecture Pipeline
315

317 Each input generates an *oscillator* for its key and another for its value. Those oscillators evolve
318 in continuous time with closed-form solutions. The projections for each key and value per head
319 $h \in [H]$ with $d_h = d/H$ are given by $Q_i = W_Q X_i + b_Q$, $K_i = W_K X_i + b_K$, and $V_i = W_V X_i + b_V$
320 where $Q_i, K_i, V_i \in \mathbb{R}^{d_h}$.
321

322 Following this, the learnable parameters are: projection matrices and biases
323 $W_Q, W_K, W_V, W_O, b_Q, b_K, b_V$; oscillator spectra (per head and channel, i.e. one learnable
frequency ω and damping ζ for every coordinate $c = 1 \dots d_h$ inside each head) $\omega_h^k, \zeta_h^k \in \mathbb{R}_{>0}^{d_h}, \mathbb{R}_{\geq 0}^{d_h}$

324 for keys and ω_h^v, ζ_h^v for values; initial-velocity maps $U_h^k, U_h^v \in \mathbb{R}^{d_h \times d_h}$; and, when intrinsic drives
 325 $F_h^{k/v}(t)$ are used, their matrices $A_h^{k/v}, B_h^{k/v} \in \mathbb{R}^{d_h \times d_h}$
 326

327 The forward pass follows a plain Transformer (Vaswani et al., 2017) where for each head h at time t_j
 328 we project tokens to Q_i, K_i, V_i , compute the closed-form key and value trajectories $k_{i,h}(\tau), v_{i,h}(\tau)$
 329 on $[t_i, t_j]$ for every $i \leq j$, fit the query expansion coefficients $(A_{j,.}, B_{j,.})$, evaluate the unnormalised
 330 scores $\alpha_{i,h}(t_j)$ in closed form or with a short integral average, softmax over $i \leq j$ to get weights
 331 $w_{i,h}(t_j)$, form the weighted value $\bar{v}_{i,h}(t_j)$ and emit $y_h(t_j) = \sum_{i \leq j} w_{i,h}(t_j) \bar{v}_{i,h}(t_j)$, then merge
 332 heads with W_O and add residual plus layer-norm.

333 7 EXPERIMENTS

336 We evaluate on all irregular time-series benchmarks used across ContiFormer (Chen et al., 2023),
 337 Rough Transformers (Moreno-Pino et al., 2025), and Closed-Form Liquid Time-Constant Networks
 338 (Hasani et al., 2022) continuous models, spanning health, finance, event, sequential prediction, and
 339 synthetic (sine/spirals/XOR) settings. We adopt the UEA multivariate classification setting where
 340 irregularity is created by randomly dropping observations at ratios of 30%, 50%, and 70% per sample
 341 (Bagnall et al., 2018).

Model	Metric	Synthetic	Neonate	Traffic	MIMIC	StackOverflow	BookOrder
HP (Laub et al., 2024)	LL (↑)	-3.084 ± .005	-4.618 ± .005	-1.482 ± .005	-4.618 ± .005	-5.794 ± .005	-1.036 ± .000
	Accuracy (↑)	0.756 ± .000	—	0.570 ± .000	0.795 ± .000	0.441 ± .000	0.604 ± .000
	RMSE (↓)	0.953 ± .000	10.957 ± .012	0.407 ± .000	1.021 ± .000	1.341 ± .000	3.781 ± .000
RMTTP (Du et al., 2016)	LL (↑)	-1.025 ± .030	-2.817 ± .023	-0.546 ± .012	-1.184 ± .023	-2.374 ± .001	-0.952 ± .007
	Accuracy (↑)	0.841 ± .000	—	0.805 ± .002	0.823 ± .004	0.461 ± .000	0.624 ± .000
	RMSE (↓)	0.369 ± .014	9.517 ± .023	0.337 ± .001	0.864 ± .017	0.955 ± .000	3.647 ± .003
NeuralHP (Shen & Cheng, 2025)	LL (↑)	-1.371 ± .004	-2.795 ± .012	-0.643 ± .004	-1.239 ± .027	-2.608 ± .000	-1.104 ± .005
	Accuracy (↑)	0.841 ± .000	—	0.759 ± .001	0.814 ± .001	0.450 ± .000	0.621 ± .000
	RMSE (↓)	0.631 ± .002	9.614 ± .013	0.358 ± .001	0.846 ± .007	1.022 ± .000	3.734 ± .003
GRU-Δt (Chung et al., 2014)	LL (↑)	-0.871 ± .050	-2.736 ± .031	-0.613 ± .062	-1.164 ± .026	-2.389 ± .002	-0.915 ± .006
	Accuracy (↑)	0.841 ± .000	—	0.800 ± .004	0.832 ± .007	0.466 ± .000	0.627 ± .000
	RMSE (↓)	0.249 ± .013	9.421 ± .050	0.335 ± .001	0.850 ± .010	0.950 ± .000	3.666 ± .016
ODE-RNN (Rubanova et al., 2019)	LL (↑)	-1.032 ± .102	-2.732 ± .080	-0.491 ± .011	-1.183 ± .028	-2.395 ± .001	-0.988 ± .006
	Accuracy (↑)	0.841 ± .000	—	0.812 ± .000	0.827 ± .006	0.467 ± .000	0.624 ± .000
	RMSE (↓)	0.342 ± .030	9.289 ± .048	0.334 ± .000	0.865 ± .021	0.952 ± .000	3.605 ± .004
mTAN Shukla & Marlin (2021)	LL (↑)	-0.920 ± .036	-2.722 ± .026	-0.548 ± .023	-1.149 ± .029	-2.391 ± .002	-0.980 ± .004
	Accuracy (↑)	0.842 ± .000	—	0.811 ± .002	0.832 ± .009	0.466 ± .000	0.620 ± .000
	RMSE (↓)	0.286 ± .008	9.363 ± .042	0.334 ± .001	0.848 ± .006	0.950 ± .000	3.680 ± .015
ContiFormer(Chen et al., 2023)	LL (↑)	-0.535 ± .028⁺	-2.550 ± .026	0.635 ± .019⁺	-1.135 ± .023	-2.332 ± .001⁺	-0.270 ± .010⁺
	Accuracy (↑)	0.842 ± .000	—	0.822 ± .001⁺	0.836 ± .006	0.473 ± .000⁺	0.628 ± .001⁺
	RMSE (↓)	0.192 ± .005	9.233 ± .033	0.328 ± .001⁺	0.837 ± .007	0.948 ± .000⁺	3.614 ± .020
OsciFormer (Ours)	LL (↑)	-0.558 ± .025 ⁺	-2.573 ± .028	0.612 ± .022 ⁺	-1.142 ± .021	-2.315 ± .002 ⁺	-0.288 ± .009 ⁺
	Accuracy (↑)	0.841 ± .000	—	0.819 ± .001 ⁺	0.834 ± .007	0.471 ± .000 ⁺	0.626 ± .001 ⁺
	RMSE (↓)	0.198 ± .006	9.187 ± .031	0.331 ± .001 ⁺	0.841 ± .008	0.951 ± .000 ⁺	3.621 ± .017

358 Table 1: Performance comparison of different models on event prediction tasks. Results shown for
 359 log-likelihood (LL) and accuracy (ACC) metrics. Arrow symbols ↑ and ↓ denote whether higher or
 360 lower values represent superior performance, respectively. For comparison, other values in Table
 361 are sourced from (Chen et al., 2023) reported benchmarks.

Dataset	LRU	S5	S6	Mamba	NCDE	NRDE	LogNCDE	Transformer	RFormer	OsciFormer
SCPI	82.6 ± 3.4	89.9 ± 4.6	82.8 ± 2.7	80.7 ± 1.4	79.8 ± 5.6	80.9 ± 2.5	83.1 ± 2.8	84.3 ± 6.3	81.2 ± 2.8	84.1 ± 3.0
SCP2	51.2 ± 3.6	50.5 ± 2.6	49.9 ± 9.5	48.2 ± 3.9	53.0 ± 2.8	53.7 ± 6.9	53.7 ± 4.1	49.1 ± 2.5	52.3 ± 3.7	58.7 ± 6.8
MI	48.4 ± 5.0	47.7 ± 5.5	51.3 ± 4.7	47.7 ± 4.5	49.5 ± 2.8	47.0 ± 5.7	53.7 ± 5.3	50.5 ± 3.0	55.8 ± 6.6	91.8 ± 0.2
EW	87.8 ± 2.8	81.1 ± 3.7	85.0 ± 16.1	70.9 ± 15.8	75.0 ± 3.9	83.9 ± 7.3	85.6 ± 5.1	OOM	90.3 ± 0.1	48.9 ± 3.4
ETC	21.5 ± 2.1	24.1 ± 4.3	26.4 ± 6.4	27.9 ± 4.5	29.9 ± 6.5	25.3 ± 1.8	34.4 ± 6.4	40.5 ± 6.3	34.7 ± 4.1	31.5 ± 4.6
HB	78.4 ± 6.7	77.7 ± 5.5	76.5 ± 8.3	76.2 ± 3.8	73.9 ± 2.6	72.9 ± 4.8	75.2 ± 4.6	70.5 ± 0.1	72.5 ± 0.1	71.8 ± 0.1
Av.	61.7	61.8	62.0	58.6	60.2	60.6	64.3	59.0	64.5	64.5

362 Table 2: Classification performance on various long context temporal datasets from UCR TS archive
 363 (Tan et al., 2020). For comparison, other values in Table are sourced from (Moreno-Pino et al., 2025)
 364 reported benchmarks.

374 We also evaluate on next-event type and time prediction across different datasets (see Table 1):
 375 Neonate (clinical seizures), Traffic (PeMS events), MIMIC (ICU visits), BookOrder (financial limit
 376 order book transactions for “buy/sell”), and StackOverflow (badge events). Following Hasani et al.
 377 (2022), we run experiments on irregularly sampled clinical time series over the first 48 hours in ICU
 378 with missing features across 37 channels (see Table 2).

Model	HR (RMSE \downarrow)
ODE-RNN $^\diamond$	13.06 ± 0.00
Neural-CDE $^\diamond$	9.82 ± 0.34
Neural-RDE $^\diamond$	2.97 ± 0.45
GRU †	13.06 ± 0.00
ODE-RNN †	13.06 ± 0.00
Neural-RDE †	4.04 ± 0.11
Transformer	8.24 ± 2.24
ContiFormer	Out of memory
RFormer	2.66 ± 0.21
OsciFormer	2.56 ± 0.18

Table 3: Evaluation on HR dataset (lower RMSE is better). For comparison, other values in Table are sourced from (Moreno-Pino et al., 2025) reported benchmarks.

Model	Equidistant encoding	Event-based (irregular) encoding	Epoch Time (min)	ODE-based?
†Augmented LSTM (20)	$100.00\% \pm 0.00$	$89.71\% \pm 3.48$	0.62	No
† CT-GRU (34)	$100.00\% \pm 0.00$	$61.36\% \pm 4.87$	0.80	No
† RNN Decay (7)	$60.28\% \pm 19.87$	$75.53\% \pm 5.28$	0.90	No
† Bi-directional RNN (38)	$100.00\% \pm 0.00$	$90.17\% \pm 0.69$	1.82	No
† GRU-D (36)	$100.00\% \pm 0.00$	$97.90\% \pm 1.71$	0.58	No
† CT-LSTM (35)	$97.73\% \pm 0.08$	$95.09\% \pm 0.30$	0.86	No
† ODE-RNN (7)	$50.47\% \pm 0.06$	$51.21\% \pm 0.37$	4.11	Yes
† CT-RNN (33)	$50.42\% \pm 0.12$	$50.79\% \pm 0.34$	4.83	Yes
† GRU-ODE (7)	$50.41\% \pm 0.40$	$52.52\% \pm 0.35$	1.55	Yes
† ODE-LSTM (9)	$100.00\% \pm 0.00$	$98.89\% \pm 0.26$	1.18	Yes
LTC (1)	$100.00\% \pm 0.00$	$49.11\% \pm 0.00$	2.67	Yes
ContiFormer	$100.00\% \pm 0.00$	$99.93\% \pm 0.12$	3.83	Yes
OsciFormer	$100.00\% \pm 0.00$	$99.83\% \pm 0.32$	0.56	No

Table 4: Detailed accuracy and time comparison including encoding types

Finally, we evaluate on synthetic datasets with binary sequence classification in two encodings: equidistant (regular) and event-based (irregular, only bit-change events). We also test interpolation and extrapolation on 2-D spiral trajectories with irregular time points- refer to figures 2c and 2d.

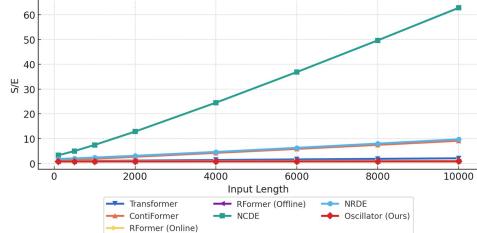
Across the irregular-benchmark suite (health/HR, finance/LOB-style streams, and synthetic sine – see Table 3), we observe that setting $J = 8$ (i.e., the number of oscillator modes) yields essentially *identical predictive performance* to larger settings. In the tasks where J indexes the oscillator modes in our module, accuracy saturates around $J \in [6, 8]$ with no meaningful gains beyond that range. At the same time, we obtain consistent computational benefits relative to the ODE-based Contiformer, with the largest speedups on the longest or most irregular sequences. **These gains vary from 3x to 20x** depending on benchmarks and value of the Oscillator mode – see Table 4 for these results.

Furthermore, we establish the following hyperparameter configuration. For optional driven dynamics we use a collocation-matched, causal sinusoidal drive per head h and token i : $F^{k/v}i, h(t) = \sum m = 1^M (g^{k/v}h, m \odot E^{k/v}i, h) \cos(\varpi_{h,m}(t - t_i)) + (h^{k/v}h, m \odot E^{k/v}i, h) \sin(\varpi_{h,m}(t - t_i))$ for $t \geq t_i$, where $E^k i, h = K i, h$ and $E^v i, h = V i, h$ are the per-head projections, $g^{k/v}h, m, h^{k/v}h, m \in \mathbb{R}^{d_h}$ are learnable element-wise gains, and $\varpi_{h,m}$ are drive frequencies drawn from the collocation bank $\{\omega_1, \dots, \omega_J\}$ (we use $J = 8$). This choice admits closed-form solutions via the transfer function $H(\omega)$ and aligns the forcing spectrum with the query basis.

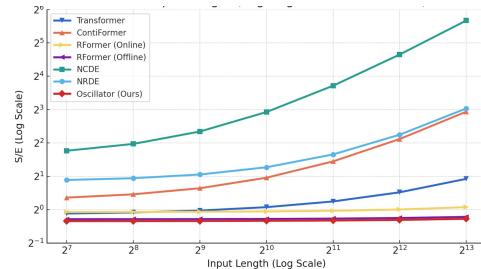
For model architecture, we use width $d = 256$ and $H = 8$ attention heads, where $d_h = d/H$. For training, we apply ridge regularization for the query fit, dropout in projections and feed-forward

432 networks, and weight decay through the optimizer. We use AdamW with learning rate 1×10^{-3}
 433 and weight decay 0.01, employing cosine decay with 5% warmup. Parameters are initialized with
 434 ω log-uniform on $[10^{-2}, 10^1]$ (normalized time), damping $\zeta \in [0.05, 0.4]$, and $U_h^{k/v} = 0$. This
 435 configuration consistently delivers optimal performance across our benchmark suite.
 436

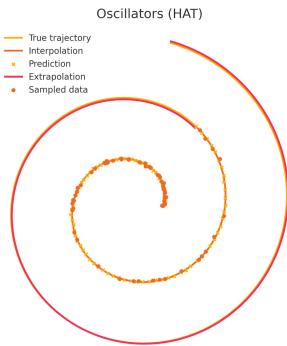
437 We have conducted a detailed set of ablations over (i) the number of oscillator modes (J) (ii) different
 438 damping ranges (iii) several frequency grid parameterizations (see Tables in Appendix E.1). To
 439 visualize the resonance view of attention, we have conducted simple irregular time-series based
 440 classification and regression experiments, given in E.2 and E.3.



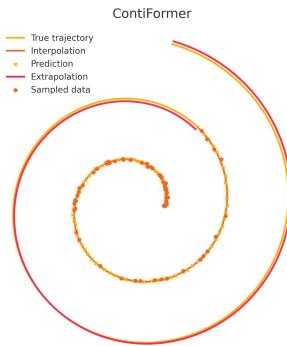
450 (a) Per-epoch Training Time vs. Input Length by
 451 Model Type



450 (b) Per-epoch Training Time vs. Input Length by
 451 Model Type (log scale)



452 (c) Osciformer samples and pre-
 453 predictions



452 (d) ContiFormer samples and
 453 predictions

468 Figure 2: Trajectories and Training Time Visualisations

470 8 DISCUSSION

471 We replaced the continuous-time dynamics of ContiFormer with a linear, damped, driven oscillator.
 472 This keeps the continuous-time property intact while requiring only a handful of closed-form
 473 operations per step, eliminating the memory blow-up that plagues the standard ContiFormer and
 474 delivering accuracy on par with structured state-space models. We proved that a bank of damped
 475 oscillators reproduces key-value signals exactly and faithfully approximates discrete attention. The
 476 generalization bounds we provide are only a first step and can be tightened further, which could
 477 lead to an even richer and more accurate model family. Furthermore, stacking multiple oscillators
 478 provides a principled way to recreate every primitive of a standard transformer, opening a concrete
 479 pathway toward a universal approximation theorem for transformers while simultaneously revealing
 480 the class of functions that such oscillators and transformers more broadly cannot approximate. This
 481 can help us understand the bounds of current transformers and help us develop better architectures
 482 for more efficient representation. We also think oscillators provide a viewpoint beyond time series.
 483 The same physical viewpoint allows us to embed oscillators inside large language models, using
 484 frequency, damping, and forcing terms to model how meaning vibrates across semantic dimensions
 485 and providing a new class of physically grounded representations for LLMs.

486 REFERENCES
487

488 Anthony Bagnall, Hoang Anh Dau, Jason Lines, Michael Flynn, James Large, Aaron Bostrom, Paul
489 Southam, and Eamonn Keogh. The uea multivariate time series classification archive, 2018, 2018.
490 URL <https://arxiv.org/abs/1811.00075>.

491 Mohammad Khairul Bashar, Zongli Lin, and Nikhil Shukla. Formulating oscillator-inspired dynam-
492 ical systems to solve boolean satisfiability, 2022. URL <https://arxiv.org/abs/2209.07571>.

493

494 Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural ordinary dif-
495 ferential equations, 2019. URL <https://arxiv.org/abs/1806.07366>.

496

497 Yuqi Chen, Kan Ren, Yansen Wang, Yuchen Fang, Weiwei Sun, and Dongsheng Li. Contiformer:
498 continuous-time transformer for irregular time series modeling. In *Proceedings of the 37th Inter-
499 national Conference on Neural Information Processing Systems, NIPS '23*, Red Hook, NY, USA,
500 2023. Curran Associates Inc.

501 Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of
502 gated recurrent neural networks on sequence modeling, 2014. URL <https://arxiv.org/abs/1412.3555>.

503

504 Nan Du, Hanjun Dai, Rakshit Trivedi, Utkarsh Upadhyay, Manuel Gomez-Rodriguez, and Le Song.
505 Recurrent marked temporal point processes: Embedding event history to vector. In *Proceed-
506 ings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
507 Mining, KDD '16*, pp. 1555–1564, New York, NY, USA, 2016. Association for Computing Ma-
508 chinery. ISBN 9781450342322. doi: 10.1145/2939672.2939875. URL <https://doi.org/10.1145/2939672.2939875>.

509

510

511 Emilien Dupont, Arnaud Doucet, and Yee Whye Teh. Augmented neural odes, 2019. URL <https://arxiv.org/abs/1904.01681>.

512

513 Manjari Dutta, Shreemoyee Ganguly, and Sunandan Gangopadhyay. Exact solutions of a damped
514 harmonic oscillator in a time dependent noncommutative space. *International Journal of
515 Theoretical Physics*, 59(12):3852–3875, November 2020. ISSN 1572-9575. doi: 10.1007/s10773-020-04637-4. URL <http://dx.doi.org/10.1007/s10773-020-04637-4>.

516

517 Brecht Evens, Puya Latafat, Andreas Themelis, Johan Suykens, and Panagiotis Patrinos. Neu-
518 ral network training as an optimal control problem: An augmented lagrangian approach. In
519 *2021 60th IEEE Conference on Decision and Control (CDC)*, pp. 5136–5143. IEEE, Decem-
520 ber 2021. doi: 10.1109/cdc45484.2021.9682842. URL <http://dx.doi.org/10.1109/CDC45484.2021.9682842>.

521

522 G Flores-Hidalgo and F A Barone. The one-dimensional damped forced harmonic oscillator revis-
523 ited. *European Journal of Physics*, 32(2):377–379, January 2011. ISSN 1361-6404. doi: 10.1088/
524 0143-0807/32/2/010. URL <http://dx.doi.org/10.1088/0143-0807/32/2/010>.

525

526 Ramin Hasani, Mathias Lechner, Alexander Amini, Lucas Liebenwein, Aaron Ray, Max
527 Tschaikowski, Gerald Teschl, and Daniela Rus. Closed-form continuous-time neural networks.
528 *Nature Machine Intelligence*, 4(11):992–1003, November 2022. ISSN 2522-5839. doi: 10.1038/
529 s42256-022-00556-7. URL <http://dx.doi.org/10.1038/s42256-022-00556-7>.

530

531 R. Herrero, F. Pi, J. Rius, and G. Orriols. About the oscillatory possibilities of the dynam-
532 ical systems. *Physica D: Nonlinear Phenomena*, 241(16):1358–1391, August 2012. ISSN
533 0167-2789. doi: 10.1016/j.physd.2012.05.001. URL <http://dx.doi.org/10.1016/j.physd.2012.05.001>.

534

535 J. J. Hopfield. Neural networks and physical systems with emergent collective computational abil-
536 ities. *Proceedings of the National Academy of Sciences of the United States of America*, 79
537 (8):2554–2558, April 1982. ISSN 0027-8424. URL <http://view.ncbi.nlm.nih.gov/pubmed/6953413>.

538

539 Patrick J. Laub, Young Lee, Philip K. Pollett, and Thomas Taimre. Hawkes models and their appli-
cations, 2024. URL <https://arxiv.org/abs/2405.10527>.

540 Zachary C Lipton, David Kale, and Randall Wetzel. Directly modeling missing data in sequences
 541 with rnns: Improved classification of clinical time series. In Finale Doshi-Velez, Jim Fackler,
 542 David Kale, Byron Wallace, and Jenna Wiens (eds.), *Proceedings of the 1st Machine Learning*
 543 *for Healthcare Conference*, volume 56 of *Proceedings of Machine Learning Research*, pp. 253–
 544 270, Northeastern University, Boston, MA, USA, 18–19 Aug 2016. PMLR. URL <https://proceedings.mlr.press/v56/Lipton16.html>.

545 Fernando Moreno-Pino, Álvaro Arroyo, Harrison Waldon, Xiaowen Dong, and Álvaro Cartea.
 546 Rough transformers: Lightweight and continuous time series modelling through signature patch-
 547 ing, 2025. URL <https://arxiv.org/abs/2405.20799>.

548 PeiSong Niu, Tian Zhou, Xue Wang, Liang Sun, and Rong Jin. Attention as robust representation
 549 for time series forecasting, 2024. URL <https://arxiv.org/abs/2402.05370>.

550 YongKyung Oh, Seungsuk Kam, Jonghun Lee, Dong-Young Lim, Sungil Kim, and Alex Bui.
 551 Comprehensive review of neural differential equations for time series analysis, 2025. URL
 552 <https://arxiv.org/abs/2502.09885>.

553 Nurani Rajagopal Rohan, Vigneswaran C, Sayan Ghosh, Kishore Rajendran, Gaurav A, and V Srinivas
 554 Chakravarthy. Deep oscillatory neural network, 2024. URL <https://arxiv.org/abs/2405.03725>.

555 Yulia Rubanova, Ricky T. Q. Chen, and David Duvenaud. Latent odes for irregularly-sampled time
 556 series, 2019. URL <https://arxiv.org/abs/1907.03907>.

557 T. Konstantin Rusch and Daniela Rus. Oscillatory state-space models, 2025. URL <https://arxiv.org/abs/2410.03943>.

558 Mona Schirmer, Mazin Eltayeb, Stefan Lessmann, and Maja Rudolph. Modeling irregular time se-
 559 ries with continuous recurrent units, 2022. URL <https://arxiv.org/abs/2111.11344>.

560 Macheng Shen and Chen Cheng. Neural sdes as a unified approach to continuous-domain sequence
 561 modeling, 2025. URL <https://arxiv.org/abs/2501.18871>.

562 Satya Narayan Shukla and Benjamin M. Marlin. Multi-time attention networks for irregularly sam-
 563 pled time series, 2021. URL <https://arxiv.org/abs/2101.10318>.

564 Matthew Smart and Anton Zilman. On the mapping between hopfield networks and restricted boltz-
 565 mann machines, 2021. URL <https://arxiv.org/abs/2101.11744>.

566 Chang Wei Tan, Christoph Bergmeir, Francois Petitjean, and Geoffrey I. Webb. Monash university,
 567 uea, ucr time series extrinsic regression archive, 2020. URL <https://arxiv.org/abs/2006.10996>.

568 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
 569 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In *Proceedings of the 31st Inter-
 570 national Conference on Neural Information Processing Systems*, NIPS’17, pp. 6000–6010, Red
 571 Hook, NY, USA, 2017. Curran Associates Inc. ISBN 9781510860964.

572 Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
 573 forecasting?, 2022. URL <https://arxiv.org/abs/2205.13504>.

574

586 A HARMONIC OSCILLATOR BASED MODELLING 587

588 As discussed earlier, we model the NODEs that govern keys and values in ContiFormer as *linear
 589 damped driven harmonic oscillators*.

590 Keys are the solution of $\ddot{k}(t) + 2\gamma\dot{k}(t) + \omega^2 k(t) = F^k(t)$ where $\gamma \geq 0$ is the learnable damping
 591 coefficient, $\omega > 0$ the learnable natural frequency, and $F^k(t)$ is the driving force. Likewise, values
 592 obey the same structure: $\ddot{v}(t) + 2\gamma_v\dot{v}(t) + \omega_v^2 v(t) = F^v(t)$ with independent learnable parameters
 593 γ_v, ω_v and value-intrinsic drive $F^v(t)$.

594 The following damped driven oscillators are governed by the second-order ODE
 595
 596

$$\ddot{x} + 2\gamma\dot{x} + \omega^2 x = F(t). \quad (6)$$

597 To convert this to a first-order ODE like the ones above governing the keys and values, introduce the
 598 augmented state vector

$$599 \quad 600 \quad z = \begin{bmatrix} x \\ p \end{bmatrix}, \quad p = \frac{dx}{dt}.$$

601 Using this, the second-order ODE can be written in matrix form as
 602

$$603 \quad \frac{dz}{dt} = \underbrace{\begin{bmatrix} 0 & 1 \\ -\omega^2 & -2\gamma \end{bmatrix}}_A z + \underbrace{\begin{bmatrix} 0 \\ F(t) \end{bmatrix}}_{B(t)}. \quad (7)$$

606 The solution to this can be found using the variation of parameters method. We start with the
 607 following.

$$608 \quad \frac{dz}{dt} = Az + B(t). \quad (8)$$

609 The homogeneous version is
 610

$$611 \quad \frac{dz_h}{dt} = Az_h \Rightarrow z_h(t) = Ce^{At} \quad \text{for some constant vector } C.$$

612 To find a particular solution, try
 613

$$614 \quad z_p(t) = u(t) e^{At} \quad (\text{variation of parameters; let the constant become a function } u(t)).$$

615 Then
 616

$$617 \quad \frac{dz_p}{dt} = \frac{d}{dt} (u(t)e^{At}) = Ae^{At}u(t) + e^{At}\frac{du}{dt}.$$

618 Plugging into the original ODE,
 619

$$620 \quad \frac{dz_p}{dt} = Az_p + B(t) \Rightarrow Ae^{At}u(t) + e^{At}\frac{du}{dt} = Ae^{At}u(t) + B(t),$$

621 hence
 622

$$623 \quad e^{At}\frac{du}{dt} = B(t) \Rightarrow \frac{du}{dt} = e^{-At}B(t).$$

624 Therefore
 625

$$626 \quad u(t) = \int_0^t e^{-A\tau}B(\tau) d\tau + u(0),$$

627 and
 628

$$629 \quad z_p(t) = e^{At}u(t) = e^{At} \left(\int_0^t e^{-A\tau}B(\tau) d\tau + u(0) \right) = e^{At} \int_0^t e^{-A\tau}B(\tau) d\tau + e^{At}u(0).$$

630 We can set $u(0) = 0$ without loss of generality, giving
 631

$$632 \quad z_p(t) = e^{At} \int_0^t e^{-A\tau}B(\tau) d\tau. \quad (9)$$

634 To solve this further we change variables: Let $\tau = t - s \Rightarrow d\tau = -ds$. When $\tau = 0 \Rightarrow s = t$, and
 635 when $\tau = t \Rightarrow s = 0$. Then
 636

$$637 \quad \int_0^t e^{-A\tau}B(\tau) d\tau = \int_{s=t}^{s=0} e^{-A(t-s)}B(t-s) (-ds) = \int_{s=0}^{s=t} e^{-A(t-s)}B(t-s) ds$$

$$638 \quad = \int_0^t e^{-At} e^{As}B(t-s) ds.$$

641 Hence
 642

$$643 \quad z_p(t) = e^{At}e^{-At} \int_0^t e^{As}B(t-s) ds = \int_0^t e^{A(t-s)}B(s) ds,$$

644 where in the last step we renamed the dummy variable. Thus, the general solution for any t_0 ,
 645

$$646 \quad z(t) = e^{A(t-t_0)}z(t_0) + \int_{t_0}^t e^{A(t-s)}B(s) ds, \quad (10)$$

647 with the first term $z_h(t)$ (homogeneous) and the second term $z_p(t)$ (particular).

648 A.1 HOMOGENEOUS SOLUTION $z_h(t) = e^{At} z_0$ BY CASES
649650 We will find $z_h(t)$ and $z_p(t)$ separately. Consider three cases:
651652 1. (1) Underdamped: $\gamma^2 < \omega^2$ ($\gamma < \omega$)
653 2. (2) Critically damped: $\gamma^2 = \omega^2$ ($\gamma = \omega$)
654 3. (3) Overdamped: $\gamma^2 > \omega^2$ ($\gamma > \omega$)655 **Eigenvalues of A :**
656

657
$$\det(A - \lambda I) = \begin{vmatrix} -\lambda & 1 \\ -\omega^2 & -2\gamma - \lambda \end{vmatrix} = (-\lambda)(-2\gamma - \lambda) + \omega^2 = \lambda^2 + 2\gamma\lambda + \omega^2 = 0,$$

658

659 so

660
$$\lambda_{1,2} = -\gamma \pm \sqrt{\gamma^2 - \omega^2}.$$

661

663 A.1.1 CASE I: $\gamma < \omega$ (UNDERDAMPED)
664665 Let $\omega_d = \sqrt{\omega^2 - \gamma^2}$, then $\lambda_{1,2} = -\gamma \pm i\omega_d$.
666667 **Eigenvectors.** For $\lambda_1 = -\gamma + i\omega_d$,

668
$$(A - \lambda_1 I) = \begin{bmatrix} \gamma - i\omega_d & 1 \\ -\omega^2 & -\gamma - i\omega_d \end{bmatrix}$$

669

670
$$\implies (\gamma - i\omega_d)x + y = 0, \quad -\omega^2x + (-\gamma - i\omega_d)y = 0$$

671

672 so one eigenvector is

673
$$v_1 = \begin{bmatrix} 1 \\ -\gamma + i\omega_d \end{bmatrix}.$$

674

675 For $\lambda_2 = -\gamma - i\omega_d$,

676
$$v_2 = \begin{bmatrix} 1 \\ -\gamma - i\omega_d \end{bmatrix}.$$

677

678 Collect the eigenvectors in

679
$$V = \begin{bmatrix} 1 & 1 \\ -\gamma + i\omega_d & -\gamma - i\omega_d \end{bmatrix}.$$

680

681 The matrix V is complex but the state is real; since $v_2 = \overline{v_1}$ we can form a real basis from $\Re(v_1)$ and $\Im(v_1)$:
682

683
$$\Re(v_1) = \begin{bmatrix} 1 \\ -\gamma \end{bmatrix}, \quad \Im(v_1) = \begin{bmatrix} 0 \\ \omega_d \end{bmatrix} \Rightarrow V_{\mathbb{R}} = \begin{bmatrix} 1 & 0 \\ -\gamma & \omega_d \end{bmatrix}, \quad V_{\mathbb{R}}^{-1} = \frac{1}{\omega_d} \begin{bmatrix} \omega_d & 0 \\ \gamma & 1 \end{bmatrix}.$$

684

685 In this real basis,

686
$$A \sim V_{\mathbb{R}}^{-1} A V_{\mathbb{R}} = \begin{bmatrix} -\gamma & \omega_d \\ -\omega_d & -\gamma \end{bmatrix} = -\gamma I + B, \quad B = \begin{bmatrix} 0 & \omega_d \\ -\omega_d & 0 \end{bmatrix}.$$

687

688 Since I and B commute,

689
$$\exp((-\gamma I + B)t) = e^{-\gamma t} \exp(Bt).$$

690

691 To find $\exp(Bt)$, we compute successive powers of B :

692
$$B^2 = -\omega_d^2 I, \quad B^3 = -\omega_d^2 B, \quad B^4 = \omega_d^4 I, \quad \Rightarrow \quad B^{2k} = (-1)^k \omega_d^{2k} I, \quad B^{2k+1} = (-1)^k \omega_d^{2k} B.$$

693

694 Therefore the matrix exponential series is:

702

703

$$\exp(Bt) = \sum_{n=0}^{\infty} \frac{(Bt)^n}{n!} = \sum_{k=0}^{\infty} \frac{B^{2k} t^{2k}}{(2k)!} + \sum_{k=0}^{\infty} \frac{B^{2k+1} t^{2k+1}}{(2k+1)!}$$

706

707

$$= I \sum_{k=0}^{\infty} \frac{(-1)^k (\omega_d t)^{2k}}{(2k)!} + \frac{B}{\omega_d} \sum_{k=0}^{\infty} \frac{(-1)^k (\omega_d t)^{2k+1}}{(2k+1)!}$$

710

711

$$= I \cos(\omega_d t) + \frac{B}{\omega_d} \sin(\omega_d t) = \begin{bmatrix} \cos(\omega_d t) & \sin(\omega_d t) \\ -\sin(\omega_d t) & \cos(\omega_d t) \end{bmatrix}.$$

714 Thus

$$e^{At} = V_{\mathbb{R}} e^{-\gamma t} \begin{bmatrix} \cos(\omega_d t) & \sin(\omega_d t) \\ -\sin(\omega_d t) & \cos(\omega_d t) \end{bmatrix} V_{\mathbb{R}}^{-1}.$$

717 Multiplying out gives the standard real form

718

$$e^{At} = e^{-\gamma t} \begin{bmatrix} \cos(\omega_d t) + \frac{\gamma}{\omega_d} \sin(\omega_d t) & \frac{\sin(\omega_d t)}{\omega_d} \\ -\frac{\omega^2}{\omega_d} \sin(\omega_d t) & \cos(\omega_d t) - \frac{\gamma}{\omega_d} \sin(\omega_d t) \end{bmatrix}. \quad (11)$$

724

Hence, for the homogeneous motion,

725

$$z_h(t) = e^{At} z_0 = e^{-\gamma t} \begin{bmatrix} \cos(\omega_d t) + \frac{\gamma}{\omega_d} \sin(\omega_d t) & \frac{\sin(\omega_d t)}{\omega_d} \\ -\frac{\omega^2}{\omega_d} \sin(\omega_d t) & \cos(\omega_d t) - \frac{\gamma}{\omega_d} \sin(\omega_d t) \end{bmatrix} z_0.$$

730

A.1.2 CASE II: $\gamma = \omega$ (CRITICAL DAMPING) — JORDAN FORM

731

Here $\lambda_{1,2} = -\gamma$ (repeated eigenvalue). Algebraic multiplicity 2, geometric multiplicity 1, so we need a Jordan block.

734

Eigenvector v_1 satisfies

736

$$(A - \lambda I)v_1 = (A + \gamma I)v_1 = 0, \quad (A + \gamma I) = \begin{bmatrix} \gamma & 1 \\ -\omega^2 & -\gamma \end{bmatrix} = \begin{bmatrix} \gamma & 1 \\ -\gamma^2 & -\gamma \end{bmatrix} \Rightarrow v_1 = \begin{bmatrix} 1 \\ -\gamma \end{bmatrix}.$$

738

For the generalized eigenvector v_2 , we solve

740

741

742

$$(A - \lambda I)v_2 = v_1 \Leftrightarrow (A + \gamma I)v_2 = v_1 \Rightarrow \begin{bmatrix} \gamma & 1 \\ -\gamma^2 & -\gamma \end{bmatrix} \begin{bmatrix} v_{2,1} \\ v_{2,2} \end{bmatrix} = \begin{bmatrix} 1 \\ -\gamma \end{bmatrix}.$$

743

From the first equation, $\gamma v_{2,1} + v_{2,2} = 1$. Choose $v_{2,1} = 0 \Rightarrow v_{2,2} = 1$; hence

744

745

746

$$v_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}.$$

747 Let

748

749

$$P = [v_1 \ v_2] = \begin{bmatrix} 1 & 0 \\ -\gamma & 1 \end{bmatrix}, \quad P^{-1} = \begin{bmatrix} 1 & 0 \\ \gamma & 1 \end{bmatrix}.$$

750

Jordan normal form:

751

752

753

$$J = P^{-1}AP = \begin{bmatrix} -\gamma & 1 \\ 0 & -\gamma \end{bmatrix} \quad (\text{a } 2 \times 2 \text{ Jordan block with } \lambda = -\gamma).$$

754

For a Jordan block,

755

$$e^{Jt} = e^{\lambda t} \begin{bmatrix} 1 & t \\ 0 & 1 \end{bmatrix} = e^{-\gamma t} \begin{bmatrix} 1 & t \\ 0 & 1 \end{bmatrix}.$$

756 Therefore

$$758 \quad e^{At} = P e^{Jt} P^{-1} = e^{-\gamma t} \begin{bmatrix} 1 & 0 \\ -\gamma & 1 \end{bmatrix} \begin{bmatrix} 1 & t \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ \gamma & 1 \end{bmatrix} \\ 760 \quad = e^{-\gamma t} \begin{bmatrix} 1 + \gamma t & t \\ -\gamma^2 t & 1 - \gamma t \end{bmatrix}.$$

762 Thus, for the homogeneous motion in the critically-damped case,

$$764 \quad z_h(t) = e^{At} z_0 = e^{-\gamma t} \begin{bmatrix} 1 + \gamma t & t \\ -\gamma^2 t & 1 - \gamma t \end{bmatrix} z_0.$$

767 A.1.3 CASE III: $\gamma > \omega$ (OVERDAMPED)

768 Real, distinct eigenvalues $\lambda_{1,2} = -\gamma \pm \sqrt{\gamma^2 - \omega^2} = -\gamma \pm \sigma$, where $\sigma = \sqrt{\gamma^2 - \omega^2}$
 769 Let us find the two eigenvectors.

770 For $\lambda_1 = -\gamma + \sigma$:

$$772 \quad (A - \lambda_1 I)v_1 = \begin{bmatrix} \gamma - \sigma & 1 \\ -\omega^2 & -\gamma - \sigma \end{bmatrix} \begin{bmatrix} v_{1,1} \\ v_{1,2} \end{bmatrix} = 0$$

774 From the first equation, $(\gamma - \sigma)v_{1,1} + v_{1,2} = 0$:

$$775 \quad \Rightarrow v_1 = \begin{bmatrix} 1 \\ -\gamma + \sigma \end{bmatrix}$$

776 Similarly, for $\lambda_2 = -\gamma - \sigma$:

$$777 \quad v_2 = \begin{bmatrix} 1 \\ -\gamma - \sigma \end{bmatrix}$$

778 Let

$$779 \quad P = [v_1 \ v_2] = \begin{bmatrix} 1 & 0 \\ -\gamma + \sigma & -\gamma - \sigma \end{bmatrix}, \quad P^{-1} = \frac{-1}{2\sigma} \begin{bmatrix} -\gamma - \sigma & -1 \\ \gamma - \sigma & 1 \end{bmatrix}$$

780 Finally,

$$781 \quad e^{At} = P \begin{bmatrix} e^{\lambda_1 t} & 0 \\ 0 & e^{\lambda_2 t} \end{bmatrix} P^{-1} \\ 782 \quad \Rightarrow e^{At} = \begin{bmatrix} 1 & 1 \\ -\gamma + \sigma & -\gamma - \sigma \end{bmatrix} \begin{bmatrix} e^{(-\gamma+\sigma)t} & 0 \\ 0 & e^{(-\gamma-\sigma)t} \end{bmatrix} \begin{bmatrix} \frac{\gamma+\sigma}{2\sigma} & \frac{1}{2\sigma} \\ \frac{-\gamma+\sigma}{2\sigma} & \frac{-1}{2\sigma} \end{bmatrix}$$

783 Using,

$$784 \quad \cosh(\sigma t) = \frac{e^{\sigma t} + e^{-\sigma t}}{2} \\ 785 \quad \sinh(\sigma t) = \frac{e^{\sigma t} - e^{-\sigma t}}{2}$$

786 We get the homogeneous motion in the overdamped case,

$$787 \quad z_h(t) = e^{At} z_0 = e^{-\gamma t} \begin{bmatrix} \cosh(\sigma t) + \frac{\gamma}{\sigma} \sinh(\sigma t) & \frac{\sinh(\sigma t)}{\sigma} \\ -\frac{\omega^2}{\sigma} \sinh(\sigma t) & \cosh(\sigma t) - \frac{\gamma}{\sigma} \sinh(\sigma t) \end{bmatrix} z_0.$$

802 A.2 PARTICULAR SOLUTION $z_p(t) = \int_{t_0}^t e^{A(t-s)} B(s) ds$ BY CASES

803 Now we calculate the particular solution for the three damping cases. For the forced system

$$804 \quad \dot{z}(t) = Az(t) + Bf(t),$$

805 the solution is

$$806 \quad z(t) = e^{At} z_0 + \int_0^t e^{A(t-s)} Bf(s) ds. \quad (12)$$

810 We define the (matrix) Green's function
 811

$$812 \quad G(t, s) = e^{A(t-s)} B. \quad (13)$$

813
 814 The particular solution is then the convolution
 815

$$816 \quad z_p(t) = \int_0^t G(t, s) f(s) \, ds. \quad (14)$$

817
 818 For our system
 819

$$820 \quad A = \begin{bmatrix} 0 & 1 \\ -\omega^2 & -2\gamma \end{bmatrix}, \quad B = \begin{bmatrix} 0 \\ 1 \end{bmatrix},$$

821
 822 we have
 823

$$824 \quad G(t, s) = e^{A(t-s)} \begin{bmatrix} 0 \\ 1 \end{bmatrix}. \quad (15)$$

825
 826 Let
 827

$$828 \quad z(t) = \begin{bmatrix} x(t) \\ \dot{x}(t) \end{bmatrix}, \quad \dot{z}(t) = Az(t) + Bf(t).$$

829
 830 From equation 12,
 831

$$832 \quad z_p(t) = \int_0^t e^{A(t-s)} \begin{bmatrix} 0 \\ F(s) \end{bmatrix} \, ds = \int_0^t e^{A(t-s)} \begin{bmatrix} 0 \\ \alpha f(s) \end{bmatrix} \, ds, \quad (16)$$

833
 834 where the driving force is given by $F(s) = \alpha f(s)$, with
 835

$$836 \quad f(s) = \sum_{j=1}^J (A_j \cos(\omega_j s) + B_j \sin(\omega_j s)). \quad (17)$$

837
 838 By linearity, we can compute the response to each mode separately and then sum.
 839

840 Starting from equation 16 and letting $\tau = t - s$ (so $s = t - \tau$, $ds = -d\tau$),
 841

$$842 \quad z_p(t) = \int_t^0 e^{A\tau} \begin{bmatrix} 0 \\ \alpha f(t - \tau) \end{bmatrix} (-d\tau) = \int_0^t e^{A\tau} \begin{bmatrix} 0 \\ \alpha f(t - \tau) \end{bmatrix} d\tau. \quad (18)$$

843
 844 Write
 845

$$846 \quad e^{A\tau} = \begin{bmatrix} g_{11}(\tau) & g_{12}(\tau) \\ g_{21}(\tau) & g_{22}(\tau) \end{bmatrix}. \quad (19)$$

847
 848 Since the forcing appears only in the second component,
 849

$$850 \quad z_p(t) = \int_0^t \begin{bmatrix} g_{12}(\tau) \alpha f(t - \tau) \\ g_{22}(\tau) \alpha f(t - \tau) \end{bmatrix} d\tau. \quad (20)$$

851
 852 Because $z_p(t) = \begin{bmatrix} x_p(t) \\ \dot{x}_p(t) \end{bmatrix}$ and we are only concerned with $x(t)$,
 853

$$854 \quad x_p(t) = \int_0^t g_{12}(\tau) \alpha f(t - \tau) d\tau. \quad (21)$$

855
 856 Take $f(s) = \cos(\omega_j s) \Rightarrow f(t - \tau) = \cos(\omega_j(t - \tau))$.
 857

864 A.2.1 CASE I: $\gamma < \omega$ (UNDERDAMPED)
865

866 From the homogeneous analysis,

867
$$g_{12}(\tau) = e^{-\gamma\tau} \frac{\sin(\omega_d\tau)}{\omega_d}, \quad \omega_d := \sqrt{\omega^2 - \gamma^2}. \quad (22)$$

868

869 Hence

870
$$x_p(t) = \alpha \int_0^t e^{-\gamma\tau} \frac{\sin(\omega_d\tau)}{\omega_d} \cos(\omega_j(t-\tau)) d\tau. \quad (23)$$

871

872 Using $\cos(a-b) = \cos a \cos b + \sin a \sin b$,

873
$$x_p(t) = \frac{\alpha}{\omega_d} [\cos(\omega_j t) I_1 + \sin(\omega_j t) I_2], \quad (24)$$

874

875 where

876
$$I_1 = \int_0^t e^{-\gamma\tau} \sin(\omega_d\tau) \cos(\omega_j\tau) d\tau, \quad (25)$$

877

878
$$I_2 = \int_0^t e^{-\gamma\tau} \sin(\omega_d\tau) \sin(\omega_j\tau) d\tau. \quad (26)$$

879

880 Using

881
$$\sin a \cos b = \frac{1}{2} [\sin(a+b) + \sin(a-b)], \quad \sin a \sin b = \frac{1}{2} [\cos(a-b) - \cos(a+b)],$$

882 we obtain

883
$$I_1 = \frac{1}{2} \int_0^t e^{-\gamma\tau} [\sin((\omega_d + \omega_j)\tau) + \sin((\omega_d - \omega_j)\tau)] d\tau, \quad (27)$$

884

885
$$I_2 = \frac{1}{2} \int_0^t e^{-\gamma\tau} [\cos((\omega_d - \omega_j)\tau) - \cos((\omega_d + \omega_j)\tau)] d\tau. \quad (28)$$

886

887 Let $\lambda_+ := \omega_d + \omega_j$ and $\lambda_- := \omega_d - \omega_j$. Using

888
$$\int e^{-\gamma\tau} \sin(\lambda\tau) d\tau = \frac{e^{-\gamma\tau}}{\gamma^2 + \lambda^2} (-\gamma \sin(\lambda\tau) - \lambda \cos(\lambda\tau)),$$

889

890 and evaluating from 0 to t gives

891
$$I_1 = \frac{1}{2} \sum_{\lambda \in \{\lambda_+, \lambda_-\}} \frac{1}{\gamma^2 + \lambda^2} [-\gamma(e^{-\gamma t} \sin(\lambda t) - 0) - \lambda(e^{-\gamma t} \cos(\lambda t) - 1)]. \quad (29)$$

892

893 Similarly, using

894
$$\int e^{-\gamma\tau} \cos(\lambda\tau) d\tau = \frac{e^{-\gamma\tau}}{\gamma^2 + \lambda^2} (-\gamma \cos(\lambda\tau) + \lambda \sin(\lambda\tau)),$$

895

896 we obtain

897
$$I_2 = \frac{1}{2} \sum_{\lambda \in \{\lambda_+, \lambda_-\}} \frac{1}{\gamma^2 + \lambda^2} [(-\gamma e^{-\gamma t} \cos(\lambda t) + \lambda e^{-\gamma t} \sin(\lambda t) + \gamma)]. \quad (30)$$

898

900 Therefore the particular solution for Case I may be written compactly as

901
$$x_p(t) = \frac{\alpha}{\omega_d} [\cos(\omega_j t) I_1 + \sin(\omega_j t) I_2], \quad I_1 \text{ as in equation 29, } I_2 \text{ as in equation 30.} \quad (31)$$

902

903 A.2.2 CASE II: $\gamma = \omega$ (CRITICALLY DAMPED)

904 Here

905

906
$$g_{12}(\tau) = e^{-\gamma\tau} \tau, \quad f(t-\tau) = \cos(\omega_j(t-\tau)), \quad (32)$$

907

908 so

909
$$x_p(t) = \alpha \int_0^t e^{-\gamma\tau} \tau \cos(\omega_j(t-\tau)) d\tau, \quad (33)$$

910

911 which can also be evaluated in closed form.

918 A.2.3 CASE III: $\gamma > \omega$ (OVERDAMPED)
919920 Write $\sigma = \sqrt{\gamma^2 - \omega^2}$. Then
921

922
$$g_{12}(\tau) = e^{-\gamma\tau} \frac{\sinh(\sigma\tau)}{\sigma}, \quad f(t - \tau) = \cos(\omega_j(t - \tau)), \quad (34)$$

923

924 and
925

926
$$x_p(t) = \alpha \int_0^t e^{-\gamma\tau} \frac{\sinh(\sigma\tau)}{\sigma} \cos(\omega_j(t - \tau)) d\tau, \quad (35)$$

927

928 which likewise admits a closed form.
929930 A.3 STEADY-STATE SOLUTION FOR THE DRIVEN, DAMPED OSCILLATOR
931932 Consider the scalar ODE
933

934
$$\ddot{x} + 2\gamma\dot{x} + \omega_0^2 x = \alpha \sum_{j=1}^J (A_j \cos(\omega_j t) + B_j \sin(\omega_j t)). \quad (36)$$

935 We seek the steady-state particular solution $x_{p,ss}(t)$. For a single forcing component
936 $\alpha [A_j \cos(\omega_j t) + B_j \sin(\omega_j t)]$, assume
937

938
$$x_{pj}(t) = C_j \cos(\omega_j t) + D_j \sin(\omega_j t). \quad (37)$$

939 Then
940

941
$$\begin{aligned} \dot{x}_{pj}(t) &= -C_j \omega_j \sin(\omega_j t) + D_j \omega_j \cos(\omega_j t), \\ \ddot{x}_{pj}(t) &= -C_j \omega_j^2 \cos(\omega_j t) - D_j \omega_j^2 \sin(\omega_j t). \end{aligned}$$

942

943 Substituting gives
944

945
$$\begin{aligned} &[-C_j \omega_j^2 \cos(\omega_j t) - D_j \omega_j^2 \sin(\omega_j t)] + 2\gamma [-C_j \omega_j \sin(\omega_j t) + D_j \omega_j \cos(\omega_j t)] + \\ &\omega_0^2 [C_j \cos(\omega_j t) + D_j \sin(\omega_j t)] = \alpha [A_j \cos(\omega_j t) + B_j \sin(\omega_j t)]. \end{aligned}$$

946

947 Collecting coefficients of $\cos(\omega_j t)$ and $\sin(\omega_j t)$ yields the linear system
948

949
$$\begin{bmatrix} \omega_0^2 - \omega_j^2 & 2\gamma\omega_j \\ -2\gamma\omega_j & \omega_0^2 - \omega_j^2 \end{bmatrix} \begin{bmatrix} C_j \\ D_j \end{bmatrix} = \alpha \begin{bmatrix} A_j \\ B_j \end{bmatrix}. \quad (38)$$

950

951 (One can solve for C_j, D_j in closed form if desired.)
952953 Collecting the $\cos(\omega_j t)$ terms gives
954

955
$$C_j(\omega_0^2 - \omega_j^2) + 2\gamma\omega_j D_j = \alpha A_j. \quad (39)$$

956

957 Collecting the $\sin(\omega_j t)$ terms gives
958

959
$$-D_j \omega_j^2 - 2\gamma C_j \omega_j + \omega_0^2 D_j = \alpha B_j \implies D_j(\omega_0^2 - \omega_j^2) - 2\gamma\omega_j C_j = \alpha B_j. \quad (40)$$

960

961 Therefore, we have the linear system
962

963
$$\begin{bmatrix} \omega_0^2 - \omega_j^2 & 2\gamma\omega_j \\ -2\gamma\omega_j & \omega_0^2 - \omega_j^2 \end{bmatrix} \begin{bmatrix} C_j \\ D_j \end{bmatrix} = \alpha \begin{bmatrix} A_j \\ B_j \end{bmatrix}. \quad (41)$$

964

965 Its determinant is
966

967
$$\det = (\omega_0^2 - \omega_j^2)^2 + (2\gamma\omega_j)^2. \quad (42)$$

968

969 Using Cramer's rule,
970

971
$$C_j = \alpha \frac{A_j(\omega_0^2 - \omega_j^2) - B_j(2\gamma\omega_j)}{(\omega_0^2 - \omega_j^2)^2 + (2\gamma\omega_j)^2}, \quad (43)$$

972

973
$$D_j = \alpha \frac{B_j(\omega_0^2 - \omega_j^2) + A_j(2\gamma\omega_j)}{(\omega_0^2 - \omega_j^2)^2 + (2\gamma\omega_j)^2}. \quad (44)$$

974

972

Hence

973

$$974 \quad x_{p,j}(t) = \frac{\alpha}{(\omega_0^2 - \omega_j^2)^2 + (2\gamma\omega_j)^2} \left([A_j(\omega_0^2 - \omega_j^2) - B_j(2\gamma\omega_j)] \cos(\omega_j t) + \right. \\ 975 \quad \left. [B_j(\omega_0^2 - \omega_j^2) + A_j(2\gamma\omega_j)] \sin(\omega_j t) \right). \quad (45)$$

976

977

978

979

By superposition, the complete steady-state solution is

980

981

982

983

984

985

Equivalently, written out explicitly,

986

987

988

989

990

991

$$987 \quad x_{p,ss}(t) = \alpha \sum_{j=1}^J \frac{1}{(\omega_0^2 - \omega_j^2)^2 + (2\gamma\omega_j)^2} \left([A_j(\omega_0^2 - \omega_j^2) - B_j(2\gamma\omega_j)] \cos(\omega_j t) + \right. \\ 988 \quad \left. [B_j(\omega_0^2 - \omega_j^2) + A_j(2\gamma\omega_j)] \sin(\omega_j t) \right). \quad (47)$$

990

991

992

A.4 QUERY FUNCTION

993

994

995

996

For the query, we expand the interpolation function in the oscillator basis up to a suitable number of modes and obtain the coefficients A_k, B_k by a least-squares fit. This circumvents the absence of a closed-form solution for the integral of the original cubic spline.

997

998

999

1000

$$998 \quad q(t) = \sum_{k=1}^N (A_k \cos(\omega_k t) + B_k \sin(\omega_k t)). \quad (48)$$

1000

1001

A.5 ATTENTION INTEGRAL

1002

1003

We compute the averaged attention coefficient

1004

1005

1006

$$1005 \quad \alpha_i(t) = \frac{1}{\Delta} \int_{t_i}^t \langle q(\tau), k_i(\tau) \rangle d\tau, \quad \Delta := t - t_i > 0,$$

1006

1007

when the (vector) key coordinates obey a *driven* damped oscillator, anchored at t_i with zero particular state. The total key is $k_i = k_{i,\text{hom}} + k_{i,\text{part}} + c_i$, where the homogeneous part $k_{i,\text{hom}}$ was derived in section A.1, and here we add the driven part $k_{i,\text{part}}$. All expressions act coordinate-wise and we keep vector inner products to avoid clutter.

1008

1009

1010

1011

A.5.1 MATHEMATICAL FRAMEWORK

1012

1013

1014 **Query expansion and rotation to anchor.** We fix i and expand the d_k -vector query:

1015

1016

1017

1018

$$1016 \quad q(\tau) = \sum_{j=1}^J (A_j \cos(\omega_j \tau) + B_j \sin(\omega_j \tau)), \quad A_j, B_j \in \mathbb{R}^{d_k}, \omega_j > 0. \quad (49)$$

1018

1019

With $s := \tau - t_i \in [0, \Delta]$, the rotated coefficients

1020

1021

1022

1023

$$1021 \quad \tilde{A}_j := A_j \cos(\omega_j t_i) + B_j \sin(\omega_j t_i), \quad \tilde{B}_j := -A_j \sin(\omega_j t_i) + B_j \cos(\omega_j t_i), \quad (50)$$

1022

1023

give the anchor-shifted query

1024

1025

$$1024 \quad q(t_i + s) = \sum_{j=1}^J (\tilde{A}_j \cos(\omega_j s) + \tilde{B}_j \sin(\omega_j s)). \quad (51)$$

1025

19

1026 **Exponential-trigonometric kernels.** For $\gamma \geq 0, \lambda \in \mathbb{R}, \Delta > 0$, define
 1027

$$1028 \quad C_\gamma(\Delta, \lambda) := \int_0^\Delta e^{-\gamma s} \cos(\lambda s) ds = \frac{e^{-\gamma\Delta}(-\gamma \cos(\lambda\Delta) + \lambda \sin(\lambda\Delta)) + \gamma}{\gamma^2 + \lambda^2}, \quad (52)$$

$$1030 \quad S_\gamma(\Delta, \lambda) := \int_0^\Delta e^{-\gamma s} \sin(\lambda s) ds = \frac{e^{-\gamma\Delta}(-\gamma \sin(\lambda\Delta) - \lambda \cos(\lambda\Delta)) + \lambda}{\gamma^2 + \lambda^2}. \quad (53)$$

1033 Their $\lambda \rightarrow 0$ limits are $C_\gamma(\Delta, 0) = (1 - e^{-\gamma\Delta})/\gamma$ (or Δ if $\gamma = 0$) and $S_\gamma(\Delta, 0) = 0$.

1034 For products of trigonometric functions with exponential damping, we use
 1035

$$1036 \quad I_{cc}(\Delta; \gamma, \lambda_1, \lambda_2) := \int_0^\Delta e^{-\gamma s} \cos(\lambda_1 s) \cos(\lambda_2 s) ds = \frac{1}{2}[C_\gamma(\Delta, \lambda_1 - \lambda_2) + C_\gamma(\Delta, \lambda_1 + \lambda_2)], \quad (54)$$

$$1039 \quad I_{ss}(\Delta; \gamma, \lambda_1, \lambda_2) := \int_0^\Delta e^{-\gamma s} \sin(\lambda_1 s) \sin(\lambda_2 s) ds = \frac{1}{2}[C_\gamma(\Delta, \lambda_1 - \lambda_2) - C_\gamma(\Delta, \lambda_1 + \lambda_2)], \quad (55)$$

$$1043 \quad I_{sc}(\Delta; \gamma, \lambda_1, \lambda_2) := \int_0^\Delta e^{-\gamma s} \sin(\lambda_1 s) \cos(\lambda_2 s) ds = \frac{1}{2}[S_\gamma(\Delta, \lambda_1 + \lambda_2) + S_\gamma(\Delta, \lambda_1 - \lambda_2)], \quad (56)$$

$$1046 \quad I_{cs}(\Delta; \gamma, \lambda_1, \lambda_2) := \int_0^\Delta e^{-\gamma s} \cos(\lambda_1 s) \sin(\lambda_2 s) ds = \frac{1}{2}[S_\gamma(\Delta, \lambda_1 + \lambda_2) - S_\gamma(\Delta, \lambda_1 - \lambda_2)]. \quad (57)$$

1050 For undamped integrals (when $\gamma = 0$), we recover the standard trigonometric identities. For $a, b > 0$
 1051 and $a \neq b$:

$$1053 \quad I_{cc}(\Delta; 0, a, b) = \frac{\sin((a-b)\Delta)}{2(a-b)} + \frac{\sin((a+b)\Delta)}{2(a+b)}, \quad (58)$$

$$1055 \quad I_{ss}(\Delta; 0, a, b) = \frac{\sin((a-b)\Delta)}{2(a-b)} - \frac{\sin((a+b)\Delta)}{2(a+b)}, \quad (59)$$

$$1057 \quad I_{sc}(\Delta; 0, a, b) = \frac{1 - \cos((a+b)\Delta)}{2(a+b)} + \frac{1 - \cos((a-b)\Delta)}{2(a-b)}, \quad (60)$$

$$1060 \quad I_{cs}(\Delta; 0, a, b) = \frac{1 - \cos((a+b)\Delta)}{2(a+b)} + \frac{1 - \cos((b-a)\Delta)}{2(b-a)}. \quad (61)$$

1062 Note that $I_{cs}(\Delta; 0, a, b) = I_{sc}(\Delta; 0, b, a)$ (frequencies swapped). For $a = b$, we use the continuous
 1063 limits: $I_{cc}(\Delta; 0, a, a) = \frac{\Delta}{2} + \frac{\sin(2a\Delta)}{4a}$, $I_{ss}(\Delta; 0, a, a) = \frac{\Delta}{2} - \frac{\sin(2a\Delta)}{4a}$, and $I_{sc}(\Delta; 0, a, a) =$
 1064 $I_{cs}(\Delta; 0, a, a) = \frac{1 - \cos(2a\Delta)}{4a}$.

1066 A.5.2 DRIVEN OSCILLATOR: STEADY-STATE SOLUTION

1068 Consider the vector ODE

$$1069 \quad \ddot{x} + 2\gamma\dot{x} + \omega_0^2 x = f(t), \quad t \geq t_i, \quad (62)$$

1070 with vector forcing expanded in harmonics

$$1072 \quad f_i(t) = \sum_{m=1}^{M_f} (P_{i,m} \cos(\varpi_m t) + Q_{i,m} \sin(\varpi_m t)), \quad P_{i,m}, Q_{i,m} \in \mathbb{R}^{d_k}, \varpi_m > 0. \quad (63)$$

1075 For a single frequency component with coefficients (P, Q, ϖ) , the steady-state particular solution
 1076 has the form $x_{ss}(t) = C \cos(\varpi t) + D \sin(\varpi t)$. Substituting into equation 62 and equating coeffi-
 1077 cients gives the linear system

$$1079 \quad \begin{bmatrix} \omega_0^2 - \varpi^2 & 2\gamma\varpi \\ -2\gamma\varpi & \omega_0^2 - \varpi^2 \end{bmatrix} \begin{pmatrix} C \\ D \end{pmatrix} = \begin{pmatrix} P \\ Q \end{pmatrix}.$$

1080 With $\Delta_\varpi := (\omega_0^2 - \varpi^2)^2 + (2\gamma\varpi)^2$, Cramer's rule yields
 1081

$$1082 C = \frac{P(\omega_0^2 - \varpi^2) - Q(2\gamma\varpi)}{\Delta_\varpi}, \quad D = \frac{Q(\omega_0^2 - \varpi^2) + P(2\gamma\varpi)}{\Delta_\varpi}. \quad (64)$$

1084 **A.5.3 UNDERDAMPED DRIVEN KEY ($\gamma < \omega_0$): FULL SOLUTION AND ATTENTION**
 1085

1086 Let $\omega_d := \sqrt{\omega_0^2 - \gamma^2}$ be the damped frequency. The complete steady-state solution is
 1087

$$1088 x_{ss,i}(t) = \sum_{m=1}^{M_f} \left(C_{i,m} \cos(\varpi_m t) + D_{i,m} \sin(\varpi_m t) \right), \quad (65)$$

1090 where each $(C_{i,m}, D_{i,m})$ is given by equation 64 applied to $(P_{i,m}, Q_{i,m}, \varpi_m)$.
 1091

1092 **Transient for zero initial particular state.** To enforce clean anchoring, we require
 1093

$$1094 x_{\text{part}}(t_i) = 0, \quad \dot{x}_{\text{part}}(t_i) = 0.$$

1095 The transient solution has the form $x_{\text{tr}}(t_i + s) = e^{-\gamma s} (E_i \cos(\omega_d s) + F_i \sin(\omega_d s))$ where
 1096

$$1097 E_i = -x_{ss,i}(t_i), \quad (66)$$

$$1098 F_i = \frac{-\gamma x_{ss,i}(t_i) + \sum_{m=1}^{M_f} C_{i,m} \varpi_m \sin(\varpi_m t_i) - \sum_{m=1}^{M_f} D_{i,m} \varpi_m \cos(\varpi_m t_i)}{\omega_d}. \quad (67)$$

1100 **Driven key in anchor-shifted form.** Let $s = t - t_i$. The steady-state part becomes
 1101

$$1103 x_{ss,i}(t_i + s) = \sum_{m=1}^{M_f} \left(\hat{C}_{i,m} \cos(\varpi_m s) + \hat{D}_{i,m} \sin(\varpi_m s) \right), \quad (68)$$

1105 where the rotated coefficients are
 1106

$$1107 \hat{C}_{i,m} := C_{i,m} \cos(\varpi_m t_i) + D_{i,m} \sin(\varpi_m t_i), \quad \hat{D}_{i,m} := -C_{i,m} \sin(\varpi_m t_i) + D_{i,m} \cos(\varpi_m t_i). \quad (69)$$

1109 The complete particular key is
 1110

$$1111 k_{i,\text{part}}(t_i + s) = x_{ss,i}(t_i + s) + e^{-\gamma s} (E_i \cos(\omega_d s) + F_i \sin(\omega_d s)). \quad (70)$$

1112 **Averaged attention: decomposition.** Using equation 51, equation 68, and equation 70 with $s \in$
 1113 $[0, \Delta]$:

$$1115 \int_{t_i}^t \langle q(\tau), k_{i,\text{part}}(\tau) \rangle d\tau = \underbrace{\int_0^\Delta \langle q(t_i + s), x_{ss,i}(t_i + s) \rangle ds}_{\mathcal{I}_i^{(\text{ss})}} + \\ 1116 \underbrace{\int_0^\Delta e^{-\gamma s} \langle q(t_i + s), E_i \cos(\omega_d s) + F_i \sin(\omega_d s) \rangle ds}_{\mathcal{I}_i^{(\text{tr})}}. \quad (71)$$

1123 **Steady-state contribution $\mathcal{I}_i^{(\text{ss})}$.** Expanding the query and steady-state solutions:
 1124

$$1125 \mathcal{I}_i^{(\text{ss})} = \sum_{j=1}^J \sum_{m=1}^{M_f} \int_0^\Delta \langle \tilde{A}_j \cos(\omega_j s) + \tilde{B}_j \sin(\omega_j s), \hat{C}_{i,m} \cos(\varpi_m s) + \hat{D}_{i,m} \sin(\varpi_m s) \rangle ds.$$

1128 Using the undamped kernels equation 58–equation 61:

$$1129 \mathcal{I}_i^{(\text{ss})} = \sum_{j=1}^J \sum_{m=1}^{M_f} \left[\langle \tilde{A}_j, \hat{C}_{i,m} \rangle I_{cc}(\Delta; 0, \omega_j, \varpi_m) + \langle \tilde{A}_j, \hat{D}_{i,m} \rangle I_{cs}(\Delta; 0, \omega_j, \varpi_m) \right. \\ 1130 \left. + \langle \tilde{B}_j, \hat{C}_{i,m} \rangle I_{sc}(\Delta; 0, \omega_j, \varpi_m) + \langle \tilde{B}_j, \hat{D}_{i,m} \rangle I_{ss}(\Delta; 0, \omega_j, \varpi_m) \right]. \quad (72)$$

1134 **Transient contribution $\mathcal{I}_i^{(\text{tr})}$.** Using the damped kernels equation 54–equation 57 with $\lambda_1 \in \{\omega_d\}$
 1135 and $\lambda_2 \in \{\omega_j\}$:

$$1137 \quad \mathcal{I}_i^{(\text{tr})} = \sum_{j=1}^J \left[\langle E_i, \tilde{A}_j \rangle I_{cc}(\Delta; \gamma, \omega_d, \omega_j) + \langle E_i, \tilde{B}_j \rangle I_{cs}(\Delta; \gamma, \omega_d, \omega_j) \right. \\ 1138 \quad \left. + \langle F_i, \tilde{A}_j \rangle I_{sc}(\Delta; \gamma, \omega_d, \omega_j) + \langle F_i, \tilde{B}_j \rangle I_{ss}(\Delta; \gamma, \omega_d, \omega_j) \right]. \quad (73)$$

1142 **Final result.** The driven contribution to the averaged attention is

$$1144 \quad \alpha_i^{(\text{driven})}(t) = \frac{1}{\Delta} \left(\mathcal{I}_i^{(\text{ss})} + \mathcal{I}_i^{(\text{tr})} \right), \quad (74)$$

1147 where $\mathcal{I}_i^{(\text{ss})}$ and $\mathcal{I}_i^{(\text{tr})}$ are given by equation 72 and equation 73, respectively.

1148 The complete logit is

$$1150 \quad \alpha_i(t) = \alpha_i^{(\text{hom})}(t) + \langle \bar{q}_{[t_i, t]}, c_i \rangle + \alpha_i^{(\text{driven})}(t), \quad (75)$$

1152 where $\alpha_i^{(\text{hom})}(t)$ is the homogeneous contribution derived in Cases I–III above, and $\bar{q}_{[t_i, t]} =$
 1153 $\frac{1}{\Delta} \int_{t_i}^t q(\tau) d\tau$ is the average query over the interval.

1155 A.5.4 CRITICAL AND OVERDAMPED DRIVEN KEYS

1158 The derivation follows the same structure with modified transient forms:

1159 **Critical damping ($\gamma = \omega_0$).** The transient basis is $x_{\text{tr}}(t_i + s) = e^{-\gamma s}(E + Fs)$ with

$$1161 \quad E = -x_{\text{ss}}(t_i), \quad F = \gamma E - \dot{x}_{\text{ss}}(t_i).$$

1163 The transient contribution becomes

$$1164 \quad \mathcal{I}_i^{(\text{tr})} = \sum_{j=1}^J \left[\langle E, \tilde{A}_j \rangle C_\gamma(\Delta, \omega_j) + \langle E, \tilde{B}_j \rangle S_\gamma(\Delta, \omega_j) \right. \\ 1165 \quad \left. + \langle F, \tilde{A}_j \rangle \int_0^\Delta s e^{-\gamma s} \cos(\omega_j s) ds + \langle F, \tilde{B}_j \rangle \int_0^\Delta s e^{-\gamma s} \sin(\omega_j s) ds \right], \quad (76)$$

1170 where the integrals involving s can be evaluated by integration by parts.

1173 **Overdamped ($\gamma > \omega_0$).** Let $\sigma := \sqrt{\gamma^2 - \omega_0^2} > 0$. The transient basis is

$$1175 \quad x_{\text{tr}}(t_i + s) = U e^{-(\gamma - \sigma)s} + V e^{-(\gamma + \sigma)s},$$

1176 where

$$1177 \quad U = \frac{-(\gamma + \sigma)x_{\text{ss}}(t_i) + \dot{x}_{\text{ss}}(t_i)}{2\sigma}, \quad V = \frac{-(\gamma - \sigma)x_{\text{ss}}(t_i) - \dot{x}_{\text{ss}}(t_i)}{2\sigma}.$$

1179 The transient contribution is

$$1181 \quad \mathcal{I}_i^{(\text{tr})} = \sum_{j=1}^J \left[\langle U, \tilde{A}_j \rangle C_{\gamma - \sigma}(\Delta, \omega_j) + \langle U, \tilde{B}_j \rangle S_{\gamma - \sigma}(\Delta, \omega_j) \right. \\ 1182 \quad \left. + \langle V, \tilde{A}_j \rangle C_{\gamma + \sigma}(\Delta, \omega_j) + \langle V, \tilde{B}_j \rangle S_{\gamma + \sigma}(\Delta, \omega_j) \right]. \quad (77)$$

1186 In both cases, the steady-state contribution $\mathcal{I}_i^{(\text{ss})}$ remains as in equation 72, and the final attention
 1187 coefficient is given by equation 74 with the appropriate transient contribution.

1188 B HARMONIC APPROXIMATION THEOREM

1190 Fix a compact interval $[a, b] \subset \mathbb{R}$, feature dimension $d_k \geq 1$, and observation times $t_1 < \dots < t_N$
 1191 in $[a, b]$. Let $q: [a, b] \rightarrow \mathbb{R}^{d_k}$ be continuous. For each observation index $i \in \{1, \dots, N\}$, let
 1192 $k_i: [t_i, b] \rightarrow \mathbb{R}^{d_k}$ be a continuous *key trajectory*. Throughout, $\|\cdot\|_2$ denotes the Euclidean vector
 1193 norm, $\|\cdot\|$ denotes the induced operator norm, and $\|q\|_\infty := \sup_{t \in [a, b]} \|q(t)\|_2$.

1194 **Definition 1** (Averaged inner-product logit). For $t \geq t_i$ define

$$1196 \quad \alpha_i(t) := \begin{cases} \frac{1}{t - t_i} \int_{t_i}^t \langle q(\tau), k_i(\tau) \rangle d\tau, & t > t_i, \\ \langle q(t_i), k_i(t_i) \rangle, & t = t_i. \end{cases} \quad (78)$$

1200 **Definition 2** (Masked pre-softmax CT attention and softmax). At an evaluation time t , only keys
 1201 with $t_i \leq t$ contribute. The pre-softmax CT-attention matrix (rows indexed by t_j , columns by i) is

$$1202 \quad \text{Attn}^{\text{CT}}(Q, K) = [\alpha_i(t_j)]_{\substack{j=1, \dots, N \\ i=1, i \leq j}}^N \in (\mathbb{R} \cup \{-\infty\})^{N \times N},$$

1204 where entries with $j < i$ are undefined by equation 78 and are masked (set to $-\infty$ prior to softmax).
 1205 The softmax attention vector at time t is

$$1207 \quad w_i(t) := \frac{\exp(\alpha_i(t)/\sqrt{d_k})}{\sum_{j: t_j \leq t} \exp(\alpha_j(t)/\sqrt{d_k})} \quad (\text{sum over valid } j). \quad (79)$$

1210 We use a single shared bank of harmonic modes; only the *initial conditions* differ across keys.

1211 **Definition 3** (Fixed oscillator bank and readout). Let $L := b - a$. Include the *zero mode* and fix the
 1212 grid

$$1214 \quad \omega_0 := 0, \quad \omega_n := \frac{n\pi}{L} \quad (n \geq 1).$$

1215 Choose $M \in \mathbb{N}$ and use modes $n = 0, 1, \dots, M$. For (possibly damped) per-mode parameters
 1216 $\gamma_n \geq 0$, define 2×2 blocks

$$1217 \quad A_n = \begin{bmatrix} 0 & 1 \\ -\omega_n^2 & -2\gamma_n \end{bmatrix},$$

1220 and let $A = \text{diag}(A_0, \dots, A_M) \in \mathbb{R}^{2(M+1) \times 2(M+1)}$. For feature dimension d_k , take d_k independent
 1221 copies (one per coordinate) so the full state is $z \in \mathbb{R}^{2(M+1)d_k}$ and the dynamics $\dot{z}(t) = Az(t)$
 1222 hold coordinate-wise.

1223 For key index i , the system is anchored at t_i with initial state $z_{i,0}$ via $z_{i,0} = z_{i,0}$ and $z_i(t) =$
 1224 $e^{A(t-t_i)} z_{i,0}$. Denote by $x_{\ell,n}(t)$ the *position* coordinate of the (ℓ, n) -oscillator. The readout *sums*
 1225 *positions across modes for each feature coordinate*:

$$1227 \quad k_{i,\ell}(t) = \sum_{n=0}^M x_{\ell,n}(t), \quad \ell = 1, \dots, d_k, \quad (80)$$

1230 i.e., $k_i(t) = Cz_i(t)$ with $C \in \mathbb{R}^{d_k \times 2(M+1)d_k}$ that puts ones on position entries and zeros elsewhere.
 1231 In the main theorem we set $\gamma_n = 0$; a perturbation lemma then allows $\gamma_n > 0$.

1232 *Remark 1.* For $\omega_0 = 0$, $x_{\ell,0}(t) = A_{\ell,0} + B_{\ell,0}(t - t_i)$. We will *always* choose $B_{\ell,0} = 0$ so the zero
 1233 mode supplies constants without linear drift.

1234 **Definition 4** (Fejér kernel and means). For $N \in \mathbb{N}$, the Fejér kernel $K_N: \mathbb{R} \rightarrow [0, \infty)$ is

$$1236 \quad K_N(\theta) = \frac{1}{N+1} \left(\frac{\sin((N+1)\theta/2)}{\sin(\theta/2)} \right)^2 = \sum_{k=-N}^N \left(1 - \frac{|k|}{N+1} \right) e^{ik\theta}.$$

1239 Given a 2π -periodic, continuous $F: \mathbb{R} \rightarrow \mathbb{R}$, its Fejér mean is

$$1241 \quad \sigma_N[F](s) = \frac{1}{2\pi} \int_{-\pi}^{\pi} F(s - \theta) K_N(\theta) d\theta.$$

1242 **Lemma 1** (Basic properties of K_N). *For every $N \in \mathbb{N}$:*

1244 1. $K_N(\theta) \geq 0$ for all $\theta \in \mathbb{R}$.
1245 2. $\frac{1}{2\pi} \int_{-\pi}^{\pi} K_N(\theta) d\theta = 1$.
1246 3. For any fixed $\delta \in (0, \pi]$,

1248
$$\frac{1}{2\pi} \int_{|\theta| \geq \delta} K_N(\theta) d\theta \leq \frac{1}{(N+1) \sin^2(\delta/2)}.$$

1249
1250

1251 *Proof.* (1) Using the geometric sum,

1253
$$\sum_{j=0}^N e^{ij\theta} = \frac{1 - e^{i(N+1)\theta}}{1 - e^{i\theta}} = e^{iN\theta/2} \frac{\sin((N+1)\theta/2)}{\sin(\theta/2)}.$$

1254
1255

1256 Hence

1257
$$K_N(\theta) = \frac{1}{N+1} \left| \sum_{j=0}^N e^{ij\theta} \right|^2 \geq 0.$$

1258
1259

1260 (2) Integrating the Fourier series in Definition 4 term-wise over $[-\pi, \pi]$ annihilates all nonzero
1261 frequencies; the constant term is 1, so $\frac{1}{2\pi} \int_{-\pi}^{\pi} K_N(\theta) d\theta = 1$.

1262 (3) For $|\theta| \geq \delta$ we have $\sin(\theta/2) \geq \sin(\delta/2) > 0$, whence

1263
$$K_N(\theta) = \frac{1}{N+1} \frac{\sin^2((N+1)\theta/2)}{\sin^2(\theta/2)} \leq \frac{1}{(N+1) \sin^2(\delta/2)}.$$

1264
1265

1266 Integrate this bound over a set of measure at most 2π to get the claim. \square

1267 **Proposition 1** (Uniform convergence of Fejér means). *If $F \in C(\mathbb{T})$ (with $\mathbb{T} := \mathbb{R}/2\pi\mathbb{Z}$), then
1268 $\sigma_N[F] \rightarrow F$ uniformly on \mathbb{R} as $N \rightarrow \infty$.*

1270 *Proof.* Fix $\varepsilon > 0$. By uniform continuity on the circle, choose $\delta \in (0, \pi]$ with $|F(s) - F(s - \theta)| \leq$
1271 $\varepsilon/3$ when $|\theta| < \delta$. Then for any s ,

1272
$$\begin{aligned} |\sigma_N[F](s) - F(s)| &\leq \frac{1}{2\pi} \int_{|\theta| < \delta} |F(s - \theta) - F(s)| K_N(\theta) d\theta + \frac{1}{2\pi} \int_{|\theta| \geq \delta} 2\|F\|_{\infty} K_N(\theta) d\theta \\ 1274 &\leq \frac{\varepsilon}{3} \cdot 1 + \frac{2\|F\|_{\infty}}{(N+1) \sin^2(\delta/2)} \quad \text{by Lemma 1.} \end{aligned}$$

1275
1276
1277

1278 Choose N large so the second term is $< 2\varepsilon/3$; then $|\sigma_N[F] - F| < \varepsilon$ uniformly. \square

1279 **Lemma 2** (Vector Fejér density on the half-range grid). *Let $f \in C([a, b]; \mathbb{R}^{d_k})$. For any $\varepsilon > 0$ there
1280 exist $N \in \mathbb{N}$ and coefficients $c_0 \in \mathbb{R}^{d_k}$, $c_n, s_n \in \mathbb{R}^{d_k}$ ($1 \leq n \leq N$) such that*

1281
$$P_N(t) = c_0 + \sum_{n=1}^N (c_n \cos \omega_n(t-a) + s_n \sin \omega_n(t-a)) \quad (81)$$

1282
1283

1284 satisfies $\sup_{t \in [a, b]} \|f(t) - P_N(t)\|_2 < \varepsilon$.

1286 *Proof.* For each coordinate f^ℓ define the even $2L$ -periodic extension

1288
$$F^\ell(s) = \begin{cases} f^\ell(a+s), & s \in [0, L], \\ f^\ell(a-s), & s \in [-L, 0], \end{cases} \quad \text{extended } 2L\text{-periodically.}$$

1289
1290

1291 Each $F^\ell \in C(\mathbb{T}_{2L})$ (where $\mathbb{T}_{2L} := \mathbb{R}/(2L\mathbb{Z})$). Applying Fejér on the circle of length $2L$
1292 (equivalently, on $[0, 2\pi]$ after the affine map $s \mapsto 2\pi s/(2L)$) and restricting to $s \in [0, L]$ yields
1293 $\sigma_N[F^\ell](s) \rightarrow f^\ell(a+s)$ uniformly. Writing $\sigma_N[F^\ell](a+s)$ in the form $c_0^\ell + \sum_{n=1}^N c_n^\ell \cos(\omega_n s)$
1294 (evenness gives only cosines; allowing $s_n^\ell = 0$ is harmless), choose a common N so that for all
1295 ℓ , $\sup_{t \in [a, b]} |f^\ell(t) - \sigma_N[F^\ell](t-a)| < \varepsilon/\sqrt{d_k}$. Assemble c_0, c_n, s_n coordinate-wise to obtain
1296 equation 81 with the stated bound. \square

1296 **Lemma 3** (Phase shift from $(t - a)$ to $(t - t_i)$). For $\phi_n := \omega_n(t_i - a)$ and any $c_n, s_n \in \mathbb{R}^{d_k}$, there
 1297 are unique $\tilde{c}_n, \tilde{s}_n \in \mathbb{R}^{d_k}$ such that
 1298

$$1299 \quad c_n \cos \omega_n(t - a) + s_n \sin \omega_n(t - a) = \tilde{c}_n \cos \omega_n(t - t_i) + \tilde{s}_n \sin \omega_n(t - t_i),$$

1300 with

$$1301 \quad \begin{pmatrix} \tilde{c}_n \\ \tilde{s}_n \end{pmatrix} = \begin{bmatrix} \cos \phi_n & \sin \phi_n \\ -\sin \phi_n & \cos \phi_n \end{bmatrix} \begin{pmatrix} c_n \\ s_n \end{pmatrix}.$$

1303 **Lemma 4** (Exact realizability of vector trigonometric polynomials, $\gamma_n = 0$). Fix $M \geq N$ and the
 1304 undamped bank ($\gamma_n = 0$). For a vector trigonometric polynomial
 1305

$$1306 \quad P_N(t) = c_0 + \sum_{n=1}^N \left(\tilde{c}_n \cos \omega_n(t - t_i) + \tilde{s}_n \sin \omega_n(t - t_i) \right),$$

1309 there exist initial conditions $z_{i,0}$ such that the readout equation 80 satisfies $k_i(t) \equiv P_N(t)$ for all
 1310 $t \geq t_i$.

1311

1312 *Proof.* For the (ℓ, n) oscillator ($n \geq 1$) with $\ddot{x}_{\ell,n} + \omega_n^2 x_{\ell,n} = 0$, the solution is $x_{\ell,n}(t) =$
 1313 $A_{\ell,n} \cos \omega_n(t - t_i) + \frac{B_{\ell,n}}{\omega_n} \sin \omega_n(t - t_i)$. Choose $A_{\ell,n} = (\tilde{c}_n)^\ell$ and $B_{\ell,n} = \omega_n(\tilde{s}_n)^\ell$. For $n = 0$,
 1314 set $x_{\ell,0}(t) \equiv (c_0)^\ell$ (initial velocity zero). Summing positions across n gives $k_{i,\ell}(t) = P_N^\ell(t)$. \square
 1315

1316 **Lemma 5** (Matrix-exponential perturbation bound). Let A_0 be the undamped bank matrix and $A_\gamma =$
 1317 $A_0 + \Delta$ with $\Delta = \text{diag}(\Delta_0, \dots, \Delta_M)$, $\Delta_n = \begin{pmatrix} 0 & 0 \\ 0 & -2\gamma_n \end{pmatrix}$. Fix $T := b - a$ and a bound $\bar{\gamma} \geq 0$.
 1318

1319 If $0 \leq \gamma_n \leq \bar{\gamma}$ for all n , then there exists a constant $K = K(T, \{\omega_n\}, C, \bar{\gamma})$ such that, for all
 1320 $t \in [0, T]$,

$$1321 \quad \|C(e^{A_\gamma t} - e^{A_0 t})\| \leq K \max_{0 \leq n \leq M} \gamma_n.$$

1323

1324 *Proof.* By Duhamel/variation-of-constants, $e^{A_\gamma t} - e^{A_0 t} = \int_0^t e^{A_\gamma(t-s)} \Delta e^{A_0 s} ds$. Hence

$$1325 \quad \|C(e^{A_\gamma t} - e^{A_0 t})\| \leq \|C\| \|\Delta\| \int_0^t \|e^{A_\gamma(t-s)}\| \|e^{A_0 s}\| ds.$$

1328 Define

$$1329 \quad M_{\bar{\gamma}} := \sup_{\substack{0 \leq \gamma_n \leq \bar{\gamma} \\ u \in [0, T]}} \|e^{A_\gamma u}\| \quad \text{and} \quad M_0 := \sup_{u \in [0, T]} \|e^{A_0 u}\|.$$

1332 The map $(\gamma, u) \mapsto e^{A_\gamma u}$ is continuous, and the set $\{\gamma : 0 \leq \gamma_n \leq \bar{\gamma}\} \times [0, T]$ is compact, so
 1333 $M_{\bar{\gamma}} < \infty$. Therefore,

$$1334 \quad \|C(e^{A_\gamma t} - e^{A_0 t})\| \leq \|C\| \|\Delta\| M_{\bar{\gamma}} M_0 t \leq 2\|C\| M_{\bar{\gamma}} M_0 T \max_n \gamma_n.$$

1336

Taking $K := 2\|C\| M_{\bar{\gamma}} M_0 T$ yields the claim. \square

1337

1338 *Remark 2.* Thus, after constructing exact undamped realizations via Lemma 4, turning on small
 1339 damping changes the readout by at most $O(\max \gamma_n)$ uniformly on $[t_i, b]$. This addresses both am-
 1340 plitude decay and the frequency shift $\sqrt{\omega_n^2 - \gamma_n^2}$.

1341 **Theorem 2.** Let $q \in C([a, b]; \mathbb{R}^{d_k})$ and continuous keys $\{k_i\}_{i=1}^N$ with $k_i : [t_i, b] \rightarrow \mathbb{R}^{d_k}$. For any
 1342 $\varepsilon > 0$ there exists an integer M (depending on ε and the keys) and a single shared oscillator bank
 1343 on the fixed grid $\{\omega_n\}_{n=0}^M$ with $\gamma_n = 0$ such that one can choose initial states $\{z_{i,0}\}_{i=1}^N$ with the
 1344 property

$$1345 \quad \sup_{t \in [t_i, b]} \|k_i(t) - \tilde{k}_i(t)\|_2 < \varepsilon \quad \text{for all } i,$$

1346

1347 where $\tilde{k}_i(t) := C e^{A(t-t_i)} z_{i,0}$ is the bank-generated key. Consequently, for all $j \geq i$,

1348

$$1349 \quad |\alpha_i(t_j; q, k_i) - \alpha_i(t_j; q, \tilde{k}_i)| \leq \|q\|_\infty \varepsilon, \quad \|w(t_j) - \tilde{w}(t_j)\|_1 \leq \frac{\|q\|_\infty}{\sqrt{d_k}} \varepsilon.$$

1350 *Proof.* Fix $\varepsilon > 0$. For each i , extend k_i continuously from $[t_i, b]$ to $[a, b]$ (e.g., set $k_i(t) = k_i(t_i)$ for
1351 $t \in [a, t_i]$). Apply Lemma 2 to this extension to obtain a vector trigonometric polynomial
1352

$$1353 \quad P_i(t) = c_{i,0} + \sum_{n=1}^{N_i} (c_{i,n} \cos \omega_n(t-a) + s_{i,n} \sin \omega_n(t-a))$$

1355 with $\sup_{t \in [a, b]} \|k_i(t) - P_i(t)\|_2 < \varepsilon/2$. Use Lemma 3 to rewrite P_i as
1356

$$1357 \quad P_i(t) = c_{i,0} + \sum_{n=1}^{N_i} (\tilde{c}_{i,n} \cos \omega_n(t-t_i) + \tilde{s}_{i,n} \sin \omega_n(t-t_i)).$$

1360 Let $N := \max_i N_i$ and take $M \geq N$. By Lemma 4 (with $\gamma_n = 0$), choose $z_{i,0}$ so that the shared
1361 bank realizes P_i exactly: $\tilde{k}_i(t) \equiv P_i(t)$ on $[t_i, b]$. Therefore $\sup_{t \in [t_i, b]} \|k_i(t) - \tilde{k}_i(t)\|_2 < \varepsilon/2 < \varepsilon$.
1362

1363 For $t > t_i$,

$$1364 \quad |\alpha_i(t) - \tilde{\alpha}_i(t)| \leq \frac{1}{t - t_i} \int_{t_i}^t \|q(\tau)\|_2 \|k_i(\tau) - \tilde{k}_i(\tau)\|_2 d\tau \leq \|q\|_\infty \varepsilon.$$

1367 At $t = t_i$ the bound $|\langle q(t_i), k_i(t_i) - \tilde{k}_i(t_i) \rangle| \leq \|q\|_\infty \varepsilon$ is immediate. Applying the softmax
1368 Lipschitz Lemma 6 to the logits scaled by $1/\sqrt{d_k}$ yields the stated ℓ_1 bound. \square
1369

1370 **Corollary 2.** *Under the hypotheses of Theorem 2, fix $\varepsilon > 0$ and construct the undamped realization
1371 above. Then there exists $\bar{\gamma} > 0$ such that, for any damped bank with $0 \leq \gamma_n \leq \bar{\gamma}$, one can reuse the
1372 same initial states $\{z_{i,0}\}$ and obtain*

$$1373 \quad \sup_{t \in [t_i, b]} \|k_i(t) - \tilde{k}_i^{(\gamma)}(t)\|_2 < \varepsilon, \quad \|w^{(\gamma)}(t_j) - w(t_j)\|_1 \leq \frac{\|q\|_\infty}{\sqrt{d_k}} \varepsilon,$$

1376 where the superscript (γ) denotes readouts from the damped bank. In particular, a small amount of
1377 damping does not affect universality.

1378 *Proof.* By Lemma 5, for $T = b - a$ we have $\sup_{t \in [0, T]} \|C(e^{A_\gamma t} - e^{A_0 t})\| \leq K \max \gamma_n$, hence for
1379 each i

$$1381 \quad \sup_{t \in [t_i, b]} \|\tilde{k}_i^{(\gamma)}(t) - \tilde{k}_i(t)\|_2 \leq \left(\sup_{u \in [0, T]} \|C(e^{A_\gamma u} - e^{A_0 u})\| \right) \|z_{i,0}\| \leq K \max \gamma_n \|z_{i,0}\|.$$

1383 Let $Z_* := \max_i \|z_{i,0}\|$. Choose $\bar{\gamma} > 0$ so that $K \bar{\gamma} Z_* \leq \varepsilon/2$. (Since the family $\{A_\gamma : 0 \leq \gamma_n \leq \bar{\gamma}\}$
1384 is compact and $u \mapsto e^{A_\gamma u}$ is continuous on $[0, T]$, K can be taken uniformly on $[0, \bar{\gamma}]$.) Combine
1385 this with the $\varepsilon/2$ approximation from Theorem 2. \square
1386

1387 **Lemma 6** (Softmax $\ell_\infty \rightarrow \ell_1$ bound). *For any $x, y \in \mathbb{R}^m$,*

$$1388 \quad \|\text{softmax}(x) - \text{softmax}(y)\|_1 \leq \|x - y\|_\infty.$$

1390 *Consequently, with logits scaled by $1/\sqrt{d_k}$ as in equation 79, the Lipschitz constant becomes
1391 $1/\sqrt{d_k}$.*

1392 *Proof.* Let $s = \text{softmax}(u)$. For any v with $\|v\|_\infty \leq 1$, the softmax Jacobian satisfies
1393

$$1394 \quad J_u v = \text{diag}(s)v - s(s^\top v) = s \odot (v - (s^\top v)\mathbf{1}).$$

1395 Hence

$$1396 \quad \|J_u v\|_1 = \sum_i s_i |v_i - t| \quad \text{with } t := s^\top v \in [-1, 1].$$

1398 Maximizing over $\|v\|_\infty \leq 1$ is attained at $v_i \in \{\pm 1\}$. A direct calculation then gives $\sum_i s_i |v_i - t| = 1 - t^2 \leq 1$, so $\|J_u v\|_1 \leq 1$. By the mean value theorem along the segment $y + t(x - y)$,

$$1401 \quad \|\text{softmax}(x) - \text{softmax}(y)\|_1 \leq \int_0^1 \|J_{y+t(x-y)}(x-y)\|_1 dt \leq \|x - y\|_\infty.$$

1403 For logits scaled by $1/\sqrt{d_k}$, the bound acquires the factor $1/\sqrt{d_k}$. \square

1404 **C $\mathbb{E}(3)$ -EQUIVARIANCE**
14051406 **C.1 GROUP ACTIONS, REPRESENTATIONS, AND $\mathbb{E}(3)$**
14071408 A group action of G on a set X is a function $f : G \times X \rightarrow X$ such that:1409 1. $f(e, x) = x \quad \forall x \in X$
1410 2. $f(g, f(h, x)) = f(gh, x) \quad \forall g, h \in G, x \in X$
1411

1412
$$g \cdot x \equiv f(g, x)$$

1413

1414 Eg - $\text{SO}(3)$ acts on \mathbb{R}^3 by rotation, $R \cdot v = Rv$; Translation group $\rightarrow t \cdot x = x + t$.
14151416 A representation of a group G is a homomorphism $\varphi : G \rightarrow \text{GL}(V)$ where V is a vector space and
1417 $\text{GL}(V)$ is the group of invertible linear transformations of V , i.e., for each group element g , we get
1418 a matrix $\varphi(g)$ such that

1419
$$\varphi(gh) = \varphi(g) \varphi(h).$$

1420

Euclidean Group - $\mathbb{E}(3)$

1421
$$\mathbb{E}(3) = \text{SO}(3) \ltimes \mathbb{R}^3 \quad (\text{semiproduct})$$

1422

1423 An element $g \in \mathbb{E}(3)$ is a pair (R, t) where $R \in \text{SO}(3)$ is a rotation matrix, $t \in \mathbb{R}^3$ is a translation
1424 vector.1425 Group operation: $(R_1, t_1) \cdot (R_2, t_2) = (R_1 R_2, R_1 t_2 + t_1)$ 1426 Proof: Given 2 transformations

1427
$$(R_1, t_1); (R_2, t_2)$$

1428

Their composition means: first apply (R_2, t_2) then apply (R_1, t_1) .1429 A point $x \in \mathbb{R}^3$ transforms as,

1430
$$(R_2, t_2) \cdot x = R_2 x + t_2$$

1431

1432 then applying (R_1, t_1)

1433
$$(R_1, t_1) \circ (R_2 x + t_2) = R_1(R_2 x + t_2) + t_1 = (R_1 R_2)x + (R_1 t_2 + t_1).$$

1434

1435 So the combined transformation is:

1436
$$(R_1, t_1) \cdot (R_2, t_2) = (R_1 R_2, R_1 t_2 + t_1).$$

1437

1438 Finally, we get the action on \mathbb{R}^3 as $(R, t) \cdot x = Rx + t$.
14391440 **C.2 SPHERICAL HARMONICS**
14411442 Any point $r \in \mathbb{R}^3$ can be written as:

1443
$$r = r (\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta)$$

1444

1445 where $r \geq 0$, $0 \leq \theta \leq \pi$, $0 \leq \phi \leq 2\pi$.1446 **Laplacian in Spherical Coordinates:**

1447
$$\nabla^2 = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2}{\partial \phi^2}.$$

1448

1449 Solutions to the Laplace Eqn. using separation of variables can be written as
1450

1451
$$\{\nabla^2 f = 0\} \Rightarrow f(r, \theta, \phi) = R(r) Y(\theta, \phi).$$

1452

1453 The angular part $Y(\theta, \phi)$ gives spherical harmonics,
1454

1455
$$Y_\ell^m(\theta, \phi) = \sqrt{\frac{(2\ell+1)(\ell-|m|)!}{4\pi(\ell+|m|)!}} P_\ell^{|m|}(\cos \theta) e^{im\phi},$$

1456

1457 where $P_\ell^{|m|}$ are associated Legendre polynomials.

1458 **Key Properties**1459 **1) Orthonormality:**

1460
$$\int_0^\pi \int_0^{2\pi} Y_\ell^m(\Omega) Y_{\ell'}^{m'}(\Omega)^* d\Omega = \delta_{\ell\ell'} \delta_{mm'}, \quad d\Omega = \sin \theta d\theta d\phi. \quad (82)$$

1461 **2) Completeness:** Any $f(\hat{r})$ on the sphere can be expanded in spherical harmonics.1462 **3) Rotation:**

1463
$$Y_\ell^m(R^{-1}\hat{r}) = \sum_{m'} D_{mm'}^{(\ell)}(R) Y_\ell^{m'}(\hat{r})$$

1464 **or**

1465
$$Y_\ell^m(\hat{r}') = \sum_{m'} [D^{(\ell)}(R)]_{mm'}^* Y_\ell^{m'}(\hat{r}'); (\hat{r}' = R \hat{r})$$

1466 C.3 WIGNER D -MATRICES1467 $D^{(\ell)}(R)$ are the matrix representations of rotations in the ℓ^{th} irreducible representation (irrep).

1468 A 3D rotation operator can be written as

1469
$$R(\alpha, \beta, \gamma) = e^{-i\alpha \hat{J}_z} e^{-i\beta \hat{J}_y} e^{-i\gamma \hat{J}_z}, \quad (83)$$

1470 where α, β, γ are Euler angles and $\hat{J}_x, \hat{J}_y, \hat{J}_z$ are the components of angular momentum.1471 The Wigner D -matrix is a unitary square matrix of dimension $2j + 1$ in the spherical basis with
1472 elements

1473
$$D_{mm'}^j(\alpha, \beta, \gamma) \equiv \langle jm | R(\alpha, \beta, \gamma) | jm' \rangle$$

1474
$$= e^{-im\alpha} d_{mm'}^j(\beta) e^{-im'\gamma}$$

1475
$$d_{mm'}^j(\beta) = \langle jm | e^{-i\beta \hat{J}_y} | jm' \rangle = D_{mm'}^j(0, \beta, 0)$$

1476 Here $d_{mm'}^j$ is an element of the reduced Wigner d -matrix.1477 **Key Properties**1478 **1) Unitarity:** $D^{(\ell)}(R)^\dagger = D^{(\ell)}(R^{-1})$.1479 **2) Group homomorphism:** $D^{(\ell)}(R_1 R_2) = D^{(\ell)}(R_1) D^{(\ell)}(R_2)$.1480 **3) Orthogonality:**

1481
$$\int_0^{2\pi} d\alpha \int_0^\pi d\beta \sin \beta \int_0^{2\pi} d\gamma D_{m'k'}^{j'}(\alpha, \beta, \gamma)^* D_{mk}^j(\alpha, \beta, \gamma) = \frac{8\pi^2}{2j+1} \delta_{mm'} \delta_{kk'} \delta_{j'j}. \quad (84)$$

1482 C.4 TENSORS

1483 The tensor product decomposes as

1484
$$V_{\ell_1} \otimes V_{\ell_2} = \bigoplus_{\ell=|\ell_1-\ell_2|}^{\ell_1+\ell_2} V_\ell \quad (\text{Direct Sum}). \quad (85)$$

1485 C.4.1 CLEBSCH-GORDON COEFFICIENTS AND QUANTUM MECHANICAL ADDITION OF
1486 ANGULAR MOMENTUM

1487 The Clebsch-Gordan coefficients are the expansion coefficients:

1488
$$|j_1 m_1\rangle \otimes |j_2 m_2\rangle = \sum_{j,m} \langle j_1 m_1, j_2 m_2 | jm \rangle |jm\rangle. \quad (86)$$

1512 **Key Properties**
15131514 1) **Selection rules:**

1515
$$\langle j_1 m_1, j_2 m_2 | j' m' \rangle = 0 \quad \text{unless} \quad |j_1 - j_2| \leq j' \leq j_1 + j_2 \quad \text{and} \quad m' = m_1 + m_2. \quad (87)$$

1516

1517 2) **Orthogonality:** ($\langle jm | j_1 m_1, j_2 m_2 \rangle \equiv \langle j_1 m_1, j_2 m_2 | jm \rangle$):

1518
$$\begin{aligned} 1519 & \sum_{j=|j_1-j_2|}^{j_1+j_2} \sum_{m=-j}^j \langle j_1 m_1, j_2 m_2 | jm \rangle \langle jm | j_1 m'_1, j_2 m'_2 \rangle \\ 1520 & = \langle j_1 m_1, j_2 m_2 | j_1 m'_1, j_2 m'_2 \rangle = \delta_{m_1 m'_1} \delta_{m_2 m'_2} \end{aligned} \quad (i)$$

1521

1522
$$\sum_{m_1, m_2} \langle j' m' | j_1 m_1, j_2 m_2 \rangle \langle j_1 m_1, j_2 m_2 | jm \rangle = \langle j' m' | jm \rangle = \delta_{j j'} \delta_{m m'}. \quad (ii)$$

1523

1524 3) Equivalence Relation to Wigner (D)-matrices
1525

1526
$$\begin{aligned} 1527 & \int_0^{2\pi} d\alpha \int_0^\pi d\beta \sin \beta \int_0^{2\pi} d\gamma D_{MK}^J(\alpha, \beta, \gamma)^* D_{m_1 k_1}^{j_1}(\alpha, \beta, \gamma) D_{m_2 k_2}^{j_2}(\alpha, \beta, \gamma) \\ 1528 & = \frac{8\pi^2}{2J+1} \langle j_1 m_1 j_2 m_2 | JM \rangle \langle j_1 k_1 j_2 k_2 | JK \rangle. \end{aligned}$$

1529

1530 4) **Relation to spherical harmonics**
1531

1532
$$\begin{aligned} 1533 & \int_{S^2} Y_{\ell_1}^{m_1}(\Omega)^* Y_{\ell_2}^{m_2}(\Omega)^* Y_L^M(\Omega) d\Omega = \\ 1534 & \sqrt{\frac{(2\ell_1+1)(2\ell_2+1)}{4\pi(2L+1)}} \langle \ell_1 0 \ell_2 0 | L 0 \rangle \langle \ell_1 m_1 \ell_2 m_2 | L M \rangle \quad (88) \end{aligned}$$

1535

1536
$$\begin{aligned} 1537 & \implies Y_{\ell_1}^{m_1}(\Omega) Y_{\ell_2}^{m_2}(\Omega) = \\ 1538 & \sum_{L,M} \sqrt{\frac{(2\ell_1+1)(2\ell_2+1)}{4\pi(2L+1)}} \langle \ell_1 0 \ell_2 0 | L 0 \rangle \langle \ell_1 m_1 \ell_2 m_2 | L M \rangle Y_L^M(\Omega) \end{aligned} \quad (89)$$

1539

1540 **C.5 EQUIVARIANCE**
15411542 A function $f : X \rightarrow Y$ is equivariant w.r.t. group actions f_X on X and f_Y on Y if
1543

1544
$$f(f_X(g, x)) = f_Y(g, f(x)) \quad \forall g \in G, x \in X \quad (90)$$

1545

1546 A geometric tensor of type (ℓ) is a $(2\ell+1)$ -component object
1547

1548
$$T^{(\ell)} = (T_{-\ell}, T_{-\ell+1}, \dots, T_\ell)^\top \quad (91)$$

1549

1550 that transforms under rotations $R \in \text{SO}(3)$ as
1551

1552
$$T^{(\ell)'} = D^{(\ell)}(R) T^{(\ell)}. \quad (92)$$

1553

1554 $\ell = 0 \Rightarrow$ scalars, $\ell = 1 \Rightarrow$ vectors.
15551556 Geometric tensors can be represented using spherical harmonics and radial basis functions:
1557

1558
$$T^{(\ell)}(\mathbf{r}, t) = \sum_{n=1}^{\infty} \sum_{m=-\ell}^{\ell} T_{nm}^{(\ell)}(t) R_n^{(\ell)}(r) Y_m^\ell(\hat{\mathbf{r}}), \quad \hat{\mathbf{r}} = \frac{\mathbf{r}}{\|\mathbf{r}\|}. \quad (93)$$

1559

1560 where
15611562

- $T_{nm}^{(\ell)}(t) \in \mathbb{C}$ are time-dependent coefficients,

1563

1566 • $R_n^{(\ell)}(r)$ are radial basis functions,
 1567 • $Y_m^\ell(\hat{\mathbf{r}})$ are the (complex) spherical harmonics.

1568 This works because spherical harmonics are precisely the basis functions for irreducible representations of $\text{SO}(3)$.

1571 We can use Peter-Weyl theorem to show that spherical harmonics form a complete orthonormal basis
 1572 for $L^2(S^2)$. Combined with the completeness of an appropriate radial basis on $L^2(\mathbb{R}^+)$, the tensor
 1573 product gives completeness on $L^2(\mathbb{R}^3)$. To start, Peter-Weyl theorem states: for a compact group G
 1574 (e.g. $SO(3)$),

$$1575 \quad L^2(G) = \bigoplus_{\ell \in \widehat{G}} V_\ell \otimes V_\ell^*, \quad (94)$$

1577 i.e. every square-integrable function on the group decomposes into finite-dimensional irreducible
 1578 representations of G .

1580 $L^2(S^2)$: Square-Integrable Functions on the Sphere

1582 S^2 is the unit sphere in \mathbb{R}^3 , i.e. the set of all directions:

$$1585 \quad S^2 = \{\hat{\mathbf{r}} \in \mathbb{R}^3 : \|\hat{\mathbf{r}}\| = 1\}.$$

1587 $L^2(S^2)$ is the space of all $f : S^2 \rightarrow \mathbb{C}$ such that

$$1588 \quad \int_{S^2} |f(\theta, \phi)|^2 d\Omega < \infty, \quad d\Omega = \sin \theta d\theta d\phi.$$

1591 The spherical harmonics $Y_\ell^m(\theta, \phi)$ form a complete orthonormal basis for $L^2(S^2)$. Hence any
 1592 $f \in L^2(S^2)$ can be written as

$$1593 \quad f(\theta, \phi) = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} a_{\ell m} Y_\ell^m(\theta, \phi). \quad (95)$$

1597 $L^2(\mathbb{R}^+)$: Radial Part

1599 Let $\mathbb{R}^+ = [0, \infty)$. Then

$$1602 \quad L^2(\mathbb{R}^+) = \left\{ f : [0, \infty) \rightarrow \mathbb{C} : \int_0^\infty |f(r)|^2 r^2 dr < \infty \right\}.$$

1604 $L^2(\mathbb{R}^3)$: Full 3-Dimensional Space

1606 This is the space of all square-integrable functions on \mathbb{R}^3 , $f : \mathbb{R}^3 \rightarrow \mathbb{C}$, with

$$1609 \quad \int_{\mathbb{R}^3} |f(\mathbf{r})|^2 d^3 \mathbf{r} < \infty.$$

1611 In spherical coordinates $\mathbf{r} = (r, \theta, \phi)$, one naturally has the factorization

$$1613 \quad L^2(\mathbb{R}^3) \cong L^2(\mathbb{R}^+) \otimes L^2(S^2).$$

1614 Therefore, the tensor product of a radial basis $R_n^{(\ell)}(r)$ and spherical harmonics $Y_m^\ell(\theta, \phi)$ gives a
 1615 complete basis on $L^2(\mathbb{R}^3)$:

$$1617 \quad f(\mathbf{r}) = \sum_{n, \ell, m} a_{n \ell m} R_n^{(\ell)}(r) Y_m^\ell(\theta, \phi), \quad (96)$$

1619 which is a complete representation for all square-integrable functions in \mathbb{R}^3 .

1620 **Radial Basis Functions:**1621 • **Gaussian-type orbitals (should work for our case):**

1623
$$R_n^{(\ell)}(r) = N_n^{(\ell)} r^\ell e^{-\beta_n r^2}, \quad \int_0^\infty |R_n^{(\ell)}(r)|^2 r^2 dr = 1. \quad (97)$$
 1624
1625

1626 • **Bessel functions (for problems with radial boundaries):**1627 A convenient finite radial basis on a ball of radius R is given by spherical Bessel functions:

1628
$$R_n^{(\ell)}(r) = \sqrt{\frac{2}{R^3}} \frac{1}{|j_{\ell+1}(z_{n,\ell})|} j_\ell\left(\frac{z_{n,\ell} r}{R}\right), \quad j_\ell(z_{n,\ell}) = 0, \quad z_{n,\ell} \text{ the } n\text{-th zero.} \quad (98)$$
 1629
1630

1631 With this thorough background, let us now tackle the bull by its horns: building $\mathbb{E}(3)$ -equivariant
1632 neural networks. A standard layer $y = \sigma(Wx + b)$ is *not* equivariant.
16331634 The most general $\mathbb{E}(3)$ -equivariant linear operation between geometric tensors is
1635

1636
$$T^{(\ell_{\text{out}})} = \sum_{\ell_{\text{in}}} \sum_{\ell} W^{(\ell_{\text{out}}, \ell_{\text{in}}, \ell)} [T_{\text{in}}^{(\ell_{\text{in}})} \otimes Y^{(\ell)}]^{(\ell_{\text{out}})}, \quad (99)$$
 1637
1638

1639 where
1640

- $T_{\text{in}}^{(\ell_{\text{in}})}$ is a tensor of type (ℓ_{in}) ;
- $Y^{(\ell)}$ provides geometric information about relative positions;
- $[T_{\text{in}}^{(\ell_{\text{in}})} \otimes Y^{(\ell)}]^{(\ell_{\text{out}})}$ combines them using Clebsch-Gordan coefficients.;
- $W^{(\ell_{\text{out}}, \ell_{\text{in}}, \ell)}$ are scalar weights.

1645 1) The tensor product $[T^{(\ell_1)} \otimes T^{(\ell_2)}]^{(L)}$ is computed as

1646
$$[T^{(\ell_1)} \otimes Y^{(\ell_2)}]_m^{(L)} = \sum_{m_1=-\ell_1}^{\ell_1} \sum_{m_2=-\ell_2}^{\ell_2} \langle \ell_1 m_1, \ell_2 m_2 | Lm \rangle T_{m_1}^{(\ell_1)} Y_{m_2}^{(\ell_2)}. \quad (100)$$
 1647
1648
1649

1650 2) For a relative position vector $\mathbf{r}_{ij} = \mathbf{r}_j - \mathbf{r}_i$,

1651
$$Y_\ell^m(\hat{\mathbf{r}}_{ij}) = Y_\ell^m(\theta_{ij}, \phi_{ij}), \quad (\theta_{ij}, \phi_{ij}) \text{ are the spherical angles of } \hat{\mathbf{r}}_{ij} = \frac{\mathbf{r}_{ij}}{\|\mathbf{r}_{ij}\|}. \quad (101)$$
 1652
1653
1654

1655 3) For a node i with neighbours $N(i)$,

1656
$$\bar{T}_i^{(\ell_{\text{out}})} = \sum_{j \in N(i)} \sum_{\ell_{\text{in}}} \sum_{\ell} W^{(\ell_{\text{out}}, \ell_{\text{in}}, \ell)} [T_j^{(\ell_{\text{in}})} \otimes Y^{(\ell)}(\hat{\mathbf{r}}_{ij})]^{(\ell_{\text{out}})}. \quad (102)$$
 1657
1658

1659 We claim that the above operation is $\mathbb{E}(3)$ -equivariant.
16601661 **Proof:**1662 Consider a transformation $g = (R, t) \in \mathbb{E}(3)$

1663 Under the transformation:

1664
$$\begin{aligned} \mathbf{r}'_i &= R \mathbf{r}_i + \mathbf{t}, \\ \mathbf{r}'_{ij} &= \mathbf{r}'_i - \mathbf{r}'_j = R(\mathbf{r}_i - \mathbf{r}_j) = R \mathbf{r}_{ij}, \\ \hat{\mathbf{r}}'_{ij} &= R \hat{\mathbf{r}}_{ij}. \end{aligned}$$
 1665
1666
1667
1668
1669
1670
1671

1672 Spherical harmonics transform as:
1673

$$y^{(\ell)}(\hat{\mathbf{r}}'_{ij}) = y^{(\ell)}(R \hat{\mathbf{r}}_{ij}) = D^{(\ell)}(R) y^{(\ell)}(\hat{\mathbf{r}}_{ij}).$$

1674 Input tensors transform as:

$$1675 \quad T_j^{(\ell_{\text{in}})'} = D^{(\ell_{\text{in}})}(R) T_j^{(\ell_{\text{in}})}.$$

1677 The tensor product preserves equivariance,

$$1679 \quad [T_j^{(\ell_{\text{in}})} \otimes y^{(\ell)}(\widehat{\mathbf{r}}_{ij}')]^{(\ell_{\text{out}})} = D^{(\ell_{\text{out}})}(R) [T_j^{(\ell_{\text{in}})} \otimes y^{(\ell)}(\widehat{\mathbf{r}}_{ij})]^{(\ell_{\text{out}})}.$$

1681 Since weights are scalars, the output is:

$$1683 \quad T_i^{(\ell_{\text{out}})'} = D^{(\ell_{\text{out}})}(R) T_i^{(\ell_{\text{out}})}.$$

1685 This proves $\mathbb{E}(3)$ -equivariance.

1688 Finally, we look at the continuous-time generalization for ContiFormer.

1690 Consider the architecture of the ContiFormer, described in the original paper Chen et al. (2023).

1692 Now instead of scalars $q, k, v \in \mathbb{R}^d$, we promote these to irreducible representations of $SO(3)$,
1693 written as:

$$1694 \quad T^{(\ell)}(\mathbf{r}, t) \in \mathbb{R}^{2\ell+1}.$$

1696 Each $T^{(\ell)}$ is a feature that transforms under rotation as:

1697 For $(R, \mathbf{t}) \in \mathbb{E}(3)$,

$$1699 \quad T^{(\ell)'}(\mathbf{r}, t) = D^{(\ell)}(R) T^{(\ell)}(R^{-1}(\mathbf{r} - \mathbf{t}), t),$$

1700 where $R^{-1}(\mathbf{r} - \mathbf{t})$ denotes the transformed coordinate.

1702 Query, key, value Tensors:

$$1704 \quad Q^{(\ell_q)}(\mathbf{r}, t) = W_Q^{(\ell_q)} T^{(\ell_q)}(\mathbf{r}, t),$$

$$1706 \quad K^{(\ell_k)}(\mathbf{r}, t) = W_K^{(\ell_k)} T^{(\ell_k)}(\mathbf{r}, t),$$

$$1708 \quad V^{(\ell_v)}(\mathbf{r}, t) = W_V^{(\ell_v)} T^{(\ell_v)}(\mathbf{r}, t).$$

1709 To allow for *rotational equivariance*, instead of using a dot product, we define a geometric inner
1710 product via tensor contraction:

$$1713 \quad \alpha(\mathbf{r}, t; \mathbf{r}_i, t_i) = \frac{1}{t - t_i} \int_{t_i}^t \sum_{\ell_2, m_2} Q^{(\ell_q)}(\mathbf{r}, \tau) \cdot [K^{(\ell_k)}(\mathbf{r}_i, \tau) \otimes Y^{(\ell)}(\widehat{\mathbf{r} - \mathbf{r}_i})]^{(\ell_q)} d\tau. \quad (103)$$

1716 • $K \otimes Y$ is the combined key with spherical harmonics.
1717 • Projection to type ℓ_q ensures match with Q .

1719 This respects equivariance because $Y^{(\ell)}(\widehat{\mathbf{r}})$ transform under $SO(3)$ as irreducible representations,
1720 providing angular information.

1721 The tensor product and Clebsch-Gordan decomposition ensures results transform predictably.

1723 $\mathbb{E}(3)$ -equivariant expected values:

$$1724 \quad V_{\text{exp}}^{(\ell_v)}(\mathbf{r}, t; \mathbf{r}_i, t_i) = \frac{1}{t - t_i} \int_{t_i}^t V^{(\ell_v)}(\mathbf{r}_i, \tau) d\tau. \quad (104)$$

1727 Full attention update:

1728
 1729
 1730
 1731 $T_{\text{out}}^{(\ell_{\text{out}})}(\mathbf{r}, t) = \sum_{i=1}^N \sum_{\ell_v, \ell_{\text{mix}}} W_{\text{out}}^{(\ell_{\text{out}}, \ell_v, \ell_{\text{mix}})} \left[\alpha(\mathbf{r}, t; \mathbf{r}_i, t_i) \cdot V_{\text{exp}}^{(\ell_v)}(\mathbf{r}, t; \mathbf{r}_i, t_i) \otimes Y^{(\ell_{\text{mix}})}(\widehat{\mathbf{r} - \mathbf{r}_i}) \right]^{(\ell_{\text{out}})}.$

1732
 1733 (105)

1734 The weights $W_{\text{out}}^{(\cdot)}$ are learnable scalar coefficients over radial basis functions.
 1735

1736 $\mathbb{E}(3)$ -Equivariant Neural ODE:

1737
 1738
 1739 $\frac{\partial T^{(\ell)}(\mathbf{r}, t)}{\partial t} = f_{\text{contiformer}} \left[\left\{ T^{(\ell')}(\cdot, t) \right\}_{\ell'} \right] (\mathbf{r}) =$

1740 $\underbrace{\text{CTAttn}^{(\ell)}(\mathbf{r}, t)}_{\text{modelling interaction b/w neighbouring nodes}} + \underbrace{\text{FFN}^{(\ell)}(\mathbf{r}, t)}_{\text{acting on each node independently}}$

1741
 1742
 1743 (106)

1744
 1745
 1746 Continuous-time attention (CTAttn):
 1747

1748 $\text{CTAttn}^{(\ell)}(\mathbf{r}, t) =$

1749 $\int_{-\infty}^t \int_{\mathbb{R}^3} \rho(t-s) \sum_{\ell', \ell''} W_{\text{attn}}^{(\ell, \ell', \ell'')} \left[\alpha(\mathbf{r}, t; \mathbf{r}', s) V_{\text{exp}}^{(\ell')}(\mathbf{r}, t; \mathbf{r}', s) \otimes Y^{(\ell'')}(\widehat{\mathbf{r} - \mathbf{r}'}) \right]^{(\ell)} d\mathbf{r}' ds$

1750
 1751
 1752 (107)

1753
 1754 where $\rho(t-s)$ is a temporal weighting function.
 1755

1756 Finite temporal window for practical implementation:
 1757

1758 $\text{CTAttn}^{(\ell)}(\mathbf{r}, t) =$

1759 $\int_{t-\Delta t}^t \int_{\|\mathbf{r}' - \mathbf{r}\| < \Delta r} \rho(t-s) \sum_{\ell', \ell''} W_{\text{attn}}^{(\ell, \ell', \ell'')} \left[\alpha(\mathbf{r}, t; \mathbf{r}', s) V_{\text{exp}}^{(\ell')}(\mathbf{r}, t; \mathbf{r}', s) \otimes Y^{(\ell'')}(\widehat{\mathbf{r} - \mathbf{r}'}) \right]^{(\ell)} d\mathbf{r}' ds$

1760
 1761
 1762 (108)

1763
 1764
 1765 Let us check whether this is $\mathbb{E}(3)$ -equivariant:
 1766

1767 Under $(R, \mathbf{t}) \in \mathbb{E}(3)$,

1768
 1769
 1770 $T^{(\ell)}(\mathbf{r}, t) = D^{(\ell)}(R) T^{(\ell)}(R^{-1}(\mathbf{r} - \mathbf{t}), t).$

1771

1772 Attention weight invariance:
 1773

1774
 1775 $\alpha'(\mathbf{r}, t; \mathbf{r}', s) = \alpha(R^{-1}(\mathbf{r} - \mathbf{t}), t; R^{-1}(\mathbf{r}' - \mathbf{t}), s).$

1776
 1777

1778 Since the attention weights depend only on $\|\mathbf{r} - \mathbf{r}'\|$ and temporal differences, this property holds.
 1779

1780 • The attention function $\alpha(\mathbf{r}, t; \mathbf{r}_i, t_i)$ is continuous in t by construction of the continuity
 1781 condition.
 • The spherical harmonics $Y^{(\ell)}$ ensures smooth spatial variations.

D RESULTS CONTINUED

Model	Test accuracy (%)
† LMU (39)	87.7 \pm 0.1
† LSTM (20)	87.3 \pm 0.4
† GRU (30)	86.2 \pm n/a
† expRNN (41)	84.3 \pm 0.3
† Vanilla RNN (49)	67.4 \pm 7.7
*coRNN (42)	86.7 \pm 0.3
LTC (1)	61.8 \pm 6.1
OsciFormer	93.3 \pm 0.2

Table 5: Test accuracy comparison across different models

E ATTENTION VISUALISATION AND ABLATION

E.1 ABLATION STUDIES

J Modes	Synthetic (Acc \uparrow)	MIMIC (Acc \uparrow)	Traffic (LL \uparrow)	HR (RMSE \downarrow)	MI (UCR) (Acc \uparrow)
1	0.752 \pm 0.042	0.801 \pm 0.008	-0.892 \pm 0.031	4.12 \pm 0.35	48.2 \pm 5.3
2	0.793 \pm 0.038	0.816 \pm 0.007	-0.718 \pm 0.028	3.45 \pm 0.28	62.4 \pm 4.1
4	0.828 \pm 0.025	0.828 \pm 0.006	-0.612 \pm 0.024	2.89 \pm 0.22	78.7 \pm 2.8
6	0.839 \pm 0.014	0.833 \pm 0.007	-0.578 \pm 0.021	2.67 \pm 0.19	89.5 \pm 0.8
8	0.841 \pm 0.00	0.834 \pm 0.007	-0.558 \pm 0.025	2.56 \pm 0.18	91.8 \pm 0.2
12	0.841 \pm 0.00	0.834 \pm 0.007	-0.557 \pm 0.024	2.55 \pm 0.18	91.7 \pm 0.3
16	0.841 \pm 0.01	0.834 \pm 0.008	-0.558 \pm 0.025	2.56 \pm 0.19	91.7 \pm 0.3

Table 6: Effect of oscillator mode count (J) on downstream performance.

J Modes	Synthetic (min)	MIMIC (min)	Traffic (min)	HR (min)	MI (min)
1	0.18 \pm 0.02	0.34 \pm 0.03	0.41 \pm 0.03	0.28 \pm 0.02	0.52 \pm 0.04
2	0.22 \pm 0.02	0.42 \pm 0.04	0.51 \pm 0.04	0.35 \pm 0.03	0.65 \pm 0.05
4	0.31 \pm 0.03	0.58 \pm 0.05	0.71 \pm 0.05	0.48 \pm 0.04	0.91 \pm 0.07
6	0.42 \pm 0.03	0.79 \pm 0.06	0.96 \pm 0.07	0.65 \pm 0.05	1.23 \pm 0.09
8	0.56 \pm 0.04	1.05 \pm 0.08	1.28 \pm 0.09	0.86 \pm 0.06	1.64 \pm 0.12
12	0.83 \pm 0.06	1.56 \pm 0.11	1.89 \pm 0.13	1.27 \pm 0.09	2.42 \pm 0.18
16	1.11 \pm 0.08	2.08 \pm 0.15	2.51 \pm 0.18	1.69 \pm 0.12	3.21 \pm 0.24

Table 7: Per-epoch training time as a function of oscillator modes (J).

Damping Range	Synthetic (Acc \uparrow)	MIMIC (Acc \uparrow)	Traffic (LL \uparrow)	HR (RMSE \downarrow)	MI (Acc \uparrow)
[0.00, 0.00]	0.834 \pm 0.02	0.829 \pm 0.008	-0.572 \pm 0.026	2.68 \pm 0.20	89.1 \pm 0.8
[0.01, 0.10]	0.839 \pm 0.01	0.832 \pm 0.007	-0.562 \pm 0.025	2.61 \pm 0.19	90.8 \pm 0.5
[0.05, 0.40]	0.841 \pm 0.00	0.834 \pm 0.007	-0.558 \pm 0.025	2.56 \pm 0.18	91.8 \pm 0.2
[0.10, 0.60]	0.840 \pm 0.01	0.833 \pm 0.007	-0.559 \pm 0.025	2.58 \pm 0.18	91.5 \pm 0.3
[0.20, 0.80]	0.837 \pm 0.01	0.831 \pm 0.008	-0.564 \pm 0.026	2.63 \pm 0.19	90.7 \pm 0.4
[0.50, 1.00]	0.828 \pm 0.02	0.825 \pm 0.009	-0.581 \pm 0.028	2.75 \pm 0.21	88.9 \pm 0.7

Table 8: Ablation over the initial damping range ($\zeta \sim \mathcal{U}[\zeta_{\min}, \zeta_{\max}]$).

Grid Type	Synthetic (Acc↑)	Traffic (LL↑)	MI (Acc↑)	Time/epoch (min)
Linear [0.1, 10]	0.836 ± 0.01	-0.565 ± 0.025	90.2 ± 0.6	0.62 ± 0.05
Log-Uniform [10^{-2} , 10^1]	0.841 ± 0.00	-0.558 ± 0.025	91.8 ± 0.2	0.56 ± 0.04
Random Uniform	0.838 ± 0.01	-0.561 ± 0.025	91.1 ± 0.4	0.58 ± 0.04
Geometric (sparse)	0.834 ± 0.02	-0.567 ± 0.026	89.7 ± 0.8	0.54 ± 0.04
Fixed Harmonics ($\omega_n = n\pi/L$)	0.792 ± 0.03	-0.623 ± 0.030	82.4 ± 1.2	0.53 ± 0.04

Table 9: Impact of frequency grid parameterization.

dataset	UD%	NearCrit%	OD%	median ζ	median ω_d (UD only)
neonate	79.78	5.05	15.18	0.746	0.648
traffic	77.05	4.73	18.22	0.771	0.610
mimic	78.20	4.66	17.14	0.753	0.646
stackoverflow	78.25	5.21	16.54	0.759	0.668
bookorder	74.05	4.83	21.11	0.793	0.699

Table 10: Distribution of learned damping regimes by dataset.

dataset	P($\zeta \geq 1.05$)	P($\zeta \geq 1.10$)	median ζ (after)
neonate	0.1176	0.0690	0.7385
traffic	0.1465	0.0914	0.7641
mimic	0.1385	0.0832	0.7605
stackoverflow	0.1350	0.0777	0.7589
bookorder	0.1844	0.1191	0.8020

Table 11: Tail of the damping distribution across datasets.

E.2 EXPERIMENTS- CLASSIFICATION

To make the resonance interpretation of our oscillator attention concrete, we construct a small, fully trainable experiment on synthetic irregular time series. The goal is to show that, after standard back-propagation on a simple prediction task, the learned attention weights follow the same resonance filter as that of a damped driven harmonic oscillator.

Synthetic data: We consider a bank of $M = 41$ angular frequencies

$$\Omega = \{\omega_1, \dots, \omega_M\}, \quad \omega_m = \omega_{\min} + (m-1)\Delta\omega,$$

with $\omega_{\min} = 2\pi \cdot 0.5$ and $\Delta\omega = 2\pi \cdot 0.1$. Each training example is a short irregularly sampled trajectory of a *single* sinusoid with frequency $\omega_* \in \Omega$ and random phase.

For each example:

1. We sample a label index $m_* \sim \text{Unif}\{1, \dots, M\}$ and $\omega_* = \omega_{m_*}$.
2. We sample $L = 32$ time stamps $0 \leq t_1 < \dots < t_L \leq T$ with $T = 5$ from a homogeneous Poisson process with rate $\lambda = 6$ and then re-normalize to $[0, T]$.
3. We sample an amplitude $A \sim \text{Unif}[0.8, 1.2]$ and phase $\phi \sim \text{Unif}[0, 2\pi)$. For each t_ℓ , form the two-dimensional observation

$$x_\ell = \begin{bmatrix} A \cos(\omega_* t_\ell + \phi) \\ A \sin(\omega_* t_\ell + \phi) \end{bmatrix} + \varepsilon_\ell, \quad \varepsilon_\ell \sim \mathcal{N}(0, 0.05^2 I_2).$$

The target is the class index m_* , i.e. the model must recover which frequency generated the sequence from irregular samples and additive noise. We generate 50,000 sequences for training, 10,000 for validation, and 10,000 for testing.

Model: We use a single head oscillator attention layer followed by a small classifier. Each input pair (x_ℓ, t_ℓ) is first embedded to $d = 32$ dimensions via a linear map $E : \mathbb{R}^2 \rightarrow \mathbb{R}^d$; this produces token embeddings $h_\ell = Ex_\ell$.

1890 For each token h_ℓ we instantiate a key and value oscillator with independent frequencies and damping
 1891 per hidden coordinate:
 1892

$$1893 \ddot{k}_c(t) + 2\gamma_c^{(k)}\dot{k}_c(t) + (\omega_c^{(k)})^2 k_c(t) = F_c^{(k)}(t), \quad \ddot{v}_c(t) + 2\gamma_c^{(v)}\dot{v}_c(t) + (\omega_c^{(v)})^2 v_c(t) = F_c^{(v)}(t),$$

1894 with closed-form solutions derived in Appendix A. The driving terms $F^{(k)}(t)$ and $F^{(v)}(t)$ are sinusoidal functions of time whose amplitudes are linear functions of h_ℓ ; in particular, each coordinate sees a weighted sum of $\cos(\cdot)$ and $\sin(\cdot)$ terms evaluated at t_ℓ . We anchor the oscillator state at t_ℓ and evaluate the trajectories on $[t_\ell, T]$ using the analytic expressions.
 1895
 1896
 1897
 1898

1899 A single query $q(t)$ is defined for the final prediction time T . We parameterise q as a truncated
 1900 sinusoidal basis,
 1901

$$1902 q(t) = \sum_{j=1}^J (A_j \cos(\tilde{\omega}_j t) + B_j \sin(\tilde{\omega}_j t)),$$

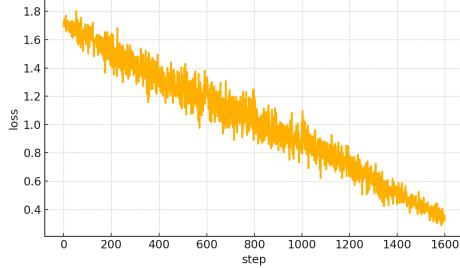
1903 with $J = 8$ and learnable coefficients $A_j, B_j \in \mathbb{R}^d$ and fixed frequencies $\tilde{\omega}_j$ on the same grid as Ω .
 1904 The continuous-time attention logit from token i to the query at T is
 1905

$$1906 \alpha_i(T) = \frac{1}{T - t_i} \int_{t_i}^T \langle q(\tau), k_i(\tau) \rangle d\tau,$$

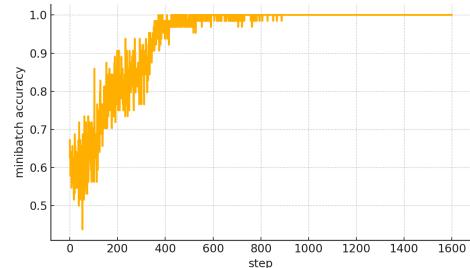
1907 which we evaluate in closed form using the oscillator formulas from Appendix A.5. The attention
 1908 weights are
 1909

$$1910 w_i(T) = \frac{\exp(\alpha_i(T)/\sqrt{d})}{\sum_{j=1}^L \exp(\alpha_j(T)/\sqrt{d})}.$$

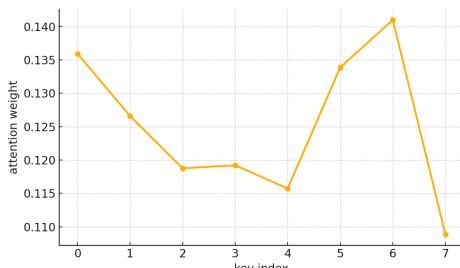
1911 The attended value is $\bar{v}(T) = \sum_{i=1}^L w_i(T)v_i(T)$, followed by a two-layer MLP with hidden width
 1912 64 and ReLU nonlinearity that maps $\bar{v}(T)$ to M logits. We train all parameters end-to-end with
 1913 cross-entropy loss.
 1914



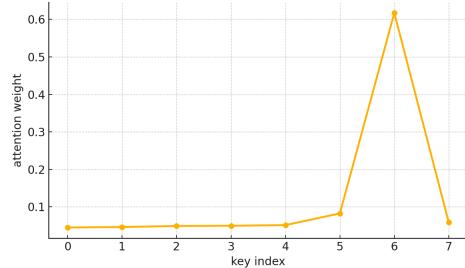
1915 (a) Training loss for the Classification on synthetic
 1916 irregular task.
 1917



1918 (b) Classification accuracy vs Time Steps
 1919



1920 (c) Average attention weights over the eight oscillator
 1921 keys at random Initialisation.
 1922



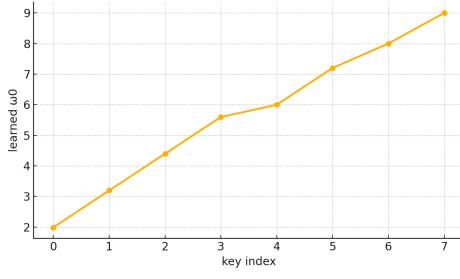
1923 (d) Average attention weights after training.
 1924

1925 Figure 3
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943

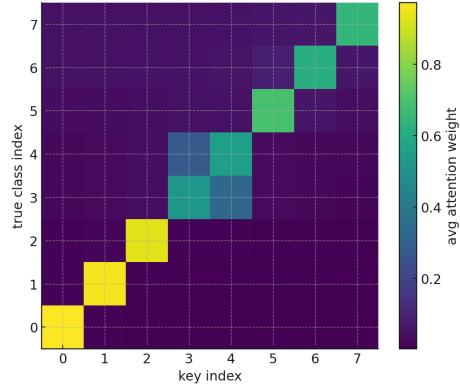
1944
 1945 **Training Method:** We optimise with Adam (learning rate 10^{-3} , weight decay 10^{-2}) for 200
 1946 epochs, batch size 128, and early stopping on validation accuracy. All oscillator frequencies are
 1947 initialised by sampling $\omega_c^{(k)}, \omega_c^{(v)}$ log-uniformly from $[10^{-2}, 10^1]$ on the rescaled interval $[0, 1]$;
 1948 damping factors are initialised in $[0.05, 0.4]$. The query basis frequencies $\tilde{\omega}_j$ are fixed to a subset of
 1949 Ω and only their amplitudes are learned.
 1950
 1951

1952 **Visualisations:** To relate the learned attention to resonance, we inspect the model after training
 1953 and compute the following quantities:
 1954

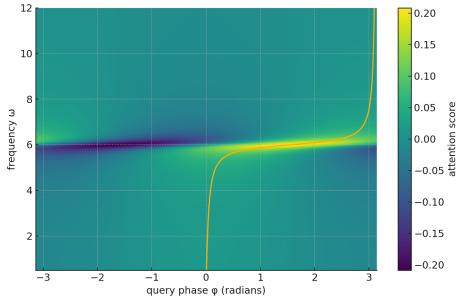
1. The resonance amplitude profile $|H_i(\omega)| = \frac{1}{\sqrt{(\omega_{0,i}^2 - \omega^2)^2 + (2\gamma_i\omega)^2}}$ for each learned key i using its trained parameters $(\omega_{0,i}, \gamma_i)$.
2. The phase-dependent attention map $\alpha(\omega, \varphi)$ across the frequency-phase plane for individual keys.
3. The maximum achievable attention $\alpha_{\max}(\omega) = \max_{\varphi}[\alpha(\omega, \varphi)]$ and the optimal phase $\varphi^*(\omega) = \arg H(\omega)$ that yields this maximum.
4. The attention weight distribution across keys for validation examples, both before and after training.
5. The confusion matrix of average attention weights (rows = true class, columns = keys) to verify that attention concentrates on keys whose natural frequencies match the signal's dominant frequency.



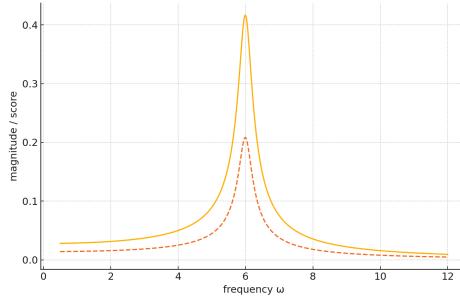
1980 (a) Learned natural frequencies for the eight oscillator keys
 1981



1982 (b) Confusion matrix of mean attention weights



1983 (c) Phase–frequency attention $\alpha(\omega, \varphi)$ for a representative key. The bright ridge in the (ω, φ) plane indicates the resonance region.
 1984



1985 (d) Magnitude of the analytical transfer function $|H(\omega)|$ and the corresponding maximal learned attention response $\alpha_{\max}(\omega)$ as functions of driving frequency.
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997

Figure 4

1998
1999

E.3 EXPERIMENTS- REGRESSION

2000
2001

We consider a small 1D forecasting task designed to expose the internal behaviour of the oscillator-based attention model.

2002

Task: Each sequence is generated as a sum of 1–3 cosine components

2004
2005
2006

$$y(t) = \sum_k a_k \cos(\omega_k t), \quad \omega_k \in \{2.0, 3.2, 4.4, 5.6, 6.0, 7.2, 8.0, 9.0\},$$

with random amplitudes a_k . The process is observed on an irregular time grid $0 < t_1 < \dots < t_N < T_{\text{future}}$. The gaps $t_{n+1} - t_n$ are i.i.d. draws from a Gamma distribution, so both the number of points and their locations vary from sequence to sequence. Each observation is corrupted with independent Gaussian noise,

$$y_n^{\text{obs}} = y(t_n) + \varepsilon_n, \quad \varepsilon_n \sim \mathcal{N}(0, \sigma^2).$$

The prediction target is a single future value

2011

$$y_{\text{target}} = y(T_{\text{future}}), \quad T_{\text{future}} = 7.0.$$

2012
2013

Thus, the model must forecast a future point of a multi-frequency signal from noisy, irregularly sampled observations.

2014

Features: For each sequence we compute trigonometric features on the irregular grid that approximate the cosine and sine coefficients of the trajectory. For a fixed set of analysis frequencies $(\omega_j)_j$ (the same grid as above), we form

2020
2021
2022

$$A_j \approx \frac{2}{T} \int_0^T y(t) \cos(\omega_j t) dt, \quad B_j \approx \frac{2}{T} \int_0^T y(t) \sin(\omega_j t) dt,$$

using the trapezoidal rule on $\{(t_n, y_n^{\text{obs}})\}_n$. We then define the energy $E_j = A_j^2 + B_j^2$ and use stabilized, normalized features

2025
2026

$$Z_j = \frac{\log(1 + E_j) - \mu_j}{\sigma_j},$$

where (μ_j, σ_j) are the empirical mean and standard deviation of $\log(1 + E_j)$ over the training set. This provides a data-driven approximation to a sinusoidal expansion of the query.

2027
2028
2029
2030
2031
2032

Model: The attention mechanism mirrors the oscillator-based formulation in the main text. We use $K = 8$ keys. Key i is parameterised by a natural frequency $\omega_{0,i}$ and a damping coefficient γ_i , and is associated with the standard second-order transfer function magnitude

2033
2034
2035

$$H_i(\omega) = \frac{1}{\sqrt{(\omega_{0,i}^2 - \omega^2)^2 + (2\gamma_i\omega)^2}}.$$

Given the feature vector Z , we form a non-negative “query spectrum”

2036
2037
2038

$$Q_j = \text{softplus}(w_j Z_j + b_j),$$

with learned scalars w_j and b_j . The attention logit for key i is then

2039
2040
2041
2042

$$\alpha_i = \sum_j Q_j |H_i(\omega_j)|.$$

Applying a softmax over $(\alpha_i)_i$ yields attention weights

2043
2044
2045
2046

$$\tilde{w}_i = \frac{\exp(\alpha_i)}{\sum_{k=1}^K \exp(\alpha_k)}.$$

The model predicts the target as a convex combination of learned values v_i ,

2048
2049
2050
2051

$$\hat{y} = \sum_{i=1}^K \tilde{w}_i v_i.$$

All quantities $(\omega_{0,i}, \gamma_i, w_j, b_j, v_i)$ are trained end-to-end with backpropagation.

Training setup: We generate 2000 training sequences and 400 validation sequences. The network is trained with mean-squared error loss, using Adam as the optimiser. As a simple baseline we also evaluate a constant predictor $\hat{y} = \mathbb{E}[y_{\text{target}}]$ estimated on the training set.

On the validation set the constant baseline attains an MSE of ≈ 0.78 with $\text{std}(y_{\text{target}}) \approx 0.88$. The learned oscillator model reaches a validation MSE of ≈ 0.10 , corresponding to an RMSE of ≈ 0.31 and a correlation of ≈ 0.94 between \hat{y} and y_{target} . Thus the model reduces the error by roughly 65% relative to the constant predictor while keeping the setting small enough that we can inspect the learned resonance structure.

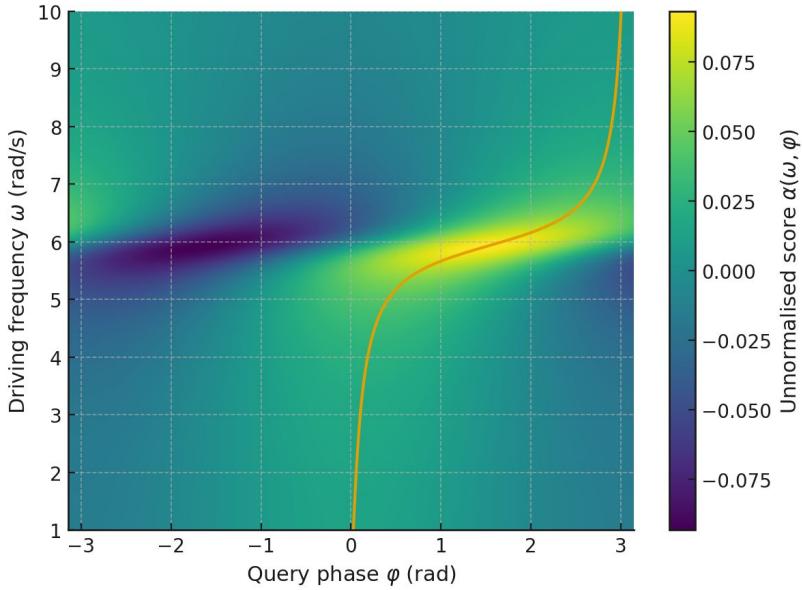
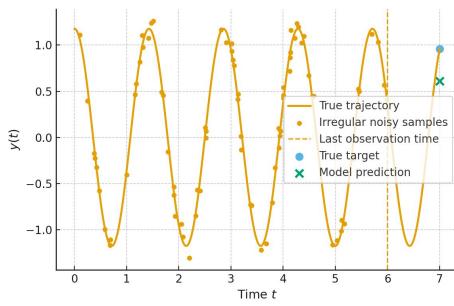
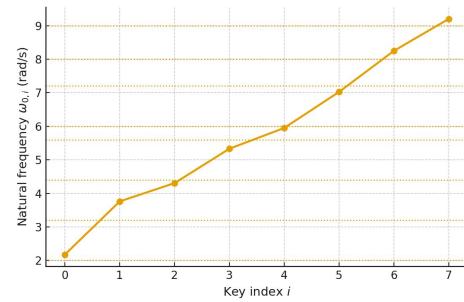


Figure 5: Phase–frequency attention $\alpha(\omega, \varphi)$ for a representative key. The bright ridge in the (ω, φ) plane indicates the resonance region.

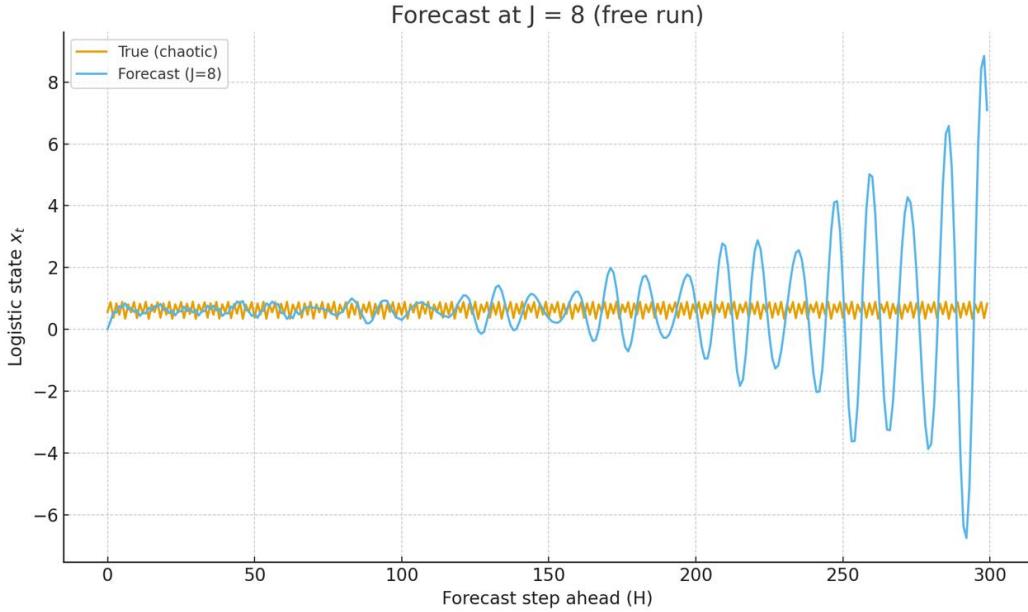
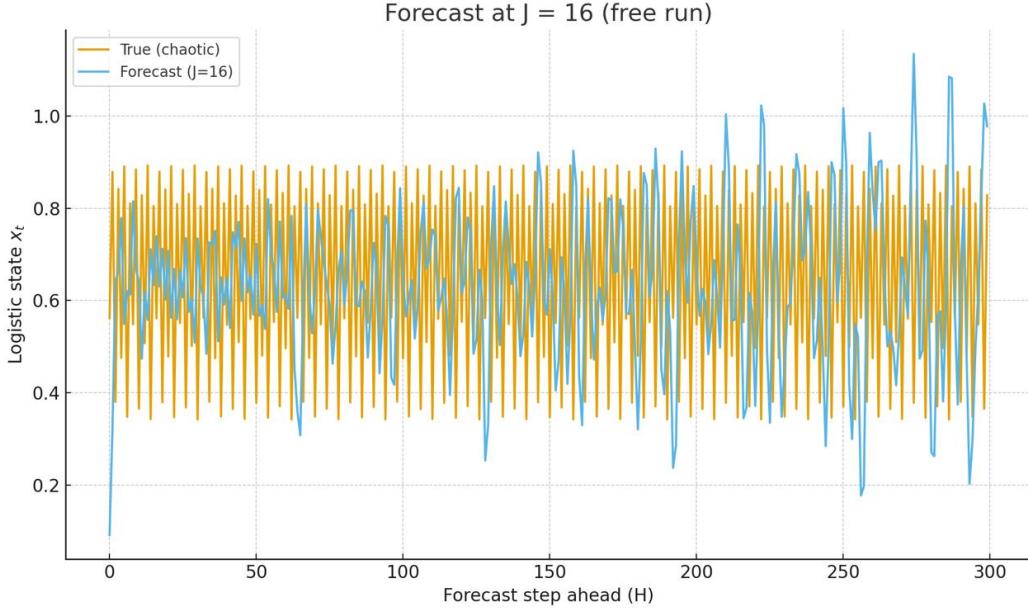


(a) Sequence from the 1-D regression task: true underlying trajectory (line), irregular noisy observations (dots), final observation time, and the true versus predicted future target at $T_{\text{future}} = 7$.



(b) Learned natural frequencies of the eight oscillator keys

Figure 6

2106 F CHAOTIC SYSTEMS AND FAIL CASES
2107
2108Figure 7: Forecast on the chaotic logistic map with $J = 8$ oscillator modes.Figure 8: Forecast on the chaotic logistic map with $J = 16$ oscillator modes.

To illustrate a clear failure case, we run a small chaos experiment on the logistic map. The system is one-dimensional and is defined by

$$x_{t+1} = r x_t (1 - x_t), \quad r = 3.57, \quad x_0 = 0.6. \quad (109)$$

For this choice of r the map is chaotic and has a positive Lyapunov exponent. Small errors in x_t grow exponentially over time, so long-horizon prediction is intrinsically hard.

2160 We generate a long sequence from the map and train our model in a one-step-ahead fashion. The
2161 model sees a short window of past values and is asked to predict x_{t+1} . At test time we perform a
2162 *free run*: we seed the model with a short true window and then feed back its own predictions for H
2163 steps.

2164 Figures 7 and 8 show free-running forecasts for two oscillator-bank sizes. With $J = 8$ modes, the
2165 model quickly leaves the attractor and produces oscillations with unrealistic amplitude. Increasing
2166 to $J = 16$ keeps the forecast bounded in the right range, but the trajectory still decorrelates from the
2167 true chaotic path after a few steps.

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

2205

2206

2207

2208

2209

2210

2211

2212

2213