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Abstract

Concerns persist over the trustworthiness of large language models (LLMs) due
to the generation of plausible but incorrect information, known as hallucination.
Existing approaches focus on identifying false answers or improving correctness
by sampling responses from a single LLM. However, querying multiple LLMs,
which exhibit complementary strengths, remains largely unexplored. In this work,
we propose a Bayesian crowdsourcing approach towards aggregating multiple
answers from multiple LLMs and quantifying their uncertainty. Extending the
Dawid-Skene model, we treat LLMs as annotators, using their answer probabilities
as noisy observations of truthfulness and modeling semantic relations between
answers in the covariance structure, and jointly learn about LLM’s reliability and
calibration as parameters. Validated across three open-domain question answering
dataset, results show that our approach outperforms existing statistical or agentic
methods in abstaining from false answers and identifying truthful ones, offering a
robust, scalable solution for uncertainty quantification and truth discovery in LLM
outputs.

1 Introduction

Large language models (LLMs; [29, 7, 40, 15] iter alia) are pre-trained on web-scale language data
that make them excel at generating human-like responses and storing extensive world knowledge
[32]. They have demonstrated remarkable capabilities across a wide range of tasks that require
conceptual knowledge, from recalling answers to trivia questions [27] to performing complex multi-
hop reasoning [18]. However, their wide applications have raised concerns over the trustworthiness
and reliability of their outputs [25, 13], exemplified by the generation of plausible but incorrect
information (i.e. “hallucination” [47]) and the lack of self-awareness of limitations in knowledge
[17], which both remain largely unaddressed.

To improve the reliability of LLM answers at test time, strategies that work on one of the two
complementary fronts have been proposed: improving the correctness of answers [26, 45, 13, 6], or
identifying answers that are more likely to be false to abstain from them [9, 20, 24, 8]. The underlying
ideas behind strategies from both fronts are similar: they rely on sampling multiple answers from a
single LLM and aggregating them based on consistency [45, 20, 24], or following an agentic workflow
where LLMs verbally evaluate or improve an answer, similarly to human interactions [26, 6, 8].

We study a more general scenario, where multiple LLMs are each queried multiple times to generate
a set of candidate answers for multiple questions, that to our knowledge has not been extensively
and systematically studied. Querying multiple LLMs, rather than a single one, could be helpful
because they are known to have different strengths and weaknesses [16, 43], and their outputs can be
complementary [42]. The goals are, at the same time, (1) to quantify the uncertainty (UQ) of these
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answers, as a base for abstaining; and (2) to aggregate these answers to infer the truthful answer for
each question, a problem known as truth discovery (TD) in the data management literature [23, 48].

This task can be seen as a special case of inferring the ground truths from multiple annotators, where
the annotators are all LLMs. The base problem, known as crowdsourcing [48], is well-established
with Bayesian models that go beyond simple consistency-based aggregation [4, 46], leading to
applications such as in NLP tasks [30, 31, 38]. Despite precursory works [5] on crowdsourcing with
weak systems as annotators, not much has been done to extend these models to LLM-based annotators.
Crowdsourcing models are mainly limited to classification tasks with predefined classes, while the
typical use cases of LLMs require free-form text answers. Moreover, classical crowdsourcing models
expect a single answer from each annotator, while LLMs can generate multiple answers for a single
question with different probabilities, which could additionally inform crowdsourcing models.
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Figure 1: We propose a Bayesian model for crowd-
sourcing from free-text outputs of multiple LLMs.
To better illustrate the relations between elements of
the multivariate random variable y, this figure does
not strictly follow the standard plate notation. y as a
single multivariate random variable is represented as
a rounded rectangle with its elements represented as
circles inside, which should not be confused with re-
peated independent variables that are conventionally
represented as a rectangle.

To address these challenges, we propose a
probabilistic generative model that extends
the Dawid-Skene model [4] to the LLM-based
setting. For each question, the truthfulness
of candidate answers from multiple LLMs
is modeled as a multivariate latent variable
whose correlation structure is tied to the se-
mantic relations between the answers, and
whose marginal distribution determined by
the reliability of the LLMs. The observed
data are the probabilities of the candidate an-
swers being generated by the LLMs, which
are treated as noisy observations of the truth-
fulness and are modeled as dependent on the
latent truthfulness variable via a calibration
process. Parameters for reliability and cali-
bration are learned by the EM algorithm, and
the truthfulness (inverse of uncertainty) of the
candidate answers is inferred by the poste-
rior of the latent variable. We validate our
model on three open-domain question answer-
ing datasets, where we show that our model
can even outperform costly agentic methods
in effectively identifying the truthful answers
and abstaining from the false ones.

2 Related Work

Crowdsourcing. Combining multiple answers by simple majority voting is commonly used to
improve LLMs at test time [45, 22]. Crowdsourcing models such as Dawid-Skene [4] opt for iterative
weighted majority voting by assuming different reliability of workers. They are comprehensively
reviewed by [48, 31, 30] and implemented by [41]. Typically, these models require a known and
fixed set of possible answers, while recent studies [21] operate with free-text by a weighted majority
voting in the embedding space. Our approach eliminates the need for embedding and provides more
flexibility and interpretability. Weak supervision [36], where the truths are not fully available and
truth inference is integrated with model learning, is closely related. We only consider the case when
the ground truth is completely unavailable, and do not consider learning. Second-order information
such as worker’s predictions [19] is useful but beyond the scope of this work.

Uncertainty quantification. Many UQ methods work by quantifying how consistent the answers
are, with [20, 24, 34] providing methods for a semantic-aware consistency measure. Picking the
most consistent answer is also the underlying strategy to improve the factuality of LLMs [45, 22].
[12] infers about the uncertainty of a statement using a Hidden Markov Model by considering the
logical relations with other statements conditionally generated from the initial statement. Our model
offers more relaxations and consider arbitrary answers sampled independently from multiple LLMs.
A separate step in UQ is to calibrate the uncertainty estimates to match accuracy using labeled
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dataset [10], while our model allows the learning of the calibration and reliability parameters without
labelling.

Scaling LLMs at Test Time Doing repeated sampling allows for a trade-off between the amount
of computing spent in test time and the quality of the final output, a research topic known as test-time
or inference-time scaling [45, 22]. Although self-consistency (simple majority voting) yields good
performance [45, 22], it is typically assumed that a verifier trained on the same data is available so
that more complex aggregation methods can be used, such as voting weighted by verifier score, or
best-of-n selected by the verifier [37]. Such a verifier could be available when the ground-truth is
known for a subset of the data [3], or when there are deterministic rules to verify the answers such as
for math and coding problems [44]. However, it remains an open question to find a general-purpose
verifier. Our method works in the most unrestricted setting and assumes that there is no access to any
verifier, nor is there information about the relative strengths of LLMs, obtainable by, for example,
running benchmarks on labelled in-domain datasets.

3 Methodology

Suppose we have a set of N questions and J LLMs. For each question q(i), we sample K answers
from each LLM, resulting in J ×K answers {a11, . . . , aJK}, and record their probabilities of being
generated y(i) = {y11, . . . , yJK}, which are provided as logprob or can be estimated by sampling
black-box models, and are known as p(answer) [17]. For simplicity, we omit the superscript (i) as
the parameters are shared across questions.

We introduce a continuous latent variable z ∼ N (µ,Σ) of dimension (J ×K) to model the real
truthfulness of the answers. The marginal distribution of zjk has shape zjk ∼ N (µj , σj) and
is determined by the reliability of the LLM j. The covariance Σ is determined by the semantic
relations between answers. Following [12], we posit that semantically similar answers would have
correlated truthfulness, while contradictory answers would have negating truthfulness. As such,
when considering all zjk jointly, z’s correlation matrix R is determined by an NLI model [35] that
classifies a pair of answers as entailment, contradiction, or neutral:

Ejk,j′k′ = Entails(ajk, aj′k′) Cjk,j′k′ = Contradicts(ajk, aj′k′)

Rjk,j′k′ = (Ejk,j′k′ + Ej′k′,jk)/2− (Cjk,j′k′ + Cj′k′,jk)/2

which ensures a correlation of 1 for equivalent answers and −1 for mutually exclusive ones. The
covariance matrix Σ is then computed as Σ = R ⊙ σσT and is projected to the nearest positive
semi-definite matrix in the Frobenius norm [2].

The data y is assumed to the noisy and uncalibrated observation of the truthfulness z, which is
calibrated by logistic regression yjk ∼ Bernoulli(sigmoid(β0j + β1j · zjk)) such that β1 ≥ 0. The
parameters µ, σ, and β are unique for each LLM and are shared across questions. An example of the
full generative model is shown in Fig. 1.

For the ease of implementation, we use EM algorithm to learn the parameters by maximizing log-
likelihood using stochastic gradient descent and sampling from p(z|y) using NUTS [11, 33, 1]. As
with most baseline methods to be compared in Section 4, we select the best answer with the lowest
uncertainty as the final answer for TD. For our model, the uncertainty of answer ajk is quantified by
the lower bound of 99.9% confidence interval of the mean of the posterior distribution p(zjk|y).

4 Experiments and Results

Baselines. We perform a comprehensive comparison of our Bayesian approach against recent
statistical and agentic methods for UQ and TD related tasks. In addition, we include oracle baselines
that always choose answers from a single LLM or choose a correct answers if one exists.

Statistical methods are based on the frequency or likelihood of candidate answers and direct consis-
tency measures, with the most commonplace method being simple majority voting. [17] assumes
the uncertainty of an answer to be the complement of the probability of it being generated, denoted
as p(answer). Semantic entropy [20] clusters candidate answers based on semantic similarity and
assigns uncertainty based on the entropy of the clusters. Lin et al. (2024) [24] provides a graph
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Laplacian-based remedy to semantic entropy when p(answer) is not available. The random baseline
assigns uniform uncertainty to all candidate answers.

AbstainQA [8] provides two agentic methods for UQ. The cooperate method asks LLMs to provide
feedback on candidate answers, which is then summarized by a judge for a true/false judgment.
The compete method asks LLMs to draft paragraphs supporting alternative answers and reconsider
the question, and the uncertainty is estimated by the consistency of final answers. Debate [6] is a
multi-round debating framework where LLMs refine their answers based on explanations from other
LLMs. An LLM judge selects the final answer based on the responses from the last round, which
does not provide UQ and is only applicable to TD.

Tasks and evaluation metrics. Experiments are done on three open-domain question answering
datasets pertaining to different levels of aleatoric and epistemic uncertainty [14]: FreebaseQA [16],
AmbigQA [28], and IMDB-Torso [39], with FreebaseQA downsampled to match the size of the
other datasets of around 1k. Using 10 different seeds, we sample a total of 40 candidate answers per
question from four LLMs: Gemma-2-9B [40], GPT-3.5 [29], Llama-3-8B [7], and Mistral-7B [15].

Given a question and its candidate answers, the goal of UQ is to estimate the uncertainty of the
candidate answers and it is evaluated by UQ using the area under the receiver operating characteristic
curve (AUROC) that measures how well the uncertainty of the correct answer is separated from the
uncertainty of the incorrect answers (Table 1). The goal of TD is to select a correct answer (if any)
from the candidate answers and it is evaluated by the final question-answering accuracy (Table 2).

Table 1: Bayesian network outperforms baseline methods on all datasets in terms of AUROC for
uncertainty quantification. Top non-oracle results are highlighted in green in Tables 1 and 2.

FreebaseQA AmbigQA IMDB-Torso

Agentic AbstainQA [8] (cooperate) 0.57 0.56 0.52
AbstainQA [8] (compete) 0.77 0.71 0.69

Statistical

Random 0.50 0.50 0.50
p(True) [17] 0.74 0.64 0.65
Simple majority voting 0.90 0.76 0.86
Semantic entropy [20] 0.85 0.74 0.86
Lin et al. (2024) [24] 0.53 0.52 0.53
Bayesian network (ours) 0.93 0.82 0.88

Table 2: Bayesian network has high accuracy when picking a single correct answer for AmbigQA
and IMDB-Torso questions, compared to other statistical methods.

FreebaseQA AmbigQA IMDB-Torso

Oracle

Gemma-2-9B 83.1 57.7 36.0
GPT-3.5 93.0 72.1 52.2
Llama-3-8B 78.0 46.5 28.7
Mistral-7B 81.3 52.2 39.6
Best answer 98.0 91.0 73.7

Agentic
AbstainQA [8] (cooperate) 87.7 59.8 41.6
AbstainQA [8] (compete) 86.3 60.5 41.9
Debate [6] 88.0 60.5 42.3

Statistical

Random 83.4 61.1 42.7
p(True) [17] 84.1 54.5 39.8
Simple majority voting 91.1 67.0 49.4
Semantic entropy [20] 92.3 70.4 50.3
Lin et al. (2024) [24] 81.9 56.7 36.7
Bayesian network (ours) 91.0 74.0 57.3
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5 Discussion

Our Bayesian model consistently performs the best among all baseline methods when ranking candi-
date answers to align with truthfulness, making it a promising approach for uncertainty quantification.
For improving question answering (TD), the Bayesian model outperforms other statistical models on
harder datasets. Despite the relative success of multi-agent models in TD, it is noteworthy that the
fast growth of context length and computation constrains scaling with the number of agents, which is
crucial to performance [22]. In the meantime, the high computational cost of multi-agent models
does not always translate to better performance, as shown in our experiments.

The relative high gap between the best performing model and the “best answer” oracle suggests that
relying solely on “wisdom of the crowd” is not always reliable, and the best answer is not always
the most popular one [19]. However, our method outperforms other voting and consistency-based
methods, especially when the majority of the answers are incorrect. Other methods work at the
instance level, while our Bayesian model leverages the information across all questions and answers
to learn about the relative reliability of each LLM. This is particularly useful, as the Bayesian model
could put more weight on the more reliable LLMs even if they are in the minority, which is not
explicitly modeled with other methods.

The answers to FreebaseQA questions are more uniform than those to AmbigQA and IMDB-Torso
questions. When the answers are diverse (a signal of difficulty), the Bayesian model outperforms
other methods. Uniformity can be measured without ground truths by counting the number of unique
answers, and it could be used in the future to determine whether the Bayesian model should be used
for a particular dataset.

Although we are exploring methods to rank answers without ground truths, we observe from the
oracles that unsurprisingly, having labelled data for benchmarking and calibration might be more
beneficial in practical applications. For example, evidence from the oracles and our calibration model
(β1 = 1.3 for GPT-3.5 and 0.5− 0.7 for other LLMs) both show that GPT-3.5 is more reliable and
confident than other LLMs, an important clue that current methods have not fully leveraged.

In the typical crowdsourcing setting, annotators work on instances of the same task, while in question
answering the questions can be heterogeneous and diverse, which our current model fail to consider.
The Bayesian framework allows for the incorporation of factors such as question domain or difficulty,
which could be added in the future to improve our model’s performance.

6 Conclusion

Using a Bayesian generative model, we propose a novel approach to measure the uncertainty of
answers from multiple LLM-based QA systems, that would better support informed decisions for
abstaining from false answers and identifying truthful ones. As a future direction, the Bayesian model
provides a principled method to provide a signal of correctness without ground truths, which could
be used for data synthesis to improve question answering systems, in combination with filtering and
finetuning, or preference optimization.
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