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Abstract

Causal discovery from observational data holds great promise, but existing methods1

rely on strong assumptions about the underlying causal structure, often requiring2

full observability of all relevant variables. We tackle these challenges by leveraging3

the score function ∇ log p(X) of observed variables for causal discovery and4

propose the following contributions. First, we generalize the existing results of5

identifiability with the score to additive noise models with minimal requirements6

on the causal mechanisms. Second, we establish conditions for inferring causal7

relations from the score even in the presence of hidden variables; this result is8

two-faced: we demonstrate the score’s potential as an alternative to conditional9

independence tests to infer the equivalence class of causal graphs with hidden10

variables, and we provide the necessary conditions for identifying direct causes in11

latent variable models. Building on these insights, we propose a flexible algorithm12

for causal discovery across linear, nonlinear, and latent variable models, which we13

empirically validate.14

1 Introduction15

The inference of causal effects from observations holds the potential for great impact arguably in any16

domain of science, where it is crucial to be able to answer interventional and counterfactual queries17

from observational data [1, 2, 3]. Existing causal discovery methods can be categorized based on18

the information they can extract from the data [4], and the assumptions they rely on. Traditional19

causal discovery methods (e.g. PC, GES [5, 6]) are general in their applicability but limited to the20

inference of an equivalence class. Additional assumptions on the structural equations generating21

effects from the cause are, in fact, imposed to ensure the identifiability of a causal order [7, 8, 9, 10].22

As a consequence, existing methods for causal discovery require specialized and often untestable23

assumptions, preventing their application to real-world scenarios.24

Further, the majority of existing approaches are hindered by the assumption that all relevant causes25

of the measured data are observed, which is necessary to interpret associations in the data as causal26

relationships. Despite the convenience of this hypothesis, it is often not met in practice, and the solu-27

tions relaxing this requirement face substantial limitations. The FCI algorithm [11] can only return an28

equivalence class from the data. Appealing to additional restrictions ensures the identifiability of some29

direct causal effects in the presence of latent variables: RCD [12] relies on the linear non-Gaussian30

additive noise model, whereas CAM-UV [13] requires nonlinear additive mechanisms. Nevertheless,31

the strict conditions on the structural equations hold back their applicability to more general settings.32

Our paper tackles these challenges and can be put in the context of a recent line of work that33

derives a connection between the score function ∇ log p(X) and the causal graph underlying the34

data-generating process [14, 15, 16, 17, 18, 19]. The use of the score for causal discovery is35

practically appealing, as it yields advantages in terms of scalability to high dimensional graphs [16]36
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and guarantees of finite sample complexity bounds [20]. Instead of imposing assumptions that ensure37

strong, though often impractical, theoretical guarantees, we organically demonstrate different levels of38

identifiability based on the strength of the modeling hypotheses, always relying on the score function39

to encode all the causal information in the data. Starting from results of Spantini et al. [21] and Lin40

[22], we show how constraints on the Jacobian of the score∇2 log p(X) can be used as an alternative41

to conditional independence testing to identify the Markov equivalence class of causal models with42

hidden variables. Further, we prove that the score function identifies the causal direction of additive43

noise models, with minimal assumptions on the causal mechanisms. This extends the previous findings44

of Montagna et al. [17], limited by the assumption of nonlinearity of the causal effects, and Ghoshal45

and Honorio [14], limited to linear mechanisms. On these results, we build the main contributions46

of our work, enabling the identification of direct causal effects in hidden variables models.47

Our main contributions are as follows: (i) We present the necessary conditions for the identifiability48

of direct causal effects and the presence of hidden variables with the score in the case of latent49

variables models. (ii) We propose AdaScore (Adaptive Score-based causal discovery), a flexible50

algorithm for causal discovery based on score matching estimation of∇ log p(X) [23]. Based on the51

user’s belief about the plausibility of several modeling assumptions on the data, AdaScore can output52

a Markov equivalence class, a directed acyclic graph, or a mixed graph, accounting for the presence53

of unobserved variables. To the best of our knowledge, the broad class of causal models handled by54

our method is unmatched by other approaches in the literature.55

2 Model definition and related works56

In this section, we introduce the formalism of structural causal models (SCMs), separately for the the57

cases with and without hidden variables.58

2.1 Causal model with observed variables59

Let X be a set of random variables in R defined according to the set of structural equations60

Xi := fi(XPAG
i
, Ni), ∀i = 1, . . . , k. (1)

Ni ∈ R are mutually independent random variables with strictly positive density, known as noise61

or error terms. The function fi is the causal mechanism mapping the set of direct causes XPAG
i

62

of Xi and the noise term Ni, to Xi’s value. A structural causal model (SCM) is defined as the63

tuple (X,N,F ,PN ), where F = (fi)
k
i=1 is the set of causal mechanisms, and PN is the joint64

distribution relative to the density pN over the noise terms N ∈ Rk. We define the causal graph G65

as a directed acyclic graph (DAG) with nodes X = {X1, . . . , Xk}, and the set of edges defined as66

{Xj → Xi : Xj ∈ XPAG
i
}, such that PAG

i are the indices of the parent nodes of Xi in the graph67

G. (In the remainder of the paper, we adopt the following notation: given a set of random variables68

Y = {Y1, . . . , Yn} and a set of indices Z ⊂ N, then YZ = {Yi|i ∈ Z, Yi ∈ Y }.)69

Under this model, the probability density of X satisfies the Markov factorization (e.g. Peters et al.70

[1] Proposition 6.31):71

p(x) =

k∏
i=1

p(xi|xPAG
i
), (2)

where we adopt the convention of lowercase letters referring to realized random variables, and use p
to denote the density of different random objects, when the distinction is clear from the argument.
This factorization is equivalent to the global Markov condition (e.g. Peters et al. [1] Proposition 6.22)
that demands that for all {Xi, Xj} ∈ X,XZ ⊆ X \ {Xi, Xj}, then

Xi |= dGXj |XZ =⇒ Xi |= Xj |XZ ,

where (· |= · |·) denotes probabilistic conditional independence of Xi, Xj given XZ , and (· |= dG · |·)72

is the notation for d-separation, a criterion of conditional independence defined on the graph G73

(Definition 5 of the appendix). As it is commonly done, we assume that the reverse direction74

Xi |= Xj |XZ =⇒ Xi |= dGXj |XZ hold, and we say that the density p is faithful to the graph G75

[2, 24] (hence the faithfulness assumption). Together with the global Markov condition, faithfulness76

implies an equivalence between the probabilistic and graphical notions of conditional independence:77

Xi |= Xj |XZ ⇐⇒ Xi |= dGXj |XZ . (3)
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In general, several DAGs may entail the same set of d-separations: graphs sharing such common78

structure form a Markov equivalence class (see Definition 6 in the appendix).79

The above model assumes that there aren’t any unobserved causes of variables in X , other than the80

noise terms in N . As we are interested in distributions with potential hidden variables, we will now81

generalize our model to represent data-generating processes that may involve latent causes.82

Definitions on graphs. As graphs play a central role in our work, Appendix A.1 provides a83

detailed overview of the fundamental notation and definitions that we rely on in the remainder of84

the paper. For the next section, we advise the reader to be comfortable with the notions of ancestors85

(Definition 2) and inducing paths (Definition 3) in DAGs.86

Closely related works. Several methods for the causal discovery of fully observable models using87

the score have been recently proposed. Ghoshal and Honorio [14] demonstrates the identifiability of88

the linear non-Gaussian model from the score, and it is complemented by Rolland et al. [15], which89

shows the connection between score matching estimation of ∇ log p(X) and the inference of causal90

graphs underlying nonlinear additive noise models with Gaussian noise terms, also allowing for91

sample complexity bounds [20]. Montagna et al. [17] provides identifiability results in the nonlinear92

setting, without posing any restriction on the distribution of the noise terms. Montagna et al. [16]93

is the first to show that the Jacobian of the score provides information equivalent to conditional94

independence testing in the context of causal discovery, limited to the case of additive noise models.95

All of these studies make specialized assumptions to find theoretical guarantees of identifiability,96

whereas our paper provides a unifying view of causal discovery with the score function, which97

generalizes and expands the existing results.98

2.2 Causal model with unobserved variables99

Under the model (1), we consider the case where the set of variables X is partitioned into the disjoint100

subsets of observed random variables V = {V1, . . . , Vd} and unobserved (or latent) random variables101

U = {U1, . . . , Up}. We assume that the following set of structural equations is satisfied:102

Vi := fi(VPAG
i
, U i, Ni), ∀i = 1, . . . , d, (4)

where U i stands for the set of unobserved parents of Vi, and VPAG
i
= {Vk|k ∈ PAG

i , Vk ∈ V } are103

the observed direct causes of Vi. Some of the causal relations and the conditional independencies104

implied by the set of equations (4) can be summarized in a graph obtained as a marginalization of the105

DAG G onto the observable nodes V .106

Definition 1 (Marginal graph, Zhang [25]). Let X = V ∪̇U and G be a DAG over X . The following107

construction gives the marginal graphMG
V , with nodes V and edges found as follows:108

• pair of nodes Vi, Vj are adjacent in the graphMG
V if and only if there is an inducing path109

between them relative to U in G;110

• for each pair of adjacent nodes Vi, Vj inMG
V , orient the edge as Vi → Vj if Vi is an ancestor111

of Vj in G, else orient it as Vi ↔ Vj .112

We define the map G 7→ MG
V as the marginalization of the DAG G onto V , the observable nodes.113

The graph resulting from the above construction is a maximal ancestral graph (MAG, Definition 4),114

hence we will often refer to it as the marginal MAG of G. Intuitively, a directed edge denotes the115

presence of an ancestorship relation, whereas bidirected edges represent dependencies that can not be116

removed by conditioning on any of the variables in the graph.117

In the case of DAGs, d-separation encodes the probabilistic conditional independence relations118

between the variables of X in the graph G, as explicit by Equation (3). Such notion of graphical sepa-119

ration has a natural generalization to maximal ancestral graphs, known as m-separation (Definition 5120

of the appendix). Zhang [25] shows that m-separation and d-separation are in fact equivalent (see121

Lemma 1 of the appendix), such that given VZ ⊂ V and {Vi, Vj} ⊂ V , the following holds:122

Vi |= dGVj |VZ \ {Vi, Vj} ⇐⇒ Vi |= mMG
V
Vj |VZ \ {Vi, Vj}, (5)
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where (· |= mMG
V

· | ·) denotes m-separation relative to the graphMG
V . Just like with DAGs, MAGs123

that imply the same set of conditional independencies define an equivalence class. Usually, the124

common structure of these graphs is represented by partial ancestral graphs (PAGs, Definition 7 of125

the appendix). We use PMG
V

to denote the PAG relative toMG
V .126

Problem definition. In this work, our goal is to provide theoretical guarantees for the
identifiability of the Markov equivalence class of the marginal graphMG

V and its direct causal
effects with the score, where variables Vi are defined according to Equation (4).

127

Without further assumptions on the data-generating process, we can identify the graphMG
V only up128

to its partial ancestral graph, as discussed in the next section.129

Closely related works. Causal discovery with latent variables have been first studied in the context130

of constraint-based approaches with the FCI algorithm [11], which shows the identifiability of the131

equivalence class of a marginalized graph via conditional independence testing. The RCD and132

CAM-UV [12, 13] approaches instead demonstrate the inferrability of directed causal edges via133

regression and residuals independence testing. Both methods rely on strong assumptions on the134

causal mechanisms: their theoretical guarantees apply to models where the effects are generated by a135

linear (RCD) or nonlinear (CAM-UV) additive contribution of each cause. Our work demonstrates136

that using the score function for causal discovery unifies and generalizes these results, presenting137

an alternative to conditional independence testing for constraint-based methods, and being agnostic138

about the class of causal mechanisms of the observed variables, under the weaker requirement of139

additivity of the noise terms.140

3 Theory for a score-based test of separation141

In this section, we show that for V ⊆ X generated according to Equation (4) the Hessian matrix of142

log p(V ) identifies the equivalence class of the marginal MAGMG
V . It has already been proven that143

cross-partial derivatives of the log-likelihood are informative about a set of conditional independence144

relationships between random variables: Spantini et al. [21] (Lemma 4.1) shows that, given VZ ⊆ X145

such that {Vi, Vj} ⊆ VZ , then146

∂2

∂Vi∂Vj
log p(VZ) = 0 ⇐⇒ Vi |= Vj |VZ \ {Vi, Vj}. (6)

Equation (3) resulting from faithfulness and the directed global Markov property immediately147

implies that this expression can be used as a test of conditional independence to identify the Markov148

equivalence class of the graphMG
V , as commonly done in constraint-based causal discovery (for149

reference, see e.g. Section 3 in Glymour et al. [4]). This result generalizes Lemma 1 of Montagna et al.150

[16], where it is used to define constraints to infer edges in the causal structure without latent variables.151

Proposition 1 (Adapted1 from [21]). Let V be a set of random variables with strictly positive density
generated according to model (4). For each set VZ ⊆ V of nodes inMG

V such that {Vi, Vj} ⊆ VZ ,
the following holds for each supported value vZ:

∂2

∂Vi∂Vj
log p(vZ) = 0 ⇐⇒ Vi |= mMG

V
Vj |VZ \ {Vi, Vj}.

The result of Proposition 1 presents an alternative to conditional independence testing in constraint-152

based approaches to causal discovery, showing that the equivalence class of the graphMG
V can be153

identified using the cross partial derivatives of the log-likelihood as a test of conditional independence154

between variables, much in the spirit of the Fast Causal Inference algorithm [11]. Identifying the155

1In their Lemma 4.1 Spantini et al. [21] provides the connection between vanishing cross-partial derivatives
of the log-likelihood and conditional independence of random variables. Note that this result does not depend on
the assumption of a generative model, thus holding beyond the set of structural equations (4). Our result adapts
their finding to the case when observations are generated according to a fully observable causal model.
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Markov equivalence class is the most we can hope to achieve without further hypotheses. As we will156

see in the next section, the score function can also help leverage additional restrictive assumptions on157

the causal mechanisms of Equation (4) to identify direct causal effects.158

4 A theory of identifiability from the score159

In this section, we show that, under additional assumptions on the data-generating process, we can160

identify the direct causal relations that are not influenced by unobserved variables, as well as the161

presence of unobserved active paths (Definition 5) between nodes in the marginalized graphMG
V .162

As a preliminary step before diving into causal discovery with latent variables, we show how the163

properties of the score function identify edges in directed acyclic graphs, that is in the absence of164

latent variables (when U = ∅ and G = MG
V ). The goal of the next section is two-sided: first, it165

introduces the fundamental ideas connecting the score function to causal discovery that also apply to166

hidden variable models, second, it extends the existing theory of causal discovery with score matching167

to additive noise models with both linear and nonlinear mechanisms.168

4.1 Warm up: identifiability without latent confounders169

In this section, we summarise and extend the theoretical findings presented in Montagna et al. [17],170

where the authors show how to derive constraints on the score function that identify the causal order of171

the DAG G where all the variables in the set X are observed. Define the structural relations of (1) as:172

Xi := hi(XPAG
i
) +Ni, i = 1, . . . , k, (7)

with three times continuously differentiable mechanisms hi, noise terms centered at zero, and strictly173

positive density pX . Given the Markov factorization of Equation (2), the components of the score174

function ∇ log p(x) are:175

∂Xi
log p(x) = ∂Xi

log p(xi|xPAG
i
) +

∑
j∈CHG

i

∂Xi
log p(xj |xPAG

j
)

= ∂Ni
log p(ni)−

∑
j∈CHG

i

∂Xi
hj(xPAG

j
)∂Nj

log p(nj),
(8)

where CHG
i denotes the set of children of node Xi. We observe that if a node Xs is a sink, i.e. a176

node satisfying CHG
s = ∅, then the summation over the children vanishes, implying that:177

∂Xs
log p(x) = ∂Ns

log p(ns). (9)

The key point is that the score component of a sink node is a function of its structural equation noise178

term, such that one could learn a consistent estimator of ∂Xs
log pX from a set of observations of the179

noise term Ns. Given that, in general, one has access to X samples rather than observations of the180

noise random variables, authors in Montagna et al. [17] show that Ns of a sink node can be consistently181

estimated from i.i.d. realizations of X . For each node X1, . . . , Xk, we define the quantity:182

Ri := Xi −E[Xi|X\Xi
], (10)

where X\Xi
are the random variables in the set X \ {Xi}. E[Xi|X\Xi

] is the optimal least squares183

predictor of Xi from all the remaining nodes in the graph, and Ri is the regression residual. For184

a sink node Xs, the residual satisfies:185

Rs = Ns, (11)
which can be seen by rewriting E[Xs|X\Xs

] = hs(XPAG
s
) + E[Ns|XDEG

s
, XNDG

s
] =186

hs(XPAG
s
) +E[Ns], where XDEG

s
and XNDG

s
denotes the descendants and non-descendants of Xs,187

respectively. Equations (9) and (11) together imply that the score ∂Ns
log p(Ns) is a function of Rs,188

such that it is possible to find a consistent approximator of the score of a sink from observations of Rs.189

Proposition 2 (Generalization of Lemma 1 in Montagna et al. [17]). Let X be a set of random190

variables, generated by a restricted additive noise model (Definition 9) with structural equations (7),191

and let Xj ∈ X . Consider rj in the support of Rj . Then:192

Xj is a sink⇐⇒ E
[(
E
[
∂Xj log p(X) | Rj = rj

]
− ∂Xj log p(X)

)2]
= 0. (12)
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Our result generalizes Lemma 1 in Montagna et al. [17], as they assume X generated by an193

identifiable additive noise model with nonlinear mechanisms. Instead, we remove the nonlinearity194

assumption and make the weaker hypothesis of a restricted additive noise model, which is provably195

identifiable [9], in the formal sense defined in the appendix (Definition 8). This result doesn’t come196

as a surprise, given the previous findings of Ghoshal and Honorio [14] showing that the score infers197

linear non-Gaussian additive noise models: Proposition 2 provides a unifying and general theory198

for the identifiability of models with potentially mixed linear and nonlinear mechanisms.199

Based on these insights, Montagna et al. [17] propose the NoGAM algorithm to exploit the con-200

dition in (12) for identifying the causal order of the graph: being E [∂Xi log p(X) | Ri] the opti-201

mal least squares estimator of the score of node Xi from Ri, a sink node is characterized as the202

argmini E [E [∂Xi
log p(X) | Ri]− ∂Xi

log p(X)]
2, where in practice the residuals Ri, the score203

components and the least squares estimators are replaced by their empirical counterparts. After a204

sink node is identified, it is removed from the graph and assigned a position in the order, and the205

procedure is iteratively repeated up to the source nodes. Being the score estimated by score matching206

techniques [23], we usually make reference to score matching-based causal discovery.207

In the next section, we show how we can generalize these results to identify direct causal effects208

between a pair of variables in the marginal MAGMG
V when U ̸= ∅209

4.2 Identifiability in the presence of latent confounders210

We now introduce the last of our main theoretical results, that is: given a pair of nodes Vi, Vj that211

are adjacent in the graphMG
V with U ̸= ∅, we can use the score function to identify the presence212

of a direct causal effect between Vi and Vj , or that of an active path that is influenced by unobserved213

variables. Given that the causal model of Equation (4) ensures identifiability only up to the equivalence214

class, we need additional restrictive assumptions. In particular, we enforce an additive noise model215

with respect to both the observed and unobserved noise variables. This corresponds to an additive216

noise model on the observed variables with the noise terms recentered by the latent causal effects.217

Assumption 1 (SCM assumptions). The set of structural equations of the observable variables218

specified in (4) is now defined as:219

Vi := fi(VPAG
i
) + gi(U

i) +Ni,∀i = 1, . . . , d, (13)

assuming the mechanisms fi to be of class C3(R
|V

PAG
i
|
), and mutually independent noise terms with220

strictly positive density function. The Ni’s are assumed to be non-Gaussian when fi is linear in some221

of its arguments.222

Crucially, our hypothesis is weaker than those required by two state-of-the-art approaches, CAM-UV223

[13] and RCD [12]: CAM-UV assumes a Causal Additive Model (CAM) with structural equations224

with nonlinear mechanisms in the form Vi :=
∑

k∈PAG
i
fik(Vk) +

∑
Ui

k
gik(U

i
k) + Ni, and RCD225

requires an additive noise model with linear effects of both the latent and observed causes. Thus,226

our model encompasses and extends the nonlinear and linear settings of CAM-UV and RCD, such227

that the theory developed in the remainder of the section is valid for a broader class of causal models.228

Our first step is rewriting the structural relations in (13) as:229

Vi := fi(VPAG
i
) + Ñi,

Ñi := gi(U
i) +Ni,∀i = 1, . . . , d,

(14)

which provides an additive noise model in the form of (7). Next, we define the following regression230

residuals for any node Vk in the graphMG
V :231

Rk(VZ) := Vk −E[Vk | VZ\{k}], (15)

where VZ\{k} denotes the set of random variables VZ \ {Vk}.232

Given these definitions, we are ready to show how directed edges, and the presence of unobserved233

variables can be identified from the score of linear and nonlinear additive noise models.234
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4.2.1 Identifiability of directed edges235

Consider Vi, Vj adjacent nodes in the PAG PMG
V

: we want to investigate when a direct causal236

effect Vi ∈ VPAG
j

can be identified from the score. We make the following observations: for237

VZ = VPAG
j
∪ {Vj} and VPAG

j

|= GdU j , by Equation (15) it follows238

Rj(VZ) = Ñj −E[Ñj ], (16)

where we use VPAG
j

|= GdU j to write E[Ñj |VZ\{j}] = E[Ñj ]. Moreover, we note that Vj is a sink node239

relative toMG
VZ

, the marginalization of G onto VZ . In analogy to the case without latent variables, we240

can show that ∂Vj log p(VZ) is a function of Ñj , the error term in the additive noise model of Equation241

(14), such that the score of Vj can be consistently predicted from observations of the residual Rj(VZ).242

Proposition 3. Let X be generated by a restricted additive noise model with structural equations (7),243

and causal graph G. Consider Vi, Vj adjacent inMG
V , marginalization of G. Further, assume that244

the score component ∂Vj
log p(VZ) is not constant for uncountable values of VZ .245

(i) Let VZ = VPAG
j
∪ {Vi, Vj}, and rj ∈ R in the support of Rj(VZ). Then:246

VPAG
j

|= dGU j ∧ Vi ∈ VPAG
j
⇐⇒ E[∂Vj

log p(VZ)−E[∂Vj
log p(VZ)|Rj(VZ) = rj ]]

2 = 0.

(ii) Let VZ ⊆ V , such that {Vi, Vj} ⊆ VZ . Then:247

VPAG
j
̸ |= dGU j ∨ Vi ̸∈ VPAG

j
⇐⇒ E[∂Vj log p(VZ)−E[∂Vj log p(VZ)|Rj(VZ) = rj ]]

2 ̸= 0.

Intuitively, the proposition has two essential implications. Part (i) provides the condition for the248

identifiability of the potential direct causal effect between a pair Vi, Vj , that is, when the association249

between Vj and its observed parents is not influenced by active paths that involve latent variables.250

This condition is necessary: given an active path such that VPAG
j
̸ |= dGU j , the score could not identify251

a direct causal effect Vi → Vj , which is the content of the second part of the proposition.252

We have established theoretical guarantees of identifiability for linear and nonlinear additive noise253

models, even in the presence of hidden variables: we find that the score function is a means for the254

identifiability of all direct parental relations that are not influenced by unobserved variables; all the255

remaining arrowheads of the edges in the graphMG
V are identified no better than in the equivalence256

class. Based on these insights, we propose AdaScore, a score matching-based algorithm for the257

inference of Markov equivalence classes, direct causal effects, and the presence of latent variables.258

4.3 A score-based algorithm for causal discovery259

Building on our theory, we propose AdaScore, a generalization of NoGAM to linear and nonlinear260

additive noise models with latent variables. The main strength of our approach is its adaptivity261

with respect to structural assumptions: based on the user’s belief about the plausibility of several262

modeling assumptions on the data, AdaScore can output an equivalence class (using the condition263

of Proposition 1 instead of conditional independence testing in an FCI-like algorithm), a directed264

acyclic graph (as in NoGAM), or a mixed graph, accounting for the presence of unobserved variables.265

We now describe the version of our algorithm whose output is a mixed graph, where we rely on score266

matching estimation of the score and its Jacobian (Appendix C.2). At an intuitive level, we find267

unoriented edges using Proposition 1, i.e. checking for dependencies in the form of non-zero entries268

in the Jacobian of the score via hypothesis testing on the mean, and find the edges’ directions via the269

condition of Proposition 3, i.e. by estimating residuals of each node Xi and checking whether they can270

correctly predict the i-th score entry (the vanishing mean squared errors are verified by hypothesis test271

of zero mean). It would be tempting to simply find the skeleton (i.e. the graphical representation of272

the constraints of an equivalence class) first via the well-known adjacency search of the FCI algorithm273

and then iterate through all neighborhoods of all nodes to orient edges using Proposition 3. This274

would be prohibitively expensive, as finding the skeleton is well-known to have super-exponential275

computational complexity [11]. Instead, we propose an alternative solution: exploiting the fact that276

some nodes may not be influenced by latent variables, we first use Proposition 2 to find sink nodes277

7



that are not affected by latents (using hypothesis testing to find vanishing mean squared error in the278

score predictions from the residuals), in the spirit of the NoGAM algorithm. If there is such a sink,279

we search all its adjacent nodes via Proposition 1 (plus an optional pruning step for better accuracy,280

Appendix C.2), and orient the inferred edges towards the sink. Else, if no sink can be found, we pick281

a node in the graph and find its neighbors by Proposition 1, orienting its edges using the condition in282

Proposition 3 (score estimation by residuals under latent effects). This way, we get an algorithm that283

is polynomial in the best case (Appendix C.3). Details on AdaScore are provided in Appendix C,284

while a pseudo-code summary is provided in the Algorithm 1 box.285

Algorithm 1 Simplified pseudo-code of AdaScore
while nodes remain do

if Proposition 3 finds a sink with all parents observed then
add edges from adjacent nodes to sink

else
pick some remaining node Vi ∈ V
prune neighbourhood of Vi using Proposition 1
orient edges adjacent to Vi using Proposition 3
if Vi has outgoing directed edge to some Vj ∈ V then

continue with Vj

else
remove Vi form remaining nodes

prune remaining bidirected edges using Proposition 1

5 Experiments286

We use the causally2 Python library [26] to generate synthetic data with known ground truths,287

created as Erdös-Rényi sparse and dense graphs, respectively with probability of edge between pair288

of nodes equals 0.3 and 0.5. We sample the data according to linear and nonlinear mechanisms with289

additive noise, where the nonlinear functions are parametrized by a neural network with random290

weights, a common approach in the literature [18, 26, 27, 28, 29]. Noise terms are sampled from a291

uniform distribution in the [−2, 2] range. Hidden causal effects are obtained by randomly picking292

two nodes and dropping the corresponding column from the data matrix. See Appendix D.1 for293

further details on the data generation. As metric, we consider the structural Hamming distance (SHD)294

[30, 31], a simple count of the number of incorrect edges, where missing and wrongly directed295

edges count as one error. We fix the level of the hypothesis tests of AdaScore to 0.05, which is a296

common choice in the absence of prior knowledge. We compare AdaScore to NoGAM, CAM-UV,297

RCD, and DirectLiNGAM, whose assumptions are detailed in Table 1. In the main manuscript, we298

comment on the results on datasets of 1000 observations from dense graphs, with and without latent299

variables. Additional experiments including those on sparse networks are presented in Appendix E.300

Our synthetic data are standardized by their empirical variance to remove shortcuts in the data [18, 32].301

Discussion. Our experimental results on models without latent variables of Figure 1a show that when302

causal relations are linear, AdaScore can recover the causal graph with accuracy that is comparable303

with all the other benchmarks, with the exception of DirectLiNGAM. On nonlinear data AdaScore304

presents better performance than CAM-UV, RCD, and DirectLiNGAM while being comparable305

to NoGAM in accuracy. This is in line with our expectations: in the absence of finite sample306

errors and in the fully observable setting, NoGAM and AdaScore are indeed the same algorithms.307

When inferring under latent causal effects, Figure 1b, our method performs comparably to CAM-308

UV and RCD on graphs up to seven nodes while slightly degrading on nine nodes. Additionally,309

AdaScore outperforms NoGAM in this setting, as we would expect according to our theory. Overall,310

we observe that our method is robust to a variety of structural assumptions, with accuracy that is311

often comparable and sometimes better than competitors (as in nonlinear observable settings). We312

remark that although AdaScore does not clearly outperform the other baselines, its broad theoretical313

guarantees of identifiability are not matched by any available method in the literature; this makes it314

an appealing option for inference in realistic scenarios that are hard to investigate with synthetic data,315

where the structural assumptions of the causal model underlying the observations are unknown.316

2https://causally.readthedocs.io/en/latest/
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(b) Latent variables model

Figure 1: Empirical results on dense graphs with different numbers of nodes, on fully observable (no hidden
variables) and latent variable models. We report the SHD accuracy (the lower, the better). We note that
DirectLiNGAM is surprisingly robust to different structural assumptions, and AdaScore is generally comparable
or better (as in nonlinear observable data) than the other benchmarks.

Table 1: Experiments causal discovery algorithms. The content of the cells denotes whether the method supports
(✓) or not (✗) the condition specified in the corresponding row.

CAM-UV RCD NoGAM DirectLiNGAM AdaScore

Linear additive noise model ✗ ✓ ✗ ✓ ✓
Nonlinear additive noise model ✗ ✗ ✓ ✗ ✓
Nonlinear CAM ✓ ✗ ✓ ✗ ✓
Latent variables effects ✓ ✓ ✗ ✗ ✓

Output Mixed Mixed DAG DAG Mixed

6 Conclusion317

The existing literature on causal discovery shows a connection between score matching and structure318

learning in the context of nonlinear ANMs: in this paper, (i) we formalize and extend these results319

to linear SCMs, and (ii) we show that the score retains information on the causal structure even in the320

presence of unobserved variables. Additionally, while previous works posit the accent on finding the321

causal order through the score, we study its potential to identify the Markov equivalence class with a322

constraint-based strategy that does not explicitly require tests of conditional independence, as well as323

to identify direct causal effects. Our theoretical insights result in AdaScore: unlike existing approaches324

for the estimation of causal directions, our algorithm provides theoretical guarantees for a broad class325

of identifiable models, namely linear and nonlinear, with additive noise, in the presence of latent326

variables. Even though AdaScore does not clearly outperform the existing baselines on our synthetic327

benchmark, its adaptivity to different structural hypotheses is a step towards causal discovery that is328

less reliant on prior assumptions, which are often untestable and thus hindering reliable inference in329

real-world problems. While we do not touch on the task of causal representation learning [33], where330

causal variables are learned from data, we believe this is a promising research direction in relation331

to our work due to the specific interplay between score-matching estimation and generative models.332
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A Useful results448

In this section, we provide a collection of results and definitions relevant to the theory of this paper.449

A.1 Definitions over graphs450

Let X = X1, . . . , Xd a set of random variables. A graph G = (X,E) consists of finitely many nodes451

or vertices X and edges E. We now provide additional definitions, separately for directed acyclic452

and mixed graphs.453

Directed acyclic graph. In a directed graph, nodes can be connected by a directed edge (→), and454

between each pair of nodes there is at most one directed edge. We say that X1 is a parent of Xj if455

Xi → Xj ∈ E, in which case we also say that Xj is a child of Xi. Two nodes are adjacent if they456

are connected by an edge. Three nodes are called a v-structure if one node is a child of the other457

two, e.g. as Xi → Xk ← Xj is a collider. A path in G is a sequence of at least two distinct vertices458

Xi1 , . . . , Xim such that there is an edge between Xik and Xik+1
. If Xik → Xik+1

for every node459

in the path, we speak of a directed path, and call Xik an ancestor of Xik+1
, Xik+1

a descendant of460

Xik . Given the set DEG
i of descendants of a node Xi, we define the set of non-descendants of Xi as461

NDG
i = X \ (DEG

i ∪{Xi}). A node without parents is called a source node. A node without children462

is called a sink node. A directed acyclic graph is a directed graph with no cycles.463

Mixed graph. In a mixed graph nodes can be connected by a directed edge (→) or a bidirected464

edge (↔), and between each pair of nodes there is at most one directed edge. Two vertices are said465

to be adjacent in a graph if there is an edge (of any kind) between them. The definitions of parent,466

child, ancestor, descendant, path provided for directed acyclic graph also apply in the case of mixed467

graphs. Additionally, Xi is a spouse of Xj (and vice-versa) if Xi ↔ Xj ∈ E. An almost directed468

cycle occurs when Xi ↔ Xj ∈ E and Xi is an ancestor of Xj in G.469

For ease of reference from the main text, we separately provide the definition of inducing paths and470

ancestors in directed acyclic graphs.471

Definition 2 (Ancestor). Consider a DAG G with set of nodes X , and Xi, Xj elements of X . We472

say that Xi is an ancestor of Xj if there is a directed path from Xi to Xj in the graph, as in473

Xi → . . .→ Xj .474

Definition 3 (Inducing path). Consider a DAG G with set of nodes X , and Y, Z disjoint subsets such475

that X = Y ∪̇Z. We say that there is an inducing path relative to Z between the nodes Yi, Yj if every476

node on the path that is not in Z ∪ {Yi, Yj} is a collider on the path (i.e. for each Yk ∈ Y on the path477

the sequence Yi . . .→ Yk ← . . . Yj appears) and every collider on the path is an ancestor of Yi or Yj .478

One natural way to encode inducing paths and ancestral relationships between variables is represented479

by maximal ancestral graphs.480

Definition 4 (MAG). A maximal ancestral graph (MAG) is a mixed graph such that:481

1. there are no directed cycles and no almost directed cycles;482

2. there are no inducing paths between two non-adjacent nodes.483

Next, we define conditional independence in the context of graphs.484

Definition 5 (m-separation). LetM be a mixed graph with nodes X . A path π inM between Xi, Xj485

elements of X is active w.r.t. Z ⊆ X \ {Xi, Xj} if:486

1. every non-collider on π is not in Z487

2. every collider on π is an ancestors of a node in Z.488

Xi and Xj are said to be m-separated by Z if there is no active path between Xi and Xj relative to Z.489

Two disjoint sets of variables W and Y are m-separated by Z if every variable in W is m-separated490

from every variable in Y by Z.491

If m-separation is applied to DAGs, it is called d-separation.492

13



The set of directed acyclic graphs that satisfy the same set of conditional independencies form an493

equivalence class, known as the Markov equivalence class.494

Definition 6 (Markov equivalence class of a DAG). Let G be a DAG with nodes X . We denote with495

[G] the Markov equivalence class of G. A DAG G̃ with nodes X is in [G] if the following conditions496

are satisfied for each pair Xi, Xj of distinct nodes in X:497

• there is an edge between Xi, Xj in G if and only if there is an edge between Xi, Xj in G̃;498

• let Z ⊆ X \ {Xi, Xj}. Then Xi |= dGXj |Z ⇐⇒ Xi |= dG̃Xj |Z;499

• let π be a path between Xi and Xj . Xk is a collider in the path π in G if and only if it is a500

collider in the path π in G̃.501

In summary, graphs in the same equivalence class share the edges up to direction, the set of d-502

separations, and the set of colliders.503

Just as for DAGs, there may be several MAGs that imply the same conditional independence504

statements. Denote the Markov-equivalence class of a MAGM with [M]: this is represented by a505

partial mixed graph, the class of graphs that can contain four kinds of edges: →,↔, ◦−−◦ and ◦→,506

and hence three kinds of end marks for edges: arrowhead (>), tail (−) and circle (◦).507

Definition 7 (PAG, Definition 3 of Zhang [25]). Let [M] be the Markov equivalence class of an508

arbitrary MAGM . The partial ancestral graph (PAG) for [M], PM , is a partial mixed graph such509

that:510

• PM has the same adjacencies asM (and any member of [M]) does;511

• A mark of arrowhead is in PM if and only if it is shared by all MAGs in [M]; and512

• A mark of tail is in PM if and only if it is shared by all MAGs in [M].513

Intuitively, a PAG represents an equivalence class of MAGs by displaying all common edge marks514

shared by all members of the class and displaying circles for those marks that are not in common.515

A.2 Equivalence between m-separation and d-separation516

In this section, we provide a proof for equation (5), stating the equivalence between m-separation and517

d-separation in a formal sense.518

Lemma 1 (Adapted from Zhang [25]). Let G be a DAG with nodes X = V ∪ U , with V and U
disjoint sets, andMG

V the marginalization of G onto V . For any {Vi, Vj} ∈ V and VZ ⊆ V \{Vi, Vj},
the following equivalence holds:

Vi |= dGVj |VZ ⇐⇒ Vi |= mMG
V
Vj |VZ .

Proof. The implication Vi |= dGVj |VZ =⇒ Vi |= mMG
V

Vj |VZ is a direct consequence of Lemma 18519

from Spirtes and Richardson [34], where we set S = ∅, since we do not consider selection bias. The520

implication Vi |= dGVj |VZ ⇐= Vi |= mMG
V

Vj |VZ follows from Lemma 17 by Spirtes and Richardson521

[34], again with S = ∅. Note, that in their terminology “d-separation in MAGs” is what we call522

m-separation.523

A.3 Additive noise model identifiability524

We study the identifiability of the additive noise model, reporting results from Peters et al. [9]. We525

start with a formal definition of identifiability in the context of causal discovery.526

Definition 8 (Identifiable causal model). Let (X,N,F , pN ) be an SCM with underlying graph G and527

pX joint density function of the variables of X . We say that the model is identifiable from observa-528

tional data if the distribution pX can not be generated by a structural causal model with graph G̃ ̸= G.529

First, we consider the case of models of two random variables530

X2 := f(X1) +N, X1 |= N. (17)
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Condition 1 (Condition 19 of Peters et al. [9]). Consider an additive noise model with structural531

equations (17). The triple (f, pX1 , pN ) does not solve the following differential equation for all pairs532

x1, x2 with f ′(x2)ν
′′(x2 − f(x1)) ̸= 0:533

ξ′′′ = ξ′′
(
f ′′

f ′ −
ν′′′f ′

ν′′

)
+

ν′′′ν′f ′′f ′

ν′′
− ν′(f ′′)2

f ′ − 2ν′′f ′′f ′ + ν′f ′′′, (18)

Here, ξ := log pX1
, ν := log pN , the logarithms of the strictly positive densities. The arguments534

x2 − f(x1), x1, and x1 of ν, ξ and f respectively, have been removed to improve readability.535

Next, we show that a structural causal model satisfying Condition 1 is identifiable, as in Definition 8536

Theorem 1 (Theorem 20 of Peters et al. [9]). Let pX1,X2
the joint distribution of a pair of random537

variables generated according to the model of equation (17) that satisfies Condition 1, with graph G.538

Then, G is identifiable from the joint distribution.539

Finally, we show an important fact, holding for identifiable bivariate models, which is that the score540
∂

∂X1
log p(x1, x2) is nonlinear in x1.541

Lemma 2 (Sufficient variability of the score). Let pX1,X2
the joint distribution of a pair of random

variables generated according to a structural causal model that satisfies Condition 1, with graph G.
Then:

∂

∂X1
(ξ′(x1)− f ′(x1)ν

′(x2 − f(x1))) ̸= 0,

for all pairs (x1, x2).542

Proof. By contradiction, assume that there exists (x1, x2) such that ∂
∂X1

(ξ′(x1) − f ′(x1)ν
′(x2 −

f(x1))) = 0. Then:

∂

∂X1

 ∂2

∂X2
1
π(x1, x2)

∂2

∂X1∂X2
π(x1, x2)

 = 0,

where π(x1, x2) = log p(x1, x2). By explicitly computing all the partial derivatives of the above543

equation, we obtain that equation 18 is satisfied, which violates Condition 1.544

These results guaranteeing the identifiability of the bivariate additive noise model can be generalized545

to the multivariable case, with a set of random variables X = {X1, . . . , Xk} that satisfy:546

Xi := fi(XPAG
i
) +Ni, i = 1, . . . , k, (19)

where G is the resulting causal graph directed and acyclic. The intuition is that, rather than studying547

the multivariate model as a whole, we need to ensure that Condition 1 is satisfied for each pair of548

nodes, adding restrictions on their marginal conditional distribution.549

Definition 9 (Definition 27 of Peters et al. [9]). Consider an additive noise model with structural
equations (19). We call this SCM a restricted additive noise model if for all Xj ∈ X , Xi ∈ XPAG

j
,

and all sets XS ⊆ X , S ⊂ N, with XPAG
j
\ {Xi} ⊆ XS ⊆ XG

NDj
\ {Xi, Xj}, there is a value xS

with p(xS) > 0, such that the triplet

(fj(xPAG
j \{i}, ·), pXi|XS=xS

, pNj
)

satisfies Condition 1. Here, fj(xPAG
j \{i}, ·) denotes the mechanism function xi 7→ fj(xPAG

j
).550

Additionally, we require the noise variables to have positive densities and the functions fj to be551

continuous and three times continuously differentiable.552

Then, for a restricted additive noise model, we can identify the graph from the distribution.553

Theorem 2 (Theorem 28 of Peters et al. [9]). Let X be generated by a restricted additive noise554

model with graph G, and assume that the causal mechanisms fj are not constant in any of the input555

arguments, i.e. for Xi ∈ XPAG
j

, there exist xi ̸= x′
i such that fj(xPAG

j \{i}, xi) ̸= fj(xPAG
j \{i}, x

′
i).556

Then, G is identifiable.557
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A.4 Other auxiliary results558

We state several results that hold for a pair of random variables that are not connected by an active path559

that includes unobserved variables (active paths are introduced in Definition 5). For the remainder of560

the section, let V,U be a pair of disjoint sets of random variables, X = V ∪ U generated according561

to the structural causal model defined by the set of equations (1), G the associated causal graph, and562

MG
V the marginalization onto V .563

The first statement provides under which condition the unobserved parents of two variables in the564

marginal MAG are mutually independent random vectors.565

Lemma 3. Let Vj ∈ V , and Z ⊂ N such that VZ = VPAG
j
∪ {Vj}. Assume VPAG

j

|= dGU j . Then566

U j |= dGUZk for each index Zk ̸= j.567

Proof. The assumption VPAG
j

|= dGU j implies that there is no active path in G between nodes in VPAG
j

568

and nodes in U j . Given that for each Zk ∈ Z, Zk ̸= Z, nodes in UZk are direct causes of at least569

one node in VPAG
j

, any active path between nodes in UZk and nodes in U j would also be an active570

path between VPAG
j

and U j , which is a contradiction. Hence U j |= dGUZk .571

The previous lemmas allow proving the following result, which will be fundamental to demonstrate572

the theory of Proposition 3.573

Lemma 4. Let Vj ∈ V , and Z ⊂ N such that VZ = VPAG
j
∪ {Vj}. Assume VPAG

j

|= dGU j . W.l.o.g.,

let the j-th element of VZ be VZj
= Vj . Denote as UZ the set of unobserved parents of nodes in VZ ,

and UZ\{j} the unobserved parents of nodes in VZ\{j} := VZ \ Vj . Then, the following holds for
each vZ , u

Z values:
log p(vZ) = log p(vj |vPAG

j
) + logQ(vZ),

where

Q(vZ) =
∑

uZ\{j}

p(uZ\{j})

|Z|∏
k ̸=j

p(vZk
|vZ1

, . . . , vZk−1
, uZk).

Proof. By the law of total probability and the chain rule, we can write p(vZ) as:574

p(vZ) =
∑
u

p(vZ |u)p(u)

=
∑
u

p(u)p(vZj
|u, vZ\{j})p(vZ\{j}|u).

(20)

By Lemma 3, UZj |= UZk , k ̸= j, where UZk denotes unobserved parents of the node VZk
. Then,575

we can factorize p(u) = p
(
uZj

)
p
(
uZ\{j}). Plugging the factorization in equation (20) we find576

p(vZ) =
∑
u

p
(
uZj

)
p
(
uZ\{j}

)
p(vZj |u, vZ\{j})p(vZ\{j}|u)

=
∑
u

p
(
uZj

)
p
(
uZ\{j}

)
p(vZj

|uZj , vPAG
Zj

)p(vZ\{j}|u),

where the latter equation comes from the global Markov property on the graph G. Further, by assump-577

tion of VPAG
j

|= dGU j , we know that UZj |= VZk
, k ̸= j, such that p(vZ\{j}|u) = p(vZ\{j}|uZ\{j}).578

Then:579

p(vZ) =
∑
u

p
(
uZj

)
p
(
uZ\{j}

)
p(vZj

|uZj , vPAG
Zj

)p(vZ\{j}|uZ\{j})

=
∑
uZj

p
(
uZj

)
p(vZj |uZj , vPAG

Zj

)
∑

uZ\{j}

p
(
uZ\{j}

)
p(vZ\{j}|uZ\{j})

= p(vZj
|vPAG

Zj

)
∑

uZ\{j}

p
(
uZ\{j}

)
p(vZ\{j}|uZ\{j}),

which proves the claim.580
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Intuitively, Lemma 4 shows that given a node Vj without children and bidirected edges in a marginal-581

ized graphMG
VZ

, the kernel of node Vj in the Markov factorization of p(vZ) is equal to the kernel of582

the same node in the Markov factorization of p(x) of equation (2), relative to the graph without latent583

confounders G.584

B Proofs of theoretical results585

B.1 Proof of Proposition 1586

Proof of Proposition 1. Observe that

∂2

∂Vi∂Vj
log p(vZ) = 0 ⇐⇒ Vi |= dGVj |VZ \ {Vi, Vj} ⇐⇒ Vi |= mMG

V
Vj |VZ \ {Vi, Vj},

where the first equivalence holds by a combination of the faithfulness assumption with the global587

Markov property, as explicit in equation (3), and the second due to Lemma 1. Then, the claim is588

proven.589

B.2 Proof of Proposition 2590

Proof. The forward direction is immediate from equation (9) and Rj = Nj , when Xj is a sink
(equation (11)). Thus, we focus on the backward direction. Given

E
[(
E
[
∂Xj log p(X) | Rj = rj

]
− ∂Xj log p(X)

)2]
= 0,

we want to show that Xj has no children, which we prove by contradiction.591

Let us introduce a function q : R→ R such that:

E
[
∂Xj

log p(X) | Rj = rj
]
= q(rj),

and sj : R|X| → R,
sj(x) = ∂Xj

log p(x).

The mean squared error equal to zero implies that sj(X) is a constant, once Rj is observed. Formally,
under the assumption of p(x) > 0 for each x ∈ Rk, this implies that

p(sj(x) ̸= q(Rj)|Rj = rj) = 0, ∀x ∈ Rk.

By contradiction, we assume that Xj is not a leaf, and want to show that sj(X) is not constant in X ,
given Rj fixed. Let Xi such that Xj ∈ XPAG

i
. Being the structural causal model identifiable, there

is no model with distribution pX whose graph has a backward edge Xi → Xj : thus, the Markov
factorization of equation (2) is unique and implies:

∂Xj
log p(X) = ∂Nj

log p(Nj)−
∑

k∈CHG
j

∂Xj
hk(XPAk

)∂Nk log p(Nk).

We note that, by definition of residual in equation (10), Rj = rj fixes the following distance:

Rj = Nj −E[Nj |X\Xj
].

Hence, conditioning on Rj doesn’t restrict the support of X: given Rj = rj , for any x\Xj
(value

of the vector of elements in X \ {Xj}), ∃nj with p(nj > 0) (by the hypothesis of strictly positive
densities of the noise terms) that satisfies

rj = nj −E[Nj |x\Xj
].

Next, we condition on all the parents of Xi, except for Xj , to reduce our problem to the simpler592

bivariate case. Let S ⊂ N and XS ⊆ X such that XPAG
i
\ {Xj} ⊆ XS ⊆ XNDG

i
\ {Xi, Xj},593

and consider xS such that p(xS > 0). Let XPAG
i

= xPAG
i

hold under XS = xS . We define594

Xj|xs

:= Xj |(XS = xS), and similarly X|xs
:= X|(XS = xS). Being the SCM a restricted595
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additive noise model, by Definition 9, the triplet (gi, pXj|xs

, pNi) satisfies Condition 1, where596

gi(xj) = hi(xPAG
i \{Xj}, xj). Consider Xi = xi, and the pair of values (xj , x

∗
j ) such that xj ̸= x∗

j597

and598

ν′′Ni
(xi − gi(xj))g

′
i(xj) ̸= 0,

ν′′Ni
(xi − gi(x

∗
j ))g

′
i(x

∗
j ) ̸= 0,

where we resort to the usual notation νNi
:= log pNi

. By Lemma 2, (xi, xj) and (xi, x
∗
j ) satisfy:599

∂Xj
(ξ′(xj)− ν′Ni

(xi − gi(xj))g
′
i(xj)) ̸= 0,

∂Xj (ξ
′(x∗

j )− ν′Ni
(xi − gi(x

∗
j ))g

′
i(x

∗
j )) ̸= 0,

where ξ := log pXj|xs

. Thus, we can fix xj and x∗
j (which are arbitrarily chosen) such that600

∂Xj (ξ
′(xj)− ν′Ni

(xi − gi(xj))g
′
i(xj))− ∂Xj (ξ

′(x∗
j )− ν′Ni

(xi − gi(x
∗
j ))g

′
i(x

∗
j )) ̸= 0. (21)

Fixing X|xS,xj
= x and X|xS,x∗

j

= x∗, where the two values differ only in their j-th component, we

find the following difference:

sj(x)− sj(x
∗) = ∂Xj

(ξ′(xj)− ν′Ni
(xi− gi(xj))g

′
i(xj))−∂Xj

(ξ′(x∗
j )− ν′Ni

(xi− gi(x
∗
j ))g

′
i(x

∗
j )),

which is different from 0 by equation (21). This contradicts the fact that the score sj is constant once601

Rj is fixed, which proves our claim.602

B.3 Proof of Proposition 3603

In this proof, we use several ideas from the demonstration of Proposition 2. We demonstrate the604

forward and the backward parts of the two statements separately.605

Proof of part (i), forward direction. Given VZ = VPAG
j
∪ {Vi, Vj} and rj ∈ R in the image of Rj ,606

we want to show:607

VPAG
j

|= dGU j ∧ Vi ∈ VPAG
j
=⇒ E[∂Vj

log p(VZ)−E[∂Vj
log p(VZ)|Rj(VZ) = rj ]]

2 = 0.

By Lemma 4, the score of Vj is608

∂Vj
log p(VZ) = ∂Vj

log p(Vj |VPAG
j
) + ∂Vj

logQ(VZ)

= log p(Ñj),

for some Q map acting on VZ . The latter equality holds because all variables in VZ are non-
descendants of Vj , such that ∂Vj

Q(VZ) = 0. Further, by equation (16) we know that

Rj(VZ) = Ñj + c,

where c = −E[Ñj ] is a constant. It follows that the least square estimator of the score of Vj from
Rj(VZ) satisfies the following equation:

E[∂Vj log p(VZ)|Rj(VZ)] = E[∂Vj log p(Ñj)|Ñj ] = ∂Vj log p(Ñj),

where the first equality holds because E[·|Ñj ] = E[·|Ñj + c]. Then, we find

E[∂Vj log p(VZ)−E[∂Vj log p(VZ)|Rj(VZ) = rj ]]
2 = E[∂Vj log p(Ñj)− ∂Vj log p(Ñj)]

2 = 0,

which is exactly our claim.609

Proof of part (i), backward direction. Given VZ = VPAG
j
∪{Vi, Vj}, rj ∈ R in the image of Rj , and610

E[∂Vj
log p(VZ)−E[∂Vj

log p(VZ)|Rj(VZ) = rj ]]
2 = 0, (22)

we want to show that VPAG
j

|= dGU j ∧ Vi ∈ VPAG
j

, meaning that there is a direct causal effect that611

is not biased by unobserved variables. We provide the proof by contradiction, in analogy to the612

demonstration of the backward direction of Proposition 2.613
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Let us introduce sj : R|VZ | → R,

sj(vZ) = ∂Vj
log p(VZ).

The mean squared error equal to zero implies that sj(VZ) is constant in VZ , once Rj is observed.
By contradiction, we assume that VPAG

j
̸ |= dGU j ∨ Vi ̸∈ VPAG

j
, and want to show that sj(VZ) is not

constant in VZ , given Rj fixed. In this regard, we make the following observation: by definition of
residual in equation (15), Ri(VZ) = ri fixes the following distance:

Rj(VZ) = Ñj −E[Ñj |VZ\{j}].

Hence, conditioning on Rj(VZ) doesn’t restrict the support of VZ : given Rj(VZ) = rj , ∃ñj with
p(ñj) > 0 (by assumption of strictly positive densities pNj

and pX ), that satisfies

rj = ñj −E[Ñj |vZ\{j}],

for all vZ\{j}. Hence, the random variable VZ |Rj(VZ) = rj has strictly positive density on all points614

vZ where pVZ
(vZ) > 0. Now, consider vZ and v∗Z , taken from the set of uncountable values such that615

the score sj function is not a constant, meaning that sj(vZ) ̸= sj(v
∗
Z), where VZ is sampled given616

Rj(VZ) = rj . Given that different vZ and v∗Z are selected from an uncountable subset of the support,617

we conclude that the score sj |(Rj(VZ) = rj) = ∂Vj log p(VZ |Rj(VZ) = rj) is not a constant for at618

least an uncountable set of points, which contradicts equation (22).619

Proof of part (ii), forward direction. Given that Vi is connected to Vj in the marginal MAG and that620

VPAG
j
̸ |= dGU j ∨ Vi ̸∈ VPAG

j
, we want to show that for each VZ ⊆ V with {Vi, Vj} ⊆ VZ , the621

following holds:622

E[∂Vj
log p(VZ)−E[∂Vj

log p(VZ)|Rj(VZ) = rj ]]
2 ̸= 0. (23)

Let us introduce h : R→ R such that:

E[∂Vj log p(VZ)|Rj(VZ) = rj ] = h(rj),

and further define:
sj(VZ) = ∂Vj

log p(VZ).

Having the mean squared error in equation (23) equals zero implies that sj(VZ) is a constant, once
Rj(VZ) is observed. Thus, the goal of the proof is to show that there are values of VZ such that the
score is not a constant once Rj is fixed. By definition of residual in equation (15), Rj(VZ) = rj fixes
the following distance:

Rj(VZ) = Ñj −E[Ñj |VZ\{j}].

Hence, conditioning on Rj(VZ) doesn’t restrict the support of VZ : given Rj(VZ) = rj , ∃ñj with
p(ñj) > 0 (by assumption of positive density of the noise Nj on the support R), that satisfies

rj = ñj −E[Ñj |vZ\{j}],

for all vZ\{j}. Hence, the random variable VZ |Rj(VZ) = rj has strictly positive density on all points623

vZ where pVZ
(vZ) > 0. Now, consider vZ and v∗Z , taken from the set of uncountable values such that624

the score sj function is not a constant, meaning that sj(vZ) ̸= sj(v
∗
Z), where VZ is sampled given625

Rj(VZ) = rj . Given that different vZ and v∗Z are selected from an uncountable subset of the support,626

we conclude that the score sj |(Rj(VZ) = rj) = ∂Vj
log p(VZ |Rj(VZ) = rj) is not a constant for at627

least an uncountable set of points, such that the claim follows.628

Proof of part (ii), backward direction. Given that E[∂Vj log p(VZ) − E[∂Vj log p(VZ)|Rj(VZ) =

rj ]]
2 ̸= 0 for all VZ ⊆ V such that {Vi, Vj} ∈ VZ , and given Vi and Vj adjacent in the marginal

MAG, we want to show that
VPAG

j
̸ |= dGU j ∨ Vi ̸∈ VPAG

j
.

The prove comes easily by contradiction: say that VPAG
j

|= dGU j ∧ Vi ∈ VPAG
j

. Then, by the forward629

direction of part (i) of Proposition 3, we know that VZ = VPAG
j
∪ {Vj} satisfies E[∂Vj

log p(VZ)−630

E[∂Vj
log p(VZ)|Rj(VZ) = rj ]]

2 = 0, leading to a contradiction.631
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C Algorithm632

C.1 Detailed description of our algorithm633

In Proposition 1 we have seen that score matching can detect m-separations and therefore the skeleton634

of the PAG describing the data. If one is willing to make the assumptions required for Proposition 3635

it could be desirable to use this to orient edges, since the interpretation of PAG edges might be636

cumbersome for people not familiar with ancestral models. Therefore, one could simply find the637

skeleton of the PAG using the fast adjacency search [5] and then orient the edges by applying638

Proposition 3 on every subset of the neighbourhood of every node. This would yield a very costly639

algorithm. But if we make the assumptions required to orient edges with Proposition 3 we can do a640

bit better. In Algorithm 2 we present an algorithm that still has the same worst case runtime but runs641

polynomially in the best case. The main intuition is that we iteratively remove irrelevant nodes in the642

spirit of the original SCORE algorithm [15]. To this end, we first check if the is any unconfounded643

sink if we consider the set of all remaining variables. If there is one, we can orient its parents and644

ignore it afterwards. If there is no such set, we need to fall back to the procedure proposed above, i.e.645

we need to check the condition of Proposition 3 on all subsets of the neighbourhood of a node, until646

we find no node with a direct outgoing edge. In Proposition 4 we show that this way we do not fail647

orient edge or fail to remove any adjacency. In the following discussion, we will use the notation648

δi(XZ) := E[∂Vj
log p(VZ)−E[∂Vj

log p(VZ)|Rj(VZ) = rj ]]
2,

for the second residual from Proposition 3 and also649

δi,j(XZ) :=
∂2

∂Vi∂Vj
log p(vZ)

for the cross-partial derivative, where Xi, Xj ∈ V and Z ⊆ V .650

Proposition 4 (Correctness of algorithm). Let X = V ∪̇U be generated by the SCM in Equation (4)651

with non-constant scores for uncountably many values. Let GX be the causal DAG of X and GV be652

the marginal MAG of GX . Then Algorithm 2 outputs a directed edge from Xi ∈ V to Xj ∈ V iff653

there is a direct edge in GX between them and no unobserved backdoor path w.r.t. U . Further, the654

output of Algorithm 2 has the same skeleton as GV .655

Proof. We proof the statement by induction over the steps of the algorithm. Let S be the set of656

remaining nodes in an arbitrary step of the algorithm. Our induction hypothesis is that for Xi, Xj ∈ S657

and Xk ∈ Bi we have658

1. Xi is an unconfounded sink w.r.t. to some set S′ ⊆ S iff Xi is an unconfounded sink w.r.t.659

some S′′ ⊆ V660

2. if there is no S′ ⊆ V \ {Xi, Xj} such that Xi |= Xj | S′ then Xj ∈ Bi661

Clearly, this holds in the initial step as S = V .662

Suppose we find δi(XS) = 0 for Xi ∈ S. If Xi has at least one adjacent node in MG
V , by663

Proposition 3, we know that Xi does not have any children and is also not connected to any other664

node in S via a hidden mediator or unobserved confounder. This means, all nodes that are not665

separable from Xi must be direct parents of Xi, which are by our induction hypothesis 2) the nodes666

in Bi. Since Xi does not have children, it also suffices to check Xi |= Xj |S \ {Xi, Xj} for Xj ∈ Bi667

(instead of conditioning on all subsets of Bi). So we can already add these direct edges to the output.668

If, on the other hand, Xi has no adjacent nodes inMG
V , we have Xi |= Xj |S \{Xi, Xj} for Xj ∈ Bi,669

so in both cases we add the correct set of parents. Since Xi is not an ancestor of any of the nodes in670

S \ {Xi}, Xi cannot be a hidden mediator or hidden confounder between nodes in S \ {Xi} and671

conditioning on Xi cannot block an open path. Thus, the induction hypothesis still holds in the next672

step.673

Suppose now there is no unconfounded sink and we explore Xi. By our induction hypothesis 2), Bi674

contains the parents of Xi and by Proposition 3 it suffices to only look at subsets of Bi to orient direct675

edges. And also due to the induction hypothesis 2) Bi contains all nodes that are not separable from676

Xi. So by adding bidirected edges to all nodes in Bi can only add too many edges but not miss some.677
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Algorithm 2 AdaScore Algorithm
procedure ADASCORE(p,X1, . . . , Xd)

S ← {X1, . . . , Xd} ▷ Remaining nodes
E ← { } ▷ Edges
for Xi ∈ S do

Bi ← {X1, . . . , Xd} ▷ Neighbourhoods
while S ̸= ∅ do ▷ While nodes remain

if ∃Xi ∈ S : δi(XS) = 0 then ▷ If there is an unconfounded sink
S ← S \ {Xi}
E ← E ∪ {Xj → Xi : δi,j(XS) ̸= 0} ▷ Add edges like DAS

else
for Xi ∈ S do

for Xj ∈ Bi do ▷ Prune neighbourhoods
if δi,j(XS) = 0 then

Bi ← Bi \ {Xj}
Bj ← Bj \ {Xi}

for Xj ∈ Bi do ▷ Orient edges in Bi

mi = minS′⊆Bi δi(XS′∪{Xi})
mj = minS′⊆Bj

δj(XS′∪{Xj}))
if mi = 0 ∧mj ̸= 0 then

E ← E ∪ {Xj → Xi}
else if mi ̸= 0 ∧mj = 0 then

E ← E ∪ {Xi → Xj}
else

E ← E ∪ {Xi ↔ Xj}
if ∃Xj ∈ Bi : (Xi → Xj) ∈ E then

continue with Xj

else ▷ Xi has no unconfounded outgoing edge
S ← S \ {Xi} ▷ Remove Xi

break
for Xi ↔ Xj ∈ E do ▷ Prune bidirected edges

if minS′⊆Adj(Xi) δi,j(XS′∪{Xi}) = 0 ∨minS′⊆Adj(Xj) δi,j(XS′∪{Xi}) = 0 then
E ← E \ {Xi ↔ Xj}

return E

Now it remains to show that the induction hypothesis holds if we set S to S \ {Xi}. For 1) we need678

to show that Xi cannot be a hidden mediator or hidden confounder w.r.t. S \ {Xi} (since ignoring679

Xi won’t change whether there is a direct edge or not). Suppose Xi is on a unobserved causal path680

Xk → · · · → Um → Xl with Xk, Xl ∈ S \ {Xi} and Um ∈ X \ (S \ {Xi}). This path must have681

been a unobserved causal path before, unless Xi = Um. But then there is a direct edge Xi → Xl.682

We would not remove Xi from S if this edge was unconfounded, so there must a hidden confounder683

between Xi and Xl. But in this case, Proposition 3 wouldn’t allow us to direct the edge anyway, since684

VPAl
̸ |= dGUl. Suppose there is confounding path Xk ← · · · → Um → Xl with Xk, Xl ∈ S \ {Xi}685

and Um ∈ X \ (S \ {Xi}). If Xi ̸= Um the path was already been a confounding path without Xi686

being unobserved. So again, there must be a confounder between Xi and Xl, as otherwise we would687

not remove Xi. And analogously to before, we could not have oriented the edge even with Xi ∈ S688

since VPAl
̸ |= dGUl. For 2) we only have to see that we just remove nodes from Bi if we found an689

independence.690

For |S| < 2, the algorithm enters the final pruning stage. From the discussion above it is clear,691

that we already have the correct result, up to potentially too many bidirected edges. In the final692

step we certainly remove all these edges Xi ↔ Xj , as we check m-separation for all subsets of the693

neighbourhoods Adj(Xi) and Adj(Xj), which are supersets of the true neighbourhoods.694

695
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C.2 Finite sample version of AdaScore696

All theoretical results in the paper have assumed that we know the density of our data. Obviously, in697

practise we have to deal with a finite sample instead. Especially, in Proposition 1 and Proposition 3698

we derived criteria that compare random variables with zero. Clearly, this condition is never met in699

practise. Therefore, we need find ways to reasonably set thresholds for these random quantities.700

First note, that we use the Stein gradient estimator [35] to estimate the score function. This means701

especially that for a node Vi we get a vector702 (
(
∂

∂Vi
log p(v))l

)
l=1,...,m

, (24)

i.e. an estimate of the score for every one of the m samples. Analogously, we get a m× d× d tensor703

for the estimates of ∂2

∂Vi∂Vj
log p(v).704

In Proposition 1 we showed that705

∂2

∂Vi∂Vj
log p(vZ) = 0 ⇐⇒ Xi |= mMG

V
Vj |VZ \ {Vi, Vj}.

In the finite sample version, we use a one sample t-test on the vector of estimated cross-partial706

derivatives with the null-hypothesis that the means is zero. Due to the central limit theorem, the707

sample mean follows approximately a Gaussian distribution, regardless of the true distribution of the708

observations.709

For Proposition 3 we need to do some additional steps. Recall, that the relevant quantity in Propo-710

sition 3 is the mean squared error of a regression, which is always positive. Therefore, a test for711

mean zero is highly likely to reject in any case. We decided to employ a two-sample test in a similar712

(but different) manner as Montagna et al. [17]. As test, we used the Mann-Whitney U-test. Note,713

that Algorithm 2 employs Proposition 3 in two different ways: first, to decide whether there is an714

unconfounded sink and second, to orient edges in case there is no unconfounded sink. We pick a715

different sample as second sample of the Mann-Whitney U-test.716

Analogously to before, this is a vector with m entries, one for every sample.717

Note, that in the case where we want to check if there is an unconfounded sink, we do not make any718

mistake by rejecting too few hypotheses, i.e. if we miss some unconfounded sinks (instead, we only719

lose efficiency, as we do the costly iteration over all possible sets of parents). Therefore, for this test720

we chose a a second sample that yields a “conservative” test result.721

As candidate sink for set S ⊆ V , we pick the node Xi = mini mean(δi(XS)). In fact, we want to722

know whether the mean of δi is significantly lower than all other means. But we empirically observed723

that choosing the concatenated δs of all nodes as second sample makes the test reject with very high724

probability, which would lead our algorithm to falsely assume the existence of an unconfoudned sink.725

Instead, we then pick as second “reference node” Xj = minj ̸=i mean(δj(XZ)). We then do the two726

sample test between δi(XZ) and δj(XZ). The intuition is that the test will reject the hypothesis of727

identical means, if Xi is an unconfounded sink but Xj is not.728

In the case where we use Proposition 3 to orient edges, we only need to decide whether an not729

previsouly directed edge Xi −Xj needs to be oriented one way, the other way, or not at all. Instead,730

here the issue lies in the fact that we need to iterate over possible sets of parents of the nodes. Let731

Bi be the set of nodes that have not been m-separated from Xi by any test so far. We pick the732

subset Zi = minZ′⊆Bi
mean(δZ

′

i ), i.e. the set with the lowest mean error. We then conduct the test733

with δi(XZi
) and δj(XZj

). If there is a directed edge between them, one of the residuals will be734

significantly lower than the other.735

Just like Montagna et al. [17] we use a cross-validation scheme to generate the residuals, in order to736

prevent overfitting. We split the dataset into several equally sized, disjoint subsamples. For every737

residual we fit the regression on all subsamples that don’t contain the respective target.738

Also, just like in the NoGAM algorithm Montagna et al. [17] we add a pruning step for the directed739

edges to the end. The idea is to use a feature selection method to remove insignificant edges. Just like740

Montagna et al. [17], we use the CAM-based pruning step proposed by Bühlmann et al. [36], which741

fits a generalised additive regression model from the parents to a child and test whether one of the742
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additive components is significantly non-zero. All parents for which the test rejects this hypothesis743

are removed.744

C.3 Complexity745

Proposition 5. Complexity Let n be the number of samples and d the number of observable nodes.746

Algorithm 2 runs in747

Ω
(
(d2 − d) · (r(n, d) + s(n, d))

)
and O

(
d2 · 2d(r(n, d) + s(n, d))

)
,

where r(n, d) is the time required to solve a regression problem and s(n, d) is the time for calculating748

the score. With e.g. kernel-ridge regression and the Stein-estimator, both run in O(n3).749

Proof. Algorithm 2 runs its main loop d times. It first checks for the existence of an unconfounded750

sink, which involves solving 2d regression problems (including cross-validation prediction) and751

calculating the score, adding up to (2d2 − d) regressions and d score evaluations. In the worst case,752

we detect no unconfounded sink and iterate through all subsets of the neighbourhood of a node753

(which is in the worst case of size d− 1) and for all other nodes in the neighbourhood we solve 2d754

regression problems and evaluate the score. For each subset we calculate two regression functions,755

the score and calculate the entries in the Hessian of the log-density, i.e. d · 2d regressions, d · 2d−1756

scores and additionally 2d−1 Hessians. If we are unlucky, this node has a directed outgoing edge757

and we continue with this node (with the same size of nodes). This can happen d− 1 times. So we758

get (d2 − d) · 2d regressions and (d2 − d) · 2d−1 scores and Hessians. In the final pruning step we759

calculate for every bidirected edge (of which there can be (d2 − d)/2) a Hessian for all subsets of the760

neighbourhoods, which can again be 2d−1 subsets. Using the pruning procedure from CAM for the761

directed edges we also spend at most O(nd3) steps.762

In the best case, we always find an unconfounded sink. Then our algorithm reduces to NoGAM.763

764

D Experimental details765

In this section, we present the details of our experiments in terms of synthetic data generation and766

algorithms hyperparameters.767

D.1 Synthetic data generation768

In this work, we rely on synthetic data to benchmark AdaScore’s finite samples performance. For769

each dataset, we first sample the ground truth graph and then generate the observations according to770

the causal graph.771

Erdös-Renyi graphs. The ground truth graphs are generated according to the Erdös-Renyi model.772

It allows specifying the number of nodes and the probability of connecting each pair of nodes). In ER773

graphs, a pair of nodes has the same probability of being connected.774

Nonlinear causal mechanisms. Nonlinear causal mechanisms are parametrized by a neural network775

with random weights. We create a fully connected neural network with one hidden layer with 10776

units, Parametric ReLU activation function, followed by one normalizing layer before the final fully777

connected layer. The weights of the neural network are sampled from a standard Gaussian distribution.778

This strategy for synthetic data generation is commonly adopted in the literature [26, 18, 28, 29, 27].779

Linear causal mechanisms. For the linear mechanisms, we define a simple linear regression model780

predicting the effects from their causes and noise terms, weighted by randomly sampled coefficients.781

Coefficients are generated as samples from a Uniform distribution supported in the range [−3,−0.5]∪782

[0.5, 3]. We avoid too small coefficients to avoid close to unfaithful datasets Uhler et al. [24].783
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Noise terms distribution. The noise terms are sampled from a Uniform distribution supported784

between −2 and 2.785

Finally, we remark that we standardize the data by their empirical data. This is known to remove786

shortcuts that allow finding a correct causal order sorting variables by their marginal variance, as in787

varsortability, described in Reisach et al. [32], or sorting variables by the magnitude of their score788

|∂Xi log p(X)|, a phenomenon known as scoresortability analyzed by Montagna et al. [18].789

D.2 AdaScore hyperparameters790

For AdaScore, we set the α level for the required hypothesis testing at 0.05. For the CAM-pruning791

step, the level is instead set at 0.001, the default value of the dodidscover Python implementation of792

the method, and commonly found in all papers using CAM-pruning for edge selection [15, 16, 17, 36].793

For the remaining parameters. The regression hyperparameters for the estimation of the residuals are794

found via cross-validation during inference: tuning is done minimizing the generalization error on795

the estimated residuals, without using the performance on the causal graph ground truth. Finally, for796

the score matching estimation, the regularization coefficients are set to 0.001.797

D.3 Computer resources798

All experiments have been run on an AWS EC2 instance of type p3.2xlarge. These machines799

contain Intel Xeon E5-2686-v4 processors with 2.3 GHz and 8 virtual cores as well as 61 GB RAM.800

All experiments can be run within a day.801

E Additional Experiments802

In this section, we provide additional experimental results. All synthetic data has been generated as803

described in Appendix D.1.804

E.1 Non-additive mechanisms805

In Figure 1 we have demonstrated the performance of our proposed method on data generated by806

linear SCMs and non-linear SCMs with additive noise. But Proposition 1 also holds for any faithful807

distribution generated by an acyclic model. Thus, we employed as mechanism a neural network-based808

approach similar to the non-linear mechanism described in Appendix D. Instead of adding the noise809

term, we feed it as additional input into the neural network. Results in this setting are reported in810

Figure 2. As neither AdaScore nor any of the baseline algorithms has theoretical guarantees for the811

orientation of edges in this scenario, we report the F1-score (popular in classification problems) w.r.t.812

to the existence of an edge, regardless of orientation. Our experiments show that AdaScore can, in813

general, correctly recover the graph’s skeleton in all the scenarios, with an F1 score median between814

1 and ∼ 0.75, respectively for small and large numbers of nodes.815

E.2 Sparse graphs816

In this section, we present the experiments on sparse Erdös-Renyi graphs where each pair of nodes817

is connected by an edge with probability 0.3. The results are illustrated in Figure 3. For sparse818

graphs, recovery results are similar to the dense case, with AdaScore generally providing comparable819

performance to the other methods.820

E.3 Increasing number of samples821

In the following series of plots we demonstrate the scaling behaviour of our method w.r.t. to the822

number of samples. Figure 5 shows results with edge probability 0.5 and Figure 4 with 0.3. All823

graphs contain seven observable nodes. As before we observe that AdaScore performs comparably to824

other methods. E.g. in Figures 4a and 5b we can see that the median error AdaScore improves with825

additional samples and in all plots we see that no other algorithm seems to gain an advantage over826

AdaScore with increasing sample size.827
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(a) Fully observable model
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(b) Latent variables model

Figure 2: Empirical results for non-additive causal mechanisms on sparse graphs with different numbers of
nodes, on fully observable (no hidden variables) and latent variable models. We report the F1 score w.r.t. the
existence of edges (the higher, the better).
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(b) Latent variables model

Figure 3: Empirical results on sparse graphs with different numbers of nodes, on fully observable (no hidden
variables) and latent variable models. We report the SHD accuracy (the lower, the better).
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(a) Fully observable model
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(b) Latent variables model

Figure 4: Empirical results on sparse graphs with different numbers of samples and seven nodes, on fully
observable (no hidden variables) and latent variable models. We report the SHD accuracy (the lower, the better).
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(a) Fully observable model
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(b) Latent variables model

Figure 5: Empirical results on dense graphs with different numbers of samples and seven nodes, on fully
observable (no hidden variables) and latent variable models. We report the SHD accuracy (the lower, the better).
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E.4 Limitations828

In this section, we remark the limitations of our empirical study. It is well known that causal discovery829

lacks meaningful, multivariate benchmark datasets with known ground truth. For this reason, it is830

common to rely on synthetically generated datasets. We believe that results on synthetic graphs should831

be taken with care, as there is no strong reason to believe that they should mirror the benchmarked832

algorithms’ behaviors in real-world settings, where often there is no prior knowledge about the833

structural causal model underlying available observations.834
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NeurIPS Paper Checklist835

The checklist is designed to encourage best practices for responsible machine learning research,836

addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove837

the checklist: The papers not including the checklist will be desk rejected. The checklist should838

follow the references and precede the (optional) supplemental material. The checklist does NOT839

count towards the page limit.840

Please read the checklist guidelines carefully for information on how to answer these questions. For841

each question in the checklist:842

• You should answer [Yes] , [No] , or [NA] .843

• [NA] means either that the question is Not Applicable for that particular paper or the844

relevant information is Not Available.845

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).846

The checklist answers are an integral part of your paper submission. They are visible to the847

reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it848

(after eventual revisions) with the final version of your paper, and its final version will be published849

with the paper.850

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.851

While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a852

proper justification is given (e.g., "error bars are not reported because it would be too computationally853

expensive" or "we were unable to find the license for the dataset we used"). In general, answering854

"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we855

acknowledge that the true answer is often more nuanced, so please just use your best judgment and856

write a justification to elaborate. All supporting evidence can appear either in the main paper or the857

supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification858

please point to the section(s) where related material for the question can be found.859

1. Claims860

Question: Do the main claims made in the abstract and introduction accurately reflect the861

paper’s contributions and scope?862

Answer: [Yes]863

Justification: In the abstract, we claim that we connect the properties of the score function864

to causal structure learning. In the paper, particularly sections 3 and 4, we present the865

theoretical results supporting our claim. Further, in the abstract we mention that based on866

our theory we propose an algorithm for causal discovery from score matching estimation,867

algorithm that we define in Section 4.3 and we empirically validate in Section 5 and868

Appendix E.869

Guidelines:870

• The answer NA means that the abstract and introduction do not include the claims871

made in the paper.872

• The abstract and/or introduction should clearly state the claims made, including the873

contributions made in the paper and important assumptions and limitations. A No or874

NA answer to this question will not be perceived well by the reviewers.875

• The claims made should match theoretical and experimental results, and reflect how876

much the results can be expected to generalize to other settings.877

• It is fine to include aspirational goals as motivation as long as it is clear that these goals878

are not attained by the paper.879

2. Limitations880

Question: Does the paper discuss the limitations of the work performed by the authors?881

Answer: [Yes]882

Justification: The main limitation of our work is on the experimental side: our experiments883

are limited to synthetic data, which are not an ideal probing ground. Additionally, our884
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method does not provide performance that clearly improves on the existing literature. These885

limitations of our work are discussed in the discussion of the experiments in Section 5, as886

well as in the "Limitations" appendix section E.4. Concerning the assumptions required by887

our method, we thoroughly discuss them in the theoretical sections of the paper, where we888

define the results that are later used for the definition of the AdaScore. Finally, computational889

complexity is discussed in Appendix C.3.890

Guidelines:891

• The answer NA means that the paper has no limitation while the answer No means that892

the paper has limitations, but those are not discussed in the paper.893

• The authors are encouraged to create a separate "Limitations" section in their paper.894

• The paper should point out any strong assumptions and how robust the results are to895

violations of these assumptions (e.g., independence assumptions, noiseless settings,896

model well-specification, asymptotic approximations only holding locally). The authors897

should reflect on how these assumptions might be violated in practice and what the898

implications would be.899

• The authors should reflect on the scope of the claims made, e.g., if the approach was900

only tested on a few datasets or with a few runs. In general, empirical results often901

depend on implicit assumptions, which should be articulated.902

• The authors should reflect on the factors that influence the performance of the approach.903

For example, a facial recognition algorithm may perform poorly when image resolution904

is low or images are taken in low lighting. Or a speech-to-text system might not be905

used reliably to provide closed captions for online lectures because it fails to handle906

technical jargon.907

• The authors should discuss the computational efficiency of the proposed algorithms908

and how they scale with dataset size.909

• If applicable, the authors should discuss possible limitations of their approach to910

address problems of privacy and fairness.911

• While the authors might fear that complete honesty about limitations might be used by912

reviewers as grounds for rejection, a worse outcome might be that reviewers discover913

limitations that aren’t acknowledged in the paper. The authors should use their best914

judgment and recognize that individual actions in favor of transparency play an impor-915

tant role in developing norms that preserve the integrity of the community. Reviewers916

will be specifically instructed to not penalize honesty concerning limitations.917

3. Theory Assumptions and Proofs918

Question: For each theoretical result, does the paper provide the full set of assumptions and919

a complete (and correct) proof?920

Answer: [Yes]921

Justification: All our theoretical results make explicit the assumptions for which they are922

valid. Plus, we in section Appendix B we provide the proofs of our theoretical results.923

Guidelines:924

• The answer NA means that the paper does not include theoretical results.925

• All the theorems, formulas, and proofs in the paper should be numbered and cross-926

referenced.927

• All assumptions should be clearly stated or referenced in the statement of any theorems.928

• The proofs can either appear in the main paper or the supplemental material, but if929

they appear in the supplemental material, the authors are encouraged to provide a short930

proof sketch to provide intuition.931

• Inversely, any informal proof provided in the core of the paper should be complemented932

by formal proofs provided in appendix or supplemental material.933

• Theorems and Lemmas that the proof relies upon should be properly referenced.934

4. Experimental Result Reproducibility935

Question: Does the paper fully disclose all the information needed to reproduce the main ex-936

perimental results of the paper to the extent that it affects the main claims and/or conclusions937

of the paper (regardless of whether the code and data are provided or not)?938
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Answer: [Yes]939

Justification: In Appendix D, we provide all the details to reproduce the data generation of940

our experiments and the hyperparameters used in AdaScore for our experimental runs.941

Guidelines:942

• The answer NA means that the paper does not include experiments.943

• If the paper includes experiments, a No answer to this question will not be perceived944

well by the reviewers: Making the paper reproducible is important, regardless of945

whether the code and data are provided or not.946

• If the contribution is a dataset and/or model, the authors should describe the steps taken947

to make their results reproducible or verifiable.948

• Depending on the contribution, reproducibility can be accomplished in various ways.949

For example, if the contribution is a novel architecture, describing the architecture fully950

might suffice, or if the contribution is a specific model and empirical evaluation, it may951

be necessary to either make it possible for others to replicate the model with the same952

dataset, or provide access to the model. In general. releasing code and data is often953

one good way to accomplish this, but reproducibility can also be provided via detailed954

instructions for how to replicate the results, access to a hosted model (e.g., in the case955

of a large language model), releasing of a model checkpoint, or other means that are956

appropriate to the research performed.957

• While NeurIPS does not require releasing code, the conference does require all submis-958

sions to provide some reasonable avenue for reproducibility, which may depend on the959

nature of the contribution. For example960

(a) If the contribution is primarily a new algorithm, the paper should make it clear how961

to reproduce that algorithm.962

(b) If the contribution is primarily a new model architecture, the paper should describe963

the architecture clearly and fully.964

(c) If the contribution is a new model (e.g., a large language model), then there should965

either be a way to access this model for reproducing the results or a way to reproduce966

the model (e.g., with an open-source dataset or instructions for how to construct967

the dataset).968

(d) We recognize that reproducibility may be tricky in some cases, in which case969

authors are welcome to describe the particular way they provide for reproducibility.970

In the case of closed-source models, it may be that access to the model is limited in971

some way (e.g., to registered users), but it should be possible for other researchers972

to have some path to reproducing or verifying the results.973

5. Open access to data and code974

Question: Does the paper provide open access to the data and code, with sufficient instruc-975

tions to faithfully reproduce the main experimental results, as described in supplemental976

material?977

Answer: [Yes]978

Justification: We provide the code for the experiments and the data generation in a zip file.979

Further, we describe all the details for reproducing our experimental results in Appendix D.980

Guidelines:981

• The answer NA means that paper does not include experiments requiring code.982

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/983

public/guides/CodeSubmissionPolicy) for more details.984

• While we encourage the release of code and data, we understand that this might not be985

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not986

including code, unless this is central to the contribution (e.g., for a new open-source987

benchmark).988

• The instructions should contain the exact command and environment needed to run to989

reproduce the results. See the NeurIPS code and data submission guidelines (https:990

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.991

• The authors should provide instructions on data access and preparation, including how992

to access the raw data, preprocessed data, intermediate data, and generated data, etc.993
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• The authors should provide scripts to reproduce all experimental results for the new994

proposed method and baselines. If only a subset of experiments are reproducible, they995

should state which ones are omitted from the script and why.996

• At submission time, to preserve anonymity, the authors should release anonymized997

versions (if applicable).998

• Providing as much information as possible in supplemental material (appended to the999

paper) is recommended, but including URLs to data and code is permitted.1000

6. Experimental Setting/Details1001

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-1002

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the1003

results?1004

Answer: [Yes]1005

Justification: In our experiments section 5, we present all the necessary details on the1006

data generation procedure and a description of the empirical results that are necessary for1007

understanding our findings. Additionally, a comprehensive overview of our experimental1008

design is presented in Appendix D.1009

Guidelines:1010

• The answer NA means that the paper does not include experiments.1011

• The experimental setting should be presented in the core of the paper to a level of detail1012

that is necessary to appreciate the results and make sense of them.1013

• The full details can be provided either with the code, in appendix, or as supplemental1014

material.1015

7. Experiment Statistical Significance1016

Question: Does the paper report error bars suitably and correctly defined or other appropriate1017

information about the statistical significance of the experiments?1018

Answer: [Yes]1019

Justification: We report all our experimental results in the form of boxplots.1020

Guidelines:1021

• The answer NA means that the paper does not include experiments.1022

• The authors should answer "Yes" if the results are accompanied by error bars, confi-1023

dence intervals, or statistical significance tests, at least for the experiments that support1024

the main claims of the paper.1025

• The factors of variability that the error bars are capturing should be clearly stated (for1026

example, train/test split, initialization, random drawing of some parameter, or overall1027

run with given experimental conditions).1028

• The method for calculating the error bars should be explained (closed form formula,1029

call to a library function, bootstrap, etc.)1030

• The assumptions made should be given (e.g., Normally distributed errors).1031

• It should be clear whether the error bar is the standard deviation or the standard error1032

of the mean.1033

• It is OK to report 1-sigma error bars, but one should state it. The authors should1034

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis1035

of Normality of errors is not verified.1036

• For asymmetric distributions, the authors should be careful not to show in tables or1037

figures symmetric error bars that would yield results that are out of range (e.g. negative1038

error rates).1039

• If error bars are reported in tables or plots, The authors should explain in the text how1040

they were calculated and reference the corresponding figures or tables in the text.1041

8. Experiments Compute Resources1042

Question: For each experiment, does the paper provide sufficient information on the com-1043

puter resources (type of compute workers, memory, time of execution) needed to reproduce1044

the experiments?1045
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Answer: [Yes]1046

Justification: Details on the computer resources required for the experiments can be found1047

in Appendix D.3.1048

Guidelines:1049

• The answer NA means that the paper does not include experiments.1050

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,1051

or cloud provider, including relevant memory and storage.1052

• The paper should provide the amount of compute required for each of the individual1053

experimental runs as well as estimate the total compute.1054

• The paper should disclose whether the full research project required more compute1055

than the experiments reported in the paper (e.g., preliminary or failed experiments that1056

didn’t make it into the paper).1057

9. Code Of Ethics1058
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