
Published as a conference paper at COLM 2024

Logits of API-Protected LLMs Leak Proprietary Information

Matthew Finlayson Xiang Ren Swabha Swayamdipta
Thomas Lord Department of Computer Science
University of Southern California
{mfinlays, xiangren, swabhas}@usc.edu

Abstract

Large language model (LLM) providers often hide the architectural details
and parameters of their proprietary models by restricting public access
to a limited API. In this work we show that, with only a conservative as-
sumption about the model architecture, it is possible to learn a surprisingly
large amount of non-public information about an API-protected LLM from
a relatively small number of API queries (e.g., costing under $1000 USD
for OpenAI’s gpt-3.5-turbo). Our findings are centered on one key ob-
servation: most modern LLMs suffer from a softmax bottleneck, which
restricts the model outputs to a linear subspace of the full output space. We
exploit this fact to unlock several capabilities, including (but not limited
to) obtaining cheap full-vocabulary outputs, auditing for specific types of
model updates, identifying the source LLM given a single full LLM output,
and even efficiently discovering the LLM’s hidden size. Our empirical
investigations show the effectiveness of our methods, which allow us to
estimate the embedding size of OpenAI’s gpt-3.5-turbo to be about 4096.
Lastly, we discuss ways that LLM providers can guard against these attacks,
as well as how these capabilities can be viewed as a feature (rather than a
bug) by allowing for greater transparency and accountability.

1 Introduction

As large language models (LLMs) become more capable and valuable, many LLM providers
have shifted toward training closed-source production LLMs, accessible only via (paywall-
restricted) APIs to protect trade secrets (e.g., OpenAI et al., 2024). As a useful feature, these
APIs often allow users to access the probabilities (or logits, i.e., unnormalized scores) that
the LLM assigns to specific tokens. It turns out that such an interface reveals much more
information about the underlying model than previously thought, including exposing non-
public architectural details of the LLM. Closed APIs, therefore, may provide a false sense
of security to production LLM providers who may assume that their product information
is private. At the same time, these capabilities empower the community with tools to
audit LLM providers for bad behaviors such as unannounced model updates and abuse of
open-source LLMs (Mökander et al., 2023).

In this paper we show that is possible to extract detailed information about LLM parame-
terization using only common API configurations. Our findings are centered on one key
observation: most modern LLMs suffer from a softmax bottleneck (Yang et al., 2018), which
restricts the model outputs to a linear subspace of the full output space, as illustrated in
Figure 1. We call this restricted output space the LLM’s image (§2). This image can be
obtained by collecting a small number of LLM outputs, and serves as a unique identifier or
a signature for the model. We propose several algorithms that enable us to obtain the LLM
image at low cost and speed for standard LLM APIs (§3).

Furthermore, we show that LLM images are useful in several applications, revealing im-
portant information about the model architecture. Concretely, we can exploit this image
to provide an efficient algorithm for extracting full LLM outputs (§4), to find the hidden
dimension (embedding) size of the LLM (§5), to detect and identify different kind of updates
made to the model and to attribute model outputs to a specific model (§6), among other

1



Published as a conference paper at COLM 2024

Rd RvW
∆v

softmax

Figure 1: LLM outputs are constrained to a low-dimensional subspace of the full output
space. We can use this fact to glean information about API-protected LLMs by analyzing
their outputs. Here we show how a toy LLM’s low-dimensional embeddings in Rd (illus-
trated here as a 1-D space) are transformed linearly into logits in Rv (here, a 3D space) via
the softmax matrix W . The resulting outputs lie within a (d = 1)-dimensional subspace of
the output space. We call this low-dimensional subspace the image of the model. We can
obtain a basis for the image of an API-protected LLM by collecting d of its outputs. The
LLM’s image can reveal non-public information, such as the LLM’s embedding size, but it
can also be used for accountability, such as verifying which LLM an API is serving.

potential applications (§7). We demonstrate several of our proposed applications in order to
empirically verify their effectiveness. Notably, we design and implement an algorithm for
finding the embedding size of an API-based LLM, and use it to estimate the embedding size
of gpt-3.5-turbo (a closed-source API-protected LLM) to be 4096.

Overall, our proposed methods have benefits for both LLM providers and for their clients.
LLM providers may use their model images to establish unique identities for their models,
thereby protecting their product and building trust with clients. Our proposed methods will
also allow LLM clients to hold providers accountable for malicious behavior (Anderljung
et al., 2023). As a concrete use case in accountability, we demonstrate, using checkpoints from
open-source LLMs that our LLM images can be used to attribute LLM output probabilities
(or logits) to their generating model with high accuracy. The sensitivity of our LLM image
to slight changes in the LLM parameters also makes them suitable for inferring granular
information about the specific type of model update.

Considering several proposals to guard access to LLM images, we find no obvious fix
without dramatically altering the LLM architecture or making the API considerably less
useful (§8). Providers who choose to alter their API to prevent LLM image access risk
removing interfaces with valuable and safe use cases for LLM clients. Though our findings
could be viewed as a bug that LLM providers might feel compelled to patch, we prefer to
view them as features that LLM providers may choose to keep in order to better maintain trust
with their customers by allowing outside observers to audit their model. Ultimately, our
results serve as a recommendation to LLM providers to carefully consider the consequences
of their LLM architectures and APIs.

This paper’s contributions include

• A method for extracting information about API-protected models, including the
model’s output space and embedding size.

• Methods for extracting full-vocabulary logprob outputs from LLM APIs.
• An estimate of the embedding size of an API-protected LLM (gpt-3.5-turbo).
• An accelerated logprob extraction algorithm based on the LLM image.
• An exploration of several other applications of our method for model accountability.

Concurrently with our work, Carlini et al. (2024) propose a very similar approach for
exposing details of production LLMs, though with a focus on defenses and mitigations
against such attacks. The “final layer” that they extract in their attack corresponds to what
we refer to in our paper as the model image. We view our papers as complementary, since
our work emphasises practical applications of LLM images for better LLM accountability.

2



Published as a conference paper at COLM 2024

Karma is my

Input

Transformer MatMul

W ∈ Rv×d

Softmax matrix

Embedding

h ∈ Rd

SoftMax

Logits

ℓ ∈ Rv

0.6
0.2
0.1
0.1
0.0

Probabilities

p ∈ ∆v

boyfriend

queen

thought

breeze

acrobat

Figure 2: A typical language model architecture. After the input its processed by a neural
network, usually a transformer (Vaswani et al., 2017), into a low-dimensional embedding h,
it is multiplied by the softmax matrix W , projecting it linearly from Rd onto Rv to obtain
the logit vector ℓ. The softmax function is then applied to the logit vector to obtain a valid
probability distribution p over next-token candidates.

2 LLM outputs are restricted to a low-dimensional linear space

The outputs of typical LLMs are naturally constrained to lie on a d-dimensional subspace of
the full output space (Yang et al., 2018; Finlayson et al., 2024). To understand this, begin by
considering the architecture of a typical LLM (Figure 2). In this architecture, a transformer1

with embedding size d outputs a low-dimensional contextualized embedding h ∈ Rd (or
simply embedding). Projecting the embedding onto Rv via the linear map defined by the
LLM’s softmax matrix W , we obtain logits ℓ = Wh.
Theorem 1 (Low-rank logits). LLM logits lie on a d-dimensional subspace of Rv.

Proof. Because W is in Rv×d, its rank (i.e., number of linearly independent columns) is at
most d. The rank of a matrix corresponds to the dimension of the image of the linear map it
defines, i.e., the vector space comprising the set of possible outputs of the function. In other
words, if the linear map w is defined as w(h) = Wh, then w’s image im(w) = {w(h) ∈ Rv :
h ∈ Rd} is a d-dimensional subspace of Rv.

Thus, the LLM’s logits will always lie on the d-dimensional2 subspace of Rv.

The low-dimensional restriction of logits actually translates into a similar restriction on
LLM probabilities, which is useful since most LLM APIs return (log-)probabilities instead
of logits. To understand why this is, we turn our attention to the model’s next-token
distribution p = softmax(ℓ). The softmax function3 transforms logits into a valid probability
distribution, i.e., a v-tuple of real numbers between 0 and 1 whose sum is 1. The set of valid
probability distributions over v items is commonly referred to as the v-simplex, or ∆v.
Theorem 2 (Low-rank probabilities). LLM probabilities lie on a d-dimensional subspace of ∆v.

Proof. Perhaps surprisingly, ∆v is also a valid (v − 1)-dimensional vector space (albeit under
non-standard definitions of addition and scalar multiplication) and the softmax function is
a linear map Rv → ∆v (Aitchison, 1982; Leinster, 2016). Therefore, since dim(im(w)) = d,
we also know that im(softmax ◦w) is a d-dimensional subspace of ∆v.

Thus, LLM output probabilities must also reside in a d-dimensional subspace.

Finally, since ∆v is an unconventional vector space, it is useful to translate LLM proba-
bility distributions into a more conventional vector space. To do so, we use the fact that

1Technically, any neural network suffices here.
2More accurately, the logits will always lie on an at-most-d-dimensional subspace. For convenience,

we assume full-rank matrices, and thus a d-dimensional subspace.
3Our use of “softmax” here corresponds to temperature softmax with temperature 1.

3



Published as a conference paper at COLM 2024

Rv softmax(Rv) log softmax(Rv) clr (softmax(Rv))

Figure 3: Points in the logit space Rv (far left) are mapped via the softmax function to
points (probability distributions) on the simplex ∆v (middle left). Crucially, the softmax
maps all points that lie on the same diagonal (shown as points of the same color) to the
same probability distribution. For numerical stability, these values are often stored as
log-probabilities (middle right). The clr transform returns probability distributions to points
to a subspace Uv of the logit space (far right). The softmax function and clr transform are
inverses of one another, and form an isomorphism between Uv and ∆v.

∆v is isomorphic to a vector subspace of Rv via the softmax function. In particular, Fig-
ure 3 illustrates how ∆v is isomorphic to the hyperplane Uv that is perpendicular to the
all-ones vector 1v. The isomorphism’s inverse mapping ∆v → Uv is the center log ratio trans-
form clr(p) = log p − 1

v ∑v
i=1 log pi. By linearity, im(clr ◦ softmax ◦w) is a d-dimensional

subspace of Uv ⊂ Rv.

Thus, LLM outputs occupy d-dimensional subspaces of logit space Rv, probability space ∆v,
and Uv. We call these subspaces the image of the LLM on each given space. A natural
consequence this low-dimensionality is that any collection of d linearly independent LLM
outputs form a basis for the image of the model, i.e., all LLM outputs can be expressed as a
linear combination of these outputs.

3 Obtaining full outputs from API-protected LLMs

As explained in the previous section, in order to obtain the image of an LLM, we need
to collect outputs (token probabilites for each token in the vocabulary) from the LLM.
Unfortunately, most LLM APIs do not return full outputs, likely because full outputs are
large and expensive to send over an API, but perhaps also to prevent API abuse, since full
LLM outputs contain lots of useful information (Dosovitskiy and Brox, 2016; Morris et al.,
2023) and can be used to distill models (e.g., Hinton et al., 2015; Hsieh et al., 2023). In their
paper, Morris et al. (2023) give an algorithm for recovering full outputs from restricted APIs
by taking advantage of a common API option that allows users to add a bias term β ≤ βmax
to the logits for specific tokens. The algorithm they describe requires v log(β/ϵ) calls to
the API to obtain one full output with precision ϵ, or exactly v calls when the API returns
log-probabilities of the top-2 tokens. Carlini et al. (2024) also propose a logprob-free method
based on the same principle.

We give a variant of their algorithm for APIs that return the log-probability of the top-k
tokens that obtains full outputs in v/k API calls. We find that this improved algorithm
suffers from numerical instability, and give a numerically stable algorithm that obtains full
outputs in v/(k − 1) API calls. We also give a practical algorithm for dealing with stochastic
APIs that randomly choose outputs from a set of n possible outputs, a behavior we observe
in OpenAI’s API. This algorithm allows the collection of full outputs in nv/(k − 2) API calls
on average. Table 1 gives an overview of our algorithms with back-of-the envelope cost
estimates for a specific LLM.

3.1 Full outputs from APIs with logprobs

Our goal is to recover a full-vocabulary next-token distribution p ∈ ∆v from an API-
protected LLM. We will assume that the API accepts a prompt on which to condition the

4



Published as a conference paper at COLM 2024

Algorithm Complexity API calls per output Image price (USD)

Logprob-free (Morris et al., 2023) v log(βmax/ϵ) 800 000 16 384
With logprobs v/k 20 000 410
Numerically stable v/(k − 1) 25 000 512
Stochastically robust nv/(k − 2) 133 000 2724
LLM Image (§4) O(d) 800 –

Table 1: A summary of our proposed algorithms for obtaining full LLM outputs, with
estimates for the number of API calls required per output, and the price of acquiring the
model image. Estimates are based on a gpt-3.5-turbo-like API LLM with v = 100 000,
d = 4096, ϵ = 10−6, k = 5, βmax = 100, and n = 4. Note that the O(d) algorithm cannot be
used to obtain the LLM image, since it relies on having LLM image as a preprocessing step.

distribution, as well as a list of up to k tokens and a bias term β ≤ βmax to add to the logits
of the listed tokens before applying the softmax function. The API returns a record with
the k most likely tokens and their probabilities from the biased distribution. For instance,
querying the API with k maximally biased tokens, which (without loss of generality) we
will identify as tokens 1, 2, . . . , k, yields the top-k most probable tokens from the biased
distribution p′ = softmax(ℓ′) where

ℓ′i =
{
ℓi + βmax i ∈ {1, 2, . . . , k}
ℓi otherwise

(1)

and ℓ ∈ Rv is the LLM’s logit output for the given prompt.

Assuming that the logit difference between any two tokens is never greater than βmax, these
top-k biased probabilities will be p′1, p′2, . . . , p′k. For each of these biased probabilities p′i, we
can solve for the unbiased probability as

pi =
p′i

exp βmax − exp βmax ∑k
j=1 p′j + ∑k

j=1 p′j
(2)

(proof in the §A.1). Thus, for each API call, we can obtain the unbiased probability of k
tokens, and obtain the full distribution in v/k API calls.

3.2 Numerically stable full outputs from APIs

In practice, the algorithm described in §3.1 suffers from severe numerical instability, which
can be attributed to the fast-growing exponential term exp βmax, and the term ∑k

j=1 p′j
which quickly approaches 1. We can eliminate the instability by sacrificing some speed and
using a different strategy to solve for the unbiased probabilities. Without loss of generality,
let pv be the maximum unbiased token probability. This can be obtained by querying
the API once with no bias. If we then query the API and apply maximum bias only to
tokens 1, 2, . . . , 1 − k, then the API will yield p′1, p′2, . . . , p′k−1 and p′v. We can then solve for
the unbiased probabilities of the k − 1 tokens

pi = exp(log p′i − βmax − log p′v + log pv) (3)

(proof in §A.2). By finding k − 1 unbiased token probabilities with every API call, we obtain
the full output in v/(k − 1) calls total. Algorithm 1 gives a formal description of this method.

3.3 Full outputs from stochastic APIs

Each of the above algorithms assume that the API is deterministic, i.e., the same query will
always return the same output. However, this may not always be the case; for instance, we
find that OpenAI’s LLM APIs are stochastic. While this would seem to doom any attempt at
obtaining full outputs from the LLM, it is possible to counter certain types of stochasticity.
In particular, we model stochastic API behavior as a collection of n outputs p1, p2, . . . , pn

5



Published as a conference paper at COLM 2024

Algorithm 1 Our numerically stable probability extraction algorithm, which takes a set of
contexts, a set of tokens, and an API for an LLM with vocabulary V and returns the LLM’s
probabilities for each token in each context. The API takes a context and a set of token-bias
pairs and returns the top-k biased probabilities. P(S) denotes the power set of a set S.

function EXTRACT( contexts ⊆ V∗, tokens ⊆ V , API : V∗ ×P(V × R) → P(V × R) )
probs ∈ R|contexts|×|tokens| ▷ Initialize empty index to collect probabilities
for c ∈ contexts do

(v, pv) = argmax(i,p)∈API(c,∅) p ▷ Get top probability token
for each batch T ⊆ tokens with |T| = k − 1 do ▷ Partition tokens into batches

bias = {(i, β)}i∈T ▷ Set biases to β for batch tokens
{(v, p′v)} ∪ {(i, p′i)}i∈T = API(c, bias) ▷ Get biased probabilities
for i ∈ T do

probsc,i = exp(log p′i − β − log p′v + log pv) ▷ Get unbiased probability
end for

end for
end for
return probs

end function

from which the API randomly returns from. This might be the result of multiple instances
of the LLM being run on different hardware which results in slightly different outputs.
Whichever instance the API returns from determines which of the n outputs we get. In order
to determine which of the outputs the API returned from, let pi

v−1 be the second highest
token probability for output pi, and observe that log pi

v − log pi
v−1 = log pi′

v − log pi′
v−1 for

all outputs pi and biased outputs pi′ where tokens v and v − 1 are not biased (proof in §A.3).
Therefore, by biasing only k − 2 tokens for each call, the API will return pi′

v and pi′
v−1, which

we can use to find log pi
v − log pi

v−1, which serves as a unique identifier for the distribution.
Thus, after an average of nv/(k− 2) calls to the API we can collect the full set of probabilities
for at least one of the outputs.

4 Fast, full outputs using the LLM image

The dominating factor in runtime for the algorithms in §3 is the vocabulary size v, which can
be quite large (e.g., over 100 000 for OpenAI LLMs). We now introduce a preprocessing step
that takes advantage of the low-dimensional LLM output space to obtain O(d) versions of
all the above algorithms. Since d ≪ v for many modern language models, this modification
can result in multiple orders of magnitude speedups, depending on the LLM. For instance,
the speedup for a model like pythia-70m (Biderman et al., 2023) would be 100×. The key
to this algorithm is the observation from §2 that d linearly independent outputs from the
API constitute a basis for the whole output space (since the LLM’s image has dimension d).
We can therefore collect these outputs P =

[
p1 p2 · · · pd

]
∈ ∆d

v as a preprocessing step
in O(vd) API calls using any of the above algorithms and d unique prompts, and then use
these to reconstruct the full LLM output after only O(d) queries for each subsequent output.

To get a new full output p, use any of the above algorithms to obtain p1, p2, . . . , pd. Since
p resides in a d-dimensional space spanned by the columns of P, the rest of the values of
p are fully determined by these first d values. §B gives the details of how to solve for the
remaining values. Thus we can retrieve p in only O(d) API queries.

This (v/d)× speedup makes any method that relies on full model outputs significantly
cheaper so long as the number of model outputs needed exceeds d. Such methods include
model stealing (Tramèr et al., 2016; Krishna et al., 2019) which attempts to learn a model
that exactly replicates the behavior of a target model, and LM inversion (Morris et al., 2023)
which uses LLM outputs to reconstruct hidden prompts. Additionally, the preprocessing

6



Published as a conference paper at COLM 2024

Algorithm 2 Our algorithm for finding the model image and embedding size for an API-
protected LLM. To get the embedding size of the model without finding the image, extract
only the first t token probabilities at each step. With API caching this takes O(vd/k) time,
or O(d2/k) to only extract the embedding size.

function GETIMAGE( API : V∗ ×P(V × R) → P(V × R) )
for t = 1, 2, . . . do

Lt = clr (EXTRACT([t],V ,API)) ∈ Rt×|V| ▷ Get full logits for t contexts
if rank(Lt) = t − 100 then ▷ When the output rank stops increasing

return Lt−100 ▷ Return the model image. Embedding size is t − 100.
end if

end for
end function

0 0.5 1 1.5

·103

10−8

10−1

106

Index

Si
ng

ul
ar

va
lu

e

pythia-70m
d = 512

0 0.5 1 1.5

·103Index

pythia-160m
d = 768

0 0.5 1 1.5

·103Index

pythia-410m
d = 1024

0 2 4 6

·103Index

gpt-3.5-turbo
4096 ≤ d ≤ 4650

Figure 4: The singular values of outputs from LLMs with various known and unknown
embedding sizes d. For each model with known embedding size, there is a clear drop in
magnitude at singular value index d, indicating the embedding size of the model. Using
this observation, we can guess the embedding size of gpt-3.5-turbo to be 4096.

step can be computed once then shared between any number of clients, further diluting the
cost of full outputs.

5 Discovering the embedding size of API-protected LLMs

Assuming only the generic output layer described in Figure 2, it is possible to infer the
embedding size d of an API-protected LLM from its outputs alone. Since the model
outputs occupy a d-dimensional subspace of ∆v, collecting d linearly independent out-
puts p1, p2, . . . , pd from the LLM forms a basis for the LLM’s image. In other words,
subsequent model outputs will be a linear combination of the first d outputs. We can there-
fore discover the value of d by collecting outputs one at a time until the number of linearly
independent outputs in the collection (i.e., the rank) stops increasing, which will occur after
we have collected d prompts. We find that it suffices to slightly over-collect, e.g., d + 1000
outputs. Algorithm 2 formalizes this procedure.

To find the rank of model outputs, we use the fact that a matrix with d linearly independent
columns will have d non-zero singular values. We use singular value decomposition to
obtain the singular values of the matrix L =

[
clr(p1) clr(p2) · · · clr(pd+1000)

]
and

observe the index at which the magnitude of the singular values drops to zero, which occurs
at index d. In practice, numerical imprecision causes the magnitudes drop almost to zero.

To validate our method, we collect next-token distributions (conditioned on unique, 1-token
prompts) from several open-source LLMs from the Pythia family (Biderman et al., 2023)
with embedding sizes ranging from 512 to 1024. For all these models, the singular values of
the resulting output matrix drop precisely at index d, as shown in Figure 4.

7



Published as a conference paper at COLM 2024

0 0.2 0.4 0.6 0.8 1 1.2 1.4

·105

10−5

103

1011

Training step

R
es

id
ua

l
pythia-70m

pythia-70m-deduped

pythia-160m

Figure 5: Residuals of the least-squares solution of Lx = ℓ for an output ℓ from the
pythia-70m checkpoint at training step 120 000, and output matrices L from various Pythia
model checkpoints. High residuals indicate that the output is not in a model’s image.

To demonstrate our method’s effectiveness against API-protected LLMs, we use our algo-
rithm from §3.3 to collect nearly 6,000 next-token distribution outputs from gpt-3.5-turbo4,
a popular API-protected LLM whose embedding size is not publicly disclosed. We find
that this model’s singular values drop between index 4,600 and 4,650, indicating that the
embedding size of this model is at most this size. This predicted embedding size is some-
what abnormal, since LLM embedding sizes are traditionally set to powers of two. If this
were the case for gpt-3.5-turbo, it would be reasonable to guess that the embedding size
is 212 = 4096. We predict that our raw estimate of 4600–4650 is an overestimate of the
true embedding size, since any abnormal outputs due to errors (whether in our own code
or OpenAI’s) would only increase the dimensionality of the observed output space. For
instance, if we inadvertently collected 504 corrupted outputs, then a model with embedding
size 4096 would appear to have an embedding size of 4600.

Knowing the embedding size alone is insufficient to ascertain an LLM’s parameter count.
However, since most known transformer-based LLMs with embedding size 4096 have
around 7 billion parameters, it is likely that gpt-3.5-turbo has a similar number of active
parameters. Any other parameter count would result in either abnormally narrow or wide
models, which often perform worse. The actual parameter count may be much higher if
the model uses a “mixture-of-experts” architecture (Shazeer et al., 2017). Given the active
development and decreasing cost of inference with gpt-3.5-turbo, it is possible that its size
and architecture has changed over time. Fortunately, our method can be used to monitor
these updates over time, alerting end-users when LLM providers change embedding size
(and presumably therefore, model size).

6 Attributing model outputs and auditing model updates

An LLM image can serve as an identifying signature for the model, as shown in Figure 5,
where the logit output from a pythia-70m checkpoint lies uniquely in the checkpoint’s image,
and not in the image of the preceding or following checkpoints, nor the checkpoints of any
other similar model.5 This suggests that LLM images are highly sensitive to parameter
changes, which makes sense because the intersection of two different d-dimensional spaces
is an even lower-dimensional space. Thus, it is possible to determine precisely which LLM
produced a particular full-vocabulary output using only API access to a set of LLMs, and
notably, without knowing the exact inputs to the model.

This finding has implications for LLM auditing (Mökander et al., 2023), such as obtaining
granular information about updates to API-protected LLMs. For instance, if the LLM image
remains the same but the logit outputs change, this would indicate a partial model update
where some part of the model changes but the softmax matrix remains the same. This
might happen when the LLM has a hidden prefix added to all prompts and this hidden
prefix changes, or when some part of the model was updated while leaving the softmax

4We specifically use model version 0125, accessed February 1–19, 2024.
5Open source models with detailed checkpoint information (e.g., Biderman et al., 2023; Liu et al.,

2023) make this type of detailed analysis possible.

8



Published as a conference paper at COLM 2024

Change Interpretation

No logit change, no image change No update
Logit change, no image change Hidden prompt change or partial finetune
Low-rank image change (§7.1) LoRA update
Image change Full finetune

Table 2: Implications of image/logit changes.

matrix unchanged. Table 2 gives an overview for how to interpret various combinations of
detectable API changes.

Using the same principle, one can also detect malicious use of open-source LLMs. If a
provider attempts to profit off of an open-source model with a non-commercial license, an
auditor can reveal the scheme by checking the LLM image, even if the provider used a
hidden prompt to mask the model identity. It would be unlikely for images of two different
LLMs to match, unless purposely designed to do so. Note that this test is one-sided, and
malicious providers may slightly fine-tune an LLM to avoid detection.

7 More Applications

Access to the LLM’s image unlocks several additional capabilites, some of which we review
below. We leave further investigation of these methods for future work.

7.1 Detecting LoRA updates

Access to the LLM image can afford even finer granularity insight into LLM updates. For
instance, as LoRA (Hu et al., 2022) is a popular parameter-efficient fine-tuning method
which adjusts model weights with a low-rank update AB where A ∈ Rv×r and B ∈ Rr×d

so that the softmax matrix W ∈ Rv×d becomes W + AB. It may be possible to detect these
types of updates by collecting LLM outputs before (L ∈ Rv×d) and after (L′ ∈ Rv×d) the
update and decomposing them as W H = L and (W + AB)H ′ = L′ where H, H ′ ∈ Rd×d. If
such a decomposition is found then it is likely that the weights received a low-rank update.
We leave it to future work to find an efficient algorithm for this decomposition.

7.2 Finding unargmaxable tokens

Due to the low-rank constraints on LLM outputs, it is possible that some tokens become
unargmaxable (Demeter et al., 2020; Grivas et al., 2022), i.e., the token always has less
probability than some other token. This happens when the LLM’s embedding representation
of the token lies within the convex hull of the other tokens’ embeddings. Previously, finding
unargmaxable tokens appeared to require full access to the softmax matrix W , however, it is
possible to identify unargmaxable tokens using only the LLM’s image, which our method is
able to recover. This technique allows API clients to find tokens that the model is unable to
output and thereby elicit unexpected model behavior.

7.3 Recovering the softmax matrix from outputs

One might use the image to approximately reconstruct the output layer parameters. We
hypothesize that LLM embeddings generally lie near the surface of a hypersphere in Rd

with a small radius r. We see evidence of this in the fact that the Pythia LLM embedding
norms are all small and roughly normally distributed, as shown in Figure 6 in the Appendix.
We can attempt to recover W up to a rotation by assuming that all embeddings must have
unit magnitude, then, given a matrix L ∈ Rn×v of model logits, we can find W (up to a
rotation) by finding a decomposition W H = L such that for all i, ∥Wi∥2 = 1. This solution
may also be approximated by finding the singular value decomposition WΣV⊤ of L, though
rows of this W will have magnitude less than 1.

9



Published as a conference paper at COLM 2024

7.4 Basis-aware sampling

In a recent paper, Finlayson et al. (2024) propose a decoding algorithm that avoids type-I
sampling errors by identifying tokens that must have non-zero true probability. Importantly,
this method relies on knowing the basis of the LLM’s output space, and is therefore only
available for LLMs whose image is known. Our approach for finding the model image
makes this decoding algorithm possible for API LLMs.

8 Mitigations

We consider three proposals that LLM providers may take to guard against our methods.
The first proposal is to limit or entirely remove API access to logprobs. This is theoretically
insufficient, as Morris et al. (2023) show that it is possible to obtain full outputs using
only information about the biased argmax token, albeit inefficiently in v log(β/ϵ) API calls.
Providers may rely on the extreme inefficiency of the algorithm to protect the LLM, as
OpenAI appeared to do in response to Carlini et al. (2024). However, our algorithm in §4
brings the cost down to a feasible O(d log(β/ϵ)) API calls per output once the initial work
of finding the LLM image finishes, the result of which can be made public and reused.

The second proposal is to remove API access to logit bias. This would be effective, since
there are no known methods to recover full outputs from such an API. However, logit bias
has several useful applications, such as for blocking undesirable tokens and controlling text
generation, and making such a restriction could seriously degrade the usefulness of the API.

Lastly, we consider alternative LLM architectures that do not suffer from a softmax bottle-
neck. There are several such proposed architectures with good performance (e.g., Xue et al.,
2021; Yu et al., 2023; Wang et al., 2024). Though this is the most expensive of the proposed
defenses, due to the requirement of training a new LLM, it would have the beneficial side
effect of also treating other tokenization issues that plague large-vocabulary LLMs (e.g.,
Itzhak and Levy, 2022). A transition to softmax-bottleneck-free LLMs would fully prevent
our attack, since the model’s image would be the full output space.

9 Conclusion

We have shown how the low-rank constraints imposed by the softmax bottleneck expose
non-public information about API-protected LLMs. We also demonstrated how this infor-
mation can be used to efficiently extract full model outputs, expose model hyperparameters,
function as a unique model signature for auditing purposes, and even detect specific types
of model updates, among other uses. We find that some current protections against these
attacks are insufficient, and that the more effective guards tend to inhibit sanctioned API
use cases (i.e., logit bias), or are expensive to implement (i.e., changing model architecture).

Overall, we find that the benefits of our proposed methods outweigh the harms to LLM
providers. For instance, allowing LLM API users to detect model changes builds trust
between LLM providers and their customers, and leads to greater accountability and
transparency for the providers. Our method can also be used to implement efficient protocols
for model auditing without exposing the model weights. On the other hand, discovering
the embedding size of the LLM does not enable a competitor to fully recover the parameters
of the LLM’s softmax matrix or boost performance of their own model. Even efficiently
extracting full outputs for model stealing or inversion (§4) is unlikely to have detrimental
effects, as these are already known threats and are only made more efficient by our methods.
We therefore believe that our proposed methods and findings do not necessitate a change
in LLM API best practices, but rather expand the tools available to API customers, while
informing LLM providers of what information their APIs expose.

References
J. Aitchison. The statistical analysis of compositional data. Journal of the Royal Statis-

tical Society: Series B (Methodological), 44(2):139–160, 1982. doi: https://doi.org/10.

10



Published as a conference paper at COLM 2024

1111/j.2517-6161.1982.tb01195.x. URL https://rss.onlinelibrary.wiley.com/doi/abs/
10.1111/j.2517-6161.1982.tb01195.x. 2

Markus Anderljung, Everett Thornton Smith, Joe O’Brien, Lisa Soder, Benjamin Bucknall,
Emma Bluemke, Jonas Schuett, Robert Trager, Lacey Strahm, and Rumman Chowdhury.
Towards publicly accountable frontier llms: Building an external scrutiny ecosystem
under the aspire framework, 2023. URL https://arxiv.org/abs/2311.14711. 1

Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle
O’Brien, Eric Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai
Prashanth, Edward Raff, et al. Pythia: A suite for analyzing large language models
across training and scaling. In International Conference on Machine Learning, pages 2397–
2430. PMLR, 2023. 4, 5, 5

Nicholas Carlini, Daniel Paleka, Krishnamurthy Dj Dvijotham, Thomas Steinke, Jonathan
Hayase, A. Feder Cooper, Katherine Lee, Matthew Jagielski, Milad Nasr, Arthur Conmy,
Eric Wallace, David Rolnick, and Florian Tramèr. Stealing part of a production language
model, 2024. 1, 3, 8

David Demeter, Gregory Kimmel, and Doug Downey. Stolen probability: A structural weak-
ness of neural language models. In Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel
Tetreault, editors, Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics, pages 2191–2197, Online, July 2020. Association for Computational Linguistics.
doi: 10.18653/v1/2020.acl-main.198. URL https://aclanthology.org/2020.acl-main.
198. 7.2

Alexey Dosovitskiy and Thomas Brox. Inverting visual representations with convolutional
networks. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 4829–4837, 2016. doi: 10.1109/CVPR.2016.522. 3

Matthew Finlayson, John Hewitt, Alexander Koller, Swabha Swayamdipta, and Ashish
Sabharwal. Closing the curious case of neural text degeneration. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?id=
dONpC9GL1o. 2, 7.4

Andreas Grivas, Nikolay Bogoychev, and Adam Lopez. Low-rank softmax can have
unargmaxable classes in theory but rarely in practice. In Proceedings of the 60th An-
nual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages
6738–6758, Dublin, Ireland, May 2022. Association for Computational Linguistics. doi:
10.18653/v1/2022.acl-long.465. URL https://aclanthology.org/2022.acl-long.465. 7.2

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network.
In Proc. of NeurIPS, 2015. URL https://arXiv.org/abs/1503.02531. 3

Cheng-Yu Hsieh, Chun-Liang Li, Chih-kuan Yeh, Hootan Nakhost, Yasuhisa Fujii, Alex
Ratner, Ranjay Krishna, Chen-Yu Lee, and Tomas Pfister. Distilling step-by-step! out-
performing larger language models with less training data and smaller model sizes. In
Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki, editors, Findings of the Association
for Computational Linguistics: ACL 2023, pages 8003–8017, Toronto, Canada, July 2023.
Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-acl.507. URL
https://aclanthology.org/2023.findings-acl.507. 3

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In
International Conference on Learning Representations, 2022. URL https://openreview.net/
forum?id=nZeVKeeFYf9. 7.1

Itay Itzhak and Omer Levy. Models in a spelling bee: Language models implicitly learn the
character composition of tokens. In Marine Carpuat, Marie-Catherine de Marneffe, and
Ivan Vladimir Meza Ruiz, editors, Proceedings of the 2022 Conference of the North Ameri-
can Chapter of the Association for Computational Linguistics: Human Language Technologies,

11

https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1982.tb01195.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1982.tb01195.x
https://arxiv.org/abs/2311.14711
https://aclanthology.org/2020.acl-main.198
https://aclanthology.org/2020.acl-main.198
https://openreview.net/forum?id=dONpC9GL1o
https://openreview.net/forum?id=dONpC9GL1o
https://aclanthology.org/2022.acl-long.465
https://arXiv.org/abs/1503.02531
https://aclanthology.org/2023.findings-acl.507
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9


Published as a conference paper at COLM 2024

pages 5061–5068, Seattle, United States, July 2022. Association for Computational Lin-
guistics. doi: 10.18653/v1/2022.naacl-main.373. URL https://aclanthology.org/2022.
naacl-main.373. 8

Kalpesh Krishna, Gaurav Singh Tomar, Ankur P. Parikh, Nicolas Papernot, and Mohit Iyyer.
Thieves on sesame street! model extraction of bert-based apis. ArXiv, abs/1910.12366,
2019. 4

Tom Leinster. How the simplex is a vector space. https://golem.ph.utexas.edu/category/
2016/06/how_the_simplex_is_a_vector_sp.html, 2016. Accessed: 2024-03-12. 2

Zhengzhong Liu, Aurick Qiao, Willie Neiswanger, Hongyi Wang, Bowen Tan, Tianhua
Tao, Junbo Li, Yuqi Wang, Suqi Sun, Omkar Pangarkar, Richard Fan, Yi Gu, Victor
Miller, Yonghao Zhuang, Guowei He, Haonan Li, Fajri Koto, Liping Tang, Nikhil Ranjan,
Zhiqiang Shen, Xuguang Ren, Roberto Iriondo, Cun Mu, Zhiting Hu, Mark Schulze,
Preslav Nakov, Tim Baldwin, and Eric P. Xing. Llm360: Towards fully transparent open-
source llms, 2023. 5

John X. Morris, Wenting Zhao, Justin T Chiu, Vitaly Shmatikov, and Alexander M. Rush.
Language model inversion. ArXiv, abs/2311.13647, 2023. 3, 4, 8

Jakob Mökander, Jonas Schuett, Hannah Rose Kirk, and Luciano Floridi. Auditing large
language models: a three-layered approach. AI and Ethics, May 2023. ISSN 2730-5961. doi:
10.1007/s43681-023-00289-2. URL http://dx.doi.org/10.1007/s43681-023-00289-2. 1,
6

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Flo-
rencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, et al. Gpt-4
technical report, 2024. 1

Noam Shazeer, *Azalia Mirhoseini, *Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey
Hinton, and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-
of-experts layer. In International Conference on Learning Representations, 2017. URL https:
//openreview.net/forum?id=B1ckMDqlg. 5

Florian Tramèr, Fan Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart. Stealing
machine learning models via prediction apis. In USENIX Security Symposium, 2016. URL
https://api.semanticscholar.org/CorpusID:2984526. 4

Ashish Vaswani, Noam M. Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Neural In-
formation Processing Systems, 2017. URL https://api.semanticscholar.org/CorpusID:
13756489. 2

Junxiong Wang, Tushaar Gangavarapu, Jing Nathan Yan, and Alexander M. Rush. Mam-
babyte: Token-free selective state space model. ArXiv, abs/2401.13660, 2024. 8

Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale,
Adam Roberts, and Colin Raffel. Byt5: Towards a token-free future with pre-trained
byte-to-byte models. Transactions of the Association for Computational Linguistics, 10:291–306,
2021. 8

Zhilin Yang, Zihang Dai, Ruslan Salakhutdinov, and William W. Cohen. Breaking the
softmax bottleneck: A high-rank RNN language model. In ICLR, 2018. URL https:
//openreview.net/forum?id=HkwZSG-CZ. 1, 2

Lili Yu, Daniel Simig, Colin Flaherty, Armen Aghajanyan, Luke Zettlemoyer, and Mike
Lewis. Megabyte: Predicting million-byte sequences with multiscale transformers. In
A. Oh, T. Neumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine, editors, Ad-
vances in Neural Information Processing Systems, volume 36, pages 78808–78823. Curran
Associates, Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/f8f78f8043f35890181a824e53a57134-Paper-Conference.pdf. 8

12

https://aclanthology.org/2022.naacl-main.373
https://aclanthology.org/2022.naacl-main.373
https://golem.ph.utexas.edu/category/2016/06/how_the_simplex_is_a_vector_sp.html
https://golem.ph.utexas.edu/category/2016/06/how_the_simplex_is_a_vector_sp.html
http://dx.doi.org/10.1007/s43681-023-00289-2
https://openreview.net/forum?id=B1ckMDqlg
https://openreview.net/forum?id=B1ckMDqlg
https://api.semanticscholar.org/CorpusID:2984526
https://api.semanticscholar.org/CorpusID:13756489
https://api.semanticscholar.org/CorpusID:13756489
https://openreview.net/forum?id=HkwZSG-CZ
https://openreview.net/forum?id=HkwZSG-CZ
https://proceedings.neurips.cc/paper_files/paper/2023/file/f8f78f8043f35890181a824e53a57134-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/f8f78f8043f35890181a824e53a57134-Paper-Conference.pdf


Published as a conference paper at COLM 2024

A Proofs

This appendix contains derivations for the equations used to solve for unbiased token
probabilities given biased LLM outputs.

A.1 Fast logprobs algorithm

Our goal is to prove

pi =
p′i

exp βmax − exp βmax ∑k
j=1 p′j + ∑k

j=1 p′j
(4)

Proof. We begin with the definition of the softmax function

p′i =
exp(ℓi + βmax)

∑k
j=1 exp(ℓj + βmax) + ∑v

j=k+1 exp ℓj
(5)

We then rearrange to obtain
v

∑
j=k+1

exp ℓj =
exp(ℓi + βmax)

p′i
−

k

∑
j=1

exp(ℓj + βmax), (6)

the left hand side of which is independent of the bias term, meaning it is equivalent to when
bmax = 0, i.e.,

exp ℓi
pi

−
k

∑
j=1

exp ℓj =
exp(ℓi + βmax)

p′i
−

k

∑
j=1

exp(ℓj + βmax). (7)

We can now rearrange

exp ℓi
pi

=
exp(ℓi + βmax)

p′i
−

k

∑
j=1

exp(ℓj + βmax) +
k

∑
j=1

exp ℓj (8)

pi =
exp ℓi

exp(ℓi+βmax)
p′i

− ∑k
j=1 exp(ℓj + βmax) + ∑k

j=1 exp ℓj

(9)

and expand

pi =
p′i exp ℓi

exp(ℓi + βmax)− p′i ∑k
j=1 exp(ℓj + βmax) + p′i ∑k

j=1 exp ℓj
(10)

=
p′2i exp(−βmax) exp(ℓi + βmax)

exp(ℓi + βmax)− p′i ∑k
j=1 exp(ℓj + βmax) + p′i exp(−βmax)∑k

j=1 exp(ℓj + βmax)
(11)

and finally simplify by multiplying the top and bottom of the right hand side by
1

∑k
j=1 exp(ℓj + βmax) + ∑v

j=k+1 exp ℓj
(12)

and which converts each term of the form exp(ℓi + bmax) to p′i, resulting in

pi =
p′2i exp(−βmax)

p′i − p′i ∑k
j=1 p′j + p′i exp(−βmax)∑k

j=1 p′j
(13)

=
p′i exp(−βmax)

1 − ∑k
j=1 p′j + exp(−βmax)∑k

j=1 p′j
(14)

=
p′i

exp βmax − exp βmax ∑k
j=1 p′j + ∑k

j=1 p′j,
(15)

which concludes the proof.

13



Published as a conference paper at COLM 2024

A.2 Numerically stable algorithm

The next proof is much simpler. Our goal is to prove

pi = exp(log p′i − βmax − log p′v + log pv). (16)

Proof. We begin with four facts

pi =
exp ℓi

∑v
j=1 exp ℓj

p′i =
exp ℓ′i

∑v
j=1 exp ℓ′j

pv =
exp ℓv

∑v
j=1 exp ℓj

p′v =
exp ℓv

∑v
j=1 exp ℓ′j

(17)

which follow from the definition of softmax. Combining these, we have

pi
exp ℓi

=
pv

exp ℓv
and

p′i
exp ℓ′i

=
p′v

exp ℓv
. (18)

Combining these again, we get

pi
pv exp ℓi

=
p′i

p′v exp ℓ′i
, (19)

which we can rearrange to obtain

p′v pi
p′i pv

=
exp ℓi
exp ℓ′i

. (20)

Next, we use the fact that exp ℓ′i = exp βmax exp ℓ to get

p′v pi
p′i pv

= exp(−βmax) . (21)

which we can take the log of, rearrange, and exponentiate to achieve our goal

pi = exp(log p′i − βmax − log p′v + log pv). (22)

A.3 Stochastically robust algorithm

We would like to derive

log pv − log pv−1 = log p′v − log p′v−1. (23)

Proof. Using our result from §A.2, we have

pi = exp(log p′i − βmax − log p′v + log pv) (24)

pi = exp(log p′i − βmax − log p′v−1 + log pv−1). (25)

Simply setting the right hand sides equal to one another, taking the log of both sides, then
subtracting identical terms from both sides gives us our goal.

B Solving for full outputs using the LLM image

Given a matrix P ∈ ∆d
v whose columns span the LLM image, and p1, p2, . . . , pd, we can

solve for p ∈ ∆v. To do this, we will use the additive log ratio (alr) transform, which is an
isomorphism ∆v → Rv−1 and is defined as

alr(p) =
(

log
p2

p1
, log

p3

p1
, . . . , log

pv

p1

)
(26)

14



Published as a conference paper at COLM 2024

2.5 3 3.5 4 4.5 5 5.5 6 6.5
0

0.5

1

Embedding norm (L2)

Fr
eq

ue
nc

y

Figure 6: Softmax matrix row magnitudes (here from pythia-70m) are small and are dis-
tributed approximately normally within a narrow range.

to transform the columns of P and p into vectors in Rv−1, though since we only know the
first d values of p, we can only obtain the first d values of alr(p). Because the alr transform
is an isomorphism, we have that the columns of

alr(P) =
[
alr(p1) alr(p2) · · · alr(pd)

]
∈ R(v−1)×d (27)

form a basis for a d-dimensional vector subspace of Rv−1, and alr(p) lies within this sub-
space. Therefore, there is some x ∈ Rd such that alr(P)x = alr(p). To solve for x, all that is
required is to find the unique solution to the first d rows of this system of linear equations

alr(p1)1 alr(p2)1 · · · alr(pd)1
alr(p1)2 alr(p2)2 · · · alr(pd)2

...
...

. . .
...

alr(p1)d alr(p2)d · · · alr(pd)d




x1
x2
...

xd

 =


alr(p)1
alr(p)2

...
alr(p)d

 . (28)

After finding x, we can reconstruct the full LLM output p = alr−1(alr(P)x), where the
inverse alr function is defined as

alr−1(x) =
1

1 + ∑v−1
i=1 exp xi

· (1, exp x1, exp x2, . . . , exp xv−1) . (29)

15


	Introduction
	LLM outputs are restricted to a low-dimensional linear space
	Obtaining full outputs from API-protected LLMs
	Full outputs from APIs with logprobs
	Numerically stable full outputs from APIs
	Full outputs from stochastic APIs

	Fast, full outputs using the LLM image
	Discovering the embedding size of API-protected LLMs
	Attributing model outputs and auditing model updates
	More Applications
	Detecting LoRA updates
	Finding unargmaxable tokens
	Recovering the softmax matrix from outputs
	Basis-aware sampling

	Mitigations
	Conclusion
	Proofs
	Fast logprobs algorithm
	Numerically stable algorithm
	Stochastically robust algorithm

	Solving for full outputs using the LLM image

