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Abstract
Substantial quantity and high quality are the
golden rules of making a good training dataset
with sample privacy protection equally impor-
tant. Generating synthetic samples that resemble
high-quality private data while ensuring Differ-
ential Privacy (DP), a formal privacy guarantee,
promises scalability and practicality. However,
existing methods relying on pre-trained models
for data synthesis often struggle in data-deficient
scenarios, suffering from limited sample size, in-
evitable generation noise and existing pre-trained
model bias. To address these challenges, we pro-
pose a novel contrAstive private data Synthesis
via Weighted multiple Pre-trained language mod-
els (PLM) framework, named as WASP. WASP
utilizes limited private samples for more accurate
private data distribution estimation via a Top-Q
voting mechanism, and leverages low-quality syn-
thetic samples for contrastive generation via col-
laboration among dynamically weighted multiple
pre-trained models. Extensive experiments on 6
well-developed datasets with 6 open-source and 3
closed-source PLMs demonstrate the superiority
of WASP in improving model performance over
diverse downstream tasks. Code is available at
https://github.com/LindaLydia/WASP.

1. Introduction
In the rapidly evolving landscape of AI models and AI
agents, the strength of both Large Language Models (LLMs)
and Small Task-specific Models (STMs) hinges on the abun-
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dance of high-quality training data (Budach et al., 2022;
Wang et al., 2024), of which only a limited amount of sam-
ples can be harnessed in practice. To further complicate
the issue, broad tasks across disciplines such as medical
record summarization (Rumshisky et al., 2016), chatbots
for personalized weight loss (Chew, 2022) and instruction-
following LLM fine-tuning (Yu et al., 2024) all rely on
high-quality private data collected from real users, which
inevitably incurs non-negligible privacy issues.

Differentially private synthetic data stands in as a promis-
ing remedy (Bommasani et al., 2019; Putta et al., 2023;
Flemings & Annavaram, 2024), by creating a new synthetic
dataset that resembles the real private dataset while preserv-
ing the privacy of each sample via guaranteeing Differential
Privacy (DP) (Dwork, 2006). There are two main lines
of research for generating DP synthetic datasets. The first
line of works (Mattern et al., 2022; Yue et al., 2023) intro-
duce DP Fine-tune Generator which involves fine-tuning a
Pre-trained Language Model (PLM) using DP-SGD (Abadi
et al., 2016). However, this practice is computationally inten-
sive and requires substantial data for effective fine-tuning.
Another line of work, Private Evolution (PE) (Lin et al.,
2024a; Xie et al., 2024; Hou et al., 2024; Lin et al., 2025),
relieves the fine-tuning requirement and instead merely uses
the APIs of pre-trained models for generation, under DP-
protected guidance from private samples. This API-based
nature is efficient in creating DP synthetic data, and can
leverage both open-source and closed-source pre-trained
models, making PE a more applicable solution compared to
its counterparts.

Although proven effective, current PE methods (Lin et al.,
2024a; Xie et al., 2024; Hou et al., 2024; Lin et al., 2025),
still face three major challenges: (1) Limited Private Sam-
ples. Existing PE methods rely on at least thousands of
private samples (Lin et al., 2024a; Xie et al., 2024; Hou
et al., 2024) to guarantee reliable generation feedback se-
lection. In practice, however, data sources may provide
only a few hundred samples (Zdrazil et al., 2024; Ren et al.,
2019), leading to noisy selection guidance. As shown in Fig-
ure 1(a), with limited private samples (100), Aug-PE (Xie
et al., 2024) (PE for text) failed to generate synthetic samples
resembling real samples’ distribution for 3 PLMs (except
Flan-T5). Similar conclusion is drawn in Lin et al. (2024a)
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(a) (b)
Figure 1. (a) Comparison of the similarity of synthetic dataset to real private dataset (measured by FID (Heusel et al., 2017)) and STM
performance (numbers within parenthesis) of Aug-PE (Xie et al., 2024) (dotted lines) and our refinement with Top-Q voting (dashed lines)
under the same DP setting as in Table 1 with IMDb dataset. Lower FID indicates higher similarity. (b) The performance (accuracy) of the
STM trained using the generated synthetic dataset of Aug-PE using 100 private samples and under the same DP setting as in Table 1.

(see Table 2 therein). This calls for a more precise guid-
ance from limited private samples. (2) Noisy Synthetic
Data. Although PE approaches encourage the generation
of high-quality samples that are close to real private sample
distribution, low-quality noisy samples are still unavoidable
(see examples in Table 9 in Appendix C.1), which hinder the
final performance when training downstream models (Ye
et al., 2022; Gao et al., 2023; Zou et al., 2024). This high-
lights the the importance of instructing the avoidance of
generating noisy samples during data synthesis. (3) Risky
PLM Selection. As shown in Figure 1(a), different PLMs
yield varying performances (some with unsatisfactory re-
sults), and even the best performing model differs across
various downstream tasks (see Figure 1(b)), making it hard
to select the most suitable pre-trained model for a specific
task. Previous PE works primarily focus on single PLM
setting, thus the potential of collaboration among multiple
PLMs is still unexplored.

To address these demanding challenges, we propose WASP,
a collaborative framework that fuses the knowledge from
weighted multiple PLMs to synthesize DP data in a con-
trastive fashion. (1) To overcome private sample scarcity,
we first extend the voting mechanism for private distribution
estimation used in PE from Top-1 to Top-Q (Q > 1) with
decaying weights, in order to get a more accurate estimation
while guaranteeing private data DP. (2) To reduce noise,
we further leverage the previous voting results to select
both high-quality and low-quality samples, and incorpo-
rate a contrastive prompt containing both types of samples
to improve synthetic data quality by encouraging genera-
tion that is more aligned to high-quality samples and less
similar to low-quality ones. Notice that under multi-PLM
setting, these samples may originate from different PLMs.
(3) To mitigate model bias, we then interfuse the capabilities
of multiple PLMs with dynamically adjusted importance
weight for each PLM based on the ensemble votes from pri-
vate samples. The underlying principle is to assign higher
weights to PLMs that generate synthetic samples that are
closer to real samples on average. Operating in an iterative

fashion, the WASP framework can generate large quantity
of synthetic data that better approximate real private data
distribution while observing differential privacy. Notably,
this process incurs no additional API queries compared to
its single-PLM counterparts.

Our contributions are summarized as follows:

1) We introduce a privacy-preserving collaborative frame-
work WASP to facilitate collaboration between multiple
PLMs and private samples, especially benefiting scenarios
with limited private data.

2) Our proposed WASP leverages differentially private Top-
Q voting to improve the estimation of private distributions
using limited private samples. It generates higher-quality
data by contrasting high- and low-quality samples and dy-
namically assigns importance weights to PLMs, ensuring
that more capable PLMs of the specific task are prioritized.

3) Experiments on 7 well-defined natural language process-
ing tasks with 6 open-source and 3 closed-source PLMs
demonstrate the consistent superiority of WASP over exist-
ing methods, especially for challenging tasks.

2. Related Work
DP Synthetic Dataset. The goal of generating DP syn-
thetic data is to mimic private dataset while protecting sen-
sitive information. Although fine-tuning a PLM with DP-
SGD (Abadi et al., 2016) for data generation purpose can
be effective (Bommasani et al., 2019; Putta et al., 2023;
Flemings & Annavaram, 2024; Mattern et al., 2022; Yue
et al., 2023), it is computationally intensive and requires a
large number of high-quality private samples to reach strong
performance. Moreover, many state-of-the-art PLMs such
as GPT series (OpenAI, 2021; 2023; Hurst et al., 2024) are
also closed-source, making DP fine-tuning impractical.

A new line of work instead relies on generative APIs of
PLMs without fine-tuning, which focuses on either itera-
tive data synthesis under DP guidance (Lin et al., 2024a;
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Figure 2. Overview of WASP framework.

Zhao et al., 2024; Bojkovic & Loh, 2024) or creating DP
replica of a given large private dataset (Nagesh et al., 2024).
Given that requiring a large global dataset for synthetic
data initialization (Zhao et al., 2024) is hard to obtain in
most cases, Lin et al. (2024a) proposes a more practical
solution, Private Evolution (PE), which instead uses task-
related synthetic samples. In PE, private samples are used
to identify their nearest synthetic counterparts under DP
protection, which then guide the growth of the DP synthetic
dataset. PE is proven effective across images (Lin et al.,
2024a) and text (Xie et al., 2024), and is further adapted to
federated private data scenarios (Hou et al., 2024). However,
all these works primarily focus on using a single PLM as
the generation model.

PLM Fusion. The combination of multiple PLMs can lead
to stronger model performance (Liu et al., 2024; Du et al.,
2023; Wan et al., 2024a;b; Li et al., 2024; Zou et al., 2024).
Some studies fine-tune target models with token-level fu-
sion from PLMs as teachers during training time (Wan et al.,
2024a;b), while others use majority voting (Li et al., 2024)
or logits averaging (Mavromatis et al., 2024) for knowledge
fusion during inference. However, data privacy challenges
persist, as training or test samples are exposed to external
models. To solve this, FuseGen (Zou et al., 2024) recently
proposes PLM fusion in a zero-shot learning setting, utiliz-
ing only model APIs to synthesize data without accessing
real private samples, thereby ensuring data privacy. How-
ever, by treating all PLMs equally, it overlooks the capability
difference of individual PLMs over different tasks.

More related works considering Contrastive In-context
Learning are included in Appendix F.

3. Preliminaries
Differential Privacy (DP). If two datasets D and D′ dif-
fer in a single entry, they are referred to as Neighboring

Datasets. A mechanism M satisfies (ϵ, δ)-DP if for any
neighboring datasets D,D′ and any output subset E of M,
it holds that (Dwork, 2006):

Pr[M(D) ∈ E] ≤ eϵ · Pr[M(D′) ∈ E] + δ. (1)

Note that post-processing on the output of (ϵ, δ)-DP does
not incur additional privacy loss (Dwork et al., 2014).

Gaussian Mechanism. Gaussian Mechanism (Dwork,
2006) can be applied to guarantee (ϵ, δ)-DP, for any ϵ >
0, δ ∈ (0, 1), by adding Gaussian noise following N (0, σ2)

to the transmitted statistics with σ = ∆

√
2 log(1.25/δ)

ϵ and
∆ being the sensitivity of M (Balle & Wang, 2018).

4. Methodology
4.1. Problem Definition

In this paper, we aim to generate a DP synthetic dataset
D = {(xi, yi)}Ni=1 of size N using a small number of pri-
vate data B = {(zj , uj)}Mj=1, where M denotes the number
of private samples, and zj , uj denote the feature and label of
the private sample j, respectively. We consider data-scarcity
setting where M is typically a few hundreds at most. To
achieve this, we harness the collaborative power of K black-
box PLMs {Pk}Kk=1 via APIs, while protecting private data
by Gaussian DP. For evaluation, we use D to train a Small
Task-specific Model (STM) m and evaluate model perfor-
mance on a test dataset A containing real samples that is
never used during training.

Note that our framework can be easily extended to the sce-
nario of distributed federated data where each data source
possesses an insufficient amount of private data and collab-
orates on private tasks with secure aggregation (Hou et al.,
2024). We present the related details in Section 4.7.
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4.2. Overall Workflow of WASP

The overall workflow of WASP is depicted in Figure 2 and
Algorithm 1, where four steps are taken iteratively for T
times. For a given task, the first iteration begins by prompt-
ing each PLM Pk with a zero-shot prompt, which describes
the task and category label, to generate a synthetic data
subset Dk of equal size Nk. These samples do not contain
information about B. The collective dataset D =

⋃K
k=1 Dk

is then voted by each private sample using a differentially
private Top-Q voting mechanism to identify high-quality
and low-quality synthetic samples based on their similarity
to the distribution of B. These samples are then used to
create a contrastive in-context learning prompt for the next
round of PLM generation. The voting results are further
exploit to dynamically adjust the importance weight wk for
each PLM Pk, which determines Nk of the next generation
round. The process repeats from here, expanding D with
DP synthetic samples. After T iterations, D is used to train
an STM m. For notational simplicity, we omit the iteration
index t, with D accumulated over iterations. DP guarantee
of WASP is given in Theorem 4.1 with proof included in
Appendix D.
Theorem 4.1. WASP (Algorithm 1) guarantees DP with DP
budget ϵ.

4.3. Weighted Parallel Data Synthesis

In this stage (lines 4-6 in Algorithm 1), each PLM Pk gen-
erates Nk = [(N/T )× wk] synthetic samples following:

xi ∼ Pk (·|T (yi)) , (2)

where {wk}Kk=1 are the weights for {Pk}Kk=1, [·] is the
rounding function, N is the expected total number of syn-
thetic samples to be generated, and T (·) is the generation
prompt. In the initial iteration, T (·) is a zero-shot prompt
that describes the task and provides category description,
with all PLMs receiving equal weights, i.e. {wk = 1

K }Kk=1.
For later iterations, T (·) is extended to a few-shot con-
trastive prompt (see Section 4.6) with in-context samples
selected in Section 4.4, and {wk}Kk=1 dynamically assigned
based on each PLM’s capability of the specific task (see Sec-
tion 4.5). The collective synthetic dataset D =

⋃K
k=1 Dk is

then sent to the private data party.

4.4. Differentially Private Top-Q Voting

As shown in Figure 1(a), with limited real private samples,
noisy estimations of the real private data distribution cause
the original PE algorithm to fail in generating synthetic
samples that resemble private data. Our aim is to improve
distribution estimations and generation guidance in this sce-
nario. To achieve this, unlike previous works (Lin et al.,
2024a; Xie et al., 2024; Hou et al., 2024) that assign only 1
vote per private sample, we propose a Top-Q voting mecha-

Algorithm 1 WASP
Input:
K PLMs {Pk}Kk=1 with empty synthetic dataset {Dk ← ∅}Kk=1;
1 data party with private dataset B of size M belonging to C
categories; number of in-context samples S; number of iterations
T taken to obtain in total N synthetic samples; initialized PLM
weights {wk = 1/K}Kk=1; learning rate η; DP privacy parameters
ϵ, δ, δiter; test dataset A; random initialized STM m(0).
Output: STM m.
1: Initialize in-context feedback samples D̂n ← ∅, D̂f ← ∅.
2: Calculate Gaussian noise σ = 4

√
2 log (1.25/δiter)

√
T−1

ϵ
.

3: for t = 0 to T − 1 do
4: for k = 1 to K in parallel do
5: Dk ← WeightedSynDataGeneration(Dk, D̂n, D̂f ,

[(N/T )× wk], C).
6: end for
7: D ← ∪K

k=1Dk.
8: Hn, Hf ← DP_PrivateVoting(D, B, Q, σ).
9: D̂n, D̂f ← SampleSelection(D, Hn, Hf , S, C).

10: {wk}Kk=1 ← PLMScoring(Hn, {Dk}Kk=1).
11: end for
12: m← STMTraining(D, m(0), η).

nism with decaying weights. This approach maximizes the
use of limited private samples by giving weighted votes to
the Top-Q nearest and furthest synthetic samples relative to
the private sample. Specially, we first compute the pair-wise
distance between each of the private samples (zj , uj) ∈ B
and each synthetic sample (xi, yi) ∈ D if they possess the
same label, i.e. yi = uj . Using ℓ2 distance as measurement,
we have:

d(zj ,xi) = ||φ(zj)− φ(xi)||2 ,
∀ j = 1, . . . ,M ; (xi, yi) ∈ D[uj ] ,

(3)

where φ denotes a pre-trained sentence embedding model
and D[uj ] denotes the subset of D which has a label that
equals to uj . Next, we use each private sample (zj , uj) ∈ B
to vote for its Top-Q nearest and Top-Q furthest synthetic
samples within D[uj ] based on Equation (3). The indices of
the synthetic samples selected by each (zj , uj) ∈ B are:

[nj,1, . . . , nj,Q]← arg topQSmallest
(
d(zj , xi)(xi,yi)∈D[uj ]

)
,

[fj,1, . . . , fj,Q]← arg topQLargest
(
d(zj , xi)(xi,yi)∈D[uj ]

)
.

(4)

where functions arg topQSmallest and arg topQLargest
return the indices of the Top-Q samples with the
smallest and largest d(zj , xi), respectively, with
nj,1, . . . , nj,Q, fj,1, . . . , fj,Q denoting the index of
selected samples. To utilize the relative ranking information,
as well as to guarantee a controllable function sensitivity
for DP protection, we assign decreasing voting weights
1, 1

2 , . . . ,
1

2Q−1 to each of the Top-Q selected samples when
producing the voting histograms, Nearest Histogram Hn
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and Furthest Histogram Hf . This can be formulated as:

Hn[nj,q]← Hn[nj,q] +
1

2q−1
, Hf [fj,q]← Hf [fj,q] +

1

2q−1

∀(zj , uj) ∈ B, ∀ q ∈ [1, . . . , Q],
(5)

with Hn, Hf each initialized as [0, . . . , 0] of length |D|.

To further guarantee (ϵ, δ)-DP for private sam-
ples, Gaussian noises following N (0, σ2) with

σ = 4

√
2 log (1.25/δiter)

√
T−1

ϵ are added to Hn, Hf :

Hn ← Hn +N (0, σ2I|D|), H
f ← Hf +N (0, σ2I|D|) , (6)

where I|D| represents the identity matrix of size |D| × |D|
and δiter < δ

(T−1) represents the DP hyper-parameter ap-
plied within each iteration.

Based on Hn, Hf , for each category c, we select low-
quality samples with the highest votes in Hf (largest dis-
tance to private samples in B), denoted as D̂f,[c], alongside
high-quality samples with the highest votes in Hn (nearest
to private samples in B), denoted as D̂n,[c], following:

H
n,[c]

=
{
H

n
[i]

∣∣ (xi, yi) ∈ D[c]
}
, H

f,[c]
=

{
H

f
[i]

∣∣ (xi, yi) ∈ D[c]
}
,

D̂n,[c]
=

{
(xi, yi) ∈ D[c] ∣∣Hn

[i] is among the top-S values of Hn,[c]
}
,

D̂f,[c]
=

{
(xi, yi) ∈ D[c] ∣∣Hf

[i] is among the top-S values of Hf,[c]
}
,

(7)

where S is the amount of samples to select and Hn,[c], Hf,[c]

denote the sets of the nearest and furthest voting results of
samples belonging to category c. D̂n =

⋃C
c=1 D̂n,[c], D̂f =⋃C

c=1 D̂f,[c] are the total sets of high- and low-quality sam-
ples respectively. Note that we do not limit the origin of
the selected samples, and synthetic samples generated by
different PLMs can all be included in D̂n and D̂f .

4.5. PLM Importance Weighting

Previous studies on API-based multi-PLM fusion (Li et al.,
2024; Zou et al., 2024) often treat involved PLMs equally.
However, as shown in Figure 1(b) and Figure 7 in Ap-
pendix E.2, different PLMs exhibit varying generation ca-
pabilities, leading to uneven synthetic data quality. This
encourages assigning customized weights for each PLM
to enhance their contributions. Therefore, we introduce a
PLM weighting strategy based on the quality of their gener-
ated synthetic data, which is measured by their similarity to
private samples.

Since the Nearest Histogram Hn obtained in Equation (5)
quantifies the similarity between each synthetic sample and
private samples, we simply aggregate the histogram values
of each synthetic sample with source PLM Pk to obtain
the weight wk of the PLM Pk for the upcoming generation

iteration. That is,

si =
Hn[i]∑|D|

i′=1 H
n[i′]

, wk =

∑
(xi,yi)∈Dk

si
|Dk|∑K

k′=1
|Dk′ |

=

∑
(xi,yi)∈Dk

si

|Dk|/|D|
.

(8)

4.6. Cross-PLM Contrastive In-context Learning (ICL)

Inspired by the observation that low-quality samples still
exist in DP synthetic dataset given by PE (see Table 9 in
Appendix C.1), we select cross-PLM contrastive samples
from D̂n and D̂f (obtained in Section 4.5), and use them
to create a contrastive task-related label-descriptive prompt
T (·) to perform cross-PLM contrastive ICL. T (·) describes
the task, provides category description, and contains explicit
contrastive instructions for high- and low-quality samples.
It contains the following sequential instructions: (1) ana-
lyze the difference between low- and high-quality samples;
(2) ensure the new sample is better in quality and closer
to real private distribution than the high-quality samples,
and is further away from the low-quality samples than the
high-quality samples; (3) generate a new sample which is
diverse in expression compared to the given high-quality
samples. Note that to improve the generation diversity, for
each generation we perform random sample selection to
draw 50% of samples respectively from D̂f,[c] and D̂n,[c]

to construct the final in-context samples for T (c). Also,
different from PE algorithms series, we choose not to vary
one existed synthetic sample each time, but to encourage
diverse sample generation using S demonstrations at once.
Prompt examples can be found in Table 8 in Appendix A.

4.7. WASP in Federated Data Setting

So far we have built our algorithms under single data-party
setting, which can be easily extended to federated data sce-
nario (Hou et al., 2024), where each data party possesses
an insufficient amount of private data and collaborates on
private tasks. This scenario is very common in the real
world, such as collaborations between medical companies.
In this setting, we consider L data parties {Cl}Ll=1, each
possessing a real private dataset Bl = {(zl,j , yl,j)}Ml

j=1 of
size Ml. These data parties aim to collaboratively generate
a DP synthetic dataset while preserving local data privacy.
The full algorithm is provided in Algorithm 2.

When extending to federated data setting, each party Cl uses
its local private samples in Bl to perform DP Top-Q vot-

ing with σ = 4

√
2 log (1.25/δiter)

√
T−1

ϵ
√
L

to guarantee privacy.
The produced local nearest and furthest voting histograms
{Hn

l }Ll=1, {H
f
l }Ll=1 are then securely aggregated (Bonawitz

et al., 2016) before sent to a central server following:

Hn ←
L∑

l=1

Hn
l , H

f ←
L∑

l=1

Hf
l . (9)
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Table 1. Evaluation of downstream STM accuracy using 6 PLMs, L = 1. Best and second best results are marked.

Privacy |B| |D| IMDb Yelp Openreview BankingCategory Rating Area Rating

OnlyPrivate ϵ =∞ 100 - 50.00 5.69 35.57 6.56 22.20 13.75

FuseGen Absolutely Private - 6, 000 89.07 63.38 57.96 24.70 34.57 78.75

DP-SGD
+Gen

GPT-2 ϵ = 4.0 100 6, 000 87.44 47.45 50.04 33.20 31.25 74.88
Llama-2 ϵ = 4.0 100 6, 000 84.63 62.14 49.95 28.23 28.45 79.75
Vicuna ϵ = 4.0 100 6, 000 84.93 62.99 57.46 31.17 23.48 78.75
OPT ϵ = 4.0 100 6, 000 81.47 62.61 55.68 34.57 22.00 75.75

ChatGLM3 ϵ = 4.0 100 6, 000 83.17 52.99 45.79 34.60 33.99 84.38
Flan-T5 ϵ = 4.0 100 6, 000 89.14 58.59 60.85 33.52 35.35 78.13

Aug-PE

GPT-2 ϵ = 4.0 100 6, 000 85.38 62.33 45.28 31.45 24.12 75.63
Llama-2 ϵ = 4.0 100 6, 000 85.77 60.18 47.42 32.67 34.78 84.63
Vicuna ϵ = 4.0 100 6, 000 82.76 63.28 54.42 32.27 30.66 86.75
OPT ϵ = 4.0 100 6, 000 83.86 62.71 50.81 34.64 25.30 79.25

ChatGLM3 ϵ = 4.0 100 6, 000 85.82 55.06 55.17 33.81 32.49 88.50
Flan-T5 ϵ = 4.0 100 6, 000 89.00 62.06 58.69 34.54 35.42 81.25

WASP (Ours) ϵ = 4.0 100 6, 000 89.52 63.91 61.21 34.99 37.10 88.75

Table 2. Evaluation of downstream STM accuracy using 6 PLMs, L = 10. Best and second best results are marked.

Privacy |B| |D| IMDb Yelp Openreview BankingCategory Rating Area Rating

OnlyPrivate ϵ =∞ 300 - 50.00 5.90 38.76 8.86 23.55 16.75

FuseGen Absolutely Private - 6, 000 89.07 63.38 57.96 24.70 34.57 78.75

Pre-Text

GPT-2 ϵ = 4.0 300 6, 000 85.87 62.58 46.25 37.13 24.45 76.25
Llama-2 ϵ = 4.0 300 6, 000 86.09 60.20 51.11 34.24 36.24 85.38
Vicuna ϵ = 4.0 300 6, 000 83.52 64.11 54.76 36.38 30.88 86.13
OPT ϵ = 4.0 300 6, 000 83.98 63.65 52.44 37.67 24.73 79.75

ChatGLM3 ϵ = 4.0 300 6, 000 86.32 60.24 56.94 38.14 33.35 89.38
Flan-T5 ϵ = 4.0 300 6, 000 89.02 62.82 61.04 38.31 36.53 81.75

WASP (Ours) ϵ = 4.0 300 6, 000 89.65 64.34 61.46 40.47 37.60 89.63

We adopt an honest-but-curious threat model where the
server only has access to the aggregated histograms Hn and
Hf , but not individual ones. We also assume that all data
parties participate in the aggregation and therefore aims to
ensure sample-level (ϵ, δ)-DP of B (see Appendix D). Note
that, WASP can be easily extended to ensure user-level DP,
with discussions and results included in Appendix E.4.

5. Experiments
5.1. Settings

Models. In this work, 6 open-source PLMs and 3 closed-
source PLMs are considered. Open-source PLMs include
GPT-2-xl (GPT-2) (Radford et al., 2019), Llama-2-7b-chat-
hf (Llama-2) (Touvron et al., 2023), Vicuna-7b-1.5v (Vi-
cuna) (Chiang et al., 2023), OPT-6.7b (OPT) (Zhang et al.,
2022), ChatGLM3-6b-base (ChatGLM3) (Du et al., 2022),
and Flan-T5-xl (Flan-T5) (Chung et al., 2022). Close-source

PLMs include GPT-3.5-turbo-instruct (GPT-3.5) (OpenAI,
2021), GPT-4-turbo-preview (GPT-4) (OpenAI, 2023), and
GPT-4o (Hurst et al., 2024). For STM, we use pre-trained
bert-base-uncased (BERT) model and further fine-tune it on
downstream classification tasks using D. We use sentence-
t5-base (Ni et al., 2022) as the embedding model φ.

Datasets. We evaluate on 6 widely used tasks: 1)
IMDb (Maas et al., 2011) (2 categories) for movie-review
semantic analysis task; 2) Yelp-Category (Inc. Yelp, 2015)
(10 categories) for business-review item field classification
task; 3) Yelp-Rating (Inc. Yelp, 2015) (5 categories) for
business-review rating classification task; 4) Openreview-
Category (Xie et al., 2024) (12 categories) for paper-
review classification by research area task; 5) Openreview-
Rating (Xie et al., 2024) (5 categories) for paper-review
classification by review rating task; and 6) Banking (10 cat-
egories selected from Banking77 (Casanueva et al., 2020))
for online-banking queries field classification task. B is
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Table 3. Evaluation of downstream STM accuracy using 3 closed-
source PLMs, L = 1 with the same DP setting in Table 1. Best
and second best results are marked.

Only
Private FuseGen Aug-PE WASP

(Ours)GPT-3.5 GPT-4 GPT-4o

Yelp-Rating 35.57 61.36 60.90 61.02 62.06 64.48

(a) Effect of K (b) Pair-wise Comparison

Figure 3. Evaluation of downstream STM accuracy using Yelp-
Rating dataset with K = 1, 2, 3 closed-source PLMs, L = 1. The
same DP setting is applied as in Table 1. In (b), results on the
diagnose are single-PLM performance (K = 1) and others are
pair-wise performance (K = 2).

randomly drawn from the training sets of these datasets with
their test sets used to evaluate trained STM.

Baselines. We compare the WASP framework to 5 base-
lines: 1) Aug-PE (Xie et al., 2024), the original PE al-
gorithm specialized for text modality; 2) Pre-Text (Hou
et al., 2024), which applies PE to federated private data
setting; 3) OnlyPrivate, the centralized training method re-
lying merely on B without DP (ϵ = ∞), which provides
a performance upper-bound of using no synthetic data; 4)
FuseGen (Zou et al., 2024), which generates synthetic data
in a zero-shot manner without accessing private samples;
5) DP-SGD+Gen (Yue et al., 2023) which first fine-tunes a
PLM using centralized private data under DP guarantee and
then exploit the fine-tuned model for synthetic data genera-
tion. “Absolutely Private” in result tables indicates that no
private sample in exploit during training.

Implementation Details. By default, we use 100 private
samples (M = 100) for main experiments. For federated
data (L > 1) scenario, we use L = 10 private data parties
which control 300 private samples (M =

∑10
l=1 |Bl| = 300)

altogether. To better align with real-world scenarios, each
participating data-party controls private datasets that are
non-i.i.d. to each other, and aggregate to an unbalanced
dataset. We follow Dirichlet Partition (Yurochkin et al.,
2019; Hsu et al., 2019; Zhang et al., 2023) to distribute pri-
vate samples to each party with parameter α = 1.0. For the
DP synthetic dataset, we generate a total of 6, 000 samples
from all participating PLMs within 5 iteration. Since the
first iteration does not use private sample information for

(a) Effect of K

(b) Pair-wise Comparison

Figure 4. Evaluation of downstream STM accuracy using IMDb
with K = 1, . . . , 6 open-source PLMs, L = 1. Other settings are
the same as in Figure 3.

feedback, only the last 4 iterations are sensitive to privacy.
By default, we use δiter = 1 × 10−5 in our experiments
and list only ϵ alongside the results. The notion of DP is
sample-level DP unless otherwise stated.

5.2. Main Results

Single Data Party Setting. Experimental results using
K = 6 open-source PLMs and 3 closed-source PLMs are
provided in Tables 1 and 3, which show that WASP outper-
forms all baseline methods across different tasks, demon-
strating its superiority. As expected, the closed-source
GPT series (see Table 3), being powerful models, outper-
form their open-source counterparts (see Table 1) when
using baseline method Aug-PE. As baseline method DP-
SGD+Gen requires training the PLM, which is inapplicable
on closed-source PLMs, we do not compare with this base-
line when using closed-source PLMs.

For all tasks, with limited private samples, DP-SGD+Gen
and Aug-PE performs poorly when using improper single
PLM, e.g. using OPT for IMDb and using ChatGLM3 for
Yelp-Category. Differently, WASP performs consistently
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Table 4. Comparison of downstream STM accuracy under w/ and
w/o Contrastive In-context Learning and Private Data Assisted
PLM Importance Weighting setting using 6 open-source PLMs,
L = 1 with the same DP setting as in Table 1. “w/o both” indicates
that both techniques are removed with only Top-Q Voting (Q = 8)
remaining. “OR-Rating” is short for “Openreview-Rating” dataset.

w/o both

w/o PLM
Contrastive
Prompting

w/o PLM
Importance
Weighting

WASP
(Ours)

IMDb 89.05 89.21 89.17 89.52
Yelp-Rating 58.72 59.65 58.94 61.21
OR-Rating 35.45 36.18 35.53 37.10

Table 5. Evaluation of downstream STM accuracy using 6 open-
source PLMs, L = 1 with the same DP setting as in Table 1 under
different Q.

Q = 1 Q = 2 Q = 4 Q = 8 Q = 16

IMDb 89.02 89.15 89.39 89.52 89.60
Yelp-Rating 58.74 58.92 59.24 61.21 61.42

well across tasks, and achieves a lower FID value compared
to baselines (see Figure 6 in Appendix E.1), verifying its
effectiveness under limited private sample setting. Also, the
best performing PLM varies across tasks for baselines, high-
lighting the arbitrary nature of PLM selection. In contrast,
WASP consistently achieves better performance across tasks,
making it PLM-agnostic without requiring prior-knowledge
for selecting specific PLMs for collaboration.

On the other hand, comparing with FuseGen, a baseline
under zero-shot setting where private samples are inacces-
sible, WASP leverages real private samples and utilizes a
more targeted PLM importance weighting method, there-
fore achieving better performance. Moreover, the notably
poor performance of “OnlyPrivate” shows that the trained
STM relying merely on private dataset B is nearly unusable,
even without applying DP during training which can further
degrade STM performance.

Federated Data Setting. We also conduct experiments
under distributed federated data setting, with L = 10
and M = 300 total number of private samples. As DP-
SGD+Gen requires fine-tuning the PLM in a data central-
ized manner, we do not compare with it under this setting.
Results in Table 2 show that WASP consistently achieves
better performance across different tasks and settings com-
pared to Pre-Text, a baseline designed for federated data.
This further demonstrates the effectiveness of WASP when
extended to federated data setting. Additional results on
communication cost comparison is given in Table 13 in Ap-
pendix E.6, where we show that the communication increase
caused by uploading additional histograms by our method
is minimal.

Figure 5. Comparison of downstream STM accuracy using differ-
ent number of private samples (M ) from the training set of IMDb
and Yelp-Rating datasets using 6 open-source PLMs, L = 1 with
the same DP setting as in Table 1.

Table 6. Evaluation of downstream STM accuracy using 6 open-
source PLMs, L = 1 under different DP budget setting with
δiter = 1× 10−5. The best performing PLM is used for Aug-PE
evaluation, i.e. Flan-T5 for both tasks.

ϵ =∞ ϵ = 8.0 ϵ = 4.0 ϵ = 1.0

IMDb WASP 89.96 89.77 89.52 89.36
Aug-PE 89.48 89.23 89.00 88.72

Yelp-
Rating

WASP 62.02 61.54 61.21 60.94
Aug-PE 59.62 59.12 58.69 58.59

5.3. Ablation Studies

# PLMs (K). We first study the impact of the number of
PLMs (K) on the final STM performance. Results of using
1, 2, 3 closed-source PLMs and 1, . . . , 6 open-source PLMs
under L = 1 and the same DP setting as in Table 1 are
reported in Figures 3(a) and 4(a) respectively. We can see
that the performance of m increases simultaneously with
the increase of K while the randomness (STD) decreases.
This indicates that the randomness in the performance of the
synthetic dataset can be mitigated by incorporating more
PLMs into WASP, which simultaneously increases the per-
formance expectations.

In Figure 3(b), we further display the pair-wise combination
(K = 2) results of the 3 closed-source PLMs under L = 1
and the same DP setting as in Table 1. In this figure, any pair-
wise collaboration (K = 2) outperforms either participating
single-PLM alone (diagnose in Figure 3(b)), demonstrating
that WASP performs better using the whole set of avail-
able PLMs than using only a subset of them. This finding
is also verified by Figure 4(b) which shows results of the
pair-wise combination of 6 open-source PLMs. These find-
ings show that WASP’s improvements are PLM-agnostic,
independent of any single PLM’s inherent task capabilities.
Consequently, WASP effectively mitigates the risk of select-
ing the optimal PLM by harnessing the collective strengths
of all participating models.

Contrastive ICL & PLM Importance Weighting. To
evaluate the effectiveness of our proposed Contrastive In-
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Table 7. Evaluation of downstream STM performance (F1 score) using 6 open-source PLMs, L = 1 with natural language generation
task using SQuAD dataset with the same DP setting in Table 1. “G, L, V, O, C, F” represents PLM “GPT-2, Llama-2, Vicuna, OPT,
ChatGLM3, Flan-T5” respectively. Best and second best results are marked.

Only
Private FuseGen DP-SGD+Gen Aug-PE WASP

(Ours)G L V O C F G L V O C F

SQuAD 5.41 9.31 6.70 7.74 8.42 7.53 8.09 9.40 7.37 7.84 8.46 8.31 8.20 9.42 11.40

context Learning and PLM Importance Weighting methods,
we conduct ablation experiments to see how these com-
ponents impact the final STM performance. Results are
reported in Table 4. By removing Contrastive In-context
Learning (labeled as “w/o PLM Contrastive Prompting” in
Table 4), we only select high-quality samples for the prompt
(see Table 8) with the noise scale halved compared to WASP
to assure a fair comparison since the function sensitivity ∆
is halved (only Hn is calculated). This leads to a 0.31%
decrease in STM performance on the easier IMDb task, and
a much larger 1.56% and 0.92% decrease on the more chal-
lenging Yelp-Rating and Openreview-Rating tasks. This
highlights the importance of using low-quality samples as
feedback demonstrations to encourage the PLMs avoid gen-
erating low-quality DP synthetic samples.

On the other hand, by removing PLM Importance Weighting
(labeled as “w/o PLM Importance Weighting” in Table 4),
wk = 1/K within each generation iteration, indicating that
each PLM generates equal amount of samples across it-
erations. Similarly, results indicate a 0.35% decrease in
STM performance on the easier IMDb task and a 2.27% and
1.57% decline on the more challenging Yelp-Rating and
Openreview-Rating tasks. This underlines the effectiveness
of weighted aggregation of PLMs with varying degrees of
reliance on their capabilities for specific task. Furthermore,
these results demonstrate that by generating better DP syn-
thetic data, WASP is more effective than baselines when
faced with more challenging tasks.

# Votes (Q) by Each Private Sample. To better esti-
mate private sample distribution with limited private sam-
ples, WASP exploits each private sample by increasing the
amount of votes each private sample gives out (from Q = 1
in previous works to Q = 8). Here we investigate how the
change in Q impacts STM performance. Results in Table 5
indicate that STM performance improves with higher values
of Q, but the improvement diminishes at larger Q (Q > 8).
This underscores the strength of our idea in increasing the
utility of each private sample to achieve a more accurate pri-
vate sample distribution estimation, particularly in scenarios
with limited available private samples.

Sensitive Analysis of # Private Samples (M ). We also
investigate the impact of M on WASP. In Figure 5, we
compare the baseline Aug-PE method with WASP across
different values of M . Results show that WASP consistently

outperforms Aug-PE across different values of M for all
PLMs, and the performance gaps at smaller M values (M <
1000) are much greater, underscoring the effectiveness of
WASP in limited private data scenarios.

Different Private Budget (ϵ). As illustrated in Table 6,
STM performance using WASP gradually declines from
89.96% to 89.36% for IMDb and from 62.02% to 60.94%
for Yelp-Rating as the privacy budget ϵ decreases from
∞, 8.0, 4.0 to 1.0, similar to that of Aug-PE when using
the best performing single PLM for each task. This in-
dicates that WASP scales well with ϵ and maintains high
performance even under tight privacy constraints, just like
baseline method.

5.4. Generation Task

We also verify the effectiveness of our proposed WASP for
generation tasks in Table 7 using SQuAD dataset (Rajpurkar
et al., 2016) as the evaluation dataset. Table 7 shows that the
superiority of WASP remains for a more difficult question-
answering task.

6. Conclusion and Future Work
In this work, we introduce a novel DP synthetic data gen-
eration framework, WASP, which leverages the collabora-
tive capabilities of multiple PLMs to address real-world
scenarios with limited private samples, while observing
differential privacy. Extensive experiments across 6 tasks
demonstrate that WASP is highly effective, PLM-agnostic,
scalable with respect to privacy budgets, and superior in
challenging scenarios, making it a practical and scalable
solution for real-world applications.

Possible future work points to more precise sample-level
weighting or selection to further improve the quality of the
DP synthetic dataset, as well as verifying the effectiveness
of WASP on non-classification tasks.
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Impact Statement
This paper presents work whose goal is to advance differ-
entially private synthetic dataset generation via PLM APIs.
On the private sample side, since DP is guaranteed for the
private samples used throughout the process, we do not
identify any specific societal consequences that need to be
highlighted. However, for the PLMs, although accessed
through black-box APIs, we do not provide privacy guar-
antees for their training data in WASP and assume that the
target task and prompts used in WASP are benign. There-
fore, in real-world deployment, the privacy issues of the
PLMs should be further considered.
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A. Contrastive Prompts and Non-contrastive Prompts

Table 8. Prompt used for synthetic dataset generation. Due to clarity, we omit the words in the parentheses in the labels of Openreview-
Category and the attributes of Openreview-Rating.

Dataset (task) prompt type prompt label attribute

IMDb
(semantic analysis
of movie review)

w/o Contrastive “The movie review is: <sample_1>\nThe movie review is: <sample_2>\n...\nThe movie
review is: <sample_S>\n\nBased on the above movie reviews, a new movie review also in
<label> sentiment but diverse in the expression compared to the above given samples is: ”

positive / negative None

w/ Contrastive “A bad movie review is: <sample_1>\n...\nA bad movie review is: <sample_⌊S/2⌋>\nA
good movie review is: <sample_⌊S/2⌋+1>\n...\nA good movie review is: <sam-
ple_S\n\nBased on the above examples of bad and good movie reviews in <label> sentiment,
analyze the differences between the bad and good reviews. Generate a new positive movie
review that is diverse in expression compared to the given good reviews. Ensure that
the new review is further refined than the good reviews while maintaining the <label>
sentiment and clarity, making the good reviews appear to lie midway between the new
review and the bad reviews. The new <label> movie review is: ”

Yelp-Category
(field classification
of business review)

w/o Contrastive The business review is: <sample_1>\nThe business review is: <sample_2>\n...\nThe
business review is: <sample_S>\n\nBased on the above business reviews belonging to
the category of <label>, a new review for a business item also in the field of <label>
with rating <attribute> star(s) but diverse in the expression compared to the above given
samples is: ”

Arts & Entertainment /
Bars / Beauty & Spas /

Event Planning & Services /
Grocery / Health & Medical /

Home & Garden /
Hotels & Travel /

Restaurants / Shopping

1.0 / 2.0 / 3.0 /
4.0 / 5.0

w/ Contrastive A bad business review is: <sample_1>\n...\nA bad business review is: <sample_⌊S/2⌋>\nA
good business review is: <sample_⌊S/2⌋+1>\n...\nA good business review is: <sam-
ple_S\n\nBased on the above examples of bad and good business reviews belonging to the
category of <label>, analyze the differences between the bad and good reviews. Generate
a new review for a business item also in the field of <label> with rating <attribute> star(s)
but diverse in the expression compared to the given good reviews. Ensure that the new
review is further refined than the good reviews while maintaining clarity, making the good
reviews appear to lie midway between the new review and the bad reviews. The new
business review in the field of <label> is: ”

Yelp-Rating
(rating classification
of business review)

w/o Contrastive The business review is: <sample_1>\nThe business review is: <sample_2>\n...\nThe
business review is: <sample_S>\n\nBased on the above business reviews with rating
<label> star(s), a new review for a business item in the field of <attribute> also with rating
<label> star(s) but diverse in the expression compared to the above given samples is: ”

1.0 / 2.0 / 3.0 /
4.0 / 5.0

Arts &
Entertainment /

Bars /
Beauty & Spas /
Event Planning

& Services /
Grocery /

Health & Medical /
Home & Garden /
Hotels & Travel /

Restaurants /
Shopping

w/ Contrastive A bad business review is: <sample_1>\n...\nA bad business review is: <sample_⌊S/2⌋>\nA
good business review is: <sample_⌊S/2⌋+1>\n...\nA good business review is: <sam-
ple_S\n\nBased on the above examples of bad and good business reviews with rating
<label> star(s), analyze the differences between the bad and good reviews. Generate a
new review for a business item in the field of <attribute> also with rating <label> star(s)
but diverse in the expression compared to the above given good reviews. Ensure that the
new review is further refined than the good reviews while maintaining clarity, making the
good reviews appear to lie midway between the new review and the bad reviews. The new
business review with rating <label> star(s) is: ”

Openreview-Category
(field classification

of paper review)

w/o Contrastive The paper review is: <sample_1>\nThe paper review is: <sample_2>\n...\nThe paper
review is: <sample_S>\n\nBased on the above paper reviews of paper in the area <label>, a
new review for a paper also in the area of <label> with final recommendation: ’<attribute>’
but diverse in the expression compared to the above given samples is: ”

Applications / Deep Learning
and representational learning /
General Machine Learning /

Generative models /
Machine Learning for

Sciences / Neuroscience
and Cognitive Science /

Optimization /
Probabilistic Methods /

Reinforcement Learning /
Social Aspects of

Machine Learning /
Theory / Unsupervised

and Self-supervised learning

1: strong reject /
3: reject, not good enough /

5: marginally below the
acceptance threshold /

6: marginally above the
acceptance threshold /
8: accept, good paper

w/ Contrastive A bad paper review is: <sample_1>\n...\nA bad paper review is: <sample_⌊S/2⌋>\nA good
paper review is: <sample_⌊S/2⌋+1>\n...\nA good paper review is: <sample_S\n\nBased
on the above examples of bad and good paper reviews of paper in the area <label>, analyze
the differences between the bad and good reviews. Generate a new review for a paper
also in the area of <label> with final recommendation: ’<attribute>’ but diverse in the
expression compared to the given good reviews. Ensure that the new review is further
refined than the good reviews while maintaining clarity, making the good reviews appear
to lie midway between the new review and the bad reviews. The new paper review in the
area <label> is: ”

Openreview-Rating
(rating classification

of paper review)

w/o Contrastive The paper review is: <sample_1>\nThe paper review is: <sample_2>\n...\nThe paper
review is: <sample_S>\n\nBased on the above paper reviews of final recommendation:
<label>, a new review for a paper in the field of ’<attribute>’ also with final recommenda-
tion: <label> but diverse in the expression compared to the above given samples is: ”

1: strong reject /
3: reject, not good enough /

5: marginally below the
acceptance threshold /
6: marginally above the
acceptance threshold /
8: accept, good paper

Applications / Deep Learning
and representational learning /
General Machine Learning /

Generative models /
Machine Learning for

Sciences / Neuroscience
and Cognitive Science /

Optimization /
Probabilistic Methods /

Reinforcement Learning /
Social Aspects of

Machine Learning /
Theory / Unsupervised

and Self-supervised learning

w/ Contrastive A bad paper review is: <sample_1>\n...\nA bad paper review is: <sample_⌊S/2⌋>\nA good
paper review is: <sample_⌊S/2⌋+1>\n...\nA good paper review is: <sample_S\n\nBased
on the above examples of bad and good paper reviews of final recommendation: <label>,
analyze the differences between the bad and good reviews. Generate a new review for a
paper in the field of ’<attribute>’ also with final recommendation: <label> but diverse in
the expression compared to the above given good reviews. Ensure that the new review is
further refined than the good reviews while maintaining clarity, making the good reviews
appear to lie midway between the new review and the bad reviews. The new paper review
of final recommendation: <label> is: ”

Banking
(field classification
of online banking

queries)

w/o Contrastive The online banking query is: <sample_1>\nThe online banking query is: <sam-
ple_2>\n...\nThe online banking query is: <sample_S>\n\nBased on the above online
banking queries in the category of “<label>”, a new online banking query also in the
category of “<label>” but diverse in the expression compared to the above given samples
is: ”

activate_my_card /
age_limit /

apple_pay_or_google_
pay / atm_support /
automatic_top_up /

balance_not_updated_
after_bank_transfer /
balance_not_updated_

after_cheque_or_cash_
deposit / beneficiary_
not_allowed / cancel_

transfer / card_
about_to_expire

None

w/ Contrastive A bad online banking query is: <sample_1>\n...\nA bad online banking query is:
<sample_⌊S/2⌋>\nA good online banking query is: <sample_⌊S/2⌋+1>\n...\nA good
online banking query is: <sample_S\n\nBased on the above examples of bad and good
online banking queries in the category of “<label>”, analyze the differences between
the bad and good reviews. Generate a new online banking query also in the category
of “<label>” but diverse in the expression compared to the above given good queries.
Ensure that the new query is further refined than the good queries while maintaining clarity,
making the good queries appear to lie midway between the new query and the bad queries.
The new online banking query also in the category of “<label>” is: ”
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Algorithm 2 WASP for Distributed Federated Data (L > 1)
Input:
K PLMs {Pk}Kk=1 with empty synthetic dataset {Dk ← ∅}Kk=1;
L private data parties controlling distributed private dataset {Bl}Ll=1 of M samples in total that belongs to C categories;
number of in-context samples S;
number of iterations T taken to obtain in total N synthetic samples;
initialized PLM weights {wk = 1/K}Kk=1;
learning rate η;
DP privacy parameters ϵ, δ;
test dataset of downstream task A;
random initialized STM m(0);
Output: STM m.
1: Initialize in-context feedback samples D̂n ← ∅, D̂f ← ∅.
2: Calculate Gaussian noise σ = 4

√
2 log (1.25/δiter)

√
T−1

ϵ
√
L

.
3: for t = 0 to T − 1 do
4: for k = 1 to K in parallel do
5: Dk ← WeightedSynDataGeneration(Dk, D̂n, D̂f , [(N/T )× wk], C).
6: end for
7: D ← ∪K

k=1Dk.
8: for l = 1 to L in parallel do
9: Hn

l , H
f
l ← DP_PrivateVoting(D, Bl, Q, σ).

10: end for
11: Hn ←

∑L
l=1 H

n
l ; Hf ←

∑L
l=1 H

f
l .

12: D̂n, D̂f ← SampleSelection(D, Hn, Hf , S, C).
13: {wk}Kk=1 ← PLMScoring(Hn, {Dk}Kk=1).
14: end for
15: m← STMTraining(D, m(0), η).

In Table 8, we listed the prompts used in our experiments, including contrastive (“w Contrastive”) and non-contrastive (“w/o
Contrastive”) in-context learning prompts. We need to clarify that, for PE series baselines, we use their original prompt for
VARIATIONAL_API, which is different from the listed “w/o Contrastive in-context learning” prompt in Table 8. Please refer
to Xie et al. (2024) (the original work) for detailed prompts.

B. Algorithm for Distributed Private Data and Detailed Functions
Due to space limitation, we include the full algorithm for L > 1 setting here in Algorithm 2 in the Appendix. The difference
between Algorithm 2 and Algorithm 1 mainly falls in line 2 and lines 8 to 11 in Algorithm 2.

We also include pseudo-code for the functions used in Algorithms 1 and 2 here in Algorithm 3 due to space limitation.

C. Supporting Results for Introduction
C.1. Examples of High-quality and Low-quality Samples

We show examples of high-quality and low-quality synthetic samples generated using Aug-PE in Table 10 and Table 9
respectively. We also include the appearance frequency of some types of low-quality samples within the generated DP
synthetic dataset in Table 9.

Table 9 shows that, low-quality noisy samples often diverge from the specified task (generating movie reviews in posi-
tive/negative sentiment for this table). Differently, likes shown in Table 10, high-quality samples often possess a clear
sentiment tendency that well accomplished the task, with some offering detailed judgments or even containing concession
details.

D. Theoretical Privacy Analysis for WASP
To prove Theorem 4.1, in this part, we prove that the WASP framework described in Algorithm 2 with distributed federated
data (L > 1) satisfies (ϵ, δ)-DP, which is the general case for L = 1 setting described in Algorithm 1 and Theorem 4.1.
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Table 9. Low-quality DP synthetic samples for movie review semantic analysis with IMDb as real dataset.
Model Low-quality Noisy Sample Text (Examples) Label Explain

GPT-2 “~ If you are missing No. 17 (see below) ~” negative Meaning less sentence.
Llama-2 “In an informal way, please rephrase the sentences as follows:” positive Repeating the prompt. Appears

around 30 times in D of size 6, 000.
Vicuna “ \n번역결과 \n좋은감정을기반으로영화관람후즐거움과

엔터테인먼트가치를즐기셨기에좋습니다. ”
positive Unmatched language and translating

the prompt. Appears within 9 sam-
ples in D of size 6, 000.

OPT “The sentence is positive, but is ambiguous. Would it make sense to
remove ”

negative Task unrelated and mislabeled.

ChatGLM3 “... 指导意见：句子间不顺畅，需要调整一下顺序，去掉一些
冗余的词汇。 Since is based on positive sentiment, then how does
one use the ’pronoun?”

positive Unmatched language and repeating
the prompt.

Flan-T5 “what a fantastic movie!! :O great acting and spec-
tacular scenery. great work. i look forward to an-
other good one next year :D come on laura de-
lana!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! woohoooo!!!....can’t
wait!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!....”

positive Excessively long consecutive punc-
tuation marks. Appears within 4
samples in D of size 6, 000.

Table 10. High-quality DP synthetic samples for movie review semantic analysis with IMDb as real dataset.

Model High-quality Sample Text (Examples) Label

GPT-2 “This movie isn’t for everyone, but it’s worth a look. But if you have to be in the dark to enjoy it, just
buy the soundtrack.”

positive

GPT-2 “is that it has some semi-interesting world-building, but the information it offers is grossly insufficient to
allow one to progress in the story. The central characters have little to do with the world beyond playing
around with their toys and talking to themselves. ”

negative

Llama-2 “Incredible film! I laughed, I cried, and I left the theater feeling inspired. Every performance was
top-notch and the direction was flawless. A true masterpiece that will be remembered for years to come.
10/10.”

positive

Llama-2 “This film was a colossal disappointment. I found myself glancing at my wrist every 10 minutes, eagerly
anticipating its conclusion. The narrative was intricate and challenging to comprehend, and the personas
were underdeveloped. I had no emotional investment in their plight. The performances were lacking, and
the dialogue was trite and unconvincing. In summary, I would not advise viewing this motion picture to
any individual. ”

negative

Vicuna “A movie for people who want to see an action-packed adventure that will keep them on the edge of their
seats.”

positive

Vicuna “Felt like a missed opportunity. Glacial pacing and shallow characters. The premise was intriguing but
the execution fell flat. Avoid this one.”

negative

OPT “-This film is enjoyable to watch because of it’s well-developed storyline and most of all its storyline
that i can relate to and would like to have. This film also has good acting performances and the songs
help the film a lot. It’s not a typical love story kind of a film, but it does have lots of interesting messages
to give. Very well-done! Definitely recommend this film!”

positive

OPT “Quote: The first sentence means nothing to me. Without context the first two sentences also mean
nothing.”

negative

ChatGLM3 “Attention getter, visually interesting and outstanding acting, the story of an American citizen that is in
Mexico and gets involved in a murder is a good movie. ”

positive

ChatGLM3 “This movie is an unwatchable mess, basically a rip off of that scene in Dr. Strangelove where the U.S.
Air Force gets into a scramble to deliver nukes after a false alert... I like pretty much every aspect of
anime, but this stuff is bad. Animation is choppy, sound effects and voice acting are atrocious, and the
plot makes little sense.”

negative

Flan-T5 “<pad> This is a fine historical drama about America’s Civil Rights movement, that has William Friedkin
as director and Gary Cooper as an actor. Although there are other excellent directors that we haven’t
heard of, William Friedkin has become the standard in many ways. Filming in New Orleans, Mr. Friedkin
gives a glimpse into the African-American experience during the late 1920s. I saw it at the All-African
Cinema festival at Wharton Business School. I was awestruck by the power and impact of the film.
...[truncated because of excessive length]...”

positive

Flan-T5 “<pad> beware of this film! i can’t recall a single horror movie that was scarier than this one. it’s just
plain cheesy and stupid. there’s no plot and the characters are entirely cheesy. so don’t even bother.
you’ll never forget it.”

negative
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Algorithm 3 Functions used in Algorithms 1 and 2 for WASP

function WeightedSynDataGeneration(Dk, D̂n, D̂f , N̂ , C):
for c = 1 to C do

if t = 0 then
Use zero-shot prompt as working prompt T (c).

else
Randomly sample S−⌊S/2⌋ samples from D̂n,[c] and ⌊S/2⌋ samples from D̂f,[c] to create few-shot prompt as working prompt
T (c).

end if
Generate ⌈N̂/C⌉ samples using T and add them to Dk.

end for
if |Dk| > N̂ then

Random sample |Dk| − N̂ different samples from Dk and remove them from Dk.
end if
return Dk.

function STMTraining(D, m(0), η):
Initialize a trainable STM m← m(0).
Train m using D with learning rate η till convergence by using objective function L =

∑|D|
i=1 ℓ(m(xi), yi).

return m.

function DP_PrivateVoting(D, B, Q, σ):

Initialized Hn ← [0, . . . , 0]; Hf ← [0, . . . , 0] of length R|D| and note the total DP synthetic dataset as D = {(xi, yi)}|D|
i=1.

for (zj , uj) in B do
D[uj ] = {(xi, yi) ∈ D | yi = uj}.
[nj,1, . . . , nj,Q]← arg topQSmallest

(
d(zj , xi)(xi,yi)∈D[uj ]

)
.

[fj,1, . . . , fj,Q]← arg topQLargest
(
d(zj , xi)(xi,yi)∈D[uj ]

)
.

for q = 1 to Q do
Hn[nj,q]← Hn[nj,q] +

1
2q−1 , Hf [fj,q]← Hf [fj,q] +

1
2q−1 .

end for
end for
Hn ← Hn +N (0, σ2I|D|), Hf ← Hf +N (0, σ2I|D|).
return Hn, Hf .

function PLMScoring(H , {Dk}Kk=1):
for k = 1 to K do

Calculate si = Hn[i]
/∑|D|

i′=1 H
n[i′].

Calculate model score wk =
∑

(xi,yi)∈Dk
si

|Dk|/
∑K

k′=1
|Dk′ |

=
∑

(xi,yi)∈Dk
si

|Dk|/|D|

end for
return {wk}Kk=1.

function SampleSelection(D, Hn, Hf , S, C):
Reset D̂n ← ∅, D̂f ← ∅.
Hn ← Hn/

∑|D|
i=1 H

n[i],Hf ← Hf/
∑|D|

i=1 H
f [i].

for c = 1 to C do
D[c] = {(xi, yi) ∈ D | yi = c}.
Hn,[c] =

{
Hn[i]

∣∣ (xi, yi) ∈ D[c]
}
, Hf,[c] =

{
Hf [i]

∣∣ (xi, yi) ∈ D[c]
}

.

D̂n,[c] =
{
(xi, yi) ∈ D[c]

∣∣Hn[i] is among the top-S values of Hn,[c]
}

, contains the top-S samples from D[c] ranked byHn,[c].

D̂f,[c] =
{
(xi, yi) ∈ D[c]

∣∣Hf [i] is among the top-S values of Hf,[c]
}

, contains the top-S samples from D[c] ranked byHf,[c].
end for
D̂n =

{
D̂n,[1], . . . , D̂n,[C]

}
, D̂f =

{
D̂f,[1], . . . , D̂f,[C]

}
.

return D̂n, D̂f .
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Theorem D.1. Let f be a function with global L2 sensitivity ∆. For any ϵ > 0, δ ∈ (0, 1), the Gaussian output perturbation

mechanism with σ = ∆

√
2 log(1.25/δiter)

ϵ ensures that f satisfies (ϵ, δ)-DP.

Proof of Theorem D.1 can be found in Balle & Wang (2018).

Theorem D.2. The global L2 sensitivity ∆ of WASP described in Algorithm 2 is 4.

Proof. In WASP framework (Algorithm 2), function DP_PrivateVoting is the only function that accesses the private
dataset B. Thus, ∆ of WASP equals to that of function DP_PrivateVoting. Within function DP_PrivateVoting, for
nearest histogram and furthest histogram respectively, each private sample contributes Q votes with decaying voting weights
{1, 1

2 , . . . ,
1

2Q−1 }. Therefore, the total votes contributed by one private sample is
∑Q

q=1
1

2q−1 = 2 − 1
2Q−1 < 2 for each

histogram. Adding or removing one private sample in B will result in a change no more than 2 in the ℓ2 norm of each
histogram. Therefore, the upper bound of the sensitivity for each histogram is 2 and the upper bound of the sensitivity of
WASP framework is 4 considering both histograms, i.e. ∆ = 4.

Lemma D.3. If a Gaussian mechanism satisfies (ϵ, δ)-DP, then independently repeating this mechanism for T times results
in the final DP budget to increase to ϵfinal =

√
T · ϵ and the final probability of data leak δfinal increased to δfinal > T · δ.

The proof of Lemma D.3 can be found in Steinke (2022).

With the above lemma and theorems, we present and prove our main theorem as follows.

Theorem D.4. If each private data party performs standard Gaussian mechanism with addition noise following N (0, σ2)

and σ = 4

√
2 log (1.25/δiter)

√
T−1

ϵ
√
L

, WASP framework described in Algorithm 2 satisfies DP with privacy budget ϵ for private
samples in B.

Proof. For guaranteeing (ϵ, δ)-DP throughout the T − 1 iterations with feedback (the first generation iteration does not
use feedback), each iteration should satisfy a differential privacy budget of ϵ√

T−1
. Given ∆ = 4 for WASP, σtotal =

4

√
2 log (1.25/δiter)

√
T−1

ϵ for each single generation iteration will guarantee (ϵ, δ)-DP for the whole process with δ >
δiter · (T − 1). Further, Gaussian random variables satisfy that X + Y ∼ N (0, σ2

1 + σ2
2) if X ∼ N (0, σ2

1), Y ∼
N (0, σ2

2) are independent. Therefore, if each private data party adds i.i.d. Gaussian noise following N (0, σ2) with

σ = 4

√
2 log (1.25/δiter)

√
T−1

ϵ
√
L

, the total noise follows N (0, σ2
total) which guaranties (ϵ, δ)-DP for the whole WASP process

with δ > δiter · (T − 1).

E. Additional Results
E.1. Comparison of Synthetic Sample Resemblance for WASP

To further demonstrate the effectiveness of WASP under limited private sample setting, we additionally use FID between the
generated DP synthetic dataset D and the real private dataset B to evaluate the resemblance of the former (D) to the later (B)
with M = 100 in Figure 6. Lower FID indicates higher distribution similarity therefore indicating better resemblance.

As shown in Figure 6, the baseline method Aug-PE often fails to generate a DP synthetic dataset that closely resembles
B when using an improper PLM, leading to an increased FID value over iterations. On the contrary, WASP results in a
consistently decreasing FID value over iteration, demonstrating it effectiveness in improving the resemblance of D to B.
Moreover, although WASP initially has a higher FID than using the best single PLM (Flan-T5 in Figure 6) for Aug-PE
(which is reasonable due to the initialization of D being a mixture of synthetic samples from different PLMs, making it
better than the one generated solely by worst PLM but worse than the one given solely by the best PLM), it ultimately
achieves a lower FID than all baseline counterparts. This indicates that our proposed WASP method better handles the
limited private sample setting.

E.2. Effectiveness of Differentially Private Top-Q Voting and Contrast In-context Learning with Single PLM

We present additional results to validate the effectiveness of Differentially Private Top-Q voting and contrastive in-context
learning with single PLM in Figure 7. Starting with Aug-PE, we increase Q from 1 to 8 to obtain the “w/o Con” results, and
then incorporate contrastive in-context learning samples into the prompt to achieve the “w/ Con” results (also the K = 1
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Figure 6. Comparison of the resemblance of synthetic dataset to real private dataset (FID) using Aug-PE and our proposed WASP using
movie review semantic analysis task and IMDb dataset.

Figure 7. Comparison of the resemblance of synthetic dataset to real private dataset (Fréchet Inception Distance, FID) and trained
downstream model performance (ACC) using Aug-PE (“Aug-PE”, doted lines), refinement on Q = 8 without contrastive in-context
learning (“w/o Con”, dashed lines) and refinement on Q = 8 with contrastive in-context learning (“w/ Con”, solid lines) with single-PLM
setting and L = 1 under the same DP setting as in Table 1 with IMDb dataset.

setting for WASP). Note, to guarantee the same privacy budget, noise scale also increases (to twice its original value) as Q
increases from 1 to Q and is further doubled as contrastive in-context learning is incorporated.

Both of these refinement processes both display a steady decrease in FID for most PLMs, demonstrating their respective
effectiveness. Nonetheless, an overall performance improvement is observed for all tested PLMs, both in terms of highest
performance across iterations and final performance.

E.3. Sensitive Analysis of M for PE

We performed experiments to analyze the sensitivity of Aug-PE (Xie et al., 2024) on various M values. Results are included
in Figure 8 which shows that most PLMs fail when only a limited amount of private samples (M = 100) is available, with
an increasing FID through iterations. Conversely, with sufficient amount of private samples (M = 10, 000), a continuous
decrease in FID as well as less performance fluctuation can be observed throughout the iterations.

E.4. Comparison of WASP and Pre-Text Under User-level DP

In our work, we assume a full participation setting where all L parties participate in each iteration. Based on this, we
primarily focus on ensuring sample-level DP to protect each private sample (zj , uj) ∈ B in this work. However, our
proposed WASP method can be easily extended to user-level DP protection and is also effective in protecting user-level DP
compared to baselines (see Table 11).
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Figure 8. Comparison of the similarity of synthetic dataset to real private dataset (FID) and trained downstream model performance (ACC)
with different amount of available private samples (M ) using Aug-PE with L = 1 under the same DP setting as in Table 1 with IMDb
dataset.

In Hou et al. (2024), although they also study a full participation setting with L > 1, they focus on user-level DP with the
assumption that each participating private data party in the collaboration controls only a tiny amount of private samples (8 in
their work). Therefore, strictly following Hou et al. (2024), to testify the effectiveness of WASP when extended to user-level
DP, we assume that each participating data party controls no more than 8 real private samples, i.e. Ml ≤ 8, l = 1, . . . , L.
These distributed private datasets still aggregate to an unbalanced dataset like in Section 5.1.

Under this setting, to protect user-level DP (where adding or removing one private data party should not significantly
affect the function output), following Hou et al. (2024), the function sensitively ∆user should be max(M1, . . . ,ML) times
as large as that for protecting sample-level DP (∆sample). The rational is that, the addition or removal of a private data
party can result in the addition or removal of up to max(M1, . . . ,ML) samples, leading to a change of no more than
max(M1, . . . ,ML) × ∆sample in the ℓ2 distance of the produced histograms. Given that ∆sample = 4 for WASP (see
Theorem D.2 in Appendix D for details), we have ∆user = max(M1, . . . ,ML)×∆sample ≤ 8×∆sample = 8×4 = 32. In

our experiments, we use 32, the upper bound of ∆user, as the function sensitivity to calculate σ = 32

√
2 log (1.25/δiter)

√
T−1

ϵ
√
L

for (ϵ, δ)-DP protection with δ > δiter · (T − 1).

Results are shown in Table 11 with a total of L = 150 private data parties controlling M = 500 private samples in total.
Other experimental settings are the same with those in Table 2. Results show that, WASP continues to outperform baseline
methods, including Pre-Text. This demonstrates that WASP is effectiveness not only under the need of guaranteeing
sample-level DP but also under the need of providing user-level DP protection compared to baseline methods.

Note that, if each user contributes more samples (e.g. 100 samples per user), the noise application strategy given in Hou
et al. (2024) will scale linearly, which may become impractical. Therefore, under such scenario, optimizations like norm
clipping (Cheng et al., 2022; Kato et al., 2024), an off-the-shelf and widely applied technique, can be applied to keep noise
levels practical by capping the norm of voting vectors Hn

l , H
f
l given by data party l at a preset bound ζ, preventing user

sensitivity ∆ from scaling linearly with user private dataset size. Under the same ζ, using more private samples (e.g. 100
samples per user) will not degrade performance compared to using fewer (e.g. 8 samples per user).

Moreover, if a single party controls a large number of samples (e.g. 100), like shown in Table 1, this party alone can achieve
good performance using sample-level DP without the need of collaborating with others.

E.5. Comparison of Computational Cost and Complexity

We need to first of all, as stated previously, no additional queries are made to PLMs under the same number of required
synthetic samples (N ) in WASP framework compared to baseline methods although samples are generated in a iterative
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Table 11. Evaluation of downstream STM accuracy using 6 PLMs, L = 150. User-level DP is guaranteed instead of sample-level DP in
this table. Best and second best results are marked.

Privacy |B| |D| IMDb Yelp Openreview BankingCategory Rating Area Rating

OnlyPrivate ϵ =∞ 500 - 83.61 57.27 44.15 22.76 32.79 74.56

FuseGen Absolutely Private - 6, 000 89.07 63.38 57.96 24.70 34.57 78.75

Pre-Text

GPT-2 ϵ = 4.0 500 6, 000 83.96 63.04 45.78 27.46 24.09 75.75
Llama-2 ϵ = 4.0 500 6, 000 84.28 60.24 50.54 29.02 34.15 82.50
Vicuna ϵ = 4.0 500 6, 000 83.67 63.21 51.42 28.18 32.87 83.38
OPT ϵ = 4.0 500 6, 000 84.69 62.92 50.40 28.59 24.29 81.25

ChatGLM3 ϵ = 4.0 500 6, 000 85.56 57.46 51.54 29.78 32.33 84.88
Flan-T5 ϵ = 4.0 500 6, 000 88.71 58.46 58.37 29.81 34.02 74.13

WASP (Ours) ϵ = 4.0 500 6, 000 89.15 63.49 59.78 29.96 37.10 85.25

Table 12. Comparison of computational complexity and runtime (seconds) of WASP and PE series baselines within each iteration
(averaged across iterations and also across different PLMs for PE series baselines). "Others" includes DP top-Q voting and PLM
importance weighting, i.e. line 7 10 in Algorithm 1, with the latter being a negligible time cost tensor normalization operation on the
Nearest Histogram Hn vector.

Aug-PE Pre-Text WASP

Generation Others Generation Others Generation Others

Complexity O(N) O(MN) O(N) O(MN) O(N) O(MN)

IMDb L = 1,M = 100 1.341×104 5.846 - - 1.970×104 6.090
L = 10,M = 300 - - 1.348×104 7.153 1.963×104 7.668

Yelp-Rating L = 1,M = 100 1.539×104 5.468 - - 2.175×104 5.528
L = 10,M = 300 - - 1.561×104 7.376 2.235×104 7.608

Openreview-Rating L = 1,M = 100 1.268×104 5.655 - - 1.949×104 5.871
L = 10,M = 300 - - 1.215×104 7.713 1.982×104 7.911

manner. As shown in Table 12, the computational cost of WASP is slightly higher than that of PE baselines, mainly due to
increased in prompt length (8 in-context samples instead of 1) and the calculation of Furthest Histogram Hf .

Moreover, the primary computational cost is driven by synthetic sample generation, which accounts for nearly 3000 times
the runtime of other operations (including DP Top-Q Voting and PLM Importance Weighting). While this process is
unavoidable, users can mitigate the impact of computationally expensive PLMs by choosing faster alternatives. Also, like
shown in Table 12, for large-scale datasets, WASP’s computational cost remains manageable.

E.6. Comparison of Communication Overhead of WASP and Pre-Text for Federated Data Setting

We compare the transmitted information for secure aggregation between the baseline method Pre-Text and our proposed
WASP framework in Table 13. With the same number of participating data parties (L), WASP only requires aggregating
additional L histograms of dimension R|D| and uploading the aggregated histogram Hf ∈ R|D|. These additional
communicated information leads to only a minor increase in communication overhead compared to Pre-Text.

E.7. More Strict DP Guarantee

In previous experiments, we use δiter = 1× 10−5 which will result in δ > 4× 10−5 for the whole process for all PE series
baselines and WASP. Therefore, we compare using δiter = 1× 10−5 with δ = 1× 10−5 in Table 14. With δ = 1× 10−5,
following Kairouz et al. (2015), δiter = 1× 10−23 can be applied to guarantee overall (4, 1× 10−5)-DP, which results in a
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Table 13. Comparison of the information data parties’ download, internal exchange and update in Pre-Text and WASP.

Download Exchange Upload

Pre-Text embedding of each (xi, yi) ∈ D {Hn
l }Ll=1 Hn

WASP (Ours) embedding of each (xi, yi) ∈ D {Hn
l }Ll=1, {Hf

l }
L
l=1 Hn, Hf

Table 14. Comparison of different DP δ using 6 open-source PLMs for PE baseline and our proposed WASP with L = 1,M = 100.

Aug-PE WASP
(Ours)GPT-2 Llama-2 Vicuna OPT ChatGLM3 Flan-T5

IMDb δiter = 1× 10−5 85.38 85.77 82.76 83.86 85.82 89.00 89.52
δ = 1× 10−5 84.88 85.30 82.04 83.52 85.22 88.83 89.18

Yelp δiter = 1× 10−5 45.28 47.42 54.42 50.81 55.17 58.69 61.21
δ = 1× 10−5 45.03 47.10 54.09 50.47 54.97 58.61 61.05

noise scale roughly 2.14 times as large as the original one used in our original experiments in the paper.

These results demonstrate that, under tighter privacy guarantee (δiter = 1× 10−23, i.e. δ = 1× 10−5), the performance
decrease is just minor, indicating the robustness of WASP and PE baselines.

F. Additional Related Works
Due to space limitation, we include the discussion of previous works related to Contrastive In-context Learning (Contrastive
ICL) here in the Appendix.

Contrastive In-context Learning.1 The idea of using contrastive information to enrich in-context learning samples has
been exploited from different aspects. Samples belonging to positive and negative classes (Liang et al., 2024), correct
or wrong self-predictions of training samples during training time (Mo et al., 2024), human-preferred and non-preferred
question responses Gao & Das (2024) have all been utilized as contrastive samples. Our study is the first known effort to
consider contrastive in-context learning for synthetic data generation, by treating synthetic samples of different qualities
generated by multiple PLMs as contrastive information.

G. Theoretical Evidence for Convergence of WASP
Our goal is to prove that, each iteration of synthetic data generation produces samples that become closer to the private
dataset B. To formalize and prove this iterative improvement, we need a mechanism that biases the generation process
toward “better” (closer) samples and away from “worse” (more distant) samples. Contrastive Learning (CL) (Gao et al.,
2021; Su et al., 2022; An et al., 2022) fits naturally here: its core idea is to pull “positive” pairs together in the representation
space while pushing “negative” pairs apart. Specifically, we denote by S+ ⊆ Dn a set of high-quality samples and by
S− ⊆ Df a set of low-quality samples.

In the following, we first list reasonable assumptions that serve our proof. We then prove sequentially the convergence
guarantee of our proposed WASP framework without and with DP.

Assumption G.1. In order to guarantee the viability of multi-round contrastive learning, we impose the following key
assumptions:

1. The private datasets of L different parties, {Bl}Ll=1,B :=
⋃L

l=1 Bl, are contained in a Euclidean ball of diameter D > 0.
That is, ∥x− y∥ ≤ D for all x,y ∈ B.

2. We adopt the Euclidean ℓ2 norm throughout, i.e. d(x,y) = ∥x− y∥2.
1Works (Ren & Liu, 2024; Miyanishi & Nguyen, 2024) considering understanding in-context learning with contrastive learning

theories are sometimes referred to using the same name, but we do not consider them here.
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3. In each round t = 0, . . . , T − 1, we randomly choose a subset of high-quality samples S+
t ⊆ D̂n and a subset

of low-quality samples S−
t ⊆ D̂f . These two subsets form the Prompt T (·) for that round, and we then invoke

WeightedSynDataGeneration(·) with distribution Pθ

(
· | S+

t , S−
t

)
to generate new candidate samples x′. We assume

the distribution has bounded variance or avoids extreme outliers, and each round can be treated as nearly independent
via Chernoff/ Union arguments.

4. The low-quality sample pool is sufficiently large to capture potential adverse modes; extremely rare outlier low-quality
samples occur with negligible probability and can be ignored or filtered in practice.

5. When (ϵ, δ)-DP is required, Gaussian noise with standard deviation σ is injected into voting/statistics (here, σ refers
to the noise level in the Gaussian mechanism). Additionally, each cluster must contain at least K private samples
(multiplicity K ≫ σ), ensuring that noise cannot completely nullify that cluster and undermine the success probability
γ > 0 in contrastive learning.

6. (Alignment Assumption) If the chosen high-quality subset S+
t contains at least one sample x+ ∈ S+

t that is already
relatively close to the private set B, then any candidate x′ closer to B than this x+ will not receive a “low score” under
the similarity function sθ(·, ·). Specifically, if d(x+,B) is small, then for any x′ satisfying d(x′,B) < d(x+,B), we
have sθ(x

+,x′) ≥ sθ(x
+,x+). Here, sθ(·, ·) is a learned similarity measure (often an inner product in hidden space

without vector normalization). Consequently, such an x′ is assigned nonzero probability under Pθ

(
· | S+

t , S−
t

)
.

The Reasonableness of the Alignment Assumption (G.1.6). Assumption G.1.6 is consistent with prior theoretical work
in contrastive learning (Arora et al., 2019; Wang & Isola, 2020; Parulekar et al., 2023). It has been shown that contrastive
learning “forces the inner product of representations of similar pairs to be higher on average than with negative samples”
(Arora et al., 2019). In addition, alignment has been highlighted as a key property of contrastive representations, indicating
that “similar samples have similar features” (Wang & Isola, 2020), i.e., high mutual similarity in the embedding space. More
recently, an “alignment term” was explicitly incorporated into the InfoNCE loss to maximize the similarity between an
image and its augmentation (Parulekar et al., 2023), thus providing further theoretical support for our alignment hypothesis.
Taken together, these studies reinforce that well-aligned positive pairs are crucial for effective contrastive representation
learning.

G.1. Convergence Analysis Without Considering Noise

Under the Alignment Assumption (Assumption G.1.6), Pθ(x
′ | S+, S−) indeed assigns higher probability to candidates x′

that lie closer to B. This guarantees a strictly positive probability of surpassing the current high-quality point in each round.
Hence, we can formally track how the expected distance to B decreases over multiple iterations, leading to the convergence
analysis we detail below.

Building on this contrastive mechanism, our proof leverages the idea that once the InfoNCE loss converges under the
assumption that “closer” samples in S+ are favored over “more distant” ones in S−, we can rigorously connect loss
convergence to the probability of improvement. As a result, each iteration maintains a strictly positive chance of finding a
new candidate x′ that outperforms the current best sample. This linkage underpins our multi-round convergence argument:
across multiple iterations, the quality of synthetic data systematically moves closer to B.

Concretely, we adopt the InfoNCE loss (Gao et al., 2021) to implement contrastive learning. In each iteration, given a pair
(x+, x−) ∈ S+ × S− and the current candidate x′, we compute

L(θ) = −E(x+,x−),x′

[
log

exp
(
sθ(x

+,x′)
)

exp
(
sθ(x+,x′)

)
+ exp

(
sθ(x−,x′)

)].
For simplicity, consider a single-sample loss ℓ(θ) corresponding to one such triplet (x+,x−,x′). Define

ℓ(θ) = − log
exp

(
sθ(x

+,x′)
)

exp
(
sθ(x+,x′)

)
+ exp

(
sθ(x−,x′)

) ,
and let

p(x+) =
exp

(
sθ(x

+,x′)
)

exp
(
sθ(x+,x′)

)
+ exp

(
sθ(x−,x′)

) , p(x−) =
exp

(
sθ(x

−,x′)
)

exp
(
sθ(x+,x′)

)
+ exp

(
sθ(x−,x′)

) ,
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so that
∂ ℓ(θ)

∂sθ(x+,x′)
= −

[
1− p(x+)

]
,

∂ ℓ(θ)

∂sθ(x−,x′)
= + p(x−).

Applying the chain rule w.r.t. θ,

∇θ ℓ(θ) = −
[
1− p(x+)

]
∇θsθ(x

+,x′) + p(x−)∇θsθ(x
−,x′).

Because training involves descending ∇θℓ(θ), the negative coefficient −[ 1− p(x+)
]

“pulls up” the similarity of (x+,x′),
while the positive coefficient +p(x−) “pushes down” the similarity of (x−,x′). Taking the expectation over all such
(x+,x−) ∈ S+ × S− and x′ yields the global conclusion that high-quality samples’ similarity to x′ is increased, whereas
low-quality samples’ similarity is decreased.

Definition G.2 (Per-Sample Improvement and Worst-Case Improvement). Let d(x,B) := infb∈B ∥x− b∥.

(a) Per-sample improvement: For each x+ ∈ S+, define

∆x+ := Ex′ ∼Pθ(·|S+,S−)

[
d
(
x+,B

)
− d

(
x′,B

)]
.

(b) Worst-case improvement in S+: ∆ := inf x+∈S+ ∆x+ .

Proposition G.3. Let x+ ∈ S+ be a chosen high-quality sample, and let B be the private dataset. Suppose x+ is not
globally optimal, i.e. d

(
x+,B

)
> 0. If the contrastive loss is sufficiently converged and the alignment assumption (see

Assumption 1.6) holds, then under the distribution Pθ

(
x′ | S+, S−), the event

{
x′ : d

(
x′,B

)
< d

(
x+,B

)}
occurs with

nonzero probability sufficiently large to ensure a strictly positive improvement. In other words, the improvement quantity ∆
from Definition G.2 satisfies ∆ > 0 as long as S+ contains at least one x+ with d

(
x+,B

)
> 0.

Proof. Fix x+ ∈ S+ with d(x+,B) > 0. Let

Z = d
(
x+,B

)
− d

(
x′,B

)
, x′ ∼ Pθ(· | S+, S−).

Then
∆x+ = E[Z] =

∫
Z dPθ(x

′).

Define two events:

A = {x′ : Z > 0} = {x′ : d(x′,B) < d(x+,B)}, Ac = {x′ : Z ≤ 0}.

Since Z > 0 on A and Z ≤ 0 on Ac, we have:

∆x+ =

∫
A

Z dPθ +

∫
Ac

Z dPθ =

∫
A

|Z| dPθ −
∫
Ac

|Z| dPθ.

Hence, proving ∆x+ > 0 is equivalent to showing∫
A

|Z| dPθ >

∫
Ac

|Z| dPθ.

By alignment (Assumption 1.6),

if d(x′
1,B) < d(x′

2,B), then Pθ

(
x′
1 | S+, S−) ≥ Pθ

(
x′
2 | S+, S−).

In other words, the distribution Pθ(· | S+, S−) favors samples that are closer to B. Hence, the set A (all x′ closer to B than
x+ is) enjoys strictly larger probability measure than the set Ac.

On A, Z = d(x+,B) − d(x′,B) is strictly positive and can reach up to d(x+,B) (in the extreme case where x′ is very
close to B). Conversely, on Ac we have Z ≤ 0, so |Z| = d(x′,B) − d(x+,B) represents a “loss.” By alignment, Ac

occupies a smaller measure in the distribution Pθ(· | S+, S−) and corresponds to samples that are comparatively farther
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from B. Consequently, the integral of |Z| over A will surpass that of Ac, ensuring
∫
A
|Z| dPθ >

∫
Ac |Z| dPθ, which leads

to ∆x+ =
∫
A
Z −

∫
Ac Z > 0.

To see this more quantitatively, consider an increment δ > 0. - The probability mass of x′ such that Z ≈ δ (i.e.
d(x′,B) ≈ d(x+,B)− δ) exceeds the probability mass of x′ such that Z ≈ −δ (i.e. d(x′,B) ≈ d(x+,B) + δ).

Integrating these local comparisons from δ = 0 to δ = d(x+,B) shows
∫
A
|Z| dPθ >

∫
Ac |Z| dPθ. Hence the overall

positive contribution outweighs the negative one.

Since ∆x+ =
∫
A
|Z| dPθ −

∫
Ac |Z| dPθ > 0, we have shown a strictly positive expected improvement for this particular

x+. Repeating the argument for any x+ ∈ S+ with d(x+,B) > 0, we obtain ∆x+ > 0. Therefore, ∆ = inf x+∈S+ ∆x+ >
0, as long as there exists at least one x+ not globally optimal.

Finally, we employ Markov’s inequality to deduce that if ∆ > 0, then the probability that x′ is closer to B than x+ is at
least a positive constant.
Theorem G.4. Assume ∆ as defined in Definition G.2. If ∆ > 0, then for every x+ ∈ S+ with d(x+,B) > 0, we have

Pθ

(
d(x′,B) < d(x+,B)

∣∣∣ S+, S−
)

≥ ∆

d(x+,B)
> 0.

Proof. Let us fix any x+ ∈ S+ with d(x+,B) > 0. Define the random variable

Z = d(x+,B) − d
(
x′,B

)
, x′ ∼ Pθ( · | S+, S−).

By Definition G.2 and the assumption ∆ > 0, we know

E[Z] = E
[
d(x+,B) − d

(
x′,B

)]
> ∆.

Here we use that ∆ ≤ E[Z] for every x+ ∈ S+. Note also that Z is bounded above by d(x+,B) > 0.

Applying Markov’s inequality , we get

P
(
Z > 0

)
≥ 1 − E[ d(x′,B) ]

d(x+,B)
=

E[Z]

d(x+,B)
>

∆

d(x+,B)
.

Since Z > 0 is exactly the event d(x′,B) < d(x+,B), we deduce

Pθ

(
d(x′,B) < d(x+,B)

∣∣∣ S+, S−
)

≥ ∆

d(x+,B)
> 0.

Since the choice of x+ in S+ was arbitrary (as long as d(x+,B) > 0), the statement holds for all such x+.

Theorem G.5. Suppose S+ ⊆ Dn contains some x+ that is already close to B (i.e. d(x+,B) is small). Once the contrastive
loss converges and ensures ∆ > 0 (Definition G.2), there is still probability at least ∆

d(x+,B) > 0 of generating an x′ with
d(x′,B) < d(x+,B), meaning x′ is better than x+ in terms of distance.

Proof. This is an immediate corollary of Theorem G.4: for every x+ in S+ with d(x+,B) > 0, the event d(x′,B) <
d(x+,B) occurs with probability at least ∆/d(x+,B) > 0. Thus, even if x+ is already close, there remains a nontrivial
chance to discover an x′ that is strictly closer.

Lemma G.6. Suppose there are L private data partie whose datasets merge into

B :=

L⋃
l=1

Bl, M :=

L∑
l=1

∣∣Bl

∣∣.
Let ξ > 0 be a threshold. In each round t = 0, . . . , T − 1, we can choose multiple high-quality samples {x+

i } ⊆ D̂n and
multiple low-quality samples {x−

j } ⊆ D̂f (potentially forming one or more Prompts). Let D(t) denote the synthesized data
after round t. If there is a point x ∈ B whose nearest neighbor x∗ ∈ D(t) satisfies ∥x− x∗∥ ≥ ξ, then with probability at
least γ > 0 (via at least one Prompt in this round) we can generate a new sample x′ ∈ D(t+1) such that

∥x− x′∥ ≤ max{ρ ∥x− x∗∥, ξ}, (ρ < 1).
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Proof. Whenever ∥x − x∗∥ ≥ ξ, we include x∗ in at least one Prompt’s high-quality subset, i.e. x∗ ∈ S+
t ⊆ {x+

i }. By
Theorem G.4 (the multiple-sample extension of the Markov-based argument), there is a probability at least γ > 0 to generate
a “better” candidate x′ whose distance to x is at most ρ∥x−x∗∥ or below ξ. A single successful event of that kind in round
t achieves the one-round contraction for x.

Theorem G.7. Suppose ρ ∈ (0, 1) and γ > 0 are fixed constants, and the merged private dataset B has an initial diameter
at most D. Over T rounds, in each round t = 0, . . . , T − 1, if there exists a point x ∈ B whose current nearest neighbor
in D(t) exceeds distance ξ, then by Lemma G.6 we can contract this point with probability γ to ρ ∥x − x∗∥ or below ξ.
Otherwise, if the distance is already ≤ ξ, no update is needed.

If

T ≫
d log

(
D/ξ

)
log

(
1/ρ

) +
1

γ
log

(
M
τ

)
,

then, with probability at least 1− τ , the final synthesized data D(T ) ensures that for every x ∈ B there exists x′ ∈ D(T )

satisfying ∥x− x′∥ ≤ ξ, thereby implying

Wp(B,D(T )) ≤ ξ.

Here, Wp(B,D(T )) denotes the p-Wasserstein distance between the distributions (or empirical measures) of B and D(T ),
often defined as Wp(µ, ν) := (infπ∈Π(µ,ν)

∫
∥x− y∥p dπ(x,y))1/p, where Π(µ, ν) is the set of all couplings of µ and ν.

In a discrete setting, Wp represents the minimal “transport cost” to match points in B with those in D(T ).

Proof. Consider any point x whose initial distance to D(t) does not exceed D. In each round t = 0, . . . , T − 1, we form
one or more Prompts, each Prompt containing multiple high/low-quality samples. By WeightedSynDataGeneratio(...), we
produce new candidate points to update D(t+1). Whenever ∥x − x∗∥ ≥ ξ for its nearest neighbor x∗ ∈ D(t), there is a
probability γ > 0 that at least one of the newly generated candidates achieves a distance contraction to ρ∥x− x∗∥ or below
ξ. We call this a single-round success.

Each success reduces ∥x− x∗∥ by a factor of ρ < 1. Decreasing from D down to ξ needs about log1/ρ
(
D
ξ

)
successes. The

factor d arises from geometric/measure-based arguments in d dimensions. Hence, T must exceed d log(D/ξ)
log(1/ρ) to have high

probability of bringing x below ξ.

To ensure all M private points converge simultaneously within distance ξ, we apply a union (or Chernoff) bound, allocating
at most τ/M failure probability per point, thereby introducing an extra 1

γ log
(
M/τ

)
in T . Consequently, if T ≫

d log
(
D/ξ

)
log
(
1/ρ

) + 1
γ log

(
M/τ

)
, then with probability at least 1 − τ , every x ∈ B finds some x′ ∈ D(T ) with ∥x − x′∥ ≤ ξ,

implying Wp(B,D(T )) ≤ ξ.

Comparison with existing methods. In the PE algorithm (Lin et al., 2024b), the convergence can be stated explicitly: one

can show that T ≫ d log
(
D/ξ

)
logL + log

(
Npriv

τ

)
, where the single-round contraction probability is 1

2 and the contraction

ratio is 1− logL
4d . Here, L typically denotes the number of candidate samples generated by each call to VariationAPI, thus

reflecting how many Gaussian perturbations (in PE) are tested per iteration. These two parameters 1
2 and 1− logL

4d arise
from tail-bound analyses of the VariationAPI step (which is based on Gaussian sampling), and can therefore be expressed
in a tractable form (e.g. with probability at least 1/2, one sample out of L improves the distance by a factor of 1− logL

4d ).
In contrast, our contrastive-learning approach employs a distribution Pθ

(
· | S+, S−) that originates from a deep or large

model, which generally lacks the convenient Gaussian-like tractability. We therefore resort to conservative inequalities
to guarantee the existence of constants γ > 0 and ρ < 1. Intuitively, a well-trained contrastive model induces a strong
alignment on S+, so whenever there is a non-optimal sample x+ ∈ S+, the model assigns sufficiently high probability mass
to generating a better candidate x′ closer to the private set B (thus boosting γ). Meanwhile, by effectively “pushing away”
negative samples in S−, the distance between x′ and x+ can shrink by a ratio smaller than the Gaussian-based 1− logL

4d (i.e.
making ρ smaller). Hence, if these conditions hold (in practice or under stronger alignment assumptions), then the required
number of iterations for our multi-round convergence can be made significantly smaller than that in PE.
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G.2. Convergence Under Differential Privacy with Added Noise

In the module DP_PrivateVoting(D, Bℓ, Q, σ), we inject Gaussian noise into the statistics derived from the synthesized
data D (or Dn,Df ) and private data Bℓ to achieve (ϵ, δ)-DP. We here assume the single-round ρ-contraction property
(Lemma G.6 or its analog) still applies as long as the noise does not entirely erase the high-quality sample signal. Concretely:

Theorem G.8 (Convergence Under Differential Privacy). Let the algorithm run for T rounds. Suppose:

• Each “cluster” or “neighborhood” of private data has multiplicity K ≫ σ, so that noise cannot fully eliminate it.

• We set the noise level σ = 4

√
2 log

(
1.25/δ

)
(T−1)

ϵ2 L , to satisfy (ϵ, δ)-DP over T rounds and L private data parties (via
the Gaussian mechanism and advanced composition).

Then, if T is large enough—on the order of Õ
(

d log(D/ξ)

log(
1
ρ )

)
(see Theorem G.7 in the noise-free case)—with probability at

least 1− τ , the output D(T ) satisfies both (ϵ, δ)-DP and Wp

(
B, D(T )

)
≤ ξ.

Proof. Because each cluster has multiplicity K ≫ σ, Gaussian noise cannot entirely suppress the votes in that cluster, so the
“single-round contraction” argument (i.e. probability γ > 0) remains valid. By the same multi-round convergence analysis
(cf. Theorem G.7), we only need to ensure log(Mτ ) overhead in T . Meanwhile, the selected σ obeys standard advanced
composition bounds for (ϵ, δ)-DP, guaranteeing privacy in each round. Consequently, once T is sufficiently large, we can
contract the distance of every private point to the synthesized set ≤ ξ, and the algorithm remains (ϵ, δ)-DP.
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