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ABSTRACT

Large Language Model (LLM) routing has demonstrated strong capability in bal-
ancing response quality with computational cost. As users exhibit diverse pref-
erences, personalization has attracted increasing attention in LLM routing, since
even identical queries may require different models to generate responses tailored
to individual needs. However, existing approaches are not fully personalized and
often fail to faithfully capture the complex interactions between specific users
and LLMs. Moreover, user preference data is typically scarce, noisy, and incon-
sistent in format, which limits the effectiveness of methods that rely solely on
user-specific data. To address these challenges, we propose GMTRouter, which
represents multi-turn user—-LLM interactions as a heterogeneous graph with four
node types: user, LLM, query, and response, thereby maximally preserving the
rich relational structure of the interaction. Through a tailored message-passing
mechanism, GMTRouter learns to capture user preferences from few-shot data
within a lightweight inductive graph learning framework, enabling effective per-
sonalization. Extensive experiments demonstrate that GMTRouter consistently
outperforms the strongest baselines, achieving 0.9%-21.6% higher accuracy and
0.006-0.309 higher AUC across multiple datasets. More importantly, we further
demonstrate that GMTRouter can adapt to new users and evolving preferences
using only few-shot data, without extensive fine-tuning.

1 INTRODUCTION

With the rapid development of the field of Large Language Models (LLMs), an increasing number
of models with varying sizes, computational costs, and domain expertise have become available
(Singhal et al., 2023} |Luo et al.,|2022). This makes LLM routing particularly important, as it enables
the recommendation of appropriate LLMs for diverse user queries while balancing response quality
with computational cost (gakota et al.l 2024; |Stripelis et al., 2024). Such routing techniques are
increasingly adopted in modern LLMs, including GPT-5 (OpenAl |[2025). At the same time, as more
users engage with LLM routing services, differences in individual preferences become increasingly
prominent: even identical queries may require different models to generate responses tailored to
each user (L1 et al., 2024b; Saleh1 et al.| [2024). Therefore, this paper aims to highlight a pressing
research question: Can we design a personalized routing framework that aligns LLM selection with
individual user preferences based on their interaction histories?

Existing research has proposed various architectures for LLM routing frameworks: FrugalGPT in-
troduces a BERT-based router that determines whether to switch to a larger LLM (Chen et al.,
2023b), while C2ZMAB-V constructs a bandit-based router to balance exploration and exploitation
when selecting an LLM (Dai et al.; [2024)). GraphRouter formulates routing as a node classification
task over a graph of queries, tasks, and LLMs (Feng et al.l 2024b). However, existing methods
largely overlook the importance of extracting structured preference information from users’ interac-
tion histories: they are not fully personalized and often fail to faithfully model multi-turn conversa-
tions between users and LLMs, which represent the most common form of user—-LLM interaction
in real-world scenarios (Zhang et al., [2025a} [Li et al., 2025b). Moreover, in real-world scenarios,
the preference data provided by a single user is typically scarce, noisy, and inconsistent in format
(Escamocher et al.| 2024} [Li et al.l [2024a). This makes it challenging for methods that rely solely
on user-specific data to learn user profiles (Salemi et al.l [2024; |Gao et al.,[2024)) or use such data as
a retrieval source to support routing (Au et al., 2025), thereby limiting their effectiveness.
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Interaction History Table

Ti 1]"Pl Explain ... 2" T 1]"Exothi i th ic..." T 1]"rating: 3.0"
User 1 [Turn 1]"Please Explain ‘ GPT-4-1106-Preview [Turn 1]"Exothermic and endothermic [Turn 1] ranvng 3.0
[Turn 2]"Can a Process ... 2" [Turn 2]"Yes, a process ..." [Turn 2]"rating: 4.5"
. .. [Turn 1]"ranking: Claude-V1
2 T 17" log ..." 1 -V1 T 1]"Title: Aloh s
User [Turn 1]"Compose a blog Claude-V [Turn 1]"Title: Aloha Spirit S Resl B3R
Turn 1]"ranking: Claude-V1
User 2 [Turn 1]"Compose a blog ..." Koala-13B [Turn 1]"Aloha, fellow travelers ! ..." [Turn 1]"ranking: Claude
> Koala-13B"
User 3 [Turn 1]"Compose an email ..." Vicuna-13B [Turn 1]"Subject: An Exciting ..." [Turn 1]"response: Subject: Embrace ..."
[Turn 2]"Rewrite your ..." [Turn 2]"Subject: A Gental ..." [Turn 2]"response: Subject: Soaring to ..."

Figure 1: Multi-turn user-LLM Interaction History Table. Each row captures a multi-turn in-
teraction with associated user feedback. User feedback can take various forms, including ratings,
rankings, and ground-truth responses.

To address these challenges, we introduce GMTRouter, a heterogeneous graph-based LLM router
based on multi-turn user interactions for personalized LLM routing. GMTRouter first sensitively
identifies key entities within the user—-LLM interaction process: users, LLMs, queries, and re-
sponses. By modeling these entities as different types of nodes and encoding their textual infor-
mation into node embeddings, it maximally preserves the semantic information from the original
data. To faithfully model the relational structure of multi-turn user—-LLM interactions, GMTRouter
organizes these diverse node types into a heterogeneous graph that captures complex relational de-
pendencies. Each single-turn interaction is treated as a fundamental unit, and a virtual node, referred
to as a furn node, is introduced to aggregate local information within each interaction round. We
further transform user preference feedback into node features, enabling preference information to
propagate across the graph. Moreover, rather than training the model to directly extract specific user
profiles from large historical datasets, GMTRouter employs a novel inductive graph training frame-
work to enhance the model’s ability to capture user preferences from few-shot data. This design
allows effective test-time personalization even under sparse interaction histories, such as cold-start
scenarios involving new users. In summary, our main contributions are as follows:

* To the best of our knowledge, we are among the first to introduce an LLLM routing task based on
multi-turn user interactions, providing new insights for this rapidly growing research field.

* We propose a novel personalized LLM routing framework, which faithfully models multi-turn
user-LLM interactions as a heterogeneous graph, and learns to capture user preferences from
few-shot data within a lightweight inductive graph learning framework.

* Through experiments on four datasets spanning diverse tasks, GMTRouter consistently outper-
forms the strongest baselines, achieving 0.9%-21.6% higher accuracy and 0.006—0.309 higher
AUC. Moreover, we demonstrate that our method can efficiently adapt to unseen users with only
a few interaction examples, without requiring retraining.

2 PRELIMINARIES

2.1 TASK FORMULATION

We introduce the personalized LLM routing task in this section. We focus on the multi-turn interac-
tion scenario between users and LLMs with feedback (Wang et al.,[2023b; Shi et al., [2024). Within
a dialogue session, a user repeatedly interacts with a LLM: in each turn, the user issues a query, the
LLM provides a response, and the user in turn supplies a piece of feedback. Such feedback can take
multiple forms, including: (1) scalar scores (e.g., numerical ratings), (Wang et al.| [2023cj [2024b));
(2) preference rankings (e.g., choosing among multiple responses), (Yang et al., 2024; [Sun et al.,
2025)); (3) ground-truth responses (e.g., directly providing the correct answer) (Gao et al.| 2024
Salemi et al., 2024). We structure these interactions into an Interaction History Table, illustrated
in Figure |1} where each entry records the user ID, the selected LLM, the multi-turn queries and
generated responses, and the corresponding user feedback, thereby maximally preserving the rich
relational infomation of the interaction.

Our personalized LLM routing task is then modeled as follows: Given m users {u1, ..., un,} and n
LLM candidates {m, ..., my,}, as well as their historical interaction records:

H= {(uia myq, {(q(t)’r(t)v f(t))}tTil)}a
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Table 1: The consistency of LLM preferences between users is significantly lower than the
consistency within a single user’s preferences. The self-spearman score is substantially higher
than the spearman scores computed across different users.

Metric ~ Self Spearman  Global Spearman  Intra-cluster Spearman  Inter-cluster Spearman

Value 0.7934 0.5239 0.5734 0.4424
Percent 100% 65.99% 72.28% 55.74%

where u; is the user, m; is the selected LLM, and each record contains a multi-turn sequence of
queries ¢, responses (), and feedback f(*) for t = 1,...,T;. When a user u raises a new query
g, the router is required to select an LLM m € {mg,...,m,} to generate a response r that best
aligns with the user preferences, which is measured through the feedback f provided by the user.
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interactions. From this dataset, we select 10 active vieuna-13b g
users, each with at least 50 records, for detailed anal- g
ysis. For each user, we randomly split their data
into two halves and compute the win rates of each

LLM within each half. We use Spearman correla- Figure 2: Significant differences exist in
tion to quantify the consistency of preference rank- LLM preferences across users. The figure
ings over LLMs (De Winter et al, 2016; [Hauke & shows a heatmap of win rates for the 10 most
Kossowskil 2011). We then compute the Spearman Popular LLMs across 10 active users in Chat-
correlation between the two halves to quantify their Bot Arena. The uneven color intensity within
self-consistency in preferences over LLMs (Chevi €ach row visually highlights the pronounced
et al., 2025} Jiang et al.|[2025)), reporting the average preference differences between users.

as a baseline for comparison with inter-user prefer-

ence consistency. Next, based on the similarity of queries in each user’s interaction history, we
cluster users into three groups (Zeng et al., [2024; [Li et al.| [2025a), and compute pairwise Spear-
man correlation scores among users globally, within clusters, and across clusters (Cavallo} 2019
De Winter et al | 2016)), reporting the corresponding averages as summarized in Table[I] We observe
that global consistency in LLM preferences among users is substantially lower than individual self-
consistency, reaching only 65.99% of the latter. Even within the same cluster, the Spearman score
is only 72.28% of the self-consistency, highlighting the diversity of user preferences toward LLMs
(Sun et al., 2025} [Salemi et al., 2024). To further visualize these differences, we select the 10 most
frequently used models across these 10 users and present a win-rate heatmap in Figure 2] offering
an intuitive depiction of the variability in user preferences. Therefore, our framework aims to raise
attention to this pressing research question: Given the substantial inconsistency in LLM preferences
across users, how can we personalize the recommendation of suitable LLMs to meet each user’s
individual preferences?
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3 GMTROUTER: ROUTER OVER MULTI-TURN USER INTERACTIONS

Method Overview As shown in Figure 3] GMTROUTER operates in three stages: (a) It
first identifies the key entities in the Interaction History Table—users, LLMs, queries, and re-
sponses—modeling them as nodes and encoding the textual information into node embeddings to
maximally preserve the information of the interaction process. (b) Based on the relational structure
of user—LLM interactions, these nodes are connected to form a heterogeneous graph, which captures
rich relational dependencies. To facilitate information propagation, we further introduce a virtual
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Figure 3: Overview of GMTRouter. (a) GMTRouter first extracts key entities: users, LLMs,
queries, and responses, from the Interaction History Table and encodes their textual information
using a PLM. (b) It then organizes these entities into a heterogeneous graph to faithfully model
the relational structure of user—LLM interactions. (c) Within a lightweight inductive graph learning
framework, GMTRouter learns to capture user preferences from few-shot data.

turn node that aggregates the information within each single-round interaction. (c¢) Finally, we adopt
a novel inductive graph training framework to learn how to capture user preferences from few-shot
data, thereby enhancing the model’s ability to personalize under sparse user interaction histories.

3.1 NODE EMBEDDINGS INITIALIZATION.

First, our framework focuses on comprehensively extracting the information of various entities in-
volved in the user—-LLM interaction process from the Interaction History Table, along with their
relational structures. As illustrated in part (a) of Figure [3] we extract four types of entities: user
u, LLM m, query g, and response 7, and formalize them as four corresponding node types. Their
textual information is encoded using a pretrained language model (PLM) to obtain the initial node
embeddings (Wang et al.|, 2022} 2023al), thereby preserving the semantic information from the origi-
nal data. Specifically, we encode the query and response texts as their initial embeddings, denoted as
hgq and h,.. In addition, we transform various forms of user feedback in the Interaction History Table
into numerical ratings and project them into a User Preference Feature h,,, which serves as another
attribute on the response nodes. Concretely, ranking feedback is discretized into numerical ratings to
ensure that higher-ranked responses receive higher scores (Banditwattanawong & Masdisornchote,
2025)); for ground-truth response feedback, we compute the geometric distance between the embed-
dings of the ground-truth and the generated response as the rating criterion (Salemi et al., [2024)).
For LLM nodes, instead of simply using their names or IDs (Ding et al., 2024; (Chen et al., 2023a)),
we encode the model overviews provided by AI/ML API platform as their node embeddings h,,
which typically include key information such as model size, usage cost, and domain-specific capa-
bilities, thereby enriching the node embeddings with important background knowledge. Finally, for
user nodes, we do not assume the existence of text-based user profiles, as such information is often
scarce and noisy in real-world applications (Su et al.l 2024; |Alzubaidi et al., 2023); therefore, we
initialize user embeddings h,, as zero vectors.

3.2 HETEROGENEOUS GRAPH CONSTRUCTION.

Next, we organize these nodes into a heterogeneous graph to model the relational structure of
user—LLM interactions (Zhang et al., |2025bj |[Schlichtkrull et al., 2017). We consider each single-
round user—LLM interaction as a fundamental unit and introduce a kind of virtual node, the turn

'https://aimlapi.com/models/
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node, to aggregate the information within each interaction round. As illustrated in part (b) of Figure
within each interaction round, the associated user node, LLM node, and generated query node,
response node are all connected to the corresponding turn node, which serves to aggregate infor-
mation from that round. For multi-turn conversations, the turn nodes corresponding to each round
are sequentially connected in dialogue order, facilitating information propagation across turns. The
turn node embedding h; is initialized as zero vectors. The resulting heterogeneous graph captures
the rich relational dependencies inherent in user—-LLM interactions, where turn nodes aggregate lo-
cal information within each dialogue round and propagate it to user nodes, thereby facilitating the
global aggregation of user preference information.

3.3 GNN AGGREGATION AND INDUCTIVE TRAINING

After constructing the user—LLM interaction histories into a heterogeneous graph, we train our GNN
model on it. Instead of training the model to extract user profiles from large amounts of historical
data (Lin et al., [2021; Wang et al.,[2025), our training objective focuses on enhancing the model’s
ability to capture user preferences from few-shot data, aiming to address scenarios with sparse
user history (Su et al.|, 2024). We adopt Heterogeneous Graph Transformer (HGT) as our model
backbone due to its outstanding ability to maintain dedicated representations for different types of
nodes (Hu et al.l 2020b). Furthermore, we employ an inductive training framework to enhance the
model’s generalizability (Lachaud et al., |2022; |Hamilton et al., 2017), enabling it to better handle
scenarios such as cold-start situations for new users.

As illustrated in the left of (¢) in Figure 3| during each training epoch, we sample & interaction his-
tories for each user to construct a visible subgraph from the heterogeneous graph. We then perform
message aggregation over the sampled visible subgraph to update node embeddings. HGT updates
node embeddings by attending to type-specific neighbors, thereby capturing structured interaction
patterns among different types of nodes. Formally, at each layer [, the embedding of a node v is
updated by aggregating messages from its neighbors based on relation-aware multi-head attention:

h{) = Norm (Dropout (HGTConv(l)(th_l)7 qub)> (1)

where hq(,l) denotes the embedding of node v at layer [, and Gy, denotes the sampled visible sub-

graph. The operator HGTConv” is the HGT convolution at layer I, Norm(+) denotes layer normal-
ization, and Dropout(-) is applied for regularization.

After completing L layers of message aggregation, we obtain the updated node representations h(%).
We then sample data outside the visible subgraph and employ a Prediction Head module fyrcq
for preference prediction. As illustrated in the right of (c) in Figure 3] the Prediction Head takes

the updated user embedding h&L), LLM embedding hg,f ), and the query embedding h(9)g from
PLM as input. It applies a cross-attention module, where the LLM embedding attends to the fused
user—query context to extract relevant preference signals. The module outputs a scalar score sy, 4.m
for each LLM candidate, representing the likelihood that user v would prefer m to answer query:

Su,q,m = fpred(hq(,,L)7 th)7 h%)) (2)

These scores are then used to rank LLM candidates under the same (u, ¢) condition. We normalize
both the predicted scores and the ground-truth ratings, and apply a criterion function to compute
the training loss, which is subsequently used to update the model parameters. During training, we
update only the parameters of the HGT model and the prediction head, without learning any node
embeddings. As a result, at the beginning of each training epoch and during inference, the nodes
use the same initial embeddings.

During inference, when a user raises a new query, we first sample % interaction histories of that user
from the training set to construct the visible subgraph and update the node embeddings. Then, the
LLM candidate is selected from the candidate set M as the one with the highest predicted score:

* L 0 L
m = arg rInnea/}\El fpred(hgl )7 hé )’ h'En)) (3)
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4 EXPERIMENT SETUP

4.1 DATASETS AND DATA PROCESSING

We conduct experiments on one real-world dataset and three additional synthetic datasets, covering
four distinct tasks to enable a comprehensive evaluation of our approach.

¢ Chatbot Arena (Chiang et al., 2024): As mentioned in Section @], we use the Chatbot Arena
dataset to evaluate the personalized performance of our approach compared to baselines under
authentic human preferences. For our experiments, we select the 11 users and 16 LLMs with the
largest number of interactions. Detailed statistics are provided in Appendix [B.1]

* MT-Bench (Zheng et al., 2023): MT-Bench is a benchmark for evaluating the reasoning and
multi-turn conversational capabilities of LLMs, containing 80 multi-turn questions.

* GSMSK (Cobbe et al.,[2021): GSMSK is a dataset of grade school-level math word problems,
designed to assess LLMs’ mathematical reasoning and problem-solving skills.

* MMLU (Hendrycks et al., 2021a3b): MMLU is a comprehensive benchmark covering 57 sub-
jects from professional domains, used to measure general knowledge and multi-domain reasoning
abilities of LLMs. We sample 10 questions from each subject for our experiments.

Data Processing For ChatBot Arena, we discretize the pairwise preferences to serve as the ratings
for responses. For the other datasets, we adopt the data collected in (Ong et al.| (2024a)), which gen-
erated responses to all questions using "GPT-4-1106-preview” (Achiam et al., [2023)) and "Mixtral-
8x7B-Instruct-v0.1” (Jiang et al., [2024), and employed GPT-4 to provide quality annotations for
open-ended questions. Based on this, we convert these datasets into multi-user personalized datasets.
Specifically, for each response, we consider the following four dimensions: (a) Quality: For open-
ended questions, we use the GPT-4 scores provided by |Ong et al.| (20244a); for objective questions,
we directly evaluate the correctness. (b) Cost: We calculate the cost of generating each response
based on the API pricing provided by AI/ML API platform. (c) Response Length: We compute the
token length of each response using the Contriever tokenizer (Izacard et al.2021)). (d) Rare Words:
We count the number of rare words in each response using the wordfreq package (Speer, 2022).

We obtain the final rating of a response by computing a weighted sum of these four metrics. Different
users are assigned different weightings to reflect their individual preferences over these dimensions
(Feng et al.,|2024a;[2025). The specific weights used are provided in Appendix

Data Splitting For all datasets, we partition the data into training, validation, and test sets with
a 7:1:2 ratio, ensuring that users are evenly distributed across the splits. For the GMTRouter, we
further adopt an additional splitting strategy: we sample 30% of the users and restrict their data to
the validation and test sets only, in order to evaluate the generalization ability of our method to new
users unseen during training.

4.2 BASELINES

We compare our GMTRouter against the following baselines:

Prompt-based: (1) Vanilla LLM. We incorporate the query and the descriptions of candidate LLMs
into the prompt, and feed it into LLaMA-3.1-70B (Grattafior1 et al., 2024) to select the LLM. (2)
Personalized LLM. Building on the Vanilla LLM, we retrieve from the training set the ten inter-
action histories most relevant to the user’s query and incorporate them into the prompt. Leveraging
in-context learning Dong et al.| (2022), the LLM is then guided to perform personalized routing.

Representative Router: (3) GraphRouter. (Feng et al.,2024a) We adopt GraphRouter as the rep-
resentative router baseline. It is a graph-based model that formulates routing as a node classification
task over a graph of queries, tasks, and LLMs with learned edge interactions, and has shown superior
performance over many existing routers (Ding et al., 2024; [Chen et al., 2023bj Dai et al., 2024) in
non-personalized settings. (4) FrugalGPT (Chen et al., 2023b) utilizes a PLM to predict the score
of the generation result of all LLMs given a query, and then selects the LLM with the highest score
within a given cost.
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Table 2: GMTRouter consistently outperforms baselines across all datasets. Bold and underline denote
the best and second-best results. The results are averaged over multiple runs.

Method Chatbot-Arena MT-Bench GSMSK MMLU
Accuracy AUC | Accuracy AUC | Accuracy AUC | Accuracy AUC
Vanilla LLM 0.525 0.741 0.481 0.457 0.546 0.533 0.473 0.475
Personalized LLM 0.646 0.780 0.437 0.491 0.553 0.536 0.675 0.678
GraphRouter 0.771 0.869 0.568 0.550 0.717 0.792 0.699 0.746
FrugalGPT 0.562 0.622 0.551 0.552 0.504 0.515 0.545 0.575
GMTRouter (0% new user) 0.774 0.875 0.784 0.859 0.773 0.859 0.771 0.870
GMTRouter: (30% new user) 0.780 0.858 0.759 0.824 0.756 0.833 0.751 0.831

Table 3: GMTRouter requires only minimal storage and GPU resources.

HGT Params  Pred Head Params  Total Params  Storage Overhead Max GPU Usage
26.6M 0.85M 27.4M 109.6MB 4.3GB

4.3 METRICS

We evaluate the performance of all methods using two metrics:

* Accuracy measures how often the model correctly identifies the most preferred LLM to answer a
given query from a specific user.

* AUC-ROC evaluates the model’s ability to rank LLMs according to user preferences (Huang &
Ling,20035). Specifically, it reflects how well the model assigns higher scores to LLMs that receive
better feedback compared to those with lower feedback, under the same user and query.

4.4 IMPLEMENTATION DETAILS

We implement our method using PyTorch Geometric (Fey & Lenssen, |2019) and conduct all ex-
periments on a single NVIDIA RTX A6000 GPU. We employ Contriever ([zacard et al.| |2021) as
the PLM to obtain the initial node embeddings and use a 3-layer HGT with four attention heads per
layer as the graph encoder. We set the visible data size per user to & = 10 during both training
and inference and adopt Entropy Loss as our loss function. In Section[5.2] we will experimentally
analyze the impact of different values of k£ on our method, and hyperparameter details are provided

in Appendix

5 EXPERIMENT RESULTS

5.1 COMPARISON WITH BASELINES

We compare GMTRouter with baselines across four datasets in Table 2] We observe that
GMTRouter consistently outperforms all baselines, delivering an improvement of 0.9%-21.6% on
accuracy and 0.006-0.309 on AUC compared to the strongest baselines, demonstrating the superior-
ity of our framework. For Personalized LLM, although incorporating user interaction histories into
prompts leads to improvements over Vanilla LLM on most datasets, it still lags behind GMTRouter
by at least 9.6% in accuracy and 0.095 in AUC. This highlights the limited ability of LLMs to
extract preference patterns from noisy user data. Moreover, our method consistently outperforms
GraphRouter, a representative router that has shown strong performance in non-personalized LLM
routing tasks, across all datasets. These results validate the importance of leveraging structured
information from multi-turn user-LLM interaction data, together with user preference signals, to
better align LLM selection with diverse user needs. Furthermore, even when 30% of users are not
present in the training set, our method achieves performance comparable to the standard setting,
underscoring its strong generalization ability to new users.

Our Framework is Lightweight We report the parameter count, storage overhead, and training
resource requirements of GMTRouter in Table With only 27.4M trainable parameters and a
109.6MB model size, our framework remains compact compared to existing routing models. During
training, only 4.3GB of GPU memory is needed, making it feasible to train on a single modern GPU
without specialized hardware.
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Figure 4: This figure illustrates the impact of the visible data size £k on GMTRouter for GSM8K
(left) and MMLU (right). The dashed line represents the GraphRouter baseline. As k increases,
the performance of our method improves, but it saturates once k reaches 10.
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Figure 5: This figure illustrates the result comparison between old-user and new-user settings
for GSMSK (left) and MMLU (right). The dashed line represents the GraphRouter baseline. The
personalized performance under the new-user setting is comparable to that under the old-user setting,
highlighting the strong generalization capability of our method.

5.2 CASE STUDIES

Investigating the Impact of Visible Data Size £ We investigate the impact of k visible data per
user on the quality of the aggregated node embeddings. The results on GSM8K and MMLU are
shown in Figure[d] As k increases, both accuracy and AUC improve, but beyond k=10, the perfor-
mance begins to plateau or slightly decline, indicating diminishing returns from including additional
visible data. This may be due to reduced generalization or potential instability caused by excessively
large batch sizes during training (Keskar et al.| 20165 /Oyedotun et al., [2022). Therefore, we choose
k=10 as a balanced setting for capturing user preferences without compromising generalization.

Generalization to New Users We further investigate the personalized capability of our method in
few-shot scenarios with new users. Specifically, we evaluate on the GSM8K and MMLU by sam-
pling 30% users from each dataset and varying the number of visible data k € {3, 5, 8, 10, 15, 20}.
Figure [5] presents averaged results of the sampled users under two settings: (i) the old user setting,
where their records are included in the training set, and (ii) the new user setting, where they appear
only in the validation and test sets. We observe that new users achieve results comparable to old
users, and their performance curves consistently peak far above the GraphRouter baseline. These
findings demonstrate that our approach effectively learns to capture user preferences from few-
shot data and can adapt to new users without requiring extensive fine-tuning.

5.3 ABLATION STUDIES

To evaluate the effectiveness of each design component of the GMTRouter, we conduct ablation
studies along the following aspects.

* w/o User Preference Feature To verify the effectiveness of the user preference feature in prop-
agating preference signals during GNN aggregation, we remove this feature in this variant. As
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Table 4: Ablation of design components. We compare the full model with four variants: (1)
removing the user preference features, (2) replacing the prediction head with a dot-product, (3)
replacing HGT with GraphSAGE, (4) not using user embeddings during prediction. The best and
second-best results are highlighted in bold and underline, respectively.

Method Chatbot-Arena MT-Bench GSMSK MMLU
Accuracy AUC | Accuracy AUC | Accuracy AUC | Accuracy AUC
w/o hy, 0.768 0.872 0.569 0.507 0.715 0.784 0.494 0.613

Dot-product 0.777 0.868 0.730 0.795 0.629 0.724 0.681 0.746
Homo Graph 0.768 0.873 0.569 0.645 0.635 0.648 0.494 0.487
w/o hy, 0.771 0.873 0.569 0.631 0.725 0.814 0.701 0.771
PR 0.774 0.875 0.784 0.859 0.773 0.859 0.771 0.870

a result, node embeddings are updated without incorporating preference ratings, which are used
solely as supervision signals during training.

* Dot-product Prediction Head To evaluate whether the cross-attention prediction head captures
non-linear interactions more effectively than standard similarity scoring when predicting the opti-
mal model, we replace it in this variant with a simple dot product between the (user + query) and
LLM embeddings.

* Homogeneous Graph To evaluate the effectiveness of our heterogeneous graph in capturing com-
plex relationships among different entities in user—LLM interactions, we replace HGT with a ho-
mogeneous GNN, GraphSAGE (Hamilton et al.|[2017), as the model backbone in this variant.

» w/o User Embedding To evaluate the effectiveness of user embeddings aggregated from the sam-
pled visible graph for personalized prediction, we replace the user embeddings fed into the pre-
diction head with zero vectors in this variant, thereby ablating their influence on the predictions.

The results of our ablation studies are presented in Table@ As shown, our GMTRouter achieves the
best performance on most metrics across all four datasets compared to the other variants, confirming
the effectiveness of our design choices.

6 ADDITIONAL RELATED WORKS

LLM Routing. LLM routing focuses on enhancing inference efficiency and response quality by
assigning queries to the most appropriate model (Yue et al.| [2025; Zhang et al.| |2025c). Recent
work frames routing as learning with cost—quality tradeoffs (Kadavath et al.,2022; |Dekoninck et al.}
2024): RouteLLM learns from preference data (Ong et al. (2024b), and RouterBench offers stan-
dardized routing benchmarks [Hu et al|(2024). BEST-Route jointly selects LLM and generation
count at test-time via a bandit controller Ding et al.| (2025). However, existing approaches are
not fully personalized and fail to exploit user information from interaction histories as well as the
structure of multi-turn dialogues.

Heterogeneous Graph Learning. HetGNNs are designed to model heterogeneous graphs by cap-
turing complex multi-type interactions among various nodes and edges (Chien et al., 2021} Feng
et al.,[2019). HAN uses hierarchical attention over metapaths |Wang et al.| (2019), while MAGNN
and HeCo improve metapath aggregation and cross-view contrast |Fu et al.| (2020); [Wang et al.
(2021). Transformers such as HGT provide inductive, relation-aware message passing with tempo-
ral encoding |[Hu et al.|(2020a). This enables rich relational structures in user—LLM interactions
while leveraging inductive training to enhance generalization on sparse data from new users.

7 CONCLUSION

In this work, we introduced GMTRouter, a heterogeneous graph-based framework for personalized
LLM routing. By modeling multi-turn user—-LLM interactions as a heterogeneous graph and prop-
agating preference signals across node types, our method effectively captures user-specific patterns
even from few-shot, noisy data. Experiments across four benchmarks confirm that GMTRouter con-
sistently surpasses strong baselines in both accuracy and AUC, while adapting efficiently to new
users without retraining. These results highlight the value of structured interaction modeling for
advancing preference-aware LLM routing and point to promising future directions in scalable, user-
aligned LLM deployment.
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A IMPLEMENTATION DETAILS

A.1 MODEL CONFIGURATION AND HYPERPARAMETERS

Architecture. We use a heterogeneous graph transformer (HGT) with:
* GNN: 2 layers (single-turn) or 3 (multi-turn), 768-dim hidden, 4-head HGTConv, Layer-
Norm, dropout 0.1.
e Predictor: 4-head MLP with hidden dim 256, dropout 0.1; uses cross-attention where

LLM attends to user+query.
Training.

* Epochs: 350 LR: 5e-4

* Visible records/user (k): {3, 5, 8, 10, 15, 20}

* Batch size: 256 supervision triplets

* Ranking Objective: prioritize AUC, then Accuracy

A.2 TRAINING OF GMTROUTER

Algorithm 1: Training GMTRouter

Data: Divain = {(z,v)}

Hyperparams: epochs E, visible k, supervision s, PLM, GNN fg, predictor Pred
Init: PLM-encode all nodes; initialize node/edge features

for e < 1to E do

G« subgraph from k|U| visible records
M@ s held-out triples (u, g, m)
hef¢(g(e>) // message passing
for (u,q,m) € M© do
| 9« Pred(hu, ¢, hm)
Update f4 and Pred by minimizing Lrank (4, y)

B DATASET PREPARATION

B.1 DATASET STATISTICS

We preprocess each dataset by extracting user—query—LLM-response tuples and partition them into
train, validation, and test sets. To ensure fair evaluation and meaningful personalization, we strat-
ify the splits to maintain balanced user—model preference distributions and avoid degenerate cases
(e.g., users consistently preferring a single LLM or lacking query diversity). This setup promotes
generalization under cold-start conditions and supports robust evaluation of routing behavior.

For ChatBot Arena, we selected the following users and LLMs:

Users: arena_user_9965, arena_user_15085, arena_user_257, arena_user_13046, arena_user_11473,
arena_user_3820, arena_user_9676, arena_user_6467, arena_user_6585, arena_user_5203,
arena_user_1338

LLMs: koala-13b, vicuna-13b, gpt-3.5-turbo, oasst-pythia-12b, gpt-4, claude-v1, RWKV-4-Raven-
14B, palm-2, alpaca-13b, mpt-7b-chat, vicuna-7b, claude-instant-v1, chatglm-6b, fastchat-t5-3b,
dolly-v2-12b, stablelm-tuned-alpha-7b

B.2 SYNTHETIC USER DESIGN
To simulate diverse user preferences, we introduce synthetic users whose routing behavior is gov-

erned by a weighted linear utility function over multiple metrics: human preference rating, to-
ken count, output diversity, and cost. For each dataset, we manually assign different weights
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Table 5: Dataset statistics, including the number of entries, users, and LLMs in each split.

Dataset Split #Entries #Users #LLMs
Train 1390 11 16
Chatbot-Arena  Valid 193 11 16
Test 412 11 16
Train 1120 10 2
MT-Bench Valid 160 10 2
Test 320 10 2
Train 9230 10 2
GSM8K Valid 1310 10 2
Test 2650 10 2
Train 1985 5 2
MMLU Valid 280 5 2
Test 575 5 2

{wra[ing7U)tokens,'lUdiff, Weost} per user to reflect individualized trade-offs, such as favoring cost-
efficiency or output diversity over raw model quality. These weights are normalized within each
dataset to prevent scale bias.

Table 6: Synthetic user weights for MT-Bench dataset.

User Wrating Wrtokens Wiff Weost

user_1 1.42 0.0087 —0.174 —45.23
user_2 1.87 0.0012 0.091 —15.55
user_3 0.96 0.0135 0.045 —48.42
user_4 1.15 -0.0008 —-0.220 —10.00
user_5 1.69 0.0024 0.175 —38.50
user_6 1.08 —-0.0015 -0.030 —25.12
user_7 0.53 0.0162 0.230 —5.75
user_8 1.34 —0.0005 —-0.145 —12.40
user_9 1.98 0.0101 0.087 —25.10
user_10 1.57 0.0024 —0.065 -7.79

Table 7: Synthetic user weights for GSM8K dataset.

User Wrating ~ Wrokens Wdiff ~ Weost
user_1 1.0 20.0 100.0 -0.0
user_2 1.5 18.0 50.0 -1.0
user_3 0.8 22.0 80.0 -0.5
user_4 1.2 170 1200 -0.2
user_5 2.0 15.0 70.0 -04
user_6 0.4 6.0 4.0 -1.0
user_7 0.3 7.0 5.0 -09
user_8 0.6 8.0 7.0 -1.2
user_9 0.2 9.0 90 -08

user_10 0.8 10.0 3.0 1.1

C BASELINE ROUTING PROMPTS

To benchmark routing strategies, we design two representative prompt templates: one for a vanilla
router that selects the best LLM without personalization, and another for a personalized router that
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Table 8: Synthetic user weights for MMLU dataset.

User Wrating ~ Wiokens — Wdiff Weost

user_1 1.0 0.00 0.00 0.0
user_2 1.0 0.00 0.00 —600.0
user_3 1.0 0.00 0.00 —1200.0
user_4 1.0 0.00 0.00 —1800.0
user_5 1.0 0.00 0.00 —2400.0

10 Chatbot-Arena Performance vs. k 10 MT-Bench Performance vs. k
0.94 0.9
0.8/ 08] e T,
P L e —
& R
0.74 0.7
—e— Accuracy —e— Accuracy
AUC AUC
0.6 ---- Accuracy (GraphRouter) 06 ---- Accuracy (GraphRouter) |
AUC (GraphRouter) AUC (GraphRouter)
0.5+ : . ; ; y 0.5 . . ; T y
3 5 8 10 15 20 3 5 8 10 15 20
k records k records

Figure 6: K-selection across datasets.

incorporates user history and preferences. Both prompts simulate realistic routing scenarios where
a system must choose a single LLM for the next turn in a multi-turn dialogue.

Table 9: Prompt Template: Vanilla LLM Routing (No Personalization)

[Instruction]

You are an expert routing agent. Your task is to select the most suitable Large Language
Model (LLM) to handle the next query in a multi-turn conversation.
[Input Format]

[Candidate LLM List]

{{CANDIDATE.LLM.LIST}}

[Previous Conversation]
{{PREVIOUS_CONVERSATION}}

[Current Query]

{{CURRENT_QUERY}}

[Instructions for Model Selection]

» Consider the query difficulty, the context of the previous conversation, and each
LLM’s expertise, cost, and size.

* Choose the single best LLM to respond to the current query.
e Qutput only the name of the selected LLM in the exact format below.
* Do not provide explanations or commentary.

[Output Format]
<’{selectedmodel_name}’ >

D ADDITIONAL RESULTS FOR CASE STUDIES

Here, we present the results of the experiments described in Section [5.2] on the ChatBot Arena and
MT-Bench datasets, as shown in Figures || and [7] respectively.
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Table 10: Prompt Template: Personalized Routing (User History Aware)

[Instruction]

You are an expert routing agent. Your task is to select the most suitable Large Language
Model (LLM) to handle the next query in a multi-turn conversation, incorporating both model
characteristics and personalization signals from the user’s history.

[Input Format]

[Candidate LLM List]

{{CANDIDATE_LLM LIST}}

[Previous Conversation]

{{PREVIOUS_CONVERSATION}}

[Current Query]

{{CURRENT_QUERY }}

[User Preference History]

{{USER_PREFERENCE_HISTORY}}

[Instructions for Model Selection]

» Consider the query difficulty, the context of the ongoing conversation, the LLMs’
specializations, cost, and size.

* Additionally, factor in the user’s historical preferences and ratings to personalize the
routing decision.

* Choose the single best LLM to respond to the current query.
e Qutput only the name of the selected LLM in the exact format below.
* Do not provide explanations or commentary.

[Output Format]
<’{selectedmodel_name}’ >

Arena MT-Bench
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0.80+ 0.80 1
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°
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Figure 7: Generalization to new users.

E THE USE OF LARGE LANGUAGE MODELS (LLMS)

During the writing of this paper, we used the GPT-5 Mini model for text polishing and grammatical
corrections to enhance the readability of the manuscript.
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