
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

GMTROUTER: PERSONALIZED LLM ROUTER OVER
MULTI-TURN USER INTERACTIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Model (LLM) routing has demonstrated strong capability in bal-
ancing response quality with computational cost. As users exhibit diverse pref-
erences, personalization has attracted increasing attention in LLM routing, since
even identical queries may require different models to generate responses tailored
to individual needs. However, existing approaches are not fully personalized and
often fail to faithfully capture the complex interactions between specific users
and LLMs. Moreover, user preference data is typically scarce, noisy, and incon-
sistent in format, which limits the effectiveness of methods that rely solely on
user-specific data. To address these challenges, we propose GMTRouter, which
represents multi-turn user–LLM interactions as a heterogeneous graph with four
node types: user, LLM, query, and response, thereby maximally preserving the
rich relational structure of the interaction. Through a tailored message-passing
mechanism, GMTRouter learns to capture user preferences from few-shot data
within a lightweight inductive graph learning framework, enabling effective per-
sonalization. Extensive experiments demonstrate that GMTRouter consistently
outperforms the strongest baselines, achieving 0.9%–21.6% higher accuracy and
0.006–0.309 higher AUC across multiple datasets. More importantly, we further
demonstrate that GMTRouter can adapt to new users and evolving preferences
using only few-shot data, without extensive fine-tuning.

1 INTRODUCTION

With the rapid development of the field of Large Language Models (LLMs), an increasing number
of models with varying sizes, computational costs, and domain expertise have become available
(Singhal et al., 2023; Luo et al., 2022). This makes LLM routing particularly important, as it enables
the recommendation of appropriate LLMs for diverse user queries while balancing response quality
with computational cost (Šakota et al., 2024; Stripelis et al., 2024). Such routing techniques are
increasingly adopted in modern LLMs, including GPT-5 (OpenAI, 2025). At the same time, as more
users engage with LLM routing services, differences in individual preferences become increasingly
prominent: even identical queries may require different models to generate responses tailored to
each user (Li et al., 2024b; Salehi et al., 2024). Therefore, this paper aims to highlight a pressing
research question: Can we design a personalized routing framework that aligns LLM selection with
individual user preferences based on their interaction histories?

Existing research has proposed various architectures for LLM routing frameworks: FrugalGPT in-
troduces a BERT-based router that determines whether to switch to a larger LLM (Chen et al., 2023),
while C2MAB-V constructs a bandit-based router to balance exploration and exploitation when se-
lecting an LLM (Dai et al., 2024). GraphRouter formulates routing as a node classification task over
a graph of queries, tasks, and LLMs (Feng et al., 2024). However, existing methods largely overlook
the importance of extracting structured preference information from users’ interaction histories: they
are not fully personalized and often fail to faithfully model multi-turn conversations between users
and LLMs, which represent the most common form of user–LLM interaction in real-world scenar-
ios (Zhang et al., 2025a; Li et al., 2025b). Moreover, in real-world scenarios, the preference data
provided by a single user is typically scarce, noisy, and inconsistent in format (Escamocher et al.,
2024; Li et al., 2024a). This makes it challenging for methods that rely solely on user-specific data
to learn user profiles (Salemi et al., 2024a; Gao et al., 2024) or use such data as a retrieval source to
support routing (Au et al., 2025), thereby limiting their effectiveness.
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Assets

User ID Query Selected LLM Response Feedback

User  1 [Turn 1]"Please Explain ... ?"
[Turn 2]"Can a Process ... ?"

GPT-4-1106-Preview [Turn 1]"Exothermic and endothermic ..."
[Turn 2]"Yes, a process ..."

[Turn 1]"rating: 3.0"
[Turn 2]"rating: 4.5"

User  2 [Turn 1]"Compose a blog ..." Claude-V1 [Turn 1]"Title: Aloha Spirit ..."
[Turn 1]"ranking: Claude-V1 

> Koala-13B"

User  2 [Turn 1]"Compose a blog ..." Koala-13B [Turn 1]"Aloha, fellow travelers ! ..."
[Turn 1]"ranking: Claude-V1 

> Koala-13B"

User  3 [Turn 1]"Compose an email ..."
[Turn 2]"Rewrite your ..."

Vicuna-13B [Turn 1]"Subject: An Exciting ..."
[Turn 2]"Subject: A Gental ..."

[Turn 1]"response: Subject: Embrace ..."
[Turn 2]"response: Subject: Soaring to ..."

Interaction History Table 

Assets

User ID Query LLM Response Feedback

User  1 [Turn 1]"..."
[Turn 2]"..."

Koala-13B [Turn 1]"..."
[Turn 2]"..."

[Turn 1]"3.0"
[Turn 2]"4.5"

User  2 [Turn 1]..." Koala-13B [Turn 1]"..." [Turn 1]"5.0"

User  2 [Turn 1]" ..." Claude-V1 [Turn 1]"..." [Turn 1]"0.0"

... ... ... ... ...

Interaction History Table 
User Node u All-zero Embed hu

Turn Node t All-zero Embed ht

Query Node q PLM  Embed hq

LLM Node l PLM Embed hl

Response Node r
 PLM Embed hr

User Preference Feature hr

Node Embedding Init

Heterogeneous Graph Construction

u1

t1

t2

q1
l1

r1

q2

r2

u2

t3

t4l2

q3

r3

q4

r4

Inductive GNN Training

Sampled Visible Subgraph 

... ... ...

u2

t4l2

q4

r4

... ...

u1

t5
r5

l1

q5

Sampled Data Prediction 

Aggregation over L Layers

Loss Back Propgation

Aggregated/Init Embeddings

Prediction
 Head

Cross Attention
+   MLP

Predicted Rating

Figure 1: Multi-turn user-LLM Interaction History Table. Each row captures a multi-turn in-
teraction with associated user feedback. User feedback can take various forms, including ratings,
rankings, and ground-truth responses.

To address these challenges, we introduce GMTRouter (Graph Multi-Turn Router), a heteroge-
neous graph-based LLM router based on multi-turn user interactions for personalized LLM routing.
GMTRouter first sensitively identifies key entities within the user–LLM interaction process: users,
LLMs, queries, and responses. By modeling these entities as different types of nodes and encoding
their textual information into node embeddings, it maximally preserves the semantic information
from the original data. To faithfully model the relational structure of multi-turn user–LLM inter-
actions, GMTRouter organizes these diverse node types into a heterogeneous graph that captures
complex relational dependencies. Each single-turn interaction is treated as a fundamental unit, and
a virtual node, referred to as a turn node, is introduced to aggregate local information within each
interaction round. We further transform user preference feedback into node features, enabling prefer-
ence information to propagate across the graph. Moreover, rather than training the model to directly
extract specific user profiles from large historical datasets, GMTRouter employs a novel induc-
tive graph training framework to enhance the model’s ability to capture user preferences from
few-shot data. This design allows effective test-time personalization even under sparse interaction
histories, such as cold-start scenarios involving new users. In summary, our main contributions are
as follows:

• To the best of our knowledge, we are among the first to introduce an personalized LLM routing
task based on multi-turn user interactions, providing new insights for this rapidly growing research
field.

• We propose a novel personalized LLM routing framework, which faithfully models multi-turn
user–LLM interactions as a heterogeneous graph, and learns to capture user preferences from
few-shot data within a lightweight inductive graph learning framework.

• Through experiments on four datasets spanning diverse tasks, GMTRouter consistently outper-
forms the strongest baselines, achieving 0.9%–21.6% higher accuracy and 0.006–0.309 higher
AUC. Moreover, we demonstrate that our method can efficiently adapt to unseen users with only
a few interaction examples, without requiring retraining.

2 PRELIMINARIES

2.1 TASK FORMULATION

We introduce the personalized LLM routing task in this section. We focus on the multi-turn interac-
tion scenario between users and LLMs with feedback (Wang et al., 2023b; Shi et al., 2024). Within
a dialogue session, a user repeatedly interacts with a LLM: in each turn, the user issues a query, the
LLM provides a response, and the user in turn supplies a piece of feedback. Such feedback can take
multiple forms, including: (1) scalar scores (e.g., numerical ratings), (Wang et al., 2023c; 2024b);
(2) preference rankings (e.g., choosing among multiple responses), (Yang et al., 2024; Sun et al.,
2025); (3) ground-truth responses (e.g., directly providing the correct answer) (Gao et al., 2024;
Salemi et al., 2024a). We structure these interactions into an Interaction History Table, illustrated
in Figure 1, where each entry records the user ID, the selected LLM, the multi-turn queries and
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Table 1: The consistency of LLM preferences between users is significantly lower than the
consistency within a single user’s preferences. The self-spearman score is substantially higher
than the spearman scores computed across different users.

Metric Self Spearman Global Spearman Intra-cluster Spearman Inter-cluster Spearman

Value 0.7934 0.5239 0.5734 0.4424
Percent 100% 65.99% 72.28% 55.74%

generated responses, and the corresponding user feedback, thereby maximally preserving the rich
relational infomation of the interaction.

Our personalized LLM routing task is then modeled as follows: Given m users {u1, . . . , um} and n
LLM candidates {m1, . . . ,mn}, as well as their historical interaction records:

H = {(ui,mi, {(q(t), r(t), f (t))}Ti
t=1)},

where ui is the user, mi is the selected LLM, and each record contains a multi-turn sequence of
queries q(t), responses r(t), and feedback f (t) for t = 1, . . . , Ti. When a user u raises a new query
q, the router is required to select an LLM m ∈ {m1, . . . ,mn} to generate a response r that best
aligns with the user preferences, which is measured through the feedback f provided by the user.

2.2 MOTIVATION

Figure 2: Significant differences exist in
LLM preferences across users. The figure
shows a heatmap of win rates for the 10 most
popular LLMs across 10 active users in Chat-
Bot Arena. The uneven color intensity within
each row visually highlights the pronounced
preference differences between users.

In this section, we highlight the significant differ-
ences in LLM preferences across users in the real
world (Chevi et al., 2025; Wang et al., 2024a), em-
phasizing the importance of personalized LLM rout-
ing for enhancing user experience. We use the Chat-
Bot Arena dataset (Chiang et al., 2024) to illustrate
our findings, which contains extensive anonymized
multi-turn conversations from numerous users, with
pairwise human preference labels between various
LLMs, enabling the study of real-world user–LLM
interactions. From this dataset, we select 10 active
users, each with at least 50 records, for detailed anal-
ysis. For each user, we randomly split their data
into two halves and compute the win rates of each
LLM within each half. We use Spearman correla-
tion to quantify the consistency of preference rank-
ings over LLMs (De Winter et al., 2016; Hauke &
Kossowski, 2011). We then compute the Spearman
correlation between the two halves to quantify their
self-consistency in preferences over LLMs (Chevi
et al., 2025; Jiang et al., 2025), reporting the average
as a baseline for comparison with inter-user prefer-
ence consistency. Next, based on the similarity of queries in each user’s interaction history, we
cluster users into three groups (Zeng et al., 2024; Li et al., 2025a), and compute pairwise Spear-
man correlation scores among users globally, within clusters, and across clusters (Cavallo, 2019;
De Winter et al., 2016), reporting the corresponding averages as summarized in Table 1. We observe
that global consistency in LLM preferences among users is substantially lower than individual self-
consistency, reaching only 65.99% of the latter. Even within the same cluster, the Spearman score
is only 72.28% of the self-consistency, highlighting the diversity of user preferences toward LLMs
(Sun et al., 2025; Salemi et al., 2024a). To further visualize these differences, we select the 10 most
frequently used models across these 10 users and present a win-rate heatmap in Figure 2, offering
an intuitive depiction of the variability in user preferences. Therefore, to address the substantial
inconsistency of LLM preferences across users, we propose GMTRouter, a framework that enables
the personalized recommendation of suitable LLMs tailored to each user’s individual preferences.
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Assets

User ID Query LLM Response Feedback

User  1 [Turn 1]"..."
[Turn 2]"..."

Koala-13B [Turn 1]"..."
[Turn 2]"..."

[Turn 1]"3.0"
[Turn 2]"4.5"

User  2 [Turn 1]..." Koala-13B [Turn 1]"..." [Turn 1]"5.0"

User  2 [Turn 1]" ..." Claude-V1 [Turn 1]"..." [Turn 1]"0.0"

... ... ... ... ...

Interaction History Table 

(b) Heterogeneous Graph Construction

u1

t1

t2

q1

q2

u2

t3

t4

q3

q4

(c) Inductive GNN Training

Sampled Visible Subgraph 

... ... ...

u2t4

q4

... ...

u1

t5

q5

Sampled Data Prediction 

Aggregation over L Layers

Loss Back Propgation

Prediction
 Head

Cross Attention
+   MLP

Predicted Rating

l2

l2

l1

l1

r2 r4

r1 r3

r4

r5

Aggregated/Init Embeddings

User Node u All-zero Embed hu

Turn Node t All-zero Embed ht

Query Node q PLM  Embed hq

LLM Node l PLM Embed hl

Response Node r
 PLM Embed hr

User Preference Feature hp

(a) Node Embedding Init

Figure 3: Overview of GMTRouter. (a) GMTRouter first extracts key entities: users, LLMs,
queries, responses, and feedback, from the Interaction History Table and encodes their textual in-
formation using a PLM. (b) It then organizes these entities into a heterogeneous graph to faithfully
model the relational structure of user–LLM interactions. (c) Within a lightweight inductive graph
learning framework, GMTRouter learns to capture user preferences from few-shot data.

3 GMTROUTER: ROUTER OVER MULTI-TURN USER INTERACTIONS

Method Overview As shown in Figure 3, GMTROUTER operates in three stages: (a) It first
identifies the key entities in the Interaction History Table—users, LLMs, queries, responses, and
feedback—modeling them as nodes and encoding the textual information into node embeddings to
maximally preserve the information of the interaction process. (b) Based on the relational structure
of user–LLM interactions, these nodes are connected to form a heterogeneous graph, which captures
rich relational dependencies. To facilitate information propagation, we further introduce a virtual
turn node that aggregates the information within each single-round interaction. (c) Finally, we adopt
a novel inductive graph training framework to learn how to capture user preferences from few-shot
data, thereby enhancing the model’s ability to personalize under sparse user interaction histories.

3.1 NODE EMBEDDINGS INITIALIZATION.

First, our framework focuses on comprehensively extracting the information of various entities in-
volved in the user–LLM interaction process from the Interaction History Table, along with their
relational structures. As illustrated in part (a) of Figure 3, we extract four types of entities: user
u, LLM m, query q, and response r, and formalize them as four corresponding node types. Their
textual information is encoded using a pretrained language model (PLM) to obtain the initial node
embeddings (Wang et al., 2022; 2023a), thereby preserving the semantic information from the origi-
nal data. Specifically, we encode the query and response texts as their initial embeddings, denoted as
hq and hr. In addition, we transform various forms of user feedback in the Interaction History Table
into numerical ratings and project them into a User Preference Feature hp, which serves as another
attribute on the response nodes. Concretely, ranking feedback is discretized into numerical ratings to
ensure that higher-ranked responses receive higher scores (Banditwattanawong & Masdisornchote,
2025); for ground-truth response feedback, we compute the geometric distance between the embed-
dings of the ground-truth and the generated response as the rating criterion (Salemi et al., 2024a).
For LLM nodes, instead of simply using their names or IDs (Ding et al., 2024; Chen et al., 2023),
we encode the model overviews provided by AI/ML API platforms1 as their node embeddings hm,

1https://aimlapi.com/models/
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which typically include key information such as model size, usage cost, and domain-specific capa-
bilities, thereby enriching the node embeddings with important background knowledge. Finally, for
user nodes, we do not assume the existence of text-based user profiles, as such information is often
scarce and noisy in real-world applications (Su et al., 2024; Alzubaidi et al., 2023); therefore, we
initialize user embeddings hu as zero vectors.

3.2 HETEROGENEOUS GRAPH CONSTRUCTION.

Next, we organize these nodes into a heterogeneous graph to model the relational structure of
user–LLM interactions (Zhang et al., 2025b; Schlichtkrull et al., 2017). We consider each single-
round user–LLM interaction as a fundamental unit and introduce a kind of virtual node, the turn
node, to aggregate the information within each interaction round. As illustrated in part (b) of Figure
3, within each interaction round, the associated user node, LLM node, and generated query node,
response node are all connected to the corresponding turn node, which serves to aggregate infor-
mation from that round. For multi-turn conversations, the turn nodes corresponding to each round
are sequentially connected in dialogue order, facilitating information propagation across turns. The
turn node embedding ht is initialized as zero vectors. The resulting heterogeneous graph captures
the rich relational dependencies inherent in user–LLM interactions, where turn nodes aggregate lo-
cal information within each dialogue round and propagate it to user nodes, thereby facilitating the
global aggregation of user preference information.

3.3 GNN AGGREGATION AND INDUCTIVE TRAINING

After constructing the user–LLM interaction histories into a heterogeneous graph, we train our GNN
model on it. Notably, GMTRouter is a general framework that can incorporate any heterogeneous
GNN as its backbone. We denote the GNN backbone used in our method as GNN throughout the
rest of the paper.

To address scenarios with sparse user history (Su et al., 2024), instead of training the model to
extract user profiles from large amounts of historical data (Lin et al., 2021; Wang et al., 2025),
We employ an inductive framework along with user-conditioned graph sampling during training,
enabling GMTRouter to capture a user’s preferences from only a few interaction records.

User-conditioned Graph Sampling As illustrated in the left of (c) in Figure 3, during each train-
ing epoch, we sample k interaction histories for each user to construct a visible subgraph from the
heterogeneous graph for message passing, and further sample data outside the visible subgraph as
the prediction targets. We then use only these small sampled visible subgraphs and perform mes-
sage aggregation separately for each user to update the node embeddings. Formally, at each layer l,
the embedding of a node v is updated by aggregating messages from its neighbors according to the
message-passing mechanism of the backbone GNN:

h(l)
v = Norm

(
Dropout

(
GNN(l)(h(l−1)

v ,Gsub

))
(1)

where h
(l)
v denotes the embedding of node v at layer l, and Gsub denotes the sampled visible sub-

graph. Norm(·) denotes layer normalization, and Dropout(·) is applied for regularization.

This restriction on the amount of data involved in message passing encourages the model to learn
how to infer user preferences from very limited signals and to generalize efficiently to new users.

LLM Routing with a Prediction Head. After completing L layers of message aggregation, we
obtain the updated node representations h(L). We then employ a Prediction Head module fpred
for preference prediction. As illustrated in the right of (c) in Figure 3, the Prediction Head takes
the updated user embedding h

(L)
u , LLM embedding h

(L)
m , and the query embedding h(0)q from

PLM as input. It applies a cross-attention module, where the LLM embedding attends to the fused
user–query context to extract relevant preference signals. The module outputs a scalar score su,q,m
for each LLM candidate, representing the likelihood that user u would prefer m to answer query:

su,q,m = fpred(h
(L)
u , h(0)

q , h(L)
m ) (2)
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These scores are then used to rank LLM candidates under the same (u, q) condition. We normalize
both the predicted scores and the ground-truth ratings, and apply a criterion function to compute the
training loss, which is subsequently used to update the model parameters.

During inference, when a user raises a new query, we first sample k interaction histories of that user
to construct the visible subgraph and update the node embeddings. Then, the LLM candidate is
selected from the candidate set M as the one with the highest predicted score:

m∗ = arg max
m∈M

fpred(h
(L)
u , h(0)

q , h(L)
m ) (3)

4 EXPERIMENT SETUP

4.1 DATASETS AND DATA PROCESSING

We conduct experiments on one real-world dataset and three additional synthetic datasets, covering
four distinct tasks to enable a comprehensive evaluation of our approach.

• Chatbot Arena (Chiang et al., 2024): As mentioned in Section 2.2, we use the Chatbot Arena
dataset to evaluate the personalized performance of our approach compared to baselines under
authentic human preferences. For our experiments, we select the 11 users and 16 LLMs with the
largest number of interactions. Detailed statistics are provided in Appendix B.1.

• MT-Bench (Zheng et al., 2023): MT-Bench is a benchmark for evaluating the reasoning and
multi-turn conversational capabilities of LLMs, containing 80 multi-turn questions.

• GSM8K (Cobbe et al., 2021): GSM8K is a dataset of grade school-level math word problems,
designed to assess LLMs’ mathematical reasoning and problem-solving skills.

• MMLU (Hendrycks et al., 2021a;b): MMLU is a comprehensive benchmark covering 57 sub-
jects from professional domains, used to measure general knowledge and multi-domain reasoning
abilities of LLMs. We sample 10 questions from each subject for our experiments.

• LaMP (Salemi et al., 2024b): LaMP is designed to evaluate language models across multiple
dimensions of personalization. We select the ”Personalized Scholarly Title Generation” task,
which provides pairs of paper titles and abstracts for multiple users and requires predicting the
title a user would prefer given an abstract. We convert this task into a personalized routing dataset,
with processing details provided in Appendix B.3.

Data Processing For ChatBot Arena, we discretize the pairwise preferences to serve as the ratings
for responses. For the other datasets, we adopt the data collected in Ong et al. (2024), which gen-
erated responses to all questions using ”GPT-4-1106-preview” (Achiam et al., 2023) and ”Mixtral-
8x7B-Instruct-v0.1” (Jiang et al., 2024), and employed GPT-4 to provide quality annotations for
open-ended questions. Based on this, we convert these datasets into multi-user personalized datasets.
Specifically, for each response, we consider the following four dimensions: (a) Quality: For open-
ended questions, we use the GPT-4 scores provided by Ong et al. (2024); for objective questions, we
directly evaluate the correctness. (b) Cost: We calculate the cost of generating each response based
on the API pricing provided by AI/ML API platform. (c) Response Length: We compute the token
length of each response using the Contriever tokenizer (Izacard et al., 2021). (d) Rare Words: We
count the number of rare words in each response using the wordfreq package (Speer, 2022).

We obtain the final rating of a response by computing a weighted sum of these four metrics. Different
users are assigned different weightings to reflect their individual preferences over these dimensions
(Feng et al., 2024; 2025). The specific weights used are provided in Appendix B.2.

Data Splitting For all datasets, we partition the data into training, validation, and test sets with
a 7:1:2 ratio, ensuring that users are evenly distributed across the splits. For the GMTRouter, we
further adopt an additional splitting strategy: we sample 30% of the users and restrict their data to
the test sets only, in order to evaluate the generalization ability of our method to new users unseen
during training.

4.2 BASELINES

We compare our GMTRouter against the following baselines:

6
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Prompt-based: (1) Vanilla LLM. We incorporate the query and the descriptions of candidate LLMs
into the prompt, and feed it into LLaMA-3.1-70B (Grattafiori et al., 2024) to select the LLM. (2)
Personalized LLM. Building on the Vanilla LLM, we retrieve from the training set the ten inter-
action histories most relevant to the user’s query and incorporate them into the prompt. Leveraging
in-context learning Dong et al. (2022), the LLM is then guided to perform personalized routing.

Representative Router: (3) GraphRouter. (Feng et al., 2024) We adopt GraphRouter as the rep-
resentative router baseline. It is a graph-based model that formulates routing as a node classification
task over a graph of queries, tasks, and LLMs with learned edge interactions, and has shown superior
performance over many existing routers (Ding et al., 2024; Chen et al., 2023; Dai et al., 2024) in
non-personalized settings. (4) FrugalGPT (Chen et al., 2023) utilizes a PLM to predict the score
of the generation result of all LLMs given a query, and then selects the LLM with the highest score
within a given cost. (5) RouteLLM (Ong et al., 2024). Learns to route queries among a weak-
strong pair of LLMs. Following the official setup, we designate the weak model as the one with the
lower average win rate in the dataset, and the strong model as the one with the higher win rate.

Sequential / memory-based recommender: (6) MA-GNN (Chen Ma, 2020). A memory-
augmented GNN that models both short-term and long-term user interests through item-level mes-
sage passing and a dedicated memory module. We treat each user’s interaction history as a sequence
of (query, LLM, feedback) records, where the sequential component captures short-term preference
shifts and the memory module aggregates long-term preference signals; MA-GNN then predicts
the preferred LLM for the current query. (7) TIGER (Shashank Rajput, 2023). A generative
retrieval–based sequential recommender that models item sequences via semantic discrete codes;
we regard LLMs as items and train TIGER to generate the semantic code of the best LLM condi-
tioned on the user’s past interactions and current query, ranking candidate LLMs by their predicted
likelihood.

4.3 METRICS

We evaluate the performance of all methods using two metrics:

• Accuracy measures how often the model correctly identifies the most preferred LLM to answer a
given query from a specific user.

• AUC-ROC (Area Under the Receiver Operating Characteristic Curve) measures the model’s abil-
ity to correctly rank candidate LLMs according to user preferences. We employ a pairwise ap-
proach (C-index), defined as the probability that the predicted score s+ for a preferred response
(higher rating, r+) is greater than the score s− for a less preferred response (lower rating, r−) over
all comparable pairs: AUC = Pr(s+ > s−) +

1
2 Pr(s+ = s−).

4.4 IMPLEMENTATION DETAILS

We implement our method using PyTorch Geometric (Fey & Lenssen, 2019) and conduct all exper-
iments on a single NVIDIA RTX A6000 GPU. We employ Contriever (Izacard et al., 2021) as the
PLM to obtain the initial node embeddings. We adopt the Heterogeneous Graph Transformer (HGT)
(Ziniu Hu, 2020) as our model backbone due to its strong capability to maintain dedicated represen-
tations for different types of nodes. Additionally, we experiment with various other heterogeneous
GNNs as the backbone to investigate their impact on GMTRouter’s performance. Experimental de-
tails are provided in Appendix F.4. We set the visible data size per user to k = 10 during both
training and inference and adopt Entropy Loss as our loss function. In Section 5.2, we will experi-
mentally analyze the impact of different values of k on our method, and hyperparameter details are
provided in Appendix A.1.

5 EXPERIMENT RESULTS

5.1 COMPARISON WITH BASELINES

We compare GMTRouter with baselines across four datasets in Table 2. We observe that
GMTRouter consistently outperforms all baselines, delivering an improvement of 0.9%–21.6% on
accuracy and 0.006–0.309 on AUC compared to the strongest baselines, demonstrating the superior-
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Table 2: GMTRouter consistently outperforms baselines across all datasets. Bold and under-
line denote the best and second-best results. The results are averaged over multiple runs. Since
RouteLLM and FrugalGPT are inherently binary routers, we evaluated them only in the binary set-
ting from our datasets.

Method Chatbot-Arena MT-Bench GSM8K MMLU LaMP
ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC

Vanilla LLM 0.525 0.741 0.481 0.457 0.546 0.533 0.473 0.475 - -
Personalized LLM 0.646 0.780 0.437 0.491 0.553 0.536 0.675 0.678 0.312 0.605

GraphRouter 0.771 0.869 0.568 0.550 0.717 0.792 0.699 0.746 0.345 0.652
FrugalGPT 0.562 0.622 0.551 0.552 0.504 0.515 0.545 0.575 - -
MA-GNN 0.673 0.775 0.679 0.739 0.636 0.648 0.702 0.758 0.347 0.661
TIGER 0.739 0.735 0.656 0.691 0.639 0.683 0.710 0.764 0.339 0.698

RouteLLM 0.492 0.485 0.480 0.475 0.499 0.498 0.532 0.513 - -
Ours 0.774 0.875 0.784 0.859 0.773 0.859 0.771 0.870 0.349 0.662

Ours (new user) 0.780 0.858 0.759 0.824 0.756 0.833 0.751 0.831 - -

Table 3: GMTRouter requires only minimal storage and GPU resources.

HGT Params Pred Head Params Total Params Storage Overhead Max GPU Usage

26.6M 0.85M 27.4M 109.6MB 4.3GB

ity of our framework. For Personalized LLM, although incorporating user interaction histories into
prompts leads to improvements over Vanilla LLM on most datasets, it still lags behind GMTRouter
by at least 9.6% in accuracy and 0.095 in AUC. This highlights the limited ability of LLMs to
extract preference patterns from noisy user data. Moreover, our method consistently outperforms
GraphRouter, a representative router that has shown strong performance in non-personalized LLM
routing tasks, across all datasets. These results validate the importance of leveraging structured
information from multi-turn user–LLM interaction data, together with user preference signals, to
better align LLM selection with diverse user needs. Furthermore, even when 30% of users are not
present in the training set, our method achieves performance comparable to the standard setting,
underscoring its strong generalization ability to new users.

Our Framework is Lightweight We report the parameter count, storage overhead, and training
resource requirements of GMTRouter in Table 3. With only 27.4M trainable parameters and a
109.6MB model size, our framework remains compact compared to existing routing models. During
training, only 4.3GB of GPU memory is needed, making it feasible to train on a single modern GPU
without specialized hardware.

5.2 CASE STUDIES

Investigating the Impact of Visible Data Size k We investigate the impact of k visible data per
user on the quality of the aggregated node embeddings. The results on GSM8K and MMLU are
shown in Figure 4. As k increases, both accuracy and AUC improve, but beyond k=10, the perfor-
mance begins to plateau or slightly decline, indicating diminishing returns from including additional
visible data. This may be due to reduced generalization or potential instability caused by excessively
large batch sizes during training (Keskar et al., 2016; Oyedotun et al., 2022). Therefore, we choose
k=10 as a balanced setting for capturing user preferences without compromising generalization.

Generalization to New Users We further investigate the personalized capability of our method in
few-shot scenarios with new users. Specifically, we evaluate on the GSM8K and MMLU by sam-
pling 30% users from each dataset and varying the number of visible data k ∈ {3, 5, 8, 10, 15, 20}.
Figure 5 presents averaged results of the sampled users under two settings: (i) the old user setting,
where their records are included in the training set, and (ii) the new user setting, where they appear
only in the validation and test sets. We observe that new users achieve results comparable to old
users, and their performance curves consistently peak far above the GraphRouter baseline. These
findings demonstrate that our approach effectively learns to capture user preferences from few-
shot data and can adapt to new users without requiring extensive fine-tuning.
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Figure 4: This figure illustrates the impact of the visible data size k on GMTRouter for GSM8K
(left) and MMLU (right). The dashed line represents the GraphRouter baseline. As k increases,
the performance of our method improves, but it saturates once k reaches 10.

Figure 5: This figure illustrates the result comparison between old-user and new-user settings
for GSM8K (left) and MMLU (right). The dashed line represents the GraphRouter baseline. The
personalized performance under the new-user setting is comparable to that under the old-user setting,
highlighting the strong generalization capability of our method.

5.3 ABLATION STUDIES

To evaluate the effectiveness of each design component of the GMTRouter, we conduct ablation
studies along the following aspects.

• w/o User Preference Feature To verify the effectiveness of the user preference feature in prop-
agating preference signals during GNN aggregation, we remove this feature in this variant. As
a result, node embeddings are updated without incorporating preference ratings, which are used
solely as supervision signals during training.

• Dot-product Prediction Head To evaluate whether the cross-attention prediction head captures
non-linear interactions more effectively than standard similarity scoring when predicting the opti-
mal model, we replace it in this variant with a simple dot product between the (user + query) and
LLM embeddings.

• Homogeneous Graph To evaluate the effectiveness of our heterogeneous graph in capturing com-
plex relationships among different entities in user–LLM interactions, we replace HGT with a ho-
mogeneous GNN, GraphSAGE (Hamilton et al., 2017), as the model backbone in this variant.

• w/o User Embedding To evaluate the effectiveness of user embeddings aggregated from the sam-
pled visible graph for personalized prediction, we replace the user embeddings fed into the pre-
diction head with zero vectors in this variant, thereby ablating their influence on the predictions.

The results of our ablation studies are presented in Table 4. As shown, our GMTRouter achieves the
best performance on most metrics across all four datasets compared to the other variants, confirming
the effectiveness of our design choices.
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Table 4: Ablation of design components. We compare the full model with four variants: (1)
removing the user preference features, (2) replacing the prediction head with a dot-product, (3)
replacing HGT with GraphSAGE, (4) not using user embeddings during prediction. The best and
second-best results are highlighted in bold and underline, respectively.

Method Chatbot-Arena MT-Bench GSM8K MMLU
Accuracy AUC Accuracy AUC Accuracy AUC Accuracy AUC

w/o hp 0.768 0.872 0.569 0.507 0.715 0.784 0.494 0.613
Dot-product 0.777 0.868 0.730 0.795 0.629 0.724 0.681 0.746
Homo Graph 0.768 0.873 0.569 0.645 0.635 0.648 0.494 0.487

w/o hu 0.771 0.873 0.569 0.631 0.725 0.814 0.701 0.771
GMTRouter 0.774 0.875 0.784 0.859 0.773 0.859 0.771 0.870

6 ADDITIONAL RELATED WORKS

LLM Routing. LLM routing focuses on enhancing inference efficiency and response quality by
assigning queries to the most appropriate model (Yue et al., 2025; Zhang et al., 2025c). Recent
work frames routing as learning with cost–quality tradeoffs (Kadavath et al., 2022; Dekoninck et al.,
2024): RouteLLM learns from preference data Ong et al. (2024), and RouterBench offers standard-
ized routing benchmarks Hu et al. (2024). BEST-Route jointly selects LLM and generation count
at test-time via a bandit controller Ding et al. (2025). However, existing approaches are not fully
personalized and fail to exploit user information from interaction histories as well as the structure of
multi-turn dialogues.

Heterogeneous Graph Learning. HetGNNs are designed to model heterogeneous graphs by cap-
turing complex multi-type interactions among various nodes and edges (Chien et al., 2021; Feng
et al., 2019). HAN uses hierarchical attention over metapaths Wang et al. (2019), while MAGNN
and HeCo improve metapath aggregation and cross-view contrast Fu et al. (2020); Wang et al.
(2021). Transformers such as HGT provide inductive, relation-aware message passing with tem-
poral encoding Ziniu Hu (2020). This enables rich relational structures in user–LLM interactions
while leveraging inductive training to enhance generalization on sparse data from new users.

Personalized LLMs. Personalized LLMs adapt a fixed base model rather than selecting among
models. Memory-style methods extend long-term user/context memory (M+), combine episodic and
semantic traces (PRIME), or tune user-specific knowledge graphs from feedback (KGT) (Yu Wang,
2025; Xinliang Frederick Zhang, 2025; Jingwei Sun, 2024), while training-free patches port person-
alization across evolving bases (PortLLM) (Rana Muhammad Shahroz Khan, 2025). By contrast, we
study personalized routing—per-user selection among candidate LLMs from multi-turn histories.

7 CONCLUSION

In this work, we introduced GMTRouter, a heterogeneous graph-based framework for personalized
LLM routing. By modeling multi-turn user–LLM interactions as a heterogeneous graph and prop-
agating preference signals across node types, our method effectively captures user-specific patterns
even from few-shot, noisy data. Experiments across four benchmarks confirm that GMTRouter con-
sistently surpasses strong baselines in both accuracy and AUC, while adapting efficiently to new
users without retraining. These results highlight the value of structured interaction modeling for
advancing preference-aware LLM routing and point to promising future directions in scalable, user-
aligned LLM deployment.
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A IMPLEMENTATION DETAILS

A.1 MODEL CONFIGURATION AND HYPERPARAMETERS

Architecture. We use a heterogeneous graph transformer (HGT) with:

• GNN: 2 layers (single-turn) or 3 (multi-turn), 768-dim hidden, 4-head HGTConv, Layer-
Norm, dropout 0.1.

• Predictor: 4-head MLP with hidden dim 256, dropout 0.1; uses cross-attention where
LLM attends to user+query.

Training.

• Epochs: 350 LR: 5e-4

• Visible records/user (k): {3, 5, 8, 10, 15, 20}

• Batch size: 256 supervision triplets

• Ranking Objective: prioritize AUC, then Accuracy

A.2 TRAINING OF GMTROUTER

Algorithm 1: Training GMTRouter
Data: Dtrain = {(x, y)}
Hyperparams: epochs E, visible k, supervision s, PLM, GNN fϕ, predictor Pred
Init: PLM-encode all nodes; initialize node/edge features

1 for e← 1 to E do
2 G(e) ← subgraph from k|U| visible records
3 M(e) ← s held-out triples (u, q,m)

4 h← fϕ(G(e)) // message passing

5 for (u, q,m) ∈M(e) do
6 ŷ ← Pred(hu, q, hm)

7 Update fϕ and Pred by minimizing Lrank(ŷ, y)

B DATASET PREPARATION

B.1 DATASET STATISTICS

We preprocess each dataset by extracting user–query–LLM–response tuples and partition them into
train, validation, and test sets. To ensure fair evaluation and meaningful personalization, we strat-
ify the splits to maintain balanced user–model preference distributions and avoid degenerate cases
(e.g., users consistently preferring a single LLM or lacking query diversity). This setup promotes
generalization under cold-start conditions and supports robust evaluation of routing behavior.

For ChatBot Arena, we selected the following users and LLMs:

Users: arena user 9965, arena user 15085, arena user 257, arena user 13046, arena user 11473,
arena user 3820, arena user 9676, arena user 6467, arena user 6585, arena user 5203,
arena user 1338

LLMs: koala-13b, vicuna-13b, gpt-3.5-turbo, oasst-pythia-12b, gpt-4, claude-v1, RWKV-4-Raven-
14B, palm-2, alpaca-13b, mpt-7b-chat, vicuna-7b, claude-instant-v1, chatglm-6b, fastchat-t5-3b,
dolly-v2-12b, stablelm-tuned-alpha-7b

We report in Table 6 the size of each dataset along with the time required to process it into the
heterogeneous graph used in our experiments.
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Table 5: Dataset statistics, including the number of entries, users, and LLMs in each split.

Dataset Split #Entries #Users #LLMs

Chatbot-Arena
Train 2780 11 16
Valid 386 11 16
Test 824 11 16

MT-Bench
Train 2240 10 2
Valid 320 10 2
Test 640 10 2

GSM8K
Train 18460 10 2
Valid 2620 10 2
Test 5300 10 2

MMLU
Train 3970 5 2
Valid 560 5 2
Test 1150 5 2

Table 6: Computational cost of graph construction across datasets.

Dataset Data Entries Avg. Tokens Encoding Time (s) Graph Construction Time (s)

ChatBot-Arena 3990 184.41 51.73 1.70
MT-Bench 3200 4511.73 55.68 2.40
GSM8K 26380 112.68 142.84 1.49
MMLU 5680 9.35 4.27 1.56
LaMP 9850 66.82 30.98 1.91

B.2 SYNTHETIC USER DESIGN

To simulate diverse user preferences, we introduce synthetic users whose routing behavior is gov-
erned by a weighted linear utility function over multiple metrics: human preference rating, to-
ken count, output diversity, and cost. For each dataset, we manually assign different weights
{wrating, wtokens, wdiff, wcost} per user to reflect individualized trade-offs, such as favoring cost-
efficiency or output diversity over raw model quality. These weights are normalized within each
dataset to prevent scale bias.

Table 7: Synthetic user weights for MT-Bench dataset.

User wrating wtokens wdiff wcost

user 1 1.42 0.0087 −0.174 −45.23
user 2 1.87 0.0012 0.091 −15.55
user 3 0.96 0.0135 0.045 −48.42
user 4 1.15 −0.0008 −0.220 −10.00
user 5 1.69 0.0024 0.175 −38.50
user 6 1.08 −0.0015 −0.030 −25.12
user 7 0.53 0.0162 0.230 −5.75
user 8 1.34 −0.0005 −0.145 −12.40
user 9 1.98 0.0101 0.087 −25.10
user 10 1.57 0.0024 −0.065 −7.79

B.3 PROCESSING OF THE LAMP DATASET

We select the ”Personalized Scholarly Title Generation” task from the LaMP benchmark (Salemi
et al., 2024b) as our new dataset. This task provides pairs of paper titles and abstracts for multiple
users and requires predicting the title a user would prefer given an abstract.
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Table 8: Synthetic user weights for GSM8K dataset.

User wrating wtokens wdiff wcost

user 1 1.0 20.0 100.0 -0.0
user 2 1.5 18.0 50.0 -1.0
user 3 0.8 22.0 80.0 -0.5
user 4 1.2 17.0 120.0 -0.2
user 5 2.0 15.0 70.0 -0.4
user 6 0.4 6.0 -4.0 -1.0
user 7 0.3 7.0 -5.0 -0.9
user 8 0.6 8.0 -7.0 -1.2
user 9 0.2 9.0 -9.0 -0.8
user 10 0.8 10.0 -3.0 -1.1

Table 9: Synthetic user weights for MMLU dataset.

User wrating wtokens wdiff wcost

user 1 1.0 0.00 0.00 0.0
user 2 1.0 0.00 0.00 −600.0
user 3 1.0 0.00 0.00 −1200.0
user 4 1.0 0.00 0.00 −1800.0
user 5 1.0 0.00 0.00 −2400.0

Data extraction. We identify the 10 users with the largest amount of data and randomly sample
200 (title, abstract) pairs for each user.

LLM response generation. We use five LLMs with diverse architectures and sizes—deepseek-
r1 (DeepSeek-AI, 2024), gemma-2-27b-it (Team, 2024), llama-3.1-8b-instruct (AI@Meta, 2024),
qwen2-7b-instruct (qwe, 2024), and mistral-7b-instruct-v0.3 (Jiang et al., 2023)—to generate a pre-
dicted title for each abstract.

User rating acquisition. For each paper, we encode both the ground-truth title and all LLM-
generated titles using a PLM. We compute the cosine similarity between a generated title and the
ground-truth title and treat this score as the user rating.

Dataset filtering and splitting. For each abstract, we identify the LLM with the highest user
rating and use it as the routing target, discarding samples where ties occur. This yields a total of
9,850 instances, which we split into training, validation, and test sets using a 7:1:2 ratio.

C BASELINE ROUTING PROMPTS

To benchmark routing strategies, we design two representative prompt templates: one for a vanilla
router that selects the best LLM without personalization, and another for a personalized router that
incorporates user history and preferences. Both prompts simulate realistic routing scenarios where
a system must choose a single LLM for the next turn in a multi-turn dialogue.

D ADDITIONAL RESULTS FOR CASE STUDIES

D.1 GENERALIZATION

Here, we present the results of the experiments described in Section 5.2 on the ChatBot Arena and
MT-Bench datasets, as shown in Figures 6 and 7 respectively.
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Figure 6: K-selection across datasets.

Figure 7: Generalization to new users.
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Table 10: Prompt Template: Vanilla LLM Routing (No Personalization)

[Instruction]
You are an expert routing agent. Your task is to select the most suitable Large Language
Model (LLM) to handle the next query in a multi-turn conversation.
[Input Format]
[Candidate LLM List]
{{CANDIDATE LLM LIST}}
[Previous Conversation]
{{PREVIOUS CONVERSATION}}
[Current Query]
{{CURRENT QUERY}}
[Instructions for Model Selection]

• Consider the query difficulty, the context of the previous conversation, and each
LLM’s expertise, cost, and size.

• Choose the single best LLM to respond to the current query.
• Output only the name of the selected LLM in the exact format below.
• Do not provide explanations or commentary.

[Output Format]
<’{selected model name}’>

Table 11: Prompt Template: Personalized Routing (User History Aware)

[Instruction]
You are an expert routing agent. Your task is to select the most suitable Large Language
Model (LLM) to handle the next query in a multi-turn conversation, incorporating both model
characteristics and personalization signals from the user’s history.
[Input Format]
[Candidate LLM List]
{{CANDIDATE LLM LIST}}
[Previous Conversation]
{{PREVIOUS CONVERSATION}}
[Current Query]
{{CURRENT QUERY}}
[User Preference History]
{{USER PREFERENCE HISTORY}}
[Instructions for Model Selection]

• Consider the query difficulty, the context of the ongoing conversation, the LLMs’
specializations, cost, and size.

• Additionally, factor in the user’s historical preferences and ratings to personalize the
routing decision.

• Choose the single best LLM to respond to the current query.
• Output only the name of the selected LLM in the exact format below.
• Do not provide explanations or commentary.

[Output Format]
<’{selected model name}’>

E THE USE OF LARGE LANGUAGE MODELS (LLMS)

During the writing of this paper, we used the GPT-5 Mini model for text polishing and grammatical
corrections to enhance the readability of the manuscript.
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Figure 8: Performance against noisy preference over MT-Bench

F FURTHER EXPERIMENT

F.1 EXTENDED EXPERIMENTS ON CHATBOT ARENA USERS

Table 12: GMTRouter performance on the ChatBot Arena dataset with newly added users.

New Users = 0 New Users = 3 New Users = 161
Accuracy 0.774 0.780 0.790
AUC-ROC 0.875 0.858 0.837

To more thoroughly validate that GMTRouter exhibits strong generalization to new users, we further
selected all ChatBot Arena users with more than 15 historical interactions (161 users in total). We
keep the original training and test sets used in Section 5 unchanged and use all newly added data ex-
clusively as the test set. GMTRouter is then evaluated on these newly added users. The experimental
results are shown in Table 12.

This expanded evaluation enables us to assess GMTRouter on a substantially larger user set and
further demonstrates its effectiveness and generalization capability.

F.2 EXPERIMENTS WITH NOISY DATA

We conduct experiments to evaluate GMTRouter’s personalization performance under varying lev-
els of noisy data. Specifically, we use the MT-Bench dataset and swap the user ratings of k% of the
data (k = 5, 10, 20), simulating noise and inconsistencies in preference signals (Li et al., 2024a).
The experimental results are shown in Figure 8. Our results indicate that, although performance
naturally decreases as noise increases, GMTRouter degrades gracefully and remains competitive
even with 20% noise, outperforming the strongest baseline trained on clean data. We attribute
this robustness to user-conditioned graph sampling, which aggregates signals across multiple in-
teractions and mitigates the impact of individual noisy labels.

F.3 COMPARISON WITH PERSONALIZED GENERATION METHOD

To evaluate the personalization capabilities of GMTRouter against personalized generation ap-
proaches, we adopt the untuned In-Prompt Augmentation (IPA) based Retrieval Augmented Gener-
ation (RAG) from the LaMP benchmark (Salemi et al., 2024b), employing Contriever (Izacard et al.,
2021) as the retrieval backbone.

Experiments were conducted on the LaMP dataset. For the RAG baseline, we utilized the test set’s
’abstract’ query to retrieve the top-10 most relevant historical ’abstracts’ from the specific user’s
training data. These retrieved items were formatted as ’title, abstract’ pairs and integrated into the
LLM’s input as few-shot examples. Crucially, while GMTRouter relies on user ratings (calculated
by comparing the LLM’s predicted titles against the ground-truth titles) as its supervision signal,
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we provided the RAG baseline with a more direct and potent form of supervision by explicitly
incorporating the retrieved ground-truth titles into the few-shot examples.

We employ average user rating and average token usage as our primary evaluation metrics. The
GMTRouter output consists of the raw response generated by the routed LLM, whereas the RAG
output is generated by DeepSeek-R1 (DeepSeek-AI, 2024), conditioned on the prompt augmented
with the retrieved few-shot examples. Furthermore, we also investigated the personalization capa-
bilities of combining both GMTRouter and RAG. Specifically, GMTRouter is employed to select
the optimal LLM, and the RAG is subsequently used to construct the few-shot augmented prompt.
The experimental results are presented in Table 13.

Table 13: Performance Comparison of GMTRouter and IPA-RAG on the LaMP Benchmark. The Random
Routing column serves as the lower bound, representing the expected user rating achieved by randomly select-
ing an LLM. Conversely, the Theoretical Best Routing column establishes the upper bound for the routing
task, reflecting the user rating obtained by always selecting the LLM that yields the highest user rating for that
specific instanc.

Metric Random Routing GMTRouter IPA-RAG GMTRouter + IPA-RAG Theoretical Best Routing
AVG User Rating 0.744 0.772 0.775 0.784 0.810
AVG Token Cost – 293.56 3231.72 2358.89 –

Our experiments lead to three key observations:

1. Comparable Personalization: Both GMTRouter (routing) and the personalized genera-
tion approach (IPA-RAG) achieve comparable improvements in personalization capability
as measured by the AVG User Rating.

2. Cost Disparity: The IPA-RAG baseline incurs a significantly higher cost, requiring several
times more tokens than GMTRouter, highlighting the efficiency gains offered by the routing
mechanism.

3. Synergistic Effect: Combining the two methods (GMTRouter + IPA-RAG) yields the best
empirical performance. This suggests that routing and personalized generation techniques
address distinct, complementary facets of personalization.

Table 14: GMTRouter performance using different heterogeneous convolutional layers.

Conv Layer Chatbot-Arena MT-Bench GSM8K MMLU
ACC / AUC ACC / AUC ACC / AUC ACC / AUC

HeteroConv 0.777 / 0.867 0.569 / 0.492 0.499 / 0.603 0.494 / 0.542
HANConv 0.766 / 0.776 0.646 / 0.680 0.774 / 0.775 0.707 / 0.746
HGTConv 0.774 / 0.875 0.784 / 0.859 0.773 / 0.859 0.771 / 0.870

F.4 USING DIFFERENT HETEROGENEOUS GNNS AS THE GMTROUTER BACKBONE

We investigate how different heterogeneous GNNs used as the GMTRouter backbone affect its per-
sonalization capability. We evaluate three backbones: HGT (Ziniu Hu, 2020), HAN Wang et al.
(2019), and HeteroConv, and present the results in Table 14.

We observe that attention-based heterogeneous GNNs (HAN, HGT) consistently outperform the
simpler aggregation-based HeteroConv backbone. These results also indicate that GMTRouter is not
dependent on any particular GNN architecture: multiple attention-based backbones achieve strong
performance, suggesting that the improvements mainly stem from the graph-based personalized
routing framework and data modeling, rather than from a specific convolutional operator.
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