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ABSTRACT

The Evidence Lower Bound (ELBO) is a widely used objective for training deep
generative models, such as Variational Autoencoders (VAEs). In the neuroscience
literature, an identical objective is known as the Free Energy Principle (FEP),
hinting at a potential unified framework for brain function and machine learning.
Despite its utility in interpreting generative models, including diffusion models,
ELBO maximization is often seen as too broad to offer prescriptive guidance for
specific architectures in neuroscience or machine learning. In this work, we show
that maximizing ELBO under Poisson assumptions for general sequences leads
to a spiking neural network that performs Bayesian posterior inference through
its membrane potential dynamics. The resulting model, the iterative Poisson
VAE (iP-VAE), has a closer connection to biological neurons than previous brain-
inspired predictive coding models based on Gaussian assumptions. Compared to
amortized and iterative VAEs, iP-VAE learns sparser representations and exhibits
superior generalization to out-of-distribution samples. These findings suggest that
optimizing ELBO, combined with Poisson assumptions, provides a solid foundation
for developing prescriptive theories in NeuroAI.

1 INTRODUCTION

Optimizing the Evidence Lower Bound (ELBO) serves as a unifying objective for training deep
generative models (Hinton et al., 1995; Dayan et al., 1995; Kingma & Welling, 2014; Rezende et al.,
2014; Luo, 2022). Even when models don’t explicitly reference ELBO, they’re often optimizing
objectives closely related to it (Luo, 2022; Kingma & Gao, 2023). This is directly paralleled by the
Free Energy Principle (FEP) in neuroscience, which absorbs previous theoretical frameworks like
Predictive Coding, Bayesian Brain, and Active Learning (Friston, 2005; 2009; 2010). FEP states
that a single objective, the minimization of variational free energy, is all that is needed. Because
this is equivalent to maximizing ELBO, it suggests a powerful unifying theoretical framework for
neuroscience and machine learning (Friston, 2010).

However, in many ways, Free Energy (and by proxy, ELBO) is too general to be useful as a theory
(Gershman, 2019; Andrews, 2021). In practice, the specific implementations of FEP predictive coding
have been difficult to map directly onto neural circuits (Millidge et al., 2021a; 2022), struggling with
negative rates and prediction signals that have not been observed empirically (Walsh et al., 2020;
Millidge et al., 2022). Similarly, in machine learning, it is often discovered after the fact that a new
objective is actually ELBO maximization (or KL minimization; Hobson (1969)) masquerading as
something else (Kingma & Gao, 2023)—and not the other way around. If ELBO is “all you need,”
then why is ELBO not prescriptive?

One possibility, at least in neuroscience, is that ELBO’s lack of prescriptive theory results from
incorrect approximating distributions. In fact, most of the difficulty mapping predictive coding onto
neural circuits has to do with terms that result from the Gaussian assumption (Millidge et al., 2022).
In contrast, biological neurons are largely modeled as conditionally Poisson (Goris et al., 2014).

Recent work provides a potential prescriptive route: replacing Gaussians with Poisson distributions.
To this end, Vafaii et al. (2024) introduced a reparameterization algorithm for training Poisson
Variational Autoencoders (P-VAE). They observed that replacing Gaussians in ELBO reduces to an
amortized version of sparse coding, an influential model inspired by the brain that captures many
features of the selectivity in early visual cortex (Olshausen & Field, 1996; 2004). P-VAE learns
sparse representations, avoids posterior collapse, and performs better on downstream classification
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tasks. However, the authors identified a large amortization gap in P-VAE (Vafaii et al., 2024), adding
to a growing body of work that highlights limitations of amortized inference Cremer et al. (2018);
Kim & Pavlovic (2021). A potential solution is to develop more general iterative inference solutions,
or hybrid iterative-amortized ones (Marino et al., 2018; Kim et al., 2018).

Here, we extend the Poisson VAE to include iterative inference (“iterative P-VAE,” or iP-VAE).
This results in a generalization of predictive coding that maps well onto biological neurons. iP-VAE
implements Bayesian posterior inference via private membrane potential dynamics, resembling a
spiking version of the Locally Competitive Algorithm (LCA) for sparse coding (Rozell et al., 2008).
This solution avoids the major problems with predictive coding: there is no explicit prediction,
neurons communicate through spikes, and feedback is modulatory—all consistent with real neurons
(Gilbert & Li, 2013; Kandel et al., 2000). But how effective is iP-VAE as a machine learning model?

We evaluate iP-VAE in terms of convergence, reconstruction performance, efficiency, and out-of-
distribution (OOD) generalization. We find that iP-VAE converges to sparse posterior representations,
outperforming other iterative VAEs (Kim et al., 2018; Marino et al., 2018).

Contributions. We introduce a new architecture, iP-VAE, that accomplishes the following:

• Deriving the ELBO for sequences with Poisson-distributed latents results in a neural network
that spikes, and performs predictive coding in the dynamics of the membrane potential.

• By reusing the same set of weights across iterations and utilizing sparse, integer spike counts,
iP-VAE is well-suited for hardware implementations and energy-efficient deployment.

• iP-VAE demonstrates robust out-of-distribution generalization, excelling in both within-
dataset perturbations and cross-dataset generalization.

Taken together, iP-VAE is a powerful brain-inspired architecture that tightly maps onto biological
neurons while outperforming much larger models in key objectives such as performance, parameter
count, sparsity, and out-of-distribution generalization.

2 BACKGROUND AND RELATED WORK

Generative models and ELBO. Generative models learn to represent the data distribution, p(x),
typically by invoking latent variables z, such that p(x) =

∫
p(x|z)p(z)dz (Bishop & Nasrabadi,

2006). The key challenge is computing, p(z|x), the posterior distribution of these latent variables
given the data, which is typically intractable except for simple cases.

Variational inference offers a practical solution by introducing an approximate posterior qϕ(z|x)
parameterized by ϕ (Blei et al., 2017). The goal is to make this approximation as close as possible
to the true posterior p(z|x). Ideally, one would minimize the KL divergence between qϕ(z|x) and
p(z|x), but since we cannot compute p(z|x) exactly, direct minimization is not feasible.

The Evidence Lower Bound (ELBO) provides a tractable objective that indirectly minimizes the KL
divergence between the approximate and true posteriors. Specifically, the relationship is:

log p(x) = Eqϕ(z|x)

[
log

p(x, z)

qϕ(z|x)

]
︸ ︷︷ ︸

ELBO

+ DKL

(
qϕ(z|x)

∥∥ p(z|x)) (1)

Since log p(x) does not depend on ϕ and the KL divergence is non-negative, maximizing the ELBO
effectively minimizes the intractable KL divergence (Hinton et al., 1995; Kingma & Welling, 2014;
Rezende et al., 2014). Interestingly, even when generative models seem to optimize a different loss
function, like diffusion models (Chan, 2024; Ho et al., 2020), they are often still performing KL
minimization through the ELBO (Kingma & Gao, 2023; Luo, 2022).

ELBO in Neuroscience. The Evidence Lower Bound (ELBO) has an identical formulation in
neuroscience, where it is referred to as the Free Energy (Friston, 2005; 2009; 2010). The Free
Energy Principle (FEP) extends the framework of perception as inference (Alhazen, 1011–1021 AD;
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Von Helmholtz, 1867; Mumford, 1992), drawing concepts from predictive coding (PC; Srinivasan
et al. (1982); Rao & Ballard (1999)). Extensive research has explored how PC might be implemented
by neurons (Boerlin et al., 2013; Millidge et al., 2021a), and PC has been applied in machine learning
for predictive models (Lotter et al., 2017; Wen et al., 2018; Millidge et al., 2024).

Despite their neural inspiration, FEP is challenging to map directly onto neuronal circuits (Kogo
& Trengove, 2015; Aitchison & Lengyel, 2017; Millidge et al., 2022). This difficulty results from
assuming Gaussian for the approximate posterior and prior (Millidge et al., 2022). The Gaussian
assumption results in models with explicit predictions or prediction errors, which have not been
observed empirically (Mikulasch et al., 2023). Solutions also struggle with how to avoid negative
firing rates due to subtraction operations (Bastos et al., 2012; Keller & Mrsic-Flogel, 2018). While
leaky integrate-and-fire (LIF) circuits can be engineered to perform predictive coding (Boerlin et al.,
2013), these implementations do not naturally arise from ELBO maximization, making the theory
more postdictive than prescriptive. The related framework of sparse coding can be thought of as
a form of predictive coding with a sparse prior Olshausen & Field (1996; 2004). A biologically
plausible implementation of sparse coding, known as the locally competitive algorithm (LCA; Rozell
et al. (2008)), results naturally in a dynamic update rule that resembles neural circuits. However,
LCA relies on maximum a posteriori inference, which is restrictive if we aim to sample from the full
posterior distribution.

Bayesian posterior inference: iterative versus amortized. In contrast to predictive coding,
Variational Autoencoders (VAEs) introduced a computationally-efficient solution to maximize ELBO
through amortized inference (Kingma & Welling, 2014; Rezende et al., 2014). Amortized inference
uses a parameterized neural network (the “encoder” or “recognition” network) to produce the
parameters of an approximate posterior, qϕ(z|x), in one shot. The term “amortized” reflects that the
computational cost of inference is paid during training, not at test time, similar to cost distribution in
accounting (Gershman & Goodman, 2014). While amortized inference is considered efficient, it can
suffer from an amortization gap—the discrepancy between the approximate posterior provided by
the encoder and the optimal variational parameters—which can be significant (Cremer et al., 2018).

To address the amortization gap, hybrid approaches have been developed that introduce iterative
elements into the VAE framework (Marino et al., 2018; Kim et al., 2018; Marino et al., 2021). For
example, Marino et al. (2018) proposed a method where the encoder network takes as input both
the data sample x and the gradients of the loss with respect to the variational parameters ∇λL, with
λ = {µ,σ2}. Alternatively, semi-amortized inference (Kim et al., 2018) starts with an amortized
initial estimate and refines it using stochastic variational inference (SVI) updates (Hoffman et al.,
2013). Our method is closely related to these approaches, and we compare to them in the results.

Although VAEs and predictive coding are related through their optimization of ELBO (Marino,
2022), recent work has made that connection more explicit, demonstrating that classical predictive
coding networks can be seen as a subclass of iterative inference in VAEs (Boutin et al., 2020). A key
difference between our work and Boutin et al. (2020) is that they show the Rao & Ballard (1999)
loss function arises from assuming a delta-function posterior in the ELBO. In our work, predictive
coding naturally emerges in the dynamics of the log spike rates, which comes from a fairly general
assumption of Poisson distributions.

Poisson VAE. A large body of literature in neuroscience has demonstrated that neuron spike counts
are well described by a Poisson process over short counting windows (Goris et al., 2014). Building
on this, Vafaii et al. (2024) introduced the Poisson Variational Autoencoder (P-VAE), which performs
posterior inference using discrete spike counts. They developed a Poisson reparameterization trick
and derived the ELBO for Poisson-distributed VAEs (P-VAE).

In P-VAE, the KL term penalizes firing rates, similar to sparse coding, and the ELBO, when paired
with a linear generative model, reduces to amortized sparse coding. When trained on natural image
patches, P-VAE learns sparse solutions with Gabor-like basis vectors and latent sparsity, similar to
sparse coding. While P-VAE outperformed Gaussian VAEs in sparsity and downstream classification,
the authors noted a significant performance gap with traditional sparse coding, likely arising from
an amortization gap due to the lack of iterative updates. Our work builds upon P-VAE, suggesting
that Poisson is the right choice for parameterizing the distributions in ELBO (see Appendix B for a
discussion).
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3 INTRODUCING THE ITERATIVE POISSON VAE (IP-VAE)

In this section, we derive the ELBO for sequences with Poisson distributions. We show the resulting
architecture (iP-VAE) implements iterative Bayesian posterior inference with dynamics on the log
rates. We relate this directly to membrane potential dynamics in a spiking neural network and show
that it solves many of the implementation limitations of classic predictive coding.

General setup. We conceptualize iterative inference by starting with the more general framework of
inference over a sequence (Chung et al., 2015). From there, we can treat iterative inference for images
as a sequences of the same image repeated at all time points. This approach is appealing because
dynamics emerge necessarily, and it builds a foundation for future work on dynamic sequences.

Consider a sequence of T + 1 observed data points, x⃗ = {xt : t = 0, . . . , T} where xt ∈ RM ,
and corresponding latent variables, z⃗ = {zt : t = 0, . . . , T}, where each zt is K-variate. We
denote the full probabilistic generative model as the joint distribution, p(x⃗, z⃗). A reasonable starting
assumption for modeling the physical world is Markovian dependence between consecutive data
points (Van Kampen, 1992), resulting in the marginal distribution:

p(x⃗) =

∫
p(x⃗, z⃗) dz⃗ = p(x0)

T∏
t=1

p(xt|xt−1), (2)

where p(x0) =
∫
p(x0|z0)p(z0)dz0, and p(xt|xt−1) =

∫
p(xt|zt)p(zt|xt−1)dzt. For our sequence

data, the ELBO can be written as follows:

log pθ(x⃗) ≥ Eqϕ(z⃗|x⃗)

[
log

pθ(x⃗, z⃗)

qϕ(z⃗|x⃗)

]
= Eqϕ(z⃗|x⃗)

[
log pθ(x⃗|z⃗)

]
−DKL

(
qϕ(z⃗|x⃗)

∥∥ pθ(z⃗))
= LELBO(x⃗; θ, ϕ),

(3)

where pθ(z⃗) is a prior (either learned or fixed) over latents, and pθ(x⃗|z⃗) is the conditional likelihood
distribution, which is computed via a decoder network. Model parameters, (ϕ, θ)—corresponding
to the encoder and decoder networks of a VAE, respectively—are jointly optimized. Below we will
express the ELBO for sequences when using the Poisson Variational Autoencoder framework.

Iterative Poisson VAE. To extend the P-VAE to sequences, iP-VAE needs to make explicit how
the prior and posterior distributions update with each sample. The simplest starting point is assuming
stationarity, implying that the posterior over the previous stimulus should act as a prior for the current
one (although future extensions could extend to nonstationary signals such as videos with a more
sophisticated update rule). Because of the Markovian assumption, the prior, p(z⃗), then factorizes into
the initial prior, p(z0) and a product over all time steps:

p(z⃗) = p(z0)

T∏
t=1

p(zt|xt−1) (4)

The initial prior, p(z0) = Pois(z0; r0), is Poisson with learned prior rates, r0 ∈ RK
>0. Subsequent

time steps have prior rates that depend on the stimulus from the previous time step, p(zt|xt−1) =
Pois(zt; rt(xt−1)). The approximate posterior factorizes as well:

q(z⃗|x⃗) = q(z0|x0)

T∏
t=1

q(zt|xt,xt−1), (5)

with initial posterior, q(z0|x0) = Pois(z0; r0 ⊙ δr(x0)), and time-dependent posterior,
q(zt|xt,xt−1) = Pois(zt; rt(xt−1) ⊙ δr(xt)), both parameterized as Poisson distributions. We
follow the formulation in Vafaii et al. (2024), and define the posterior rates via an element-wise
multiplicative interaction between r and some gain modulator, δr ∈ RK

>0. This is a natural choice
because rates must be positive, and without loss of generality, the relationship between two positive
variables can be written in terms of a base rate, and a multiplicative gain on that base rate.
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The conditional log-likelihood for iP-VAE factorizes into a sum over individual sample likelihoods
log p(x⃗|z⃗) =

∑T
t=0 log p(xt|zt). The KL-term of the ELBO (eq. (3)) also factorizes:

DKL

(
q(z⃗|x⃗)

∥∥ p(z⃗)) = DKL

(
q(z0|x0)

∥∥ p(z0))+

T∑
t=1

DKL

(
q(zt|xt,xt−1)

∥∥ p(zt|xt−1)
)

= r0 · f(δr(x0)) +

T∑
t=1

rt(xt−1) · f(δr(xt)),

(6)

where · represents a vector dot product, and f(y) = 1− y+ y log y is applied element-wise. Because
rates are positive, the KL term penalizes large rates, acting like a sparsity penalty (Vafaii et al., 2024).
The remaining sections describe how we specify the multiplicative gain, δr, which results in adaptive
Bayesian posterior updating in the dynamics of the model.

Bayesian posterior updates using membrane potential dynamics Because rates are positive and
prior and posterior rates interact multiplicatively, it is difficult to implement dynamic updates directly
on rates. A natural solution is to define updates on log rates, u(t) := log r(t), with RK as our state
space for a K-dimensional latent space.

Dynamic updates on log-rates is both a mathematical convenience and biologically realistic. Because
of internal noise, the spike threshold of real neurons is best modeled as an expansive nonlinearity
like an exponential (Priebe et al., 2004; Fourcaud-Trocmé et al., 2003). Further, synapses have a
compressive nonlinearity for incoming spikes because of synaptic depression (Abbott et al., 1997).
Here, we take log(x) to be the synaptic nonlinearity and exp(x) to be the spiking nonlinearity. For
the aforementioned reasons, u(t) can be interpreted quite literally as membrane potentials.

We define the model updates as ut+1 = ut + δut, with rt = exp(ut) acting as the corresponding
prior rates at time t, and rt ⊙ δr = exp(ut+1), as the posterior rates at time t. When processing the
next input in the sequence, we take the previous posterior and use it as our current prior. This works,
because in the present paper, we restrict ourselves to stationary inputs comprised of the same image
presented multiple times.

A natural choice for δu is the gradient of the loss with respect to u, through the samples z. However,
the KL term results in high order terms, which for this implementation we approximate as the
following dynamics (See appendix D for a detailed derivation):

δut = Jθ ·∆t =
∂fθ(z)

∂z

∣∣∣∣
z=zt

·
(
xt − fθ(zt)

)
, (7)

where Jθ is the Jacobian of the decoder, fθ, which is a function of sampled spike counts z.

Importantly, this form aligns with real neuronal properties for several reasons. Since the comparison,
xt−fθ(zt), is based on spikes, each neuron’s update does not directly depend on the internal states of
other neurons, which matches how real neurons function (Kandel et al., 2000). Additionally, because
the comparison happens on membrane potential (log rates), feedback will appear as a modulatory
signal on rate, which is also consistent with neuroscience literature (Gilbert & Li, 2013). Finally, this
update (eq. (7)) resembles a generalization of Rao & Ballard (1999) for nonlinear generative models
and avoids hacky solutions to keep rates positive, after subtracting them.

It is straightforward to see how this is an SNN for linear decoder networks. If fθ(z) = Φz, then

δut = ΦT (xt −Φz)

= ΦTx−ΦTΦz

= ΦTx−Wz,

(8)

where the first term is the feedforward receptive fields (the input current) and the second term, W ,
are the recurrent weights between neurons, implementing lateral competition. Note that they only
communicate with each other through spikes, z. Thus for linear generative models, iP-VAE closely
resembles the locally competitive algorithm for sparse coding (LCA; Rozell et al. (2008)), except that
it is explicitly spiking and does not have a leak term (although this could included by replacing the
diagonal of the recurrent term with a leak rather than having neurons operate on their own spikes).
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In this section, we showed how following some fairly general assumptions for optimizing ELBO with
Poisson distribution, led us to a spiking neural network that implements Bayesian posterior updates
via predictive coding in the membrane potential dynamics. In the next section, we evaluate iP-VAE
and compare it to amortized P-VAE, as well as iterative Gaussian VAEs.

4 EXPERIMENTS

We performed empirical analyses of iP-VAE and alternative iterative VAE models. In section 4.1,
we test the general performance and stability of inference dynamics, including generalization to
longer sequence lengths. Section 4.2 shows iP-VAE closes the gap with sparse coding. Section
4.3 demonstrates robustness to out-of-distribution (OOD) samples by evaluating models trained on
MNIST (LeCun et al., 2010) with perturbed samples (e.g., rotated MNIST). We then evaluate OOD
generalization from MNIST to other character-based datasets in section 4.3. Finally, in section 4.4,
we visualize the learned weights of iP-VAE, revealing their compositional nature, which is consistent
with iP-VAE’s strong generalization capabilities. We push the limits of MNIST-trained models by
testing their performance on natural images.

Architecture notation. We experimented with both convolutional and multi-layer perceptron
(MLP) architectures. We highlight the encoder and decoder networks using red and blue, respectively.
We use the ⟨enc|dec⟩ convention to clearly specify which type was used. For example ⟨mlp|mlp⟩
means both encoder and decoder networks were mlp. We use the notation ⟨jacob|mlp⟩ to denote our
fully iterative (non-amortized) iP-VAE. We chose symmetrical architectures, such that ⟨mlp|mlp⟩
has exactly twice as many parameters as ⟨jacob|mlp⟩.

Datasets. For the generalization results, we use MNIST, extended MNIST (EMNIST; Cohen et al.
(2017)), Omniglot (Lake et al., 2015) and Imagenet32 (Chrabaszcz et al., 2017). We resize Omniglot
and Imagenet32 to 28× 28 for more straightforward comparisons. We also replicated the sparsity
analysis in Fig. 3 of Vafaii et al. (2024) in our Table 1, using the van Hateren natural images dataset
with whitened, contrast normalized 16× 16 patches.

Alternative models. We compare our iterative P-VAE (iP-VAE) to P-VAE. The main difference
between their two architectures is that the latter independently parameterizes an encoder, whereas the
former constructs its encoder adaptively by inverting the decoder. We also compare to state-of-the-art
methods that combine iterative with amortized inference. These include iterative amortized VAE
(ia-VAE; Marino et al. (2018)), and semi-amortized VAE (sa-VAE; Kim et al. (2018)). Since ia-VAE
comes with both hierarchical (h) and single-level (s) variants, we compare to each of these.

Number of iterations. For iP-VAE, we experimented with different numbers of training iterations,
Ttrain. During training, we differentiate through the entire sequence of iterations, which can lead to
qualitatively different dynamics. We report results for Ttrain = 4, 16, 32, 64. For generalization results,
we use a model with Ttrain = 64. At test time, we report results using Ttest = 1,000 iterations, unless
stated otherwise. For semi-amortized models, we use their default number of train and test iterations
found in their code, unless stated otherwise (sa-VAE: Ttrain = Ttest = 20; ia-VAE: Ttrain = Ttest = 5).

4.1 STABILITY BEYOND THE TRAINING REGIME AND CONVERGENCE.

An algorithm with strong generalization potential should learn how to perform inference that extends
beyond the training regime. We evaluated this by training models on MNIST under different numbers
of training iterations, Ttrain = 4, 16, 32, and 64. We used both ⟨jacob|mlp⟩ and ⟨jacob|conv⟩
architectures and then tested each model on its ability to keep improving beyond the training number
of iterations. In Fig. 1a, we show that iP-VAE converges. Even with as few as 4 iterations, iP-VAE
learns to keep improving. We also observe that increasing the number of training iterations has an
interesting effect: iP-VAE trained with a larger number of iterations starts from worse performance,
but converge to better solutions (Fig. 1a). This suggests iP-VAE learns dynamics that depend on the
training sequence length, but generalizes beyond the training set in all cases.

In contrast, the two hybrid models (sa-VAE and ia-VAE) start with strong amortized initial guesses,
but plateau rapidly (Fig. 1a, right), and converge to a much higher MSE than iP-VAE models, which
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have a fraction of the parameters. The authors of sa-VAE were aware of issues regarding dominance
of the iterative part of the algorithm for Omniglot, and reported using tricks like gradient clipping to
mitigate it, which we suspect is the source for our observations on MNIST (see footnote 6 in Kim
et al. (2018)). We also see that ia-VAE (single-level) starts to diverge outside its training regime. 1

Overall, iP-VAE achieves the best reconstruction performance and continues to improve outside the
training regime, unlike other models. This shows the first sign of OOD generalization in iP-VAE:
temporal generalization. In later sections, we test whether iP-VAE can generalize OOD in vision
tasks, but first, we evaluate the performance and sparsity on natural images as in Vafaii et al. (2024).

4.2 IP-VAE CLOSES THE GAP WITH SPARSE CODING

One of the limitations of previous work with P-VAE, was that the authors identified a large perfor-
mance gap between P-VAE and LCA sparse coding (Vafaii et al., 2024). Here, we evaluated iP-VAE
and compared models on their ability to reconstruct whitened natural image patches (table 1). Unlike
P-VAE, iP-VAE performs as well as LCA with similar sparsity levels. P-VAE, and the two hybrid
approaches, have many more parameters and achieve much worse performance. 2

1It’s worth noting that in our hands, ia-VAE (s) often resulted in nans at test time upon going beyond Ttrain.
2The performance ia-VAE and sa-VAE might be modestly improved by tuning the tradeoff between recon-

struction and the KL term.
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Figure 1: iP-VAE learns to learn. (a) Training iP-VAE on as few as Ttrain = 4 time steps allows
it to generalize and keep improving its inference beyond the training domain. This holds true
irrespective of the iP-VAE architecture; left, ⟨jacob|mlp⟩; middle, ⟨jacob|conv⟩. In contrast,
hybrid amortized/iterative models do not improve, and either remain flat or diverge (right). (b)
iP-VAE trained on MNIST generalizes to Omniglot at test time. All models in this figure were
trained on MNIST, and tested either on MNIST (a), or Omniglot (b).

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Model performance and efficiency. We prefer lightweight models that achieve low recon-
struction loss using sparse representations and fewer parameters. We reported results on natural
image patches extracted from the van Hateren dataset (Van Hateren & van der Schaaf, 1998). All
models have K = 512 dimensional latent space. For the iP-VAE models, we scaled the β parameter
proportional to the number of training inference iterations. Specifically, we chose β = 3/8 ∗ Ttrain.
We found that iP-VAE results were robust to variations in β. Entries formatted as mean±std.

Model β Architecture # params ↓ MSE ↓
Sparsity ↑

lifetime %

# iters

train test

iP-VAE 24.00 ⟨jacob|lin⟩ 0.13 M 12.0±2.6 0.79±.03 60.0 64 1K
iP-VAE 3.00 ⟨jacob|lin⟩ 0.13 M 27.5±7.1 0.85±.02 73.2 8 1K
iP-VAE 1.50 ⟨jacob|lin⟩ 0.13 M 50.4±15.5 0.90±.03 83.3 4 1K

P-VAE 0.50 ⟨conv|lin⟩ 3.44 M 101.9±25.3 0.76±.16 65.9 1 1
P-VAE 0.75 ⟨conv|lin⟩ 3.44 M 119.4±26.4 0.83±.09 77.7 1 1
P-VAE 1.00 ⟨conv|lin⟩ 3.44 M 131.8±31.2 0.90±.08 84.1 1 1

LCA 0.28 - 0.13 M 16.1±8.1 0.79±.02 65.6 1K 1K
LCA 0.44 - 0.13 M 28.5±14.1 0.86±.02 73.9 1K 1K
LCA 0.70 - 0.13 M 50.1±25.2 0.92±.01 83.4 1K 1K

ia-VAE (s) 1.00 ⟨mlp|mlp⟩ 39.55M 80.08±21.06 0.36±.00 ∼0.0 5 10
sa-VAE 1.00 ⟨conv|conv⟩ 1.67 M 97.74±38.97 0.36±.00 ∼0.0 20 20

4.3 OUT-OF-DISTRIBUTION GENERALIZATION.

In this section, we evaluate whether MNIST-trained models generalize to OOD perturbations and
dataset. First, we tested whether MNIST-trained models generalize to Omniglot (see Fig. 1b).
We found that iP-VAE improves over iterations and outperforms alternative models in terms of
reconstruction quality. In this section, we evaluate two levels of generalization tasks: (1) within-
dataset perturbations; and, (2) across similar datasets (i.e., digits to characters).
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Figure 2: Robustness to training set perturbation. We rotated MNIST digits and evaluated model
performance in both reconstruction of the perturbed inputs, and classification accuracy. On the left,
we show reconstructed samples for easy (θ = 15◦) and hard (θ = 90◦) tasks across different models.
On the right, we visualize the average reconstruction loss and classification accuracies over different
rotations. Both visualy and quantitavely, iP-VAE maintains a high performance regardless of the
rotation, and outperforms alternative models.
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OOD generalization to within-dataset perturbation. We tested whether models trained on
standard MNIST generalized to rotated MNIST digits. We rotate MNIST between 0 and 180 degrees,
with incremental steps of 15 degrees. We then test (a) whether models are capable of reconstructing
the rotated digits, and (b) whether the representations of rotated digits can be used to classify them
(Fig. 2). iP-VAE and sa-VAE demonstrated consistent performance across angles, both in terms
of reconstruction loss and classification accuracy. Amortized P-VAE shows worse reconstruction
performance than all iterative models, but its classification accuracy is remarkably consistent across
angles, beating or matching all models except for iP-VAE. ia-VAE variants were greatly affected
by the rotation, with significant falloff in both their classification score and reconstruction. Overall,
iP-VAE maintains stable performance across rotations at levels above alternative models.

OOD generalization across similar datasets. If a model learns compositional features, and if it
employs an effective inference algorithm that leverages those features, it should be able to represent
datasets that are within the same distributional vicinity as the training set. To test this, we evaluated
MNIST-trained models on EMNIST and Omniglot. We report both mean squared error (MSE) of
reconstruction and classification accuracy 3.

Again, iP-VAE exhibited superior reconstruction performance over other models, both visually
and MSE (Fig. 3). It also had substantially higher classification accuracy, suggesting it learns a
compositional code and has strong generalization potential.
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Figure 3: Evaluating generalization from models trained on MNIST digits to novel character datasets
(EMNIST and Omniglot) at test time. The right panel shows the average classification performance on
latent representations for EMNIST. The middle-right panel compares the reconstruction performance
on EMNIST and Omniglot. The left two panels visualize the reconstructions on EMNIST and
Omniglot, respectively. In both metrics, iP-VAE maintains high performance compared to alternative
models.

Figure 4: iP-VAE learns a compositional set of features for the last layer’s weights, enabling its
generalization capacity. Left, iP-VAE with a ⟨jacob|mlp⟩ architecture; right, P-VAE with an
⟨mlp|mlp⟩ architecture. Both models were trained on MNIST, but only iP-VAE develops Gabor-like
features. In contrast, the non-iterative, amortized P-VAE clearly overfits to MNIST. Features are
ordered in ascending order of their weight distribution kurtosis to highlight the sparse nature of
iP-VAE feature space. Best viewed when zoomed in.

4.4 A COMPOSITIONAL CODE THAT GENERALIZES ACROSS DOMAINS .

Using the ⟨jacob|mlp⟩ variant of iP-VAE, we visualized the 512 learned features of the last layer of
the mlp decoder. In Fig. 4, we show the features learned by iP-VAE trained on MNIST and contrast

3We omit classification accuracy for Omniglot due to its large number of classes (over 1,000)
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them to features learned by P-VAE, also trained on MNIST. We see a stark contrast. iP-VAE features
are Gabor-like, while P-VAE features look like digits or strokes of the digits. While previous work
highlighted strokes as the compositional subcomponents of digits (Lee et al., 2007), iP-VAE learns
an even more general code that generalized to cropped, grey scaled natural images (Fig. 5).
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Figure 5: Evaluating generalization from models trained on MNIST digits to cropped, gray scaled
natural images (ImageNet32) at test time. The right panel shows average reconstruction performance
over inference iterations for the entire dataset. The left panels visualizes selected ground truth
images compared with model reconstructions. The ai-VAE variants are unable to adapt to the new
domain, whereas sa-VAE can capture more details. iP-VAE outperforms the alternatives, and its
reconstructions are shown to maintain the semantic information of ground truth images.

Since both iP-VAE and P-VAE are spiking models, this result suggests that the difference lies in
the inference algorithm: iP-VAE is iterative and adaptive; whereas, P-VAE is one-shot amortized.
Overall, our experiments provide strong evidence for the utility of iterative algorithms in practical
settings.

5 DISCUSSION AND CONCLUSIONS

In this work, we introduce the iP-VAE, which is a spiking neural network that maximizes ELBO,
while performing Bayesian posterior updates through membrane potential dynamics. Empirically,
iP-VAE exhibits outstanding adaptability and robustness to OOD samples, while being able to
dynamically trade off compute and performance. It outperforms amortized versions and recent
iterative inference VAEs on every task we tested while using substantially fewer parameters.

iP-VAE results directly from the choice of Poisson in the ELBO and it avoids many of the problems
with predictive coding. First, there is no population-wide prediction signal, only a feedforward
receptive field and recurrent terms. Second, neurons only communicate through spikes and all
dynamics are private on the membrane potential. And finally, additive terms in the membrane
potential appear as gains in the spike rate, which avoids negative rates, and is more consistent with
real neurons Gilbert & Li (2013).

We believe iP-VAE is well positioned for a neuromorphic implementation. The recent rise of
neuromorphic hardware as an avenue for performance improvements requires new algorithms that
can make use of its architecture (Schuman et al., 2022). We found that iP-VAE with a linear decoder
reduces to a spiking LCA, addressing the performance gap noted by Vafaii et al. (2024). Both
algorithms share key features: sparsity, recurrence, and parameter efficiency. Since LCA has been
implemented as an SNN (Zylberberg et al., 2011) and on neuromorphic hardware (Du et al., 2024),
we expect the same for iP-VAE.

In summary, the choice of Poisson in the ELBO results in a spiking neural network, iP-VAE,
that performs iterative Bayesian inference. This lays the groundwork for a prescriptive theoretical
framework for building brain-like generative models that can leverage neuromorphic hardware.

Limitations and future work. In our experiments, we tested the simplest version of iP-VAE,
showing the practical benefits of the derived theory. There are a few avenues that we did not test,
and we think are exciting for future work. The design of a hierarchical model is a natural extension
for brain-like algorithm, especially given evidence that hierarchical VAE are more aligned to the
brain (Vafaii et al., 2023). In addition, training and evaluating on nonstationary sequences like videos
would be a straightforward extension, as we derived the theory with this in mind. When attempting
to use such sequences, it may also be beneficial to explore more sophisticated forward-predictive
models that “evolve” current posteriors to future priors.
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in balanced spiking networks. PLoS computational biology, 9(11):e1003258, 2013.

Victor Boutin, Aimen Zerroug, Minju Jung, and Thomas Serre. Iterative vae as a predictive brain
model for out-of-distribution generalization. arXiv preprint arXiv:2012.00557, 2020.

Daniel A Butts, Yuwei Cui, and Alexander RR Casti. Nonlinear computations shaping temporal
processing of precortical vision. Journal of Neurophysiology, 116(3):1344–1357, 2016.

William H Calvin and CHARLES F Stevens. Synaptic noise and other sources of randomness in
motoneuron interspike intervals. Journal of neurophysiology, 31(4):574–587, 1968.

11

https://proceedings.neurips.cc/paper_files/paper/2019/file/01386bd6d8e091c2ab4c7c7de644d37b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/01386bd6d8e091c2ab4c7c7de644d37b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/3812f9a59b634c2a9c574610eaba5bed-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/3812f9a59b634c2a9c574610eaba5bed-Paper.pdf


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Matteo Carandini. Amplification of trial-to-trial response variability by neurons in visual cortex.
PLoS biology, 2(9):e264, 2004.

Stanley H. Chan. Tutorial on diffusion models for imaging and vision. 2024. URL https:
//arxiv.org/abs/2403.18103.

Michael Chang, Thomas L. Griffiths, and Sergey Levine. Object representations as fixed points:
Training iterative refinement algorithms with implicit differentiation. In Alice H. Oh, Alekh Agar-
wal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in Neural Information Processing
Systems, 2022. URL https://openreview.net/forum?id=-5rFUTO2NWe.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

Patryk Chrabaszcz, Ilya Loshchilov, and Frank Hutter. A downsampled variant of imagenet as an
alternative to the cifar datasets. arXiv preprint arXiv:1707.08819, 2017.

Junyoung Chung, Kyle Kastner, Laurent Dinh, Kratarth Goel, Aaron C Courville, and
Yoshua Bengio. A recurrent latent variable model for sequential data. In C. Cortes,
N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett (eds.), Advances in Neural In-
formation Processing Systems, volume 28. Curran Associates, Inc., 2015. URL
https://proceedings.neurips.cc/paper_files/paper/2015/file/
b618c3210e934362ac261db280128c22-Paper.pdf.

Gregory Cohen, Saeed Afshar, Jonathan Tapson, and André van Schaik. Emnist: an extension of
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A EXPERIMENT DETAILS

In our comparisons to previous work, we utilized the code accompanied with sa-VAE (Kim et al.
(2018)), ai-VAE (Marino et al. (2018)), and P-VAE Vafaii et al. (2024). Across models where code
was provided, we trained using the same train/validation split, and without changing the parameters
in the code unless we specify otherwise. For the locally competitive algorithm (LCA) baseline, we
used the library lca-pytorch (Teti, 2023) to replicate the analysis from Vafaii et al. (2024).

Since the code for sa-VAE was limited to a Bernoulli observation model, we adapted it for compati-
bility to Gaussian by removing the sigmoid in the decoder and replacing its reconstruction loss with
MSE (for the van Hateren dataset). For sa-VAE, only Omniglot parameters were provided, with
default batch size of 50, and default number of epochs of 100. We trained it on Omniglot with default
parameters, on van Hateren for 100 epochs and batch size 200, on MNIST for 32 epochs and batch
size 50, and EMNIST for 16 epochs and batch size 50, adjusting for the size and complexity of
datasets.

The codebase for ai-VAE included parameters for both Bernoulli and Gaussian observation models,
and we use them accordingly. We used their MNIST configuration for MNIST, EMNIST, and
Omniglot. We used their CIFAR configuration for van Hateren, except for increasing batch size
to 200 (van Hateren is much smaller spatially). For training the ai-VAE single-level model on van
Hateren, we matched the latent dimension to all other van Hateren models (512 dims instead of 1024
from the CIFAR configuration). The number of epochs in the ai-VAE code base is hardcoded to 2000,
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but we stopped the models between 780 and 2000 epochs when the loss converged. We found that
the training code occasionally resulted in nans, requiring rerunning the training from the checkpoint.
In one case, the hierarchical van Hateren model, the training was unable to proceed past 61 epochs
without stopping due to nans.

We obtained the P-VAE code upon request from the authors and used the default parameters as
described in the appendix of Vafaii et al. (2024).

B ARE REAL NEURONS TRULY POISSON?

In this section, we discuss empirical and theoretical observations from neuroscience that support our
Poisson assumption.

“Poisson-like” noise in neuroscience has a long history. It begins with observations that neurons do not
fire the same sequence of spikes to repeated presentations of the same input and that the variance is
proportional to the mean (Tolhurst et al., 1983; Dean, 1981) and was followed by the observation that
for short counting windows, that proportion is 1 (Teich, 1989; Shadlen & Newsome, 1998; Averbeck
et al., 2006; Rieke et al., 1999; Dayan & Abbott, 2005). Larger windows and higher visual areas are
notably super-Poisson, but that can be attributed to a modulation of the rate of an inhomogeneous
Poisson process (Goris et al., 2014). In other words, neurons are conditionally Poisson, not marginally
Poisson (Truccolo et al., 2005).

Spike-generation, it is argued, is not noisy (Mainen & Sejnowski, 1995; Calvin & Stevens, 1968), but
synaptic noise (Allen & Stevens, 1994) or noise on the membrane potential can create a Poisson-like
distributions of spikes (Carandini, 2004). An important caveat is that the most famous examples
of precision in spike generation, Mainen & Sejnowski (1995), is well captured well by a Poisson-
process Generalized linear model (Weber & Pillow, 2017), although that precision depends on the
Bernoulli approximation to a Poisson process in the limit where only 0 or 1 spikes are possible. There
is a widely-held misconception that precise timing cannot be produced by spike-rate models, but
inhomogeneous rate models can operate at high time resolution and produce precise spiking (Butts
et al., 2016).

Importantly, to maximize the ELBO, one has to choose an approximate posterior and prior. Because
spike counts are integer and cannot be negative, Poisson is a more natural choice than Gaussian
without knowing anything about neural firing statistics. Here, we found that Poisson assumption
produced a prescriptive theory for neural coding. Future work might interpret this assumption at
higher time resolution using inhomeneous Poisson processes in the limit of binary spiking.

C EXTENDED RELATED WORKS

C.1 DIFFUSION MODELS

Diffusion models have recently gained significant traction in various generative tasks, demonstrating
impressive performance across applications (Yang et al., 2024; Chan, 2024). Originally introduced
by Sohl-Dickstein et al. (2015), these models iteratively restore data structure by learning a reverse
diffusion process. Despite the dominance of one-shot feedforward methods, the success of diffusion
models highlights the ongoing relevance of iterative approaches. Several studies have sought to
explain why these models perform so well in tasks like image generation. In this section, we highlight
three key findings.

First, Delbracio & Milanfar (2024) and Bansal et al. (2022) showed that fully deterministic iterative
restoration methods, without diffusion theory, can match the performance of conditional diffusion
models. This suggests that the strength of diffusion models lies, at least partially, in their iterative
nature.

Second, Kingma & Gao (2023) revealed that despite their distinct loss functions, diffusion models
essentially optimized the ELBO objective (identical under certain conditions), particularly in noise-
perturbed data settings. This adds further support to the idea that diffusion models succeed not
because of their diffusion-specific properties, but because they are iterative, aligning them closely
with iP-VAE, which also optimizes an ELBO-like objective through iterative processes.
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Finally, Kadkhodaie et al. (2024) found that diffusion models operate by applying a shrinkage
operation on an adaptive basis, a fundamental concept in signal processing. In methods like sparse
coding, this is represented by an L1 regularization term. Similarly, an L1-like term appears in
iP-VAE, which also uses integer representations to zero out small values. These similarities suggest a
strong connection between iP-VAE and diffusion models, presenting an exciting direction for future
research.

C.2 ADAPTIVE FILTERS

Adaptive filters are a widely used class of algorithms capable of modeling signals with varying statis-
tics (Widrow & Stearns (1985)). Their applications are highly diverse, including communications,
control and robotics, weather prediction, and inverse problems such as denoising. Two of the most
popular adaptive filter classes, the Kalman filter (Kalman (1960)) and the Least mean squares (LMS)
filter (Widrow & Stearns (1985)), have close connections to machine learning. The LMS filter was
originally based on research aiming to train neural networks (Widrow (1960)). Backpropagation can
be understood as a generalization of the LMS filter when applied to multi-layer networks. Although
the Kalman filter has not had much use as a learning algorithm, a recent line of work shows that there
is a lot of potential benefits in doing so (Trautner et al. (2020); Luttmann & Mercorelli (2021)). Both
algorithms, when used in dynamic settings, encode the prediction residual (like iP-VAE), and can be
interpreted from the framework of predictive coding. More concretely, Millidge et al. (2021a) showed
predictive coding in the linear case corresponds to Kalman filtering, and also showed the relationship
between backpropagation (extension of LMS) and predictive coding. Later, Millidge et al. (2021b)
showed that predictive coding and Kalman filtering, although not identical in general, optimize the
same objective. In addition, they show a neurally plausible implementation of the Kalman filter (see
Wilson & Finkel (2009) for an earlier paper in this line of work).

In future work, it would be interesting to incorporate additional ideas from the rich literature of
Kalman filters. Particularly, extensions of Kalman filtering, such as the ensemble Kalman filtering,
tend to be better suited for nonlinear and nongaussian applications (albeit with the loss of guarantees).

C.3 TEST-TIME OPTIMIZATION

There has been a recent surge of work showing that incorporating test-time optimization leads to
improved performance. One notable line of work is known as Test-Time-Training (TTT), introduced
by Sun et al. (2020). TTT is a general approach for updating model parameters in test time using
self-supervised learning, demonstrating increased performance and robustness. Around the same
time Quan et al. (2020) introduced Self2Self, a denoising method that is only trained during test
time. A follow-up to Self2Self instead optimized a per-layer gain value of a trained model Mohan
et al. (2021). In a recent paper, Sun et al. (2024) extended the TTT framework to language modeling,
introducing an architecture that outperforms transformers (Vaswani et al., 2017) and Mamba (Gu &
Dao, 2023). The authors also showed that theoretically, transformers can be understood as a special
case of their TTT algorithm. In this work, we found that iP-VAE can also be understood within
the TTT framework. Overall, our results reveal a novel grounding of TTT within well-established
theoretical concepts in neuroscience.

C.4 FEEDFORWARD VERSUS ITERATIVE COMPUTATION

Deep learning is currently the dominant paradigm in artificial intelligence (AI) research, driven
largely by the success of feedforward neural networks (LeCun et al., 2015; Sejnowski, 2020).
The deep learning era invoked the universal approximation theorem (Hornik et al., 1989) and
emphasized parallelization of training (Krizhevsky et al., 2012; Vaswani et al., 2017) leading to an
over-reliance on models that perform one-shot inference. This “unrolling” of inference diverged from
the classic AI literature, which recognized the importance of iterative algorithms (Russell & Norvig,
2016). Although feedforward models initially achieved remarkable results, their limitations became
increasingly apparent as they struggled to generalize beyond their training distributions (Zhou et al.,
2022; Yu et al., 2024). To counter this limitation, iterative computation at test time has recently
resurfaced as a promising direction (Sun et al., 2020; 2024).
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Unlike feedforward models, iterative algorithms refine their predictions over multiple steps, allowing
them to adapt dynamically to new inputs. Examples include iterative amortized inference techniques
Marino et al. (2018); Kim et al. (2018), diffusion models Sohl-Dickstein et al. (2015); Ho et al.
(2020); Song & Ermon (2019), energy based models (Du & Mordatch, 2019; LeCun et al., 2006),
test-time training Sun et al. (2020; 2024), meta-learning algorithms (Andrychowicz et al., 2016; Finn
et al., 2017; Hospedales et al., 2021), neural ordinary differential equations (Chen et al., 2018), deep
equilibrium models (Bai et al., 2019; 2020), object-centric models (Locatello et al., 2020; Chang
et al., 2022), and many more. These methods have demonstrated that a dynamic, multi-step inference
process can help overcome many of the challenges faced by static models.

C.5 FAST WEIGHTS

In the late 1980s and early 1990s, Hinton & Plaut (1987) and Schmidhuber (1992) introduced the
concept of ”fast weights” as a way to enhance the adaptability of neural networks through dynamic
memory. These innovations laid the foundation for modern models like transformers and recurrent
neural networks, significantly influencing memory-augmented architectures and iterative inference
methods. Fast weights are particularly relevant in iterative inference, where dynamic updates align
with the goal of flexible, adaptive neural computation (Ba et al., 2016; Irie et al., 2021). In our work,
the adaptive Bayesian posterior updates in u(t)—the membrane potential state of iP-VAE—closely
parallel the concept of fast weights.

D DYNAMICS

In this section, we will go through the derivation of the dynamics of iP-VAE ( eq. (7) in the main
paper). Our goal is to define membrane potential updates in a way that the resulting dynamics will
minimize the ELBO loss.

We begin with the general definition of the ELBO, Eqϕ(z|x)

[
log p(x,z)

qϕ(z|x)

]
, and consider its Monte

Carlo estimate using a single sample, z, drawn from the approximate posterior qϕ(z|x):

ℓ(x, z) := log
p(x, z)

qϕ(z|x)

= log
p(x|z)p(z)
qϕ(z|x)

= log p(x|z) + log
p(z)

qϕ(z|x)
= −MSE(x, z) + r ⊙ (exp(δu)− 1)− z ⊙ δu.

(9)

In the last line of eq. (9), we inserted our specific choice of Gaussian conditional density, resulting in
log p(x|z) = −MSE(x, z) = −∥x− fθ(z)∥2. We also expressed the log ratio between the prior
and approximate posterior distributions, both modeled as Poisson, as in the case in iP-VAE.

Next, we take the partial derivative of ℓ(x, z) w.r.t the samples z and keep only the first order terms.
This results in:

∂

∂z
ℓ(x, z) ≈ − ∂

∂z
MSE(x, z)− δu. (10)

If we define our posterior updates, δu, to be proportional to the gradient of ℓ(x, z) w.r.t the state
variable, u, we get:
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δu := α∇uℓ(x, z)

= α
∂z

∂u

∂

∂z
ℓ(x, z)

≈− α
∂z

∂u

[
∂

∂z
MSE(x, z) + δu

]
,

(11)

where α is a proportionality constant. We rearrange some terms to get the following update rule:

δu = −
(

α∂z/∂u

1 + α∂z/∂u

)
∂

∂z
MSE(x, z). (12)

The stochastic samples, z, depend to the state variable, u, through firing rates, r = exp(u). Therefore,
we have ∂z/∂u = (∂z/∂r) (∂r/∂u). But ∂r/∂u is just r, and if we approximate ∂z/∂r using the
straight-through estimator, we will have ∂z/∂u ≈ r. Plug this back into eq. (12) to get:

δu ≈ −
(

αr

1 + αr

)
∂

∂z
MSE(x, z). (13)

The proportionality coefficient, αr/(1 + αr), can be interpreted as an adaptive learning rate that
depends on the instantaneous firing rate of neurons. While this result is intriguing, in the present
work we simplified our update rule by removing the proportionality coefficient. Instead, we simply
used the gradient of the MSE to compute δu:

δu ∝ − ∂

∂z
MSE(x, z)

= − ∂

∂z
∥x− fθ(x)∥2

∝ ∂fθ(z)

∂z
·
(
xt − fθ(zt)

)
= Jθ ·∆t.

(14)

This concludes our derivation of eq. (7).
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