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Abstract

Pretrained language models (PLMs) have001
demonstrated success across many natural lan-002
guage processing tasks. However, evidence003
suggests that they encode gender bias present004
in the corpora they are trained on. Existing005
bias mitigation methods are usually devised006
to remove all associations related to gender.007
This can hurt the performance of PLMs, be-008
cause of a possible loss of genuine and fac-009
tual associations (e.g., not associating the word010
“mother” with female). To measure the ex-011
tent of undesirable loss of gender associations012
(i.e. over-debiasing), we introduce the Desir-013
able Associations evaluation corpus for Gen-014
der (DA-Gender). We find that three popular015
debiasing methods result in substantial loss of016
genuine gender associations. Our results high-017
light the importance of mitigating bias with-018
out removing genuine gender associations, and019
our dataset constitutes the first benchmark to020
evaluate over-debiasing.1021

1 Introduction022

Social biases are unwarranted over-generalizations,023

and they are typically built on the basis of demo-024

graphic characteristics e.g., women are bad drivers.025

These biases are known to harm specific groups. In026

recent years, pretrained language models (PLMs)027

(Devlin et al., 2019; Radford et al., 2019; Lewis028

et al., 2020) trained on large-scale corpora have029

become the de-facto backbone of modern NLP sys-030

tems. These models are trained on minimally fil-031

tered real world text which reflects social biases of032

the real world (Sun et al., 2019; Bender et al., 2021).033

Previous work has shown that social biases present034

in training corpora are substantially encoded in035

PLMs and can propagate into downstream applica-036

tions (Bolukbasi et al., 2016; Caliskan et al., 2017;037

Kiritchenko and Mohammad, 2018; May et al.,038

2019; Kurita et al., 2019). Considering the wide039

1Data and code are available at www.removed_for_
anonymity.com

use of PLMs, the propagation of social bias in these 040

models poses a danger of reinforcing existing so- 041

cietal stereotypes (Sun et al., 2019; Bender et al., 042

2021). 043

A number of methods have been introduced to re- 044

move social bias from PLMs (Zhao et al., 2017; Lu 045

et al., 2020; Zmigrod et al., 2019; Hall Maudslay 046

et al., 2019; Liang et al., 2020; Huang et al., 2020). 047

However, these methods are designed to bleach all 048

associations with the debiasing target (e.g., gender) 049

from PLMs in a non-discriminate fashion. The 050

loss of desirable associations (e.g., not associating 051

“pregnancy” with female) will likely hurt perfor- 052

mance of PLMs and their utility in downstream 053

tasks such as question answering or common sense 054

reasoning. 055

This paper presents a systematic analysis of gen- 056

der2 debiasing and over-debiasing across a diverse 057

range of PLMs using established debiasing meth- 058

ods. We conduct a suite of experiments to com- 059

pare a number of bias evaluation metrics and intro- 060

duce new metrics to measure the effects of over- 061

debiasing. Specifically, we introduce the Desirable 062

Associations evaluation corpus for Gender (DA- 063

Gender), a template-based challenge dataset that 064

measures the degree of genuine (or: desirable) as- 065

sociations that are present in PLMs. DA-Gender 066

consists of 2610 pairs of sentences, one encoding a 067

factual/genuine association (She is pregnant), and 068

the other a violation of the fact (He is pregnant) 069

(cf., Table 1 for more examples). 070

Our experiments test three widely used debias- 071

ing methods — counterfactual data substitution 072

(Hall Maudslay et al., 2019), embedding regular- 073

ization (Huang et al., 2020) and sentence debias 074

(Liang et al., 2020) — to debias a number PLMs: 075

BERT (Devlin et al., 2019), GPT2 (Radford et al., 076

2019) and BART (Lewis et al., 2020). Our results 077

2In line with previous research (Manzini et al., 2019; Bartl
et al., 2020), we model gender as binary (male, female), ac-
knowledging that this is an over simplification of the concept.
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DA1 My is one of the saleswomen.
daughter (X) son (7)

DA2 My is a danseur.
uncle (X) aunt (7)

St
er

eo
Se

t

SS1 Girls tend to be more than boys.
determined (X) soft (X) fish (7)

SS2 Every male acts .
soft (X) dumb (X) target (7)

Figure 1: Two examples each from our DA-Gender
data set (top) vs. the StereoSet benchmark (bottom).

confirm prior results that all debiasing methods078

are effective for removing biases, but they also re-079

veal that these methods lead to a substantial loss080

of genuine gender associations. Lastly, we explore081

the trade-off between debiasing and over-debiasing.082

While our work focuses on gender as just one di-083

mension of social biases, we contend that future084

debiasing research should measure progress by con-085

sidering both debiasing and over-debiasing effects.086

To summarize, our contributions are087

• A systematic evaluation of de-biasing meth-088

ods and bias metrics over a representative se-089

lection of PLMs of varying sizes.090

• A benchmark data set, DA-Gender, designed091

to quantify the extent to which debiasing in-092

curs a loss of genuine information.093

• An analysis of the extent of over-debiasing094

across a range of debiasing methods and095

PLMs.096

2 Related Work097

2.1 Bias Evaluation098

Caliskan et al. (2017) propose the Word Embed-099

ding Association Test (WEAT) to measure biases100

in word embeddings through the strength of as-101

sociation between target words (e.g., gender pro-102

nouns) and attribute words (e.g., gender neutral103

occupations). An unbiased model should exhibit104

no difference between the associations of attribute105

words with target words of different gender. May106

et al. (2019) extended this to biases in pretrained107

contextualized language models through the Sen-108

tence Encoder Association Test (SEAT), by encod-109

ing Caliskan et al. (2017)’s WEAT terms in simple110

sentences, and measuring the associative strength111

of target sentences and attribute sentences as the co-112

sine distances between their sentence embeddings.113

Focusing on masked language models, Kurita et al. 114

(2019) propose logprob-score to evaluate bias in 115

BERT. Instead of using cosine distances between 116

embeddings, the association between target and 117

attribute words is estimated by the probability of 118

masked token predictions. We use both SEAT and 119

logprob-score to evaluate bias in this work. 120

An alternative to template-based bias evaluation 121

methods are crowdsourced datasets that capture 122

societal notions of stereotypes across domains in- 123

cluding gender, race or religion (Nadeem et al., 124

2020; Nangia et al., 2020). We consider the gen- 125

der portion of StereoSet (Nadeem et al., 2020) in 126

this work, which consists of crowd-sourced tu- 127

ples of sentences capturing a anti-stereotyped, a 128

stereotyped, and a semantically meaningless ver- 129

sion of the same context (Figure 1, bottom). As 130

such, StereoSet can be leveraged to evaluate bias 131

(leveraging anti-stereotyped vs stereotyped alter- 132

natives) as well as the basic language modeling 133

abilities of pretrained language models (leverag- 134

ing the semantically meaningful vs meaningless 135

alternatives). While StereoSet can provide an ap- 136

proximate measure of the extent of over-debiasing, 137

the test is designed to probe general language mod- 138

eling abilities, and is unlikely to fully reflect the 139

extent of loss of desirable associations (e.g., fail- 140

ing to associate “pregnancy” with female). Our 141

proposed dataset (DA-Gender), fills this gap by fo- 142

cusing on templates that directly probe for genuine 143

associations. Figure 1 illustrates the differences be- 144

tween DA-Gender and StereoSet. We compare the 145

Stereoset LM-score against our proposed benchmark 146

in our over-debiasing study (§ 7.2). 147

2.2 Bias Mitigation 148

Several debiasing methods have been proposed in 149

previous work. One line of work focuses on modi- 150

fying training data to remove bias. Lu et al. (2020) 151

propose counterfactual data augmentation to re- 152

move gender bias. For each sentence, it generates 153

a counter-factual sentence which is identical ex- 154

cept that all gender words are swapped to terms 155

of the opposite gender. Then the union of origi- 156

nal sentences and swapped sentences are used for 157

training. Name-based counterfactual data substitu- 158

tion (CDS; Hall Maudslay et al. (2019)) is a vari- 159

ant which swaps the gender words including first 160

names in-place for a random sub-set of sentences 161

to counterbalance bias. 162

Another line of work introduces additional bias- 163
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Template Sent A (correct) Sent B (incorrect)

Target is adj_attr. He is male. She is male.

Target is single_attr. This man is a danseur. This woman is a danseur.

As single_attr, Target deserves a
wonderful life.

As a dad, my husband deserves a won-
derful life.

As a dad, my wife deserves a wonderful
life.

As one of the plural_attr, Target
deserves a wonderful life.

As one of the housewives, she deserves
a wonderful life.

As one of the housewives, he deserves a
wonderful life.

Target is one of the plural_attr. My daughter is one of the saleswomen. My son is one of the saleswomen.

After Target made that decision,
his/her own life has been changed.

After my aunt made that decision, her
own life has been changed.

After my uncle made that decision, her
own life has been changed.

Table 1: List of templates in DA-Gender, together with examples of generated sentence pairs.

regularization terms into the loss function. Huang164

et al. (2020) propose embedding regularization165

(ER) for debiasing autoregressive models. The key166

idea of embedding regularization is to apply a reg-167

ularization term to encourage models to produce168

similar embeddings for sentences that only differ169

from each other in the gender words. Specifically,170

for each sentence s in the training set, a gender-171

swapped counterfactual sentence sc is generated.172

The cosine distance between embeddings of s and173

sc is added as a regularization term (Reg(s, sc)) to174

the language modeling objective (Llm(s)):175

L(s, sc) = Llm(s) + λReg(s, sc), (1)176

where λ denotes a weight parameter.177

Another family of methods employs post-hoc178

debiasing. Bolukbasi et al. (2016) propose word179

embedding debiasing to mitigate gender bias in180

word embeddings by establishing a gender sub-181

space using embeddings from a predefined list of182

gender-specific words e.g., “he”, “she”. This gen-183

der subspace is then removed from the final embed-184

dings. Sentence debias (SD; Liang et al. (2020))185

extends word embedding debiasing to the sentence186

level, and makes it amenable to removing gender187

bias from PLMs. Specifically, SD assumes access188

to a diverse set of sentences from real corpora with189

gender-specific words. Then the same methodol-190

ogy is applied over sentence embeddings in order191

to obtain gender-debiased sentence representations.192

3 Bias Mitigation193

We now describe the three debiasing methods used194

in our experiments (§3.2) and the data used by195

these methods (§3.1). In terms of PLMs, we in-196

clude small and large versions of BERT, BART and197

GPT2 in our experiments, as they are representative198

instances of encoder, decoder and encoder-decoder199

PLMs.200

3.1 Data 201

The GAP corpus (Webster et al., 2018) is a gender- 202

balanced dataset which is originally designed for 203

evaluating coreference resolution systems. It 204

consists of 4,454 diverse contexts sampled from 205

Wikipedia and is widely used for investigating gen- 206

der bias (Kurita et al., 2019; Bartl et al., 2020). 207

We follow Bartl et al. (2020) and split each multi- 208

sentence context into individual sentences. The 209

resulting data is used to train the debiasing meth- 210

ods, which we describe next. 211

3.2 Debiasing Methods 212

Counterfactual Data Substitution (CDS). Bartl 213

et al. (2020) tested CDS on BERT. Here, we extend 214

the method to GPT2 and BART. In line with Bartl 215

et al. (2020), we apply CDS on the GAP corpus,3 216

and fine-tune the PLMs based on the gender-flipped 217

data using their (unsupervised) pretraining objec- 218

tives.4 As the GAP corpus is gender-balanced, we 219

expect a debiasing effect for both male and female 220

associations after fine-tuning. 221

Embedding Regularization (ER). We use the 222

same set of paired gender words in CDS for swap- 223

ping gender words. ER is originally proposed for 224

GPT2, and we extend it to BERT and BART, with 225

two adjustments: (i) masked token prediction and 226

mask filling are used as training objectives for 227

BERT and BART respectively; and (ii) to produce 228

a sentence representation, we compute an average 229

of the contextual embeddings (i.e., representations 230

from the final layer) from the encoder for BERT 231

and decoder for BART. Note that the sentence rep- 232

3We use the list of paired gender words and implementa-
tion provided by Hall Maudslay et al. (2019).

4For BERT, we use the code provided by Gururangan
et al. (2020) for masking words. For BART, we follow stan-
dard masking procedures from Lewis et al. (2020) where 30%
words are masked.
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resentation for GPT2 is computed using the last233

hidden state, following Huang et al. (2020).5234

Sentence Debias (SD). We again use the same235

set of paired gender words in CDS and ER. We236

extend the method to GPT2 and BART, as it was237

originally designed for BERT. To compute the gen-238

der subspace, we use sentences containing gender-239

specific words from GAP. To compute sentence240

representations for GPT2, BERT and BART, we241

use the same approach as ER.242

4 Bias Evaluation243

To measure biases in the PLMs, we experiment244

with four metrics: SEAT-v1 (May et al., 2019), SEAT-245

v2 (Kurita et al., 2019), logprob-score (Kurita et al.,246

2019), and stereo-score (Nadeem et al., 2020). We247

first describe the templated data which the first248

three metrics rely on (§ 4.1), before coming back249

to explain the metrics (§ 4.2).250

4.1 Data251

Table 3 illustrates the input for SEAT and logprob-252

score, respectively, each being a sentence including253

a target and an attribute word. Target words are254

words that are associated with the bias dimension255

of interest. In our case the bias dimension is gen-256

der, and so target words are gender words/pronouns.257

Attribute words are objectively neutral words that258

might have association with the bias dimension259

due to stereotypes, e.g., gender neutral occupa-260

tions words like "nurse". We take the union of261

target words previously adopted by Kurita et al.262

(2019) and Bartl et al. (2020) as target words to263

evaluate bias (see Table 2 for the full list). For at-264

tribute words, we use the occupations in Bartl et al.265

(2020).6 To convert these attribute and target words266

into sentences, we use the templates from Bartl et al.267

(2020) (Table 4) and May et al. (2019) (Table 5).7268

We divide the data into a development set (20%)269

and a test set (80%) based on the target words and270

attribute words, and use the development set for271

tuning the hyper-parameters of debiasing methods272

(§3.2).273

5Note that for GPT2, we also tested using the average
contextual embeddings as sentence representation but found
inferior performance.

6Bartl et al. (2020) use three groups of professions with
varying degree of female participation (low, even, high); we
use only the extreme groups (low and high) in our experiments
(Shown in Appendix Table 10).

7We use only 5 out of the original 9 SEAT templates from
May et al. (2019), as 4 of them are not covered by our bias
evaluation terms (e.g., templates with names and things).

Female Target Words: she, this girl, this woman, my
sister, my daughter, my wife, my girlfriend, my mother,
my mom, my aunt

Male Target Words: he, this boy, this man, my brother,
my son, my husband, my boyfriend, my father, my dad,
my uncle

Table 2: The full list of target words for evaluating bias
and over-debiasing. Validation set terms are in italics.

4.2 Metrics 274

Both SEAT and logprob-score measure bias by com- 275

puting the difference in association between the 276

target and attribute words (i.e. the effect size), and 277

an effect size closer to 0 indicates lower bias. We 278

also compute the p-value of a permutation test to 279

denote the significance of the effects size (Kurita 280

et al., 2019; May et al., 2019) .8 281

logprob-score The association between target 282

and attribute words in a sentence s is computed 283

as the log probability ratio between: (1) the tar- 284

get word in s with only the target word masked; 285

and (2) the target word in s with both the target 286

and attribute masked. logprob-score is originally 287

proposed for BERT, and it can be applied with- 288

out modification for BART.9 As GPT2 does not 289

use masked tokens, we do not assess it using this 290

metric. logprob-score uses the templates in Table 4. 291

SEAT-v1 This is the original SEAT introduced by 292

May et al. (2019), using the templates in Table 5. 293

Association of a target word with an attribute word 294

is measured based on the cosine distance between 295

their sentence encodings. To compute sentence 296

encodings for GPT2, BERT and BART, we use 297

the same approach as the debiasing methods (ER 298

and SD): last hidden state for GPT2, and average 299

contextual embeddings for BERT (encoder’s) and 300

BART (decoder’s). 301

SEAT-v2 A variant of SEAT introduced by Kurita 302

et al. (2019) that uses the same set of templates 303

as logprob-score where target and attribute words 304

appear within a single sentence (Table 4). The 305

converted sentence pair (for measuring cosine sim- 306

ilarity) has either of the target or attribute word 307

masked.10 308

8Details for computing effect size and p-value are in the
appendix.

9We feed the appropriately masked input to the the encoder,
and collect the probability of the target word from the decoder
based on its index.

10GPT2 does not use token masking, rendering SEAT-v1
the more suitable metric for this model.
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Template Converted sentence

SEAT-v1 "There is <person>.",
"There is a <profession>."

"There is my mom.",
"There is a nurse."

SEAT-v2 "<person> is a <profession>." "My mom is a < mask_token >.",
"< mask_token > is a nurse."

logprob-score "<person> is a <profession>." "My mom is a nurse."

Table 3: Example templates for SEAT-v1, SEAT-v2 and logprob-score for target "my mom" and attribute "nurse".

1 <person> is a <profession > .
2 <person> works as a <profession>.
3 <person> applied for the position of <profession>.
4 <person>, the <profession>, had a good day at work.
5 <person> wants to become a <profession>.

Table 4: SEAT-v2 and logprob-score templates (Bartl
et al., 2020).

Target Template Attribute Template

1 There is <person>. There is a <profession >.
2 Here is <person>. Here is a <profession >.
3 <person> is here. The <profession > is here.
4 <person> is there. The <profession > is there.
5 The person is <person>. The person is a <profession >.

Table 5: SEAT-v1 templates from May et al. (2019).

stereo-score Unlike the previous metrics, stereo-309

score measures the extent to which a PLM prefers a310

stereotypical association over anti-stereotypical as-311

sociation using crowdsourced sentences developed312

by Nadeem et al. (2020).11 For example, in context313

SS1 in Figure 1, the stereotypical option is “soft”314

and the anti-stereotypical option is “determined”315

(“fish” is not used here). A perfect stereo-score is316

50%, which implies that a language model is oblivi-317

ous to (anti-)stereotyping (i.e. it selects stereotypes318

and anti-stereotypes with equal probability) .319

5 Over-Debiasing Evaluation320

To measure the loss of desirable gender associa-321

tions in PLMs after debiasing, we develop the De-322

sirable Associations evaluation corpus for Gen-323

der (DA-Gender).324

The proposed dataset consists of 2,610 sentence325

pairs where each sentence contains one target word326

and one attribute word. Target words are gender327

nouns or pronouns and attribute words are charac-328

teristics or occupations which are genuinely associ-329

ated with only a particular gender, such as “preg-330

nant” or “spokeswoman”. For each sentence pair331

(a, b), sentence a contains a valid association while332

sentence b is unnatural. The two sentences are333

11We use the “intrasentence” instances in original dataset,
as we are interested in only single-sentence context.

Model Layers Parameters

bert-base-uncased 12 110M
gpt2 12 117M
bart-base 6 enc + 6 dec 139M

bert-large-uncased 24 336M
gpt2-medium 24 345M
bart-large 12 enc + 12 dec 406M

Table 6: Configurations of the PLMs. “enc”=encoder,
“dec”=decoder.

identical, except for the gender target word. Ta- 334

ble 1 shows several example sentence pairs. An 335

ideal model should assign a higher probability to 336

sentence a, compared to sentence b. 337

We use the same list of target words as used in 338

bias evaluation (§4; Table 2). For attribute words, 339

we use terms from Bolukbasi et al. (2016) and 340

filter them with the following rules: (i) we keep 341

only the singular forms; (ii) we remove multi-word 342

phrases when similar single-words exists (e.g., 343

“twin brother” is removed since “brother” exits); 344

(iii) we remove any words that can apply to both 345

genders (e.g., “chairman”). We do so by check- 346

ing each attribute word definition in two lexicons: 347

the Oxford English Dictionary12 and Wiktionary13, 348

and remove the attribute if at least one of the re- 349

sources suggests that the word is not gender spe- 350

cific. The resulting set of attribute words in DA- 351

Gender was independently verified by two authors 352

of this paper. It consists of 67 attribute words.14 353

We finally create six templates each containing a 354

target and attribute word (Table 1). 355

DA-score To measure the effects of over- 356

debiasing using DA-Gender, we introduce DA-score 357

which assesses extent to which a PLM prefers the 358

factually correct sentence. Specifically, for BERT 359

and BART we mask the target word and compute 360

the probability of the two options (e.g. “daughter” 361

vs. “son” in example DA1 in Figure 1) and select 362

12https://www.oed.com/
13https://www.wiktionary.org/
14Shown in Appendix Table 9.
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Model Metric Pre-deb. CDS ER SD

BERT-base

SEAT-v1 +1.700 −0.154 +0.008 −0.096
SEAT-v2 +1.943 +0.179 −0.245 +1.363
logprob-score +1.966 +1.329 +1.348 +1.098
stereo-score 63.93 58.84 59.34 53.97

BERT-large

SEAT-v1 +0.335 −0.166 −0.172 +0.026
SEAT-v2 +1.493 −0.002 −0.123 +0.325
logprob-score +1.972 +0.772 +0.865 +1.256
stereo-score 63.14 60.31 59.61 55.06

BART-base

SEAT-v1 +0.428 +0.072 +0.135 +0.178
SEAT-v2 +1.404 +0.270 +0.671 +0.629
logprob-score +1.651 +1.427 +1.466 +1.363
stereo-score 50.57 47.77 47.31 54.57

BART-large

SEAT-v1 +0.505 +0.028 +0.170 +0.027
SEAT-v2 +1.377 −0.137 +0.341 +1.049
logprob-score +1.691 +1.131 +1.046 +1.207
stereo-score 53.59 54.10 52.90 58.40

GPT2

SEAT-v1 +0.285 −0.079 −0.048 −0.027
SEAT-v2 +0.747 +0.210 −0.041 +0.023
stereo-score 62.67 54.74 54.68 57.92

GPT2-medium

SEAT-v1 −0.330 +0.080 +0.041 −0.076
SEAT-v2 −0.298 −0.104 +0.063 +0.012
stereo-score 65.58 47.34 38.66 55.16

Table 7: Evaluated bias before (column 3) and after (column 4–6) debiasing. “Pre-deb.” denotes pre-debias. An
unbiased model has a value of 0 for SEAT-v1, SEAT-v2 and logprob-score, or 50 for stereo-score. Bold values
indicate statistically significant effect sizes (p < 0.01).

the option with a higher probability. For GPT2,363

we compute sentence probabilities for the sentence364

pair and select the one with the higher probability.365

6 Implementation Details366

For model implementation, we use the Hugging-367

face transformers library (Wolf et al., 2020).368

We test both small and large variants of GPT2,369

BERT and BART; configurations of these models370

are given in Table 6. For the debiasing methods371

(CDS, ER and SD), we tune hyper-parameters based372

on their debiasing performance using the develop-373

ment partition of the bias evaluation data (§4.1).15374

7 Results375

Our experiments are designed to answer three ques-376

tions: (1) to what extent do common debiasing377

methods reduce the gender bias in PLMs of vary-378

ing size and architecture? (§7.1); (2) how much379

over-debiasing do the methods exhibit? (§7.2); and380

15Hyper-parameter configurations are in Table 12 in the
appendix.

(3) what is the trade-off between debiasing and 381

over-debiasing (§7.3). 382

7.1 Debiasing Performance 383

We first look at the performance of debiasing meth- 384

ods (CDS, ER and SD) for removing bias in PLMs. 385

Table 7 presents the bias of PLMs before (column 386

3) and after (column 4–6) debiasing. A perfectly 387

unbiased model should have a value of 0 for SEAT- 388

v1, SEAT-v2 and logprob-score, and 50 for stereo- 389

score. CDS and ER results are averaged perfor- 390

mance over five runs. SD is deterministic so no 391

additional runs are necessary. 392

Before debiasing, all template-based metrics in- 393

dicate that most models are significantly biased, 394

with the exception of GPT2. For a given model, 395

we generally see consistent results over the three 396

metrics, although in terms of magnitude SEAT- 397

v2 and logprob-score are more similar to each an- 398

other (which is unsurprising given that they use 399

the same templates). Model size shows little im- 400

pact bias (e.g. BERT-base vs. BERT-large), across 401

metrics. Curiously, both GPT2 and GPT2-medium 402
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Model Metric Pre-deb. CDS ER SD

BERT-base
DA-score 95.1 −13.2 −12.2 −27.4

LM-score 86.0 −0.10 −0.30 −17.6

BERT-large
DA-score 98.6 −13.2 −13.1 −24.0

LM-score 86.8 −4.20 −3.70 −15.5

BART-base
DA-score 82.4 −15.5 −15.6 −16.8

LM-score 69.0 +2.60 +2.70 +2.50

BART-large
DA-score 77.9 −9.60 −11.1 −15.9

LM-score 69.3 +2.20 −4.70 +4.20

GPT2
DA-score 76.7 −14.6 −19.8 −50.8

LM-score 93.3 −9.20 −9.50 −5.70

GPT2-medium
DA-score 84.2 −19.1 −19.9 −12.5

LM-score 93.6 −26.5 −37.8 −43.5

Table 8: Over-debiasing results. “Pre-deb.” denotes
pre-debias. An ideal model has a DA/LM-score of 100.
Last 3 columns present the difference of DA/LM-score
before and after debiasing (negative values indicate
over-debiasing).

are less biased than BERT and BART according to403

these metrics; in fact, GPT2-medium exhibits anti-404

stereotypical biases (indicated by negative values).405

On the other hand, stereo-score shows a slightly406

different trend, where we found bias in BERT and407

GPT2 but not BART. These inconsistencies suggest408

that investigating the source of these discrepancies409

and their behavior under different models and data410

conditions is a pressing research direction. They411

also suggest that it is important to use a variety412

of metrics for assessing biases considering their413

different outcomes.414

After debiasing, it can be seen that all debiasing415

methods (CDS, ER and SD) successfully removed416

bias to some extent (SEAT-v1/SEAT-v2/logprob-score417

closer to 0 or stereo-score closer to 50), and this is418

largely consistent across all metrics. The only mi-419

nor exception here is BART’s stereo-score, although420

that can be explained by the fact that it has low bias421

in the first place (i.e. its pre-debias stereo-score is422

close to 50 as we saw earlier). Overall, according423

to logprob-score there is still bias in the models af-424

ter debiasing (most effect sizes are >> 0). GPT2425

appears to retain the least bias after debiasing.426

7.2 Over-Debiasing427

Next we turn to the over-debiasing effects after428

PLMs are debiased, using our DA-Gender data and429

DA-score. We compare DA-score against LM-score430

from StereoSet (Nadeem et al., 2020), which is de-431

signed to test general language modelling abilities432

by measuring the selection accuracy of PLMs for433

masked words in a context sentence. Using the ex- 434

ample of StereoSet context SS1 in Figure 1, a PLM 435

would be presented two options: (1) a stereotype or 436

anti-stereotype word (randomly chosen; e.g., “soft” 437

or “determined”) as the correct option; and (2) a 438

meaningless word in context (e.g., “fish”) as the in- 439

correct option. LM-score is the proportion of correct 440

predictions. 441

Table 8 shows the over-debiasing results using 442

DA-score and LM-score. Both metrics capture the 443

genuine language modeling abilities of PLMs. We 444

desire (a) high values before and after debiasing; 445

and (b) no drop in performance caused by debi- 446

asing — assuming that genuine associations will 447

be retained by the model. The last 3 columns in 448

Table 8 denote the difference of DA/LM-score be- 449

fore and after debiasing. A negative value means 450

the model is over-debiased and there is a loss of 451

genuine associations. 452

Before debiasing, it can be seen that given a 453

PLM, the larger variant generally has better DA/LM- 454

score (exception: DA-score of BART), implying that 455

the larger models are better language models. Over- 456

all, BERT appears to be the best PLM in terms of 457

capturing desirable gender associations (DA-score 458

closest to 100). 459

After debiasing, we observe that all debiasing 460

methods lead to a substantial decrease in DA-score 461

(negative values), indicating that there is an over- 462

debiasing effect (i.e. the debiased PLMs have lost 463

some desirable gender associations). LM-score, on 464

the other hand, are largely unable to detect this; 465

interestingly, it even found improvements (positive 466

values) in some instances (e.g., BART). The only 467

exception here is GPT2-medium, where LM-score 468

detect a larger over-debiasing effects compared to 469

DA-score (although both found an over-debiasing 470

effect). These results highlight the effectiveness of 471

DA-score for measuring over-debiasing, and demon- 472

strate that LM-score which tests general language 473

model ability is unable to capture this. 474

7.3 Trade-off 475

Next we investigate if there is a trade-off between 476

debiasing and over-debiasing. To this end, we se- 477

lect an appropriate hyper-parameter to vary debi- 478

asing strength for each debiasing method.16 For 479

CDS, which replaces gender words in contexts to 480

create counter-factual sentences, we manipulate the 481

16Table 11 in the Appendix lists all parameters and value
ranges.
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Figure 2: Trade-off between debiasing and over-debiasing for BERT-base (a) and BART-base (b). Debiasing
performance is measured using SEAT-v1 (left); SEAT-v2 (mid); and logprob-score (right).

gender-flipping rate (i.e. the number of sentences482

where a gender word is switched). For ER, we vary483

the λ hyper-parameter which controls the regulari-484

sation term (Equation 1). SD uses a list of paired485

gender words to compute the gender sub-space and486

we vary the number of paired words to control the487

amount of debiasing, with the idea that using a488

smaller number of paired words would produce a489

less debiased model.490

Figure 2 shows the trade-off between debias-491

ing (SEAT-v1, SEAT-v2, or logprob-score) and over-492

debiasing (1− DA-score) for BERT-base and BART-493

base. Similar patterns were observed for the other494

PLMs, and can be found in Figure 3 in the Ap-495

pendix.496

For both axes, a lower value indicates better per-497

formance, and an ideal model would be completely498

unbiased (SEAT-v1/SEAT-v2/logprob-score = 0) and499

still retain all desirable associations to gender (1−500

DA-score = 0) after debiasing. Generally, we see501

that the hyper-parameters we choose for each de-502

biasing method result in an effective trade-off, and503

that as the strength of debiasing increases, there504

is a general increase in loss of genuine associa-505

tions, indicating that there is a trade-off when we506

debias PLMs. Overall, CDS appears to achieve the507

best trade-off across metrics and models. Taken to-508

gether, our results highlight the importance of mea-509

suring both debiasing and over-debiasing effects510

when assessing model bias and debiasing methods, 511

as a fully debiased model that cannot capture gen- 512

uine associations is unlikely to be a useful model. 513

8 Discussion and Conclusions 514

In this paper, we introduce an approach to mea- 515

sure the effects of over-debiasing, i.e. the loss of 516

desirable associations, after a model is debiased. 517

We also presented a systematic comparison of de- 518

biasing methods across bias metrics and a variety 519

of PLM architectures. We focus on gender as the 520

debiasing dimension, and develop DA-Gender, a 521

dataset of over 2.6K sentence pairs for measuring 522

over-debiasing through probes for genuine associ- 523

ations. We show that three widely used debiasing 524

methods (CDS, ER and SD) have a tendency to over- 525

remove gender associations, highlighting the need 526

to develop debiasing methods that eliminate bias 527

without removing desirable associations. To the 528

best of our knowledge we are one of the first stud- 529

ies to investigate over-debiasing, and our results 530

pave way for a number of future research directions, 531

including extending the methodology to other soci- 532

etal bias dimensions (e.g., race or age), explaining 533

the discrepancies of existing bias metrics across 534

models and data conditions, and improving debias- 535

ing methods to reduce the extent of over-debiasing. 536
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A Computation of Effect Size and695

p-value696

Given two sets of target words T1 and T2 and two697

sets of attribute words A1 and A2, the normalized698

association (denoted as effect size) is699

meanx∈T1s(x,A1, A2)−meany∈T2s(y,A1, A2)

std_devw∈T1∪T2s(w,A1,A2)
700

Where s(t, A1, A2) is computed by:701

meana∈A1asso(t, a)−meanb∈A2asso(t, b)702

asso(t, a) computes associations between the tar-703

get word t and the attribute word a. For SEAT-v1 and704

SEAT-v2, t and a will be converted into the target705

sentence and attribute sentence, then the associa-706

tions is computed as the cosine distance between707

sentence embeddings. For logprob-score, the associ-708

ation is the normalized probabilities of target words709

produced by masked token prediction.710

The permutation test is used in WEAT for mea-711

suring significance of results. The null hypothesis712

is that there is no difference between T1 and T2713

in terms of their associations to A1 and A2. The714

permutation test computes the likelihood of the715

null hypothesis by computing the probability that716

a random permutation of the target words would717

generate the greater or equal difference in sample718

means. Let (T i
1, T i

2) denote the set of all possible719

partitions of target sets T1 ∪T2, then the p-value of720

permutation test is721

Probi[s(T
i
1, T

i
2, A1, A2) ≥ s(T1, T2, A1, A2)]722

Where s(T1, T2, A1, A2) is723 ∑
x∈T1

s(x,A1, A2)−
∑
y∈T2

s(y,A1, A2)724
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Female-specific words: actress, aunt, bride, businesswoman, chairwoman, congresswoman, councilwoman,
daughter, female, gal, girl, girlfriend, goddess, granddaughter, grandma, grandmother, heiress, her, heroine, hostess,
housewife, lady, lesbian, mama, matriarch, mistress, mom, mommy, mother, niece, nun, pregnant, princess, queen,
saleswoman, schoolgirl, sister, spokeswoman, stepdaughter, stepmother, wife, woman

Male-specific words: boy, boyfriend, bridegroom, brother, businessman, dad, daddy, danseur, father, gentleman,
godfather, grandfather, grandpa, grandson, his, husband, male, man, nephew, schoolboy, son, stepfather, stepson,
uncle, widower

Table 9: The list of attribute words for DA-Gender (in alphabetical order).

Female-dominated Occupations: secretary, childcare worker, billing clerk, phlebotomist, vocational nurse,
medical records technician, speech-language pathologist, paralegal, hairdresser, bookkeeper, kindergarten teacher,
medical assistant, dietitian, housekeeper, dental hygienist, teacher assistant, registered nurse, health aide, reception-
ist, dental assistant

Male-dominated Occupations: plumber, operating engineer, security system installer, mason, mining machine
operator, floor installer, heating mechanic, carpenter, steel worker, electrician, logging worker, mobile equipment
mechanic, taper, bus mechanic, service technician, conductor, repairer, roofer, firefighter, electrical installer

Table 10: The list of profession terms from Bartl et al. (2020) used in this work. Validation set terms are denoted
in italics.

Hyper-parameter Values

Swap rate [0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95]
λ [0.2, 0.3, 0.4, 0.5, 0.75, 1.0, 1.5, 2.0]
Ratio of pairs [0.01, 0.05, 0.1, 0.15, 0.2, 0.4, 0.6, 1.0]

Table 11: Varied hyper-parameters for investigating the trade-off between debiasing and over-debiasing effects.
The gender-flipping rate (swap rate), λ, and the proportions of adopted paired words (ratio of pairs) separately
controls the debiasing effect of CDS, ER and SD.

Hyper-parameter BERT-base BERT-large GPT2 GPT2-medium BART-base BART-large

Swap rate 1.0 1.0 0.9 0.9 1.0 1.0
λ 0.5 0.5 0.5 1.0 1.25 1.25
Ratio of pairs 0.05 0.05 1.0 1.0 0.07 0.07
Batch size 8 2 8 2 8 2
Learning rate 2e-5 2e-5 5e-5 5e-5 2e-5 2e-5
Epoch 8 8 8 8 8 8

Table 12: Hyper-parameters that decided by the development set. The gender-flipping rate (swap rate), λ, and the
proportions of adopted paired words (ratio of pairs) separately controls the debiasing effect of CDS, ER and SD.
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Figure 3: Trade-off between debiasing and over-debiasing for BERT-large (a); BART-large (b); GPT2 (c); and
GPT2-medium (d). Debiasing performance is measured using SEAT-v1 (left); SEAT-v2 (mid); and logprob-score
(right); .
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