
Retrieval Backward Attention without Additional Training: Enhance
Embeddings of Large Language Models via Repetition

Anonymous ACL submission

Abstract001

Language models can be viewed as functions002
that embed text into Euclidean space, where003
the quality of the embedding vectors directly004
determines model performance, training such005
neural networks involves various uncertain-006
ties. This paper focuses on improving the per-007
formance of pre-trained language models in008
zero-shot settings through a simple and easily009
implementable method. We propose a novel010
backward attention mechanism to enhance con-011
textual information encoding. Our approach012
achieves significant improvements across mul-013
tiple tasks, providing valuable insights for ad-014
vancing zero-shot learning capabilities. 1015

1 Introduction016

Text embedding learning is a key task in Natural017

Language Processing (NLP) that transforms text018

into vector representations, making them compu-019

tationally tractable. Formally, given a text x in a020

corpus space X , embedding learning aims to train021

a model f : X × θ → Rd to generate continu-022

ous vector representations v = fθ(x) that capture023

semantic information and enhance performance024

in downstream tasks such as information retrieval025

(IR), semantic similarity estimation, classification,026

and clustering (Ni et al., 2021; Muennighoff et al.,027

2022).028

Advanced large language models (LLMs) have029

recently demonstrated exceptional generalization030

and transfer capabilities across downstream tasks.031

However, Transformer-based models like GPT032

(Radford, 2018) (unidirectional) and BERT (Ken-033

ton and Toutanova, 2019) (bidirectional) are often034

specialized in different tasks due to the influence035

of pretraining tasks, with BERT excelling in Natu-036

ral Language Understanding (NLU) and GPT ex-037

celling in Natural Language Generation (NLG).038

As a result, multiple task-specific models are re-039

quired (Dong et al., 2019). Research shows that040

1Our code will be available after the review process.

decoder-only models, pre-trained with next-token 041

prediction, achieve superior zero-shot generaliza- 042

tion performance across various tasks (Wang et al., 043

2022), while its performance on NLU is still not 044

good as that of bidirectional models, some prompt 045

methods can be implemented to improve the em- 046

bedding quality (Jiang et al., 2023; Liu et al., 2024), 047

in this paper, we also focus on improving the em- 048

bedding quality of decoder-only models from the 049

perspective of the input text by repetition and back- 050

ward attention and we call it ReBA embedding 051

(Figure 1). 052

Repetition: We focus on improving the perfor- 053

mance of decoder-only models in a zero-shot set- 054

ting. Research shows that repeating input sentences 055

can provide additional contextual information, sig- 056

nificantly boosting model performance. For in- 057

stance, (Jelassi et al., 2024) found that text rep- 058

etition allows Transformer models to outperform 059

state-space models like S4 (Gu et al., 2021) and 060

Mamba (Gu and Dao, 2023). Similarly, (Arora 061

et al., 2024; Springer et al., 2025) demonstrates 062

quality improvements in language models through 063

repeated contexts. While repetition boosts decoder- 064

only models, their performance still trails bidirec- 065

tional models (Table 2, Figure 3). To narrow this 066

gap, we introduce a simple backward attention 067

mechanism that significantly improves context en- 068

coding over plain repetition and classical embed- 069

dings in zero-shot settings, offering insights for 070

future research. 071

Backward Attention: In decoder-only architec- 072

tures, forward attention is typically used, where the 073

attention matrix is a lower triangular matrix. This 074

design lacks associations with subsequent context. 075

Backward attention, on the other hand, represents 076

the relationship between a token and its subsequent 077

context, as reflected in the attention matrix. To en- 078

hance the encoding quality of the original text, we 079

propose leveraging repeated text. By concatenating 080

x with itself, represented as x + x′ using string 081

1

ReBA-!

Repetition

Backward Attention

!

Repetition

…

Classical

Figure 1: Illustration of ReBA embedding: The classical
embedding method captures only the contextual infor-
mation preceding the token. In contrast, ReBA enhances
the quality of target token embeddings by repeating the
text k − 1 times, computing a weighted sum of the tar-
get token’s original embedding and subsequent token
embeddings using backward attention weights. When
the sentence appears k times, the resulting embeddings
are referred to as ReBA-k embedding.

addition, the embeddings of x′ are used to enhance082

the embeddings of x. Since x′ appears after x, it083

is natural to consider using backward attention to084

strengthen x’s encoding quality.085

Bidirectional models like BERT (Kenton and086

Toutanova, 2019), RoBERTa (Liu, 2019), XL-087

Net (Yang, 2019), and others (Jiao et al., 2019;088

Clark, 2020) use symmetric attention matrices (Fig-089

ure 2). Encoder-decoder models such as T5 (Raffel090

et al., 2020) allow attention to both past and future091

tokens, though not strictly symmetric. However, in092

such models, adding new tokens alters all previous093

embeddings, increasing computational cost.094

In contrast, decoder-only models like GPT (Rad-095

ford, 2018; Radford et al., 2019; Brown et al.,096

2020), LLaMA (Touvron et al., 2023a,b),097

Qwen (Bai et al., 2023), and Baichuan (Baichuan,098

2023) use lower triangular attention (Figure 2),099

where each token attends only to previous ones.100

This structure avoids recomputation when append-101

ing tokens, enabling efficient enhancement of spe-102

cific token embeddings via backward attention.103

And our contributions are as follows:104

• We propose a novel algorithm that signifi-105

cantly enhances the embedding quality of pre-106

trained models, leading to improved perfor-107

mance in downstream tasks and stronger natu-108

ral language understanding capabilities.109

• The method achieves these improvements110

without requiring additional training of the111

model, new models, or extra parameters, en-112

suring simplicity and efficiency.113

w1

v1

w2

v2

w3

v3

w4

v4

BERT (Bidirectional Attention)

symmetric

w1

v1

w2

v2

w3

v3

w4

v4

GPT (Unidirectional Attention)

lower triangle

Figure 2: Illustration of Attention Relationships in
BERT (Bidirectional Attention) and GPT (Causal Atten-
tion) with Corresponding Attention Matrix Representa-
tions

• Our algorithm maintains the advantages of 114

unidirectional LLMs while capturing subse- 115

quent context information, enabling targeted 116

enhancement of the embeddings of specific 117

tokens. 118

2 Preliminaries 119

Our goal is to obtain an embedding vector 120

LLM(C) ∈ Rd for a sentence C and embedding 121

vector LLM(w|C) ∈ Rd for word w in context C. 122

This vector can be viewed as the semantic repre- 123

sentation of the sentence or word, and our aim is 124

to obtain a better semantic representation that can 125

more effectively capture the semantic information 126

of the sentence or word. These vectors can measure 127

the similarity between sentences or words, and can 128

be used to complete downstream tasks such as text 129

classification, word sense disambiguation. 130

We are particularly interested in extracting these 131

vectors using an autoregressive language model. 132

An autoregressive language model predicts the next 133

token in a sequence based on the preceding tokens. 134

This mechanism inherently limits the model to cap- 135

turing information only from earlier tokens, as re- 136

flected in the attention matrix—a lower triangular 137

matrix where each token attends only to its pre- 138

ceding tokens. To enhance the embedding quality, 139

we aim to reutilize the information in the attention 140

matrix to also capture insights from subsequent 141

tokens. 142

2

2.1 Self-Attention as Global Context143

Integrator144

The attention mechanism (Vaswani, 2017) can be145

understood mathematically as a mapping from a146

query vector qj ∈ Rd to a weighted sum of a set147

of key-value pairs (ki,vi), where ki,vi ∈ Rd,148

i indexes over the tokens in the input sequence.149

Formally, given an input sequence of embeddings150

{x1, · · · ,xn}, the attention mechanism computes151

the output embedding vj for each token as follows:152

vj =

j∑
i=1

αi,jvi, (1)153

where the attention weights αi ∈ R are derived154

from the query and key vectors using a compatibil-155

ity function, typically the scaled dot-product:156

αi,j =
exp(qj · ki/

√
d)∑n

m=1 exp(qj · km/
√
d)

. (2)157

Here, qj = Wqxj ,ki = Wkxi, and vi = Wvxi158

are the query, key, and value vectors, obtained by159

trainable linear transformations Wq,Wk,Wv ∈160

Rd×d of the input embeddings, and d is the dimen-161

sionality of the query/key space.162

In Transformer-based models, each token in the163

sequence simultaneously acts as a query, key, and164

value, resulting in contextualized embeddings for165

all tokens. This mechanism enables the model to in-166

tegrate information across the entire sequence. For167

example, given an input sequence {w1, · · · , wn},168

the output embedding vn for the last token wn is169

computed as:170

vn = Attention(qn, {k1, · · · ,kn}, {v1, · · · ,vn}),
(3)171

where qn is derived from wn and {ki,vi} are de-172

rived from all preceding tokens {w1, · · · , wn}.173

This computation illustrates how attention inte-174

grates global context. Notably, in autoregressive175

models, the attention mechanism is constrained176

such that vi only depend on w1, · · · , wi, ensuring177

that information flows unidirectionally. Such a178

framework blurs the traditional boundary between179

word and sentence embeddings. The embedding vn180

for the final token incorporates contextual informa-181

tion from the entire sequence, making it a natural182

representation for the full sentence. This marks a183

fundamental departure from traditional word em-184

bedding models like Word2Vec (Mikolov, 2013),185

which lack explicit mechanisms for modeling to-186

ken interactions, we will discuss it in the following 187

section. 188

2.2 Word Embedding and Sentence 189

Embedding 190

Traditional models like Word2Vec (Mikolov, 2013) 191

and Glove (Pennington et al., 2014) treat words in- 192

dependently, requiring extra processing (e.g., aver- 193

age pooling or Sent2Vec (Moghadasi and Zhuang, 194

2020)) to construct meaningful sentence embed- 195

dings, as individual word vectors lack contextual 196

information. 197

Unlike traditional word embedding models, 198

Transformer-based LLMs derive each token’s em- 199

bedding through interactions with other tokens. In 200

autoregressive models, given input w1, · · · , wn, 201

the output embeddings v1, · · · , vn are generated. 202

While vn represents wn, it also captures the entire 203

sentence via attention. However, due to unidirec- 204

tionality, v1, · · · , vn−1 do not incorporate informa- 205

tion from wn. Transformer-based models blur the 206

distinction between word and sentence. With at- 207

tention mechanisms, the last token embedding can 208

also effectively represent the entire sentence. 209

In this paper, we evaluate the performance of our 210

method on word and sentence embeddings. To as- 211

sess the quality of word embeddings, we examine 212

the algorithm’s performance on word sense dis- 213

ambiguation datasets. To evaluate the quality of 214

sentence embeddings, we consider the algorithm’s 215

performance on the C-MTEB. 216

2.3 Language Model Embedding 217

We first extract embeddings from the activations 218

of the final hidden layer of the language model. 219

Given a sentence C = {w1, · · · , wn}, we extract 220

the embeddings of the tokens wi in C from the 221

model as LLM(wi|C) as the word embedding. 222

In practice, we consider two main methods for 223

sentence embedding (Wang et al., 2023; Reimers, 224

2019), one approach called last token pooling is 225

to use the embedding of the last token as the sen- 226

tence embedding: LLM(w−1|C), while the other 227

called mean token pooling involves averaging the 228

embeddings of all tokens to obtain the sentence 229

embedding: 1
|C|

∑
w∈C LLM(w|C). In this paper, 230

we adopt these methods to obtain sentence embed- 231

dings. 232

3

2.4 New Embedding via Repetition and233

Backward Attention234

To enhance the natural language understanding ca-235

pabilities of autoregressive models while avoiding236

the comprehensive update of all token embeddings237

as seen in bidirectional models when new tokens238

are added, we propose a novel method called ReBA239

(Retrieval Backward Attention) embedding. This240

approach leverages the model’s inherent capabili-241

ties to more effectively capture bidirectional infor-242

mation and enhance model performance.243

3 Main Method244

The core concept of ReBA involves repeating the245

input text twice and extracting the attention ma-246

trix from the model. This attention matrix is then247

used to apply backward attention, updating the em-248

beddings of specific tokens based on the repeated249

text. Finally, the updated embeddings are com-250

bined with the original embeddings to produce the251

final embedding vectors.252

3.1 Classical Embedding Ignores253

Bidirectional Context254

As discussed in Sec 2.1, classical sentence embed-255

dings fail to effectively capture bidirectional infor-256

mation. In autoregressive language models, the257

contextualized embedding at position k encodes258

information only from tokens preceding k, without259

considering tokens that follow. As a result, the to-260

kens at the beginning of a sentence may fail to fully261

capture their intended meaning due to the lack of262

semantic information from the subsequent context.263

3.2 Repetition Captures Bidirectional Context264

Research shows that text repetition can signifi-265

cantly enhance the bidirectional information cap-266

tured by sentence embeddings in autoregressive267

models(Springer et al., 2025; Jelassi et al., 2024).268

By repeating text, the model’s embeddings become269

more contextually enriched. Instead of using a270

prompt like "Rewrite the sentence: x, rewritten271

sentence: x" in (Springer et al., 2025), we repeat272

the sentence directly to eliminate prompt effects.273

Taking "I love NLP." as an example, the repeated274

sentences are:275

• Repeated once: ‘I love NLP. I love NLP.’276

• Repeated twice: ‘I love NLP. I love NLP. I277

love NLP.’278

For the word ‘love’, we observe that the second 279

and third occurrences of ‘love’ carry more contex- 280

tual information than the first, as they capture the 281

broader context. We adopt the term from (Springer 282

et al., 2025) and refer to these enhanced embed- 283

dings as Echo embeddings. 284

3.3 ReBA Embedding 285

Inspired by the benefits of text repetition, we pro- 286

pose a new method that does not require the use 287

of prompts in (Springer et al., 2025). Instead, we 288

directly repeat the text and introduce backward 289

attention to rely more on the model itself, reduc- 290

ing the introduction of additional parameters. Our 291

method has three steps: 292

1) First Step: Construct Attention Matrix Ex- 293

traction 294

Motivation: 295

(Vig and Belinkov, 2019) found that the per- 296

formance of GPT2’s multi-head attention matri- 297

ces varies across different attention heads and hid- 298

den layers, and some of the attention heads in the 299

deeper layers contribute less to the model’s per- 300

formance(He et al., 2024). Inspired by this obser- 301

vation, we aim to integrate this information and 302

explore a new method to leverage all attention ma- 303

trices to enhance the quality of embedding vectors. 304

To enhance the model’s understanding of con- 305

textual relationships, we first extract the attention 306

matrix. Specifically, we focus on the maximum 307

attention value across all layers and heads of the 308

transformer model. For each token pair, if any atten- 309

tion head in any layer assigns significant attention, 310

we record this interaction in the attention matrix. 311

This matrix effectively captures the most promi- 312

nent token relationships identified by the model, 313

irrespective of the layer or head. 314

Taking LLaMA-2-7B as an example, which has 315

32 hidden layers with 32 attention heads each layer, 316

we denote all attention matrices as Ap,q ∈ Rn×n, 317

where p represents the p-th attention head, q repre- 318

sents the q-th hidden layer, with n being the length 319

of the input sequence. 320

Methods: 321

This method integrates attention weights across 322

multiple layers to construct a comprehensive sym- 323

metric attention matrix A . The process involves 324

the following steps: 325

1. Layer-wise Attention Integration: For each 326

layer q of the transformer model, the output pro- 327

vides a set of attention heads represented as matri- 328

ces A·,q. These matrices capture directional atten- 329

4

tion weights for tokens in the input sequence and330

are lower triangular matrix with all elements above331

the diagonal being zero.332

2. Symmetrization: To preserve the bidirectional333

attention between tokens, each attention matrix334

Ap,q is converted into a symmetric form:335

Ãp,q =
Ap,q + (Ap,q)T

2
. (4)336

3. Iterative Fusion with Maximum Update Rule:337

We initialize Anew = 0 and iteratively fuse the338

symmetric attention matrices Ãp,q from all layers339

p and heads q using:340

Anew =
Anew + Ãp,q

2
+

|Anew − Ãp,q|
2

. (5)341

This ensures Anew retains the element-wise max-342

imum across all Ãp,q, yielding a symmetric and343

robust representation of token interactions. See344

Algorithm 1 for details.345

Algorithm 1 Attention Matrix Extraction
Input: Text with length n, pretrained language
model LLM and its number of hidden layers I ,
number of attention heads J .
Output: New Attention Matrix Anew.
1. Extract all attention matrices Ap,q ∈ Rn×n{p =
1, · · · , I; q = 1, · · · , J} from the pretrained
model, initialize Anew = 0.
2. for p = 1, 2, · · · , I:

for q = 1, 2, · · · , J :
Ãp,q = Ap,q+(Ap,q)T

2

Anew = Anew+Ãp,q

2 + |Anew−Ãp,q |
2

3. Return Anew.

2) Second Step: Backward Attention and Text346

Repetition347

To compute text embeddings effectively, we inte-
grate text repetition and a backward attention mech-
anism as outlined in Algorithm 2 (for word embed-
ding) and Algorithm 3 (for sentence embedding).
Given a text sequence C = {w1, w2, . . . , wn}, we
first apply text repetition by duplicating the se-
quence to form a new input:

Cnew = {w1, w2, . . . , wn, wn+1, . . . , w2n}

where wi with i > n represents the repeated token.348

Next, we compute the attention matrix Anew ∈349

R2n×2n with Algorithm 1 to capture the contextual350

dependencies across both the original and repeated351

sequences.352

The backward attention mechanism is applied 353

to strengthen semantic propagation by iteratively 354

tracing the connections from the repeated tokens 355

{wn+1, wn+2, . . . , w2n} back to the original se- 356

quence {w1, w2, . . . , wn}. For a target token wi ∈ 357

C, the embedding ei is computed as: 358

ei =
2n∑
k=i

α′
i,kvk, (backward attention) (6) 359

where α′
i,k = Anew

i,k is the attention weight from 360

token wk to wi, and vk = LLM(wk, C
new) repre- 361

sents the contextualized embedding of the token 362

wk. 363

This approach propagates semantic relation- 364

ships—especially from later tokens—into the final 365

representation. 366

3) Final Step: Embedding Vector Construc- 367

tion 368

Under different pooling strategies, the resulting 369

sentence vectors vary. For the case of last token 370

pooling, we directly use en as the sentence encod- 371

ing. In contrast, for mean token pooling, we take 372

the average of all ei, defined as 1
n

∑n
i=1 ei, as the 373

sentence embedding. Notably, the order of summa- 374

tion can be exchanged for efficient computation: 375

1

n

n∑
i=1

ei =
1

n

n∑
i=1

2n∑
k=i

α′
i,kvk (7) 376

=
1

n

2n∑
k=1

min (n,k)∑
i=1

α′
i,kvk 377

=
1

n

2n∑
k=1

α′
kvk, 378

where α′
k =

∑min (n,k)
i=1 α′

i,k is the sum of the k- 379

th column of Anew. By exchanging the order of 380

summation, we can first sum over each column of 381

Anew and then perform the remaining calculations. 382

This reduces the original computational complexity 383

from O(n2) to O(n). 384

For word embeddings, we compute the embed- 385

ding ei of wi directly using Eq. (6), without re- 386

quiring additional operations. The detailed compu- 387

tation process of all methods we use is shown in 388

Table 1. 389

3.4 Time Efficiency of ReBA 390

Assuming the model has I hidden layers, each with 391

J attention heads, and an input sequence of length 392

n, the traditional method has a time complexity of 393

5

Method Input Tokens Embedding for Evaluation

Word Embedding for
wi

Sentence Embedding
(Mean Pooling)

Sentence Embedding
(Last Pooling)

ReBA-k (Ours) {w1, · · · , wkn} ei =
kn∑
j=i

α′
i,jvj

1
n

n∑
j=1

ej en

Echo-k {w1, · · · , wkn} v(k−1)n+i
1

(k−1)n

kn∑
j=n

vj vkn

Classical {w1, · · · , wn} vi
1
n

n∑
j=1

vj vn

Table 1: Introduction of our experimental settings. (1) In both ReBA and Echo method we need to repeat the original
sentence, We use w1, · · · , wn to denote the original input tokens, and the repeated tokens are wk = wk%n when
k > n, ei is the new embeddings. (2) vi is the original output of wi which is denoted as vi := LLM(wi|C) where
C is the context , and α′

i,j is the i-th value of j-th column of the attention weight extracted by Algorithm 1. (3)
ReBA-1 is equivalent to classical sentence embedding evaluation with last pooling strategy so we only test ReBA-1
for word embedding evaluation.

O(IJn2). This arises from extracting I × J atten-394

tion matrices, each of size n× n, and performing395

operations like symmetry computation and maxi-396

mum attention update, both of which take O(n2)397

for a single matrix.398

Algorithm 2 Word Embedding with ReBA Mecha-
nism
Input: Text sequence C = {w1, w2, . . . , wn},
pretrained language model LLM , target word wi.
Output: Word embedding ei.
1. Duplicate the input: Cnew =
{w1, w2, . . . , w2n} as new input.
2. Compute the attention matrix Anew ∈ R2n×2n

using Algorithm 1.
3. Extract the embedding ei of wi {i ≤ n} based
on Anew: ei =

∑2n
k=i α

′
i,kvk where α′

i,k = Anew
i,k

is the i-th value of k-th column of Anew and
vk = LLM(wk|C).
5. Return ei.

Algorithm 3 Sentence Embedding with ReBA
Mechanism
Input: Text sequence C = {w1, w2, . . . , wn}, pre-
trained language model LLM .
Output: Sentence embedding E.
1. Extract word embeddings ei for each token wi

in C using Algorithm 2.
2. If last token pool: E = en.
Else if mean token pool: E = 1

n

∑n
i=1 ei.

3. Return E.

4 Experiments 399

4.1 Datasets 400

We will test our method on several datasets, in- 401

cluding text classification, text clustering, text pair 402

classification, text reranking, text retrieval, sen- 403

tence similarity, etc. In particular, we will also 404

test its performance on Chinese polysemous word 405

understanding task. 406

4.1.1 Chinese Massive Text Embedding 407

Benchmark (For Sentence Embedding) 408

To evaluate sentence embedding, we use the Chi- 409

nese Massive Text Embedding Benchmark (C- 410

MTEB), it is a collection of datasets from six cate- 411

gories: classification, clustering, pair classification, 412

reranking, retrieval, sentence similarity and con- 413

tains 31 datasets in total. Due to the scale of this 414

dataset, we will only test two unidirectional lan- 415

guage models: the fine-tuned versions of GPT-2 416

and LLaMA-2-7B’s Chinese pre-trained models. 417

4.1.2 Chinese Polysemous Word 418

Disambiguation Dataset (For Word 419

Embedding) 420

These datasets evaluate a model’s ability to under- 421

stand polysemous words and assess word embed- 422

ding performance. The first dataset, the Sentence 423

Level Polysemous Words Classification (SLPWC) 424

subset of the C-SEM2 (Chinese Semantic Evalua- 425

tion Dataset) benchmark, contains 300 questions 426

where the task is to identify which option repre- 427

sents a different meaning of a polysemous word. 428

2Accessible at: https://github.com/FlagOpen/
FlagEval/tree/master/csem

6

https://github.com/FlagOpen/FlagEval/tree/master/csem
https://github.com/FlagOpen/FlagEval/tree/master/csem
https://github.com/FlagOpen/FlagEval/tree/master/csem

Strategy Model Pool Clas. P. Cls. Clus. Retr. STS Rera. Total Average
Main results:
ReBA-2 (Ours) GPT-2 Last 0.5414 0.5422 0.3243 0.2173 0.2118 0.2979 0.3634
Echo-2 GPT-2 Last 0.5010 0.5456 0.2255 0.1757 0.1756 0.2460 0.2907
Classical GPT-2 Last 0.4990 0.5413 0.2305 0.1474 0.1446 0.2101 0.2590
ReBA-2 (Ours) LLaMA-2 Last 0.6889 0.5225 0.3918 0.6640 0.1949 0.3653 0.4801
Echo-2 LLaMA-2 Last 0.6759 0.5503 0.4136 0.5629 0.2636 0.3784 0.4733
Classical LLaMA-2 Last 0.6574 0.5228 0.3354 0.4667 0.1506 0.2816 0.3951
Ablations: Different Pool Strategy
ReBA-2 (Ours) GPT-2 Mean 0.5538 0.5554 0.3275 0.4484 0.2567 0.3000 0.3977
Echo-2 GPT-2 Mean 0.5480 0.5588 0.3275 0.3691 0.2360 0.2964 0.3734
Classical GPT-2 Mean 0.5465 0.5452 0.3166 0.2959 0.2515 0.2959 0.3499
Ablations: More Repetitions
Echo-3 GPT-2 Last 0.4973 0.5473 0.1969 0.1845 0.1845 0.2488 0.2924
ReBA-3 (Ours) GPT-2 Last 0.5422 0.5446 0.3246 0.2119 0.2284 0.3010 0.3699
Comparison: Bidirectional model
Classical BERT Mean 0.6734 0.5435 0.4225 0.5537 0.2594 0.3445 0.4658
Classical BERT CLS 0.6628 0.5604 0.3598 0.3003 0.2070 0.2546 0.3679

Table 2: Zero-shot average scores on C-MTEB to evaluate the performance of Sentence Embeddings. The top two
rows are the main results, testing the scores of ReBA, simple repetition and traditional encoding on GPT-2-Chinese
and LLaMA-2-Chinese-7B. The third row is an ablation experiment, testing different pooling strategies. The
fourth row is an ablation experiment with more repetitions, testing the effect of repeating twice. The fifth row is
a comparison experiment with bidirectional model using mean pooling or the first token ’CLS’, BERT refers to
bert-base-chinese model with 102M params here.

We extract embeddings of the target word in differ-429

ent contexts using an LLM, and the correct answer430

is determined by summing the embedding distances431

(Cosine or Euclidean). The second dataset, Word432

Sense Disambiguation (WSD, (Yan et al., 2023)), is433

a Chinese semantic dataset used for word sense dis-434

ambiguation tasks. We evaluate performance based435

on accuracy and adapt it into a 4-choice format to436

suit our algorithm.437

4.2 Model438

In our experiments, we use pretrained autoregres-439

sive models based on the Transformers architec-440

ture, including fine-tuned versions of GPT-2 and441

LLaMA-2’s Chinese pretrained models GPT-2-442

Chinese, LLaMA-2-Chinese-7B, as well as mod-443

els like Qwen-7B, BaiChuan-7B, and Falcon-7B,444

which are suitable for evaluation on Chinese445

dataset. All model details are presented in Ap-446

pendix A.2.447

4.3 Results448

The overall results (see Table 2 and Figure 3) show449

that the ReBA encoding method significantly out-450

performs traditional encoding methods for both451

sentence and word embeddings. In particular, our452

method demonstrates a significant improvement in453

accuracy on semantic understanding tasks. This in-454

dicates that our algorithm effectively enhances lan-455

guage models’ understanding of natural language 456

in zero-shot setting. 457

4.3.1 Sentence Embedding Evaluation 458

We primarily evaluate GPT-2-Chinese (we call it 459

GPT-2 for simplicity) and LLaMA-2-Chinese-7B 460

(LLaMA-2, for simplicity) on C-MTEB, and com- 461

pare the performance of our method with tradi- 462

tional encoding approaches under different pool- 463

ing strategies. Across nearly all tasks, our method 464

demonstrate significant improvements over tradi- 465

tional methods. Results are concluded as follows: 466

(1) ReBA consistently enhances unidirectional 467

language models. ReBA achieves greater improve- 468

ments on GPT-2 compared to simple repetition. 469

For LLaMA-2, while our method outperforms tra- 470

ditional encoding, the gains on certain tasks (e.g., 471

STS) are less pronounced compared to simple rep- 472

etition; 473

(2) Increasing the repetition count does not yield 474

additional benefits. We compare the effects of re- 475

peating once and twice (ReBA-2 and ReBA-3), 476

finding that while repeating twice achieves better 477

results, the improvement is marginal. This conclu- 478

sion holds for both ReBA and simple repetition; 479

(3) Our method remains effective across different 480

pooling strategies. With last-pooling, the algorithm 481

achieves substantial improvements, while the gains 482

with mean-pooling are comparatively smaller. 483

7

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Repetitions

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Ac
cu

ra
cy

Impact of Repetitions on SLPWC

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Repetitions

0.30

0.35

0.40

0.45

0.50

0.55

0.60

Ac
cu

ra
cy

Impact of Repetitions on WSD
ReBA (baichuan)
Echo (baichuan)
Baseline (baichuan)
ReBA (qwen)
Echo (qwen)
Baseline (qwen)
ReBA (falcon)
Echo (falcon)
Baseline (falcon)
ReBA (llama2)
Echo (llama2)
Baseline (llama2)
Baseline (bert)

Figure 3: Performance on SLPWC and WSD tasks using Euclidean distances to evaluate word embeddings. The
results show that ReBA encoding significantly enhances model performance on polysemous word understanding
tasks. While performance fluctuates with the number of repetitions, increasing the repetition count does not neces-
sarily lead to significant improvements. Based on this experiment, we observe that simple sentence repetition is not
effective for improving word-level embeddings and only contributes to sentence-level understanding. Furthermore,
the backward attention mechanism remains crucial for achieving further performance enhancements.

4.3.2 Word Embedding Evaluation484

We evaluate the performance of LLaMA-2-485

Chinese-7B, Qwen-7B, BaiChuan-7B, and486

Chinese-Falcon-7B and Bert-base-chinese (102M)487

on the Chinese polysemous word understanding488

task using the Chinese SEMantic evaluation dataset489

(C-SEM) and the Word Sense Disambiguation490

dataset (WSD). Results are presented in Figure 3:491

(1) ReBA encoding performs exceptionally well492

as a word embedding method. ReBA significantly493

surpassing classical embeddings;494

(2) Backward attention is the essential operation.495

We test Echo embeddings as word embeddings by496

using the embedding of the target word’s last oc-497

currence. Surprisingly, repetition alone degrade498

performance, but adding backward attention signif-499

icantly improve it. ReBA embeddings outperform500

both Echo and classical embeddings;501

(3) Increasing the repetition count does not yield502

additional benefits. Also in the word embedding503

task, we find that repeating twice does not bring504

more benefits than repeating once, this conclusion505

is consistent with the sentence embedding task.506

5 Conclusion and Discussion507

We propose a context-enhanced encoding method508

using backward attention and repetition, achieving509

notable improvements on LLMs across tasks. On510

sentence embedding evaluation datasets, we ob-511

serve that the backward attention mechanism was512

not a decisive factor—simply repeating sentences513

was sufficient to improve sentence vector quality. 514

This effect was particularly pronounced in larger 515

models like LLaMA-2, where the gains from back- 516

ward attention are minimal. 517

However, on word embedding evaluation 518

datasets, the backward attention mechanism plays 519

a crucial role. In these cases, simply repeating sen- 520

tences leads to performance degradation, whereas 521

incorporating backward attention results in substan- 522

tial improvements. Consequently, ReBA is a more 523

general method for improving language model en- 524

coding quality. 525

Now we discuss a possible improvement mea- 526

sure, repeating the entire text doubles the sequence 527

length, introducing an additional computational 528

overhead of O(L2). We propose a potential alter- 529

native for future study: First encode the original 530

sequence S of length L using an LLM to obtain 531

the initial embeddings. Next, we divide S into 532

subsequences S0, S1, . . . , Sn, each of length L0. 533

For each subsequence Si, we repeat it to form 2Si 534

and then extract the attention weights between the 535

original and repeated embeddings of Si, we apply 536

backward attention to enhance the initial embed- 537

dings of Si, then we can extract the embeddings 538

of word appears in Si for word embedding or use 539

mean pooling to get the whole sentence embed- 540

ding. This approach reduces the additional compu- 541

tational overhead caused by repetition from O(L2) 542

to O(L · L0). When L0 is small enough, the addi- 543

tional cost becomes negligible. 544

8

6 Limitations545

While our method is simple and effective, it re-546

quires traversing all attention layers, which can be547

time-consuming, this cost is justified by the richer548

information it extracts. Our experiments are cur-549

rently limited to smaller models (e.g., 7B), and550

future work will explore scalability to larger mod-551

els (e.g., 70B) and optimize attention extraction to552

reduce overhead.553

References554

Simran Arora, Aman Timalsina, Aaryan Singhal, Ben-555
jamin Spector, Sabri Eyuboglu, Xinyi Zhao, Ashish556
Rao, Atri Rudra, and Christopher Ré. 2024. Just read557
twice: closing the recall gap for recurrent language558
models. arXiv preprint arXiv:2407.05483.559

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,560
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei561
Huang, and 1 others. 2023. Qwen technical report.562
arXiv preprint arXiv:2309.16609.563

Baichuan. 2023. Baichuan-7b: A large-scale 7b pre-564
training language model developed by baichuan-inc.565

Tom Brown, Benjamin Mann, Nick Ryder, Melanie566
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind567
Neelakantan, Pranav Shyam, Girish Sastry, Amanda568
Askell, and 1 others. 2020. Language models are569
few-shot learners. Advances in neural information570
processing systems, 33:1877–1901.571

K Clark. 2020. Electra: Pre-training text encoders as572
discriminators rather than generators. arXiv preprint573
arXiv:2003.10555.574

Li Dong, Nan Yang, Wenhui Wang, Furu Wei, Xi-575
aodong Liu, Yu Wang, Jianfeng Gao, Ming Zhou,576
and Hsiao-Wuen Hon. 2019. Unified language model577
pre-training for natural language understanding and578
generation. Advances in neural information process-579
ing systems, 32.580

Albert Gu and Tri Dao. 2023. Mamba: Linear-time581
sequence modeling with selective state spaces. arXiv582
preprint arXiv:2312.00752.583

Albert Gu, Karan Goel, and Christopher Ré. 2021. Effi-584
ciently modeling long sequences with structured state585
spaces. arXiv preprint arXiv:2111.00396.586

Shwai He, Guoheng Sun, Zheyu Shen, and Ang Li.587
2024. What matters in transformers? not all attention588
is needed. arXiv preprint arXiv:2406.15786.589

Samy Jelassi, David Brandfonbrener, Sham M Kakade,590
and 1 others. 2024. Repeat after me: Transform-591
ers are better than state space models at copying.592
In Forty-first International Conference on Machine593
Learning.594

Ting Jiang, Shaohan Huang, Zhongzhi Luan, Deqing 595
Wang, and Fuzhen Zhuang. 2023. Scaling sentence 596
embeddings with large language models. arXiv 597
preprint arXiv:2307.16645. 598

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao 599
Chen, Linlin Li, Fang Wang, and Qun Liu. 2019. 600
Tinybert: Distilling bert for natural language under- 601
standing. arXiv preprint arXiv:1909.10351. 602

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina 603
Toutanova. 2019. Bert: Pre-training of deep bidirec- 604
tional transformers for language understanding. In 605
Proceedings of naacL-HLT, volume 1, page 2. Min- 606
neapolis, Minnesota. 607

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding, 608
Yujie Qian, Zhilin Yang, and Jie Tang. 2024. Gpt 609
understands, too. AI Open, 5:208–215. 610

Yinhan Liu. 2019. Roberta: A robustly opti- 611
mized bert pretraining approach. arXiv preprint 612
arXiv:1907.11692, 364. 613

Tomas Mikolov. 2013. Efficient estimation of word 614
representations in vector space. arXiv preprint 615
arXiv:1301.3781, 3781. 616

Mahdi Naser Moghadasi and Yu Zhuang. 2020. 617
Sent2vec: A new sentence embedding representation 618
with sentimental semantic. In 2020 IEEE Interna- 619
tional Conference on Big Data (Big Data), pages 620
4672–4680. IEEE. 621

Niklas Muennighoff, Nouamane Tazi, Loïc Magne, and 622
Nils Reimers. 2022. Mteb: Massive text embedding 623
benchmark. arXiv preprint arXiv:2210.07316. 624

Jianmo Ni, Chen Qu, Jing Lu, Zhuyun Dai, Gus- 625
tavo Hernández Ábrego, Ji Ma, Vincent Y Zhao, 626
Yi Luan, Keith B Hall, Ming-Wei Chang, and 1 oth- 627
ers. 2021. Large dual encoders are generalizable 628
retrievers. arXiv preprint arXiv:2112.07899. 629

Jeffrey Pennington, Richard Socher, and Christopher D 630
Manning. 2014. Glove: Global vectors for word rep- 631
resentation. In Proceedings of the 2014 conference 632
on empirical methods in natural language processing 633
(EMNLP), pages 1532–1543. 634

Alec Radford. 2018. Improving language understanding 635
by generative pre-training. 636

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, 637
Dario Amodei, Ilya Sutskever, and 1 others. 2019. 638
Language models are unsupervised multitask learn- 639
ers. OpenAI blog, 1(8):9. 640

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine 641
Lee, Sharan Narang, Michael Matena, Yanqi Zhou, 642
Wei Li, and Peter J Liu. 2020. Exploring the lim- 643
its of transfer learning with a unified text-to-text 644
transformer. Journal of machine learning research, 645
21(140):1–67. 646

9

N Reimers. 2019. Sentence-bert: Sentence embed-647
dings using siamese bert-networks. arXiv preprint648
arXiv:1908.10084.649

Jacob Mitchell Springer, Suhas Kotha, Daniel Fried,650
Graham Neubig, and Aditi Raghunathan. 2025. Rep-651
etition improves language model embeddings. In652
The Thirteenth International Conference on Learn-653
ing Representations.654

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier655
Martinet, Marie-Anne Lachaux, Timothée Lacroix,656
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal657
Azhar, and 1 others. 2023a. Llama: Open and ef-658
ficient foundation language models. arXiv preprint659
arXiv:2302.13971.660

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-661
bert, Amjad Almahairi, Yasmine Babaei, Nikolay662
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti663
Bhosale, and 1 others. 2023b. Llama 2: Open foun-664
dation and fine-tuned chat models. arXiv preprint665
arXiv:2307.09288.666

A Vaswani. 2017. Attention is all you need. Advances667
in Neural Information Processing Systems.668

Jesse Vig and Yonatan Belinkov. 2019. Analyzing669
the structure of attention in a transformer language670
model. arXiv preprint arXiv:1906.04284.671

Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang,672
Rangan Majumder, and Furu Wei. 2023. Improving673
text embƒeddings with large language models. arXiv674
preprint arXiv:2401.00368.675

Thomas Wang, Adam Roberts, Daniel Hesslow, Teven676
Le Scao, Hyung Won Chung, Iz Beltagy, Julien Lau-677
nay, and Colin Raffel. 2022. What language model678
architecture and pretraining objective works best for679
zero-shot generalization? In International Con-680
ference on Machine Learning, pages 22964–22984.681
PMLR.682

Fukang Yan, Yue Zhang, and Zhenghua Li. 2023. Con-683
struction of a modern chinese word sense dataset684
based on online dictionaries. In Proceedings of685
the 22nd Chinese National Conference on Computa-686
tional Linguistics, pages 43–53, Harbin, China. Chi-687
nese Information Processing Society of China.688

Zhilin Yang. 2019. Xlnet: Generalized autoregres-689
sive pretraining for language understanding. arXiv690
preprint arXiv:1906.08237.691

A Appendix692

A.1 Datasets693

A.1.1 Sentence Embedding Evaluation694

To evaluate sentence embeddings, we use the Chi-695

nese Massive Text Embedding Benchmark (C-696

MTEB), which is a collection of datasets across697

six categories: classification, clustering, pair classi- 698

fication, reranking, retrieval, and sentence similar- 699

ity. In total, there are 31 datasets. The dataset 700

is available at https://huggingface.co/datasets/C- 701

MTEB, and the leaderboard can be found 702

at https://huggingface.co/spaces/mteb/leaderboard. 703

Data preprocessing: A brief overview of the C- 704

MTEB datasets is provided below: 705

0 20 40 60 80 100 120 140
Text Length (Number of Characters)

0

5000

10000

15000

20000

Nu
m

be
r o

f T
ex

ts

Count > 1000: 0
Count < 1000: 73360

TNews Text Length Distribution

0 200 400 600 800 1000
Text Length (Number of Characters)

0

500

1000

1500

Nu
m

be
r o

f T
ex

ts

Count > 1000: 90
Count < 1000: 17242

IFlyTek Text Length Distribution

0 200 400 600 800
Text Length (Number of Characters)

0

20000

40000

60000

Nu
m

be
r o

f T
ex

ts

Count > 1000: 20
Count < 1000: 125980

MultilingualSentiment Text Length Distribution

0 200 400 600 800
Text Length (Number of Characters)

0

500

1000

1500

Nu
m

be
r o

f T
ex

ts

Count > 1000: 0
Count < 1000: 4262

JDReview Text Length Distribution

0 200 400 600 800
Text Length (Number of Characters)

0

1000

2000

3000

4000

Nu
m

be
r o

f T
ex

ts

Count > 1000: 4
Count < 1000: 8996

OnlineShopping Text Length Distribution

0 100 200 300 400
Text Length (Number of Characters)

0

1000

2000

3000

4000

5000

Nu
m

be
r o

f T
ex

ts

Count > 1000: 0
Count < 1000: 9000

Waimai Text Length Distribution

0 10 20 30 40 50
Text Length (Number of Characters)

0

2500

5000

7500

10000

12500

Nu
m

be
r o

f T
ex

ts

Count > 1000: 0
Count < 1000: 100000

CLSClusteringS2S Text Length Distribution

0 200 400 600 800 1000
Text Length (Number of Characters)

0

5000

10000

15000

Nu
m

be
r o

f T
ex

ts

Count > 1000: 23
Count < 1000: 99977

CLSClusteringP2P Text Length Distribution

5 10 15 20 25 30 35
Text Length (Number of Characters)

0

5000

10000

15000

Nu
m

be
r o

f T
ex

ts

Count > 1000: 0
Count < 1000: 100000

ThuNewsClusteringS2S Text Length Distribution

0 200 400 600 800 1000
Text Length (Number of Characters)

0

5000

10000

15000

20000
Nu

m
be

r o
f T

ex
ts

Count > 1000: 24
Count < 1000: 99976

ThuNewsClusteringP2P Text Length Distribution

10 20 30 40 50
Text Length (Number of Characters)

0

50

100

150

Nu
m

be
r o

f T
ex

ts

Count > 1000: 0
Count < 1000: 1847

Ocnli Text Length Distribution

0 20 40 60 80 100 120 140
Text Length (Number of Characters)

0

200

400

600

800

Nu
m

be
r o

f T
ex

ts

Count > 1000: 0
Count < 1000: 8315

Cmnli Text Length Distribution

0 200 400 600 800 1000
Text Length (Number of Characters)

0

2000

4000

6000

8000

Nu
m

be
r o

f T
ex

ts

Count > 1000: 20838
Count < 1000: 85269

T2Reranking Text Length Distribution

0 200 400 600 800 1000
Text Length (Number of Characters)

0

10000

20000

30000

Nu
m

be
r o

f T
ex

ts

Count > 1000: 0
Count < 1000: 100102

MMarcoReranking Text Length Distribution

0 50 100 150 200 250
Text Length (Number of Characters)

0

2000

4000

6000

8000

Nu
m

be
r o

f T
ex

ts

Count > 1000: 0
Count < 1000: 101000

CMedQAv1 Text Length Distribution

0 50 100 150 200 250
Text Length (Number of Characters)

0

2000

4000

6000

8000

Nu
m

be
r o

f T
ex

ts

Count > 1000: 0
Count < 1000: 101000

CMedQAv2 Text Length Distribution

0 200 400 600 800 1000
Text Length (Number of Characters)

0

2000

4000

6000

Nu
m

be
r o

f T
ex

ts
Count > 1000: 27572
Count < 1000: 91001

T2Retrieval Text Length Distribution

0 200 400 600 800
Text Length (Number of Characters)

0

10000

20000

30000

40000

Nu
m

be
r o

f T
ex

ts

Count > 1000: 2
Count < 1000: 106811

MMarcoRetrieval Text Length Distribution

0 200 400 600 800 1000
Text Length (Number of Characters)

0

5000

10000

15000

20000

25000

Nu
m

be
r o

f T
ex

ts

Count > 1000: 3018
Count < 1000: 96974

DuRetrieval Text Length Distribution

0 200 400 600 800 1000
Text Length (Number of Characters)

0

10000

20000

30000

Nu
m

be
r o

f T
ex

ts

Count > 1000: 3228
Count < 1000: 96764

CovidRetrieval Text Length Distribution

0 200 400 600 800 1000
Text Length (Number of Characters)

0

5000

10000

15000

20000

25000

Nu
m

be
r o

f T
ex

ts

Count > 1000: 2690
Count < 1000: 97303

CmedqaRetrieval Text Length Distribution

0 20 40 60 80 100 120
Text Length (Number of Characters)

0

10000

20000

30000

40000

50000

Nu
m

be
r o

f T
ex

ts

Count > 1000: 0
Count < 1000: 100902

EcomRetrieval Text Length Distribution

0 100 200 300 400 500
Text Length (Number of Characters)

0

2500

5000

7500

10000

Nu
m

be
r o

f T
ex

ts

Count > 1000: 0
Count < 1000: 100999

MedicalRetrieval Text Length Distribution

0 200 400 600 800 1000
Text Length (Number of Characters)

0

20000

40000

60000

80000

Nu
m

be
r o

f T
ex

ts

Count > 1000: 23
Count < 1000: 100907

VideoRetrieval Text Length Distribution

20 40 60 80 100
Text Length (Number of Characters)

0

10000

20000

30000

Nu
m

be
r o

f T
ex

ts

Count > 1000: 0
Count < 1000: 102477

ATEC Text Length Distribution

0 20 40 60 80 100 120
Text Length (Number of Characters)

0

10000

20000

30000

40000

Nu
m

be
r o

f T
ex

ts

Count > 1000: 0
Count < 1000: 120000

BQ Text Length Distribution

0 10 20 30 40 50
Text Length (Number of Characters)

0

20000

40000

60000

Nu
m

be
r o

f T
ex

ts

Count > 1000: 0
Count < 1000: 260068

LCQMC Text Length Distribution

0 20 40 60 80 100 120 140
Text Length (Number of Characters)

0

2000

4000

6000

Nu
m

be
r o

f T
ex

ts

Count > 1000: 0
Count < 1000: 53401

PAWSX Text Length Distribution

0 20 40 60 80 100
Text Length (Number of Characters)

0

500

1000

1500

Nu
m

be
r o

f T
ex

ts

Count > 1000: 0
Count < 1000: 8050

STSB Text Length Distribution

10 20 30 40 50 60 70 80
Text Length (Number of Characters)

0

2500

5000

7500

10000

Nu
m

be
r o

f T
ex

ts

Count > 1000: 0
Count < 1000: 42511

AFQMC Text Length Distribution

0 25 50 75 100 125 150 175 200
Text Length (Number of Characters)

0

500

1000

1500

2000

Nu
m

be
r o

f T
ex

ts

Count > 1000: 0
Count < 1000: 5000

QBQTC Text Length Distribution

Figure 4: Information about C-MTEB, with most text
lengths within 1000 tokens.

In our experiments, since GPT models have an 706

input sequence limit of 512 tokens, we applied 707

text truncation accordingly. By analyzing the text 708

length distribution in the C-MTEB dataset, we 709

found that most texts are under 512 tokens (Figure 710

4), and a substantial portion remains below 1024 711

tokens even when repeated three times. Therefore, 712

for our experiments with LLaMA-2, in order to 713

avoid potential memory overflow issues caused by 714

10

a small number of long texts, we truncated the text715

to a maximum length of 1024 tokens.716

The detailed results can be found in Table 2.717

Additionally, Table 3 presents the results for GPT-2718

on C-MTEB using the last pooling strategies.719

A.1.2 Word Embedding Evaluation720

To evaluate word embeddings, we use the Chinese721

SEMantic evaluation dataset (C-SEM), a bench-722

mark dataset for semantic evaluation. We use723

the Sentence Level Polysemous Words Classifica-724

tion (SLPWC) subset of C-SEM as our evaluation725

dataset. This subset is designed to test a model’s726

ability to understand polysemy (i.e., words with727

multiple meanings). The evaluation involves pre-728

senting a word in different contexts and expecting729

the model to identify semantic differences.730

1. SLPWC:731

The SLPWC dataset contains 300 polysemous732

words, each of which appears in four sentences.733

In three of the sentences, the polysemous word734

has the same meaning, while in the remaining sen-735

tence, the word has a different meaning. The task736

is to identify the sentence with the different mean-737

ing, the data presents a question format: ‘Which738

of the following sentences uses ‘word’ differently739

from the others? A. sentence1; B. sentence2; C.740

sentence3; D. sentence4.’ An example from the741

dataset is presented in section A.1.2.742

2. WSD:743

The Word Sense Disambiguation (WSD) dataset744

contains 1,023 polysemous words, each associated745

with multiple meanings, and each meaning linked746

to several example sentences. The dataset is struc-747

tured as: {word: {sense1: [sentence1, sentence2,748

sentence3]; sense2: [sentence4]}}. To ensure con-749

sistent evaluation, we converted the WSD dataset750

into the SLPWC format. Specifically, three sen-751

tences are randomly selected from one meaning and752

one from another. The transformed data presents753

a question format: ‘Which of the following sen-754

tences uses ‘word’ differently from the others?755

A. sentence1; B. sentence2; C. sentence3; D. sen-756

tence4.’ Below is an example of question in these757

two dataset:758

Question：以下哪句话中“中学”的意思(或用759

法)与其他句子不同。760

A. 中学教育在塑造青少年的品德、知识和761

技能方面起着重要的作用。762

B. 曾纪泽、张自牧、郑观应、陈炽、薛福763

成等大抵讲“中学为体，西学为用”的人，无不764

持“西学中源”说。765

C. 中学是为了培养青少年的综合素质而设 766

立的教育机构。 767

D. 我们的学校是一所提供中学教育的优秀 768

学校，致力于为学生提供高质量的教育和培 769

养。 770

The question asks which of the following sen- 771

tences is the meaning (or usage) of "中学" different 772

from the other sentences, the correct answer ’B’ 773

(means Chinese culture, "中学" in A,C,D means 774

’middle school’) for this problem will also show in 775

the dataset as label. 776

A.1.3 Attention Matrix Processing 777

We also conducted comparative experiments with 778

symmetric attention matrices and last-layer-only 779

attention. The results are shown in Table 2. Both 780

methods underperformed compared to our ap- 781

proach. 782

A.2 Model Detail 783

Here we provide some details of the models we use 784

in our experiments: BERT-base-chinese3, GPT2- 785

base-chinese4 ,Chinese-llama-2-7b5 , Qwen-7B6, 786

Chinese-Falcon-7b7 and BaiChuan-7B8 as our 787

models. 788

The BERT-base-chinese model, developed by 789

Google, is a pre-trained language model tailored for 790

Chinese natural language processing tasks. Built 791

on the BERT architecture, it comprises 12 layers, 792

768 hidden units, and 12 attention heads, total- 793

ing approximately 110 million parameters. Pre- 794

trained on large Chinese corpora, including Chi- 795

nese Wikipedia, using Masked Language Modeling 796

(MLM) and Next Sentence Prediction (NSP) ob- 797

jectives, it effectively captures word and sentence- 798

level semantics. This model serves as a robust base- 799

line for tasks such as text classification, named en- 800

tity recognition, and question answering, offering 801

strong performance across diverse Chinese NLP 802

applications. 803

The GPT series is a family of pretrained mod- 804

els based on the Transformer architecture, with 805

3BERT-base-chinese:https://huggingface.co/
google-bert/bert-base-chinese

4GPT2-base-chinese:https://huggingface.co/
ckiplab/gpt2-base-chinese

5Chinese-llama-2-7b:https://huggingface.co/
LinkSoul/Chinese-Llama-2-7b

6Qwen-7B:https://huggingface.co/Qwen/Qwen-7B
7Falcon-7B: https://huggingface.co/Linly-AI/

Chinese-Falcon-7B
8BaiChuan-7B:https://huggingface.co/

baichuan-inc/Baichuan-7B

11

https://huggingface.co/google-bert/bert-base-chinese
https://huggingface.co/ckiplab/gpt2-base-chinese
https://huggingface.co/ckiplab/gpt2-base-chinese
https://huggingface.co/ckiplab/gpt2-base-chinese
https://huggingface.co/LinkSoul/Chinese-Llama-2-7b
https://huggingface.co/Qwen/Qwen-7B
https://huggingface.co/Linly-AI/Chinese-Falcon-7B
https://huggingface.co/baichuan-inc/Baichuan-7B
https://huggingface.co/google-bert/bert-base-chinese
https://huggingface.co/google-bert/bert-base-chinese
https://huggingface.co/ckiplab/gpt2-base-chinese
https://huggingface.co/ckiplab/gpt2-base-chinese
https://huggingface.co/LinkSoul/Chinese-Llama-2-7b
https://huggingface.co/LinkSoul/Chinese-Llama-2-7b
https://huggingface.co/Qwen/Qwen-7B
https://huggingface.co/Linly-AI/Chinese-Falcon-7B
https://huggingface.co/Linly-AI/Chinese-Falcon-7B
https://huggingface.co/baichuan-inc/Baichuan-7B
https://huggingface.co/baichuan-inc/Baichuan-7B

Task Type Task Name Classical Repetition only (1 time) Repetition only (2 times) ReBA ReBA-3

Classification TNews 0.2775 0.2679 0.2766 0.3061 0.3055
Classification IFlyTek 0.2288 0.1915 0.2099 0.3094 0.3099
Classification MultilingualSentiment 0.4851 0.4838 0.4865 0.5044 0.5064
Classification JDReview 0.6989 0.7092 0.7069 0.7357 0.7342
Classification OnlineShopping 0.6637 0.6626 0.6681 0.6943 0.6948
Classification Waimai 0.6398 0.6687 0.6580 0.6991 0.7026

Clustering CLSClusteringS2S 0.1282 0.1505 0.1446 0.2289 0.2308
Clustering CLSClusteringP2P 0.2086 0.1077 0.1480 0.3081 0.3107
Clustering ThuNewsClusteringS2S 0.2419 0.2587 0.2678 0.3250 0.3246
Clustering ThuNewsClusteringP2P 0.3433 0.2708 0.3417 0.4352 0.4322

Pair Classification Ocnli 0.5338 0.5306 0.5349 0.5382 0.5382
Pair Classification Cmnli 0.5488 0.5639 0.5562 0.5462 0.5511

Reranking T2Reranking 0.5254 0.5539 0.5462 0.5570 0.5613
Reranking MMarcoReranking 0.0263 0.0574 0.0535 0.0709 0.0714
Reranking CMedQAv1 0.1399 0.1800 0.1852 0.2788 0.2811
Reranking CMedQAv2 0.1488 0.2037 0.1993 0.2852 0.2903

Retrieval T2Retrieval 0.0564 0.1018 0.0972 0.2079 0.2265
Retrieval MMarcoRetrieval 0.2201 0.3305 0.3316 0.4766 0.4925
Retrieval DuRetrieval 0.1076 0.1456 0.1512 0.3076 0.3417
Retrieval CovidRetrieval 0.0464 0.0105 0.0200 0.1628 0.1786
Retrieval CmedqaRetrieval 0.2199 0.3171 0.3105 0.4196 0.4188
Retrieval EcomRetrieval 0.2430 0.3880 0.3660 0.5330 0.5620
Retrieval MedicalRetrieval 0.0820 0.1700 0.1520 0.2860 0.2990
Retrieval VideoRetrieval 0.2040 0.4490 0.3710 0.5670 0.5810

STS ATEC 0.1321 0.1476 0.1453 0.1652 0.1769
STS BQ 0.1902 0.2239 0.2134 0.2532 0.2561
STS LCQMC 0.1116 0.2111 0.1830 0.3199 0.3329
STS PAWSX 0.1234 0.1185 0.1195 0.1331 0.1327
STS STSB 0.2563 0.3429 0.3268 0.3469 0.3660
STS AFQMC 0.0798 0.0780 0.0789 0.0997 0.1060
STS QBQTC 0.1189 0.1696 0.1628 0.1651 0.1512

Total average N/A 0.2591 0.2924 0.2907 0.3634 0.3699

Table 3: Main Results: Zero-shot scores of GPT-2 models on C-MTEB under last pooling strategy with different
methods. ’Classical’ refers to the traditional encoding method, ’Repetition only (1 time)’ and ’Repetition only (2
times)’ refer to the methods that only repeat the text without backward attention, and ’ReBA’ and ’ReBA-3’ refer to
our proposed method with one and two repetitions, respectively, the scores we choose are ’accuracy’, ’v_measure’ ,
’map’, ’cos_sim :accuracy’, ’cos_sim :pearson’, ’recall_at_1000’ for Classification, Clustering, Reranking, Pair
Classification, STS, Retrieval.

12

GPT-2 (Radford et al., 2019) being the second-806

generation generative pretrained model released by807

OpenAI in 2019. We used the Chinese version of808

GPT-2, GPT2-base-chinese, which is fine-tuned on809

Traditional Chinese datasets to better adapt to Chi-810

nese contexts. It has 12 layers, 768 hidden units,811

and 12 attention heads.812

LLaMA-2 (Large Language Model Meta AI 2)813

(Touvron et al., 2023a) is the second-generation814

LLM released by Meta (formerly Facebook), de-815

signed to handle various language tasks, includ-816

ing text generation, comprehension, and question-817

answering. It is an enhanced version of the original818

LLaMA model, featuring improved performance819

and adaptability. We used a Simplified Chinese820

fine-tuned version of LLaMA-2 for our experi-821

ments. It has 32 layers, 4096 hidden units, and822

32 attention heads.823

Qwen-7B (Tongyi Qianwen) is a unidirectional824

language model developed by Alibaba Group. With825

7 billion parameters, it is designed to handle a wide826

range of tasks, including text generation, content827

summarization, and intelligent decision-making.828

The model excels in Chinese language processing829

and supports multilingual tasks, making it suitable830

for diverse real-world applications.831

Baichuan-7B is a unidirectional language model832

with 7 billion parameters, developed in China for833

Chinese and multilingual NLP tasks. It demon-834

strates strong capabilities in machine translation,835

text classification, and semantic understanding.836

The model is widely recognized for its adaptability837

and practical application across various industries.838

The Chinese-Falcon-7B, developed by Linly-AI,839

is an adaptation of the original Falcon architecture,840

tailored specifically for Chinese natural language841

processing tasks. With 32 Transformer layers, 71842

attention heads per layer, and a hidden size of 4544,843

it retains the efficient design of Falcon while being844

pre-trained on a large-scale Chinese corpus. This845

specialization enables superior performance in Chi-846

nese text understanding and generation, making847

it suitable for applications such as summarization,848

sentiment analysis, and conversational AI.849

Here are the basic statistics of the models used850

in our experiments:851

Model Layers Hidden Units Heads
BERT 12 768 12
GPT-2 12 768 12
LLaMA-2 32 4096 32
Qwen 32 4096 32
BaiChuan 32 4096 32
Falcon 32 4544 71

Table 6: Basic Statistics of the Models

A.3 Details of the Sentence Evaluation: Task 852

Description and Metrics 853

There are six types of tasks in the C-MTEB 854

dataset: Classification, Clustering, Pair Classifi- 855

cation, Reranking, Retrieval, and STS. Each task 856

has specific evaluation metrics and requirements, 857

as detailed below: 858

The Classification task involves assigning la-
bels to text inputs from predefined categories. For
example, the TNews dataset requires predicting
news categories based on headlines. The primary
evaluation metric for this task is accuracy, defined
as:

Accuracy =
Nc

N

where Nc is the number of correct predictions, and 859

N is the total number of samples. 860

The Clustering task groups text samples based
on their semantic similarity without predefined la-
bels. An example is the CLSClusteringS2S dataset,
where similar sentences need to be grouped to-
gether. The evaluation metric is V-measure, defined
as:

V = 2× H × C

H + C

where H represents homogeneity, and C represents 861

completeness. 862

The Reranking task focuses on reordering re-
trieved documents by their relevance to a query.
For instance, in the T2Reranking dataset, the task
involves ranking candidate documents for search
queries. The main evaluation metric is Mean Aver-
age Precision (MAP). For a query q, the Average
Precision (AP) is defined as:

APq =
1

Rq

n∑
k=1

P (k) · δ(k)

where Rq is the number of relevant documents for 863

query q, P (k) is the precision at position k, and 864

δ(k) is an indicator function that equals 1 if the 865

13

document at position k is relevant, otherwise 0.866

MAP is the mean of AP over all queries.867

The Pair Classification task determines whether
two sentences are semantically equivalent. An ex-
ample dataset is Ocnli, which focuses on classify-
ing sentence pairs into categories such as entail-
ment, contradiction, or neutral. The evaluation
metrics used are cosine similarity-based accuracy
and Pearson correlation. Cosine similarity between
embedding vectors u and v is defined as:

cos(u,v) =
u · v

∥u∥∥v∥

Cosine similarity-based accuracy measures the868

alignment between predicted similarity and seman-869

tic equivalence, while Pearson correlation evaluates870

the linear relationship between cosine similarity871

scores and human-labeled ground truth.872

The STS (Semantic Textual Similarity) task
evaluates the degree of semantic similarity between
pairs of sentences by comparing their embeddings.
For example, the ATEC dataset assesses sentence
similarity in financial question matching scenarios.
The primary evaluation metric used is Pearson cor-
relation, which quantifies the linear relationship
between the predicted similarities and the ground
truth labels. The Pearson correlation coefficient
between predicted cosine similarities ŷ and true
similarities y is computed as:

r =

∑n
i=1(ŷi − ¯̂y)(yi − ȳ)√∑n

i=1(ŷi − ¯̂y)2
√∑n

i=1(yi − ȳ)2

The Retrieval task evaluates a model’s ability
to identify relevant documents in a large collection.
For example, the MMarcoRetrieval dataset involves
retrieving relevant documents for search queries.
The primary evaluation metric is Recall at 1000,
defined as:

Recall@1000 =
Nr

Nt

where Nr is the number of relevant documents873

retrieved within the top 1000 results, and Nt is the874

total number of relevant documents.875

A.4 Details of the Word Evaluation: Task876

Description and Metrics877

We consider a four-choice question in the word
evaluation, where each question has four options.
For each question, we extract the word embeddings

corresponding to the target word wi using differ-
ent methods (ReBA, Echo, Classical) (see Table
1). After obtaining the four word embeddings, we
calculate the pairwise Euclidean distances between
the four vectors and select the word with the largest
sum of distances to the other three vectors as the an-
swer. The Euclidean distance between two vectors
u and v is:

d(u,v) = ∥u− v∥

In addition, we also consider the cosine distance, 878

which measures the similarity between vectors as: 879

The results using cosine distance are shown in fig- 880

ure 5. 881

14

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Repetitions

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Di
st

an
ce

 S
hi

ft

Impact of Repetitions on SLPWC (Euclidean)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Repetitions

0.35

0.40

0.45

0.50

0.55

Di
st

an
ce

 S
hi

ft

Impact of Repetitions on WSD (Euclidean)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Repetitions

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Co
sin

e
Sh

ift

Impact of Repetitions on SLPWC (Cosine)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Repetitions

0.35

0.40

0.45

0.50

0.55

Co
sin

e
Sh

ift

Impact of Repetitions on WSD (Cosine)

ReBA (baichuan)
Echo (baichuan)
Baseline (baichuan)
ReBA (qwen)
Echo (qwen)
Baseline (qwen)
ReBA (falcon)
Echo (falcon)
Baseline (falcon)
ReBA (llama2)
Echo (llama2)
Baseline (llama2)
Baseline (baichuan)
Baseline (qwen)
Baseline (falcon)
Baseline (llama2)

Figure 5: Performance on SLPWC and WSD tasks using Euclidean and Cosine distances to evaluate word
embeddings, it shows that our results still hold under different distances,

15

Task Type Task Name Classical Echo-2 ReBA-2

Classification TNews 0.3048 0.3090 0.3102
Classification IFlyTek 0.3414 0.3179 0.3474
Classification MultilingualSentiment 0.4952 0.5062 0.5058
Classification JDReview 0.7272 0.7432 0.7373
Classification OnlineShopping 0.6957 0.7021 0.7028
Classification Waimai 0.7150 0.7095 0.7193

Clustering CLSClusteringS2S 0.2188 0.2473 0.2430
Clustering CLSClusteringP2P 0.3186 0.3189 0.3208
Clustering ThuNewsClusteringS2S 0.3065 0.3222 0.3217
Clustering ThuNewsClusteringP2P 0.4225 0.4214 0.4245

Pair Classification Ocnli 0.5452 0.5501 0.5485
Pair Classification Cmnli 0.5452 0.5675 0.5624

Reranking T2Reranking 0.5553 0.5518 0.6061
Reranking MMarcoReranking 0.0365 0.0629 0.0431
Reranking CMedQAv1 0.2326 0.2771 0.2680
Reranking CMedQAv2 0.2587 0.2941 0.2833

Retrieval T2Retrieval 0.1360 0.1992 0.3603
Retrieval MMarcoRetrieval 0.2843 0.4798 0.4190
Retrieval DuRetrieval 0.1698 0.2856 0.3261
Retrieval CovidRetrieval 0.3335 0.1581 0.7758
Retrieval CmedqaRetrieval 0.3590 0.4296 0.3962
Retrieval EcomRetrieval 0.3860 0.5550 0.4970
Retrieval MedicalRetrieval 0.1660 0.2680 0.2360
Retrieval VideoRetrieval 0.5330 0.5780 0.5770

STS ATEC 0.1678 0.1950 0.1886
STS BQ 0.2918 0.2761 0.2926
STS LCQMC 0.4296 0.3853 0.4352
STS PAWSX 0.1448 0.1036 0.1214
STS STSB 0.4450 0.5140 0.4917
STS AFQMC 0.1018 0.1117 0.1105
STS QBQTC 0.1799 0.1366 0.1571

Total average N/A 0.3499 0.3734 0.3977

Table 4: Ablations: Zero-shot scores of GPT-2 models on C-MTEB under mean pooling strategy with different
methods. ’Classical’ refers to the traditional encoding method, ’Echo-2’ refer to the methods that only repeat the
text without backward attention, and ’ReBA’ refer to our proposed method with one repetition, respectively, the
scores we choose are ’accuracy’, ’v_measure’ , ’map’, ’cos_sim’, ’pearson’, ’recall_at_1000’.

16

Task Type Task Name Classical Echo-2 Echo-3 ReBA-2

Classification TNews 0.5194 0.5264 0.5203 0.5334
Classification IFlyTek 0.3663 0.4082 0.3552 0.4429
Classification MultilingualSentiment 0.6474 0.6554 0.6476 0.6645
Classification JDReview 0.7645 0.7717 0.7497 0.7976
Classification OnlineShopping 0.8521 0.8724 0.8674 0.8745
Classification Waimai 0.7951 0.8214 0.8226 0.8206

Clustering CLSClusteringS2S 0.2446 0.2836 0.3000 0.3021
Clustering CLSClusteringP2P 0.2858 0.3169 0.3049 0.2972
Clustering ThuNewsClusteringS2S 0.4841 0.5572 0.5522 0.5702
Clustering ThuNewsClusteringP2P 0.3272 0.4968 0.5216 0.3976

Pair Classification Ocnli 0.5181 0.5463 0.5355 0.5176
Pair Classification Cmnli 0.5276 0.5543 0.5498 0.5275

Reranking T2Reranking 0.5949 0.5806 0.5708 0.6185
Reranking MMarcoReranking 0.0437 0.0774 0.0867 0.0619
Reranking CMedQAv1 0.2390 0.3976 0.3948 0.3667
Reranking CMedQAv2 0.2489 0.4581 0.4713 0.4142

Retrieval T2Retrieval 0.4387 0.4699 0.3840 0.6334
Retrieval MMarcoRetrieval 0.6340 0.7425 0.7423 0.7923
Retrieval DuRetrieval 0.5701 0.7322 0.6740 0.7936
Retrieval CovidRetrieval 0.5896 0.2819 0.1923 0.6723
Retrieval CmedqaRetrieval 0.3713 0.6642 0.6775 0.5355
Retrieval EcomRetrieval 0.5990 0.7180 0.7700 0.8310
Retrieval MedicalRetrieval 0.2090 0.4760 0.5030 0.4170
Retrieval VideoRetrieval 0.3220 0.4190 0.5780 0.6370

STS ATEC 0.1328 0.1880 0.1793 0.1876
STS BQ 0.1852 0.3185 0.3199 0.2385
STS LCQMC 0.2397 0.4924 0.4886 0.3136
STS PAWSX 0.1113 0.1402 0.1399 0.1112
STS STSB 0.2656 0.4559 0.4187 0.3443
STS AFQMC 0.1095 0.1549 0.1373 0.1488
STS QBQTC 0.0105 0.0956 0.1907 0.0206

Total average N/A 0.3951 0.4733 0.4724 0.4801

Table 5: Ablations: Zero-shot scores of LLaMA-2 model on C-MTEB under last pooling strategy with different
methods. ’Classical’ refers to the traditional encoding method, ’Echo-2’ refer to the methods that only repeat the
text without backward attention, and ’ReBA-2’ refer to our proposed method with one repetition, respectively, the
scores we choose are ’accuracy’, ’v_measure’ , ’map’, ’cos_sim’, ’pearson’, ’recall_at_1000’.

17

	Introduction
	Preliminaries
	Self-Attention as Global Context Integrator
	Word Embedding and Sentence Embedding
	Language Model Embedding
	New Embedding via Repetition and Backward Attention

	Main Method
	Classical Embedding Ignores Bidirectional Context
	Repetition Captures Bidirectional Context
	ReBA Embedding
	Time Efficiency of ReBA

	Experiments
	Datasets
	Chinese Massive Text Embedding Benchmark (For Sentence Embedding)
	Chinese Polysemous Word Disambiguation Dataset (For Word Embedding)

	Model
	Results
	Sentence Embedding Evaluation
	Word Embedding Evaluation

	Conclusion and Discussion
	Limitations
	Appendix
	Datasets
	Sentence Embedding Evaluation
	Word Embedding Evaluation
	Attention Matrix Processing

	Model Detail
	Details of the Sentence Evaluation: Task Description and Metrics
	Details of the Word Evaluation: Task Description and Metrics

