Retrieval Backward Attention without Additional Training: Enhance
Embeddings of Large Language Models via Repetition

Anonymous ACL submission

Abstract

Language models can be viewed as functions
that embed text into Euclidean space, where
the quality of the embedding vectors directly
determines model performance, training such
neural networks involves various uncertain-
ties. This paper focuses on improving the per-
formance of pre-trained language models in
zero-shot settings through a simple and easily
implementable method. We propose a novel
backward attention mechanism to enhance con-
textual information encoding. Our approach
achieves significant improvements across mul-
tiple tasks, providing valuable insights for ad-
vancing zero-shot learning capabilities. '

1 Introduction

Text embedding learning is a key task in Natural
Language Processing (NLP) that transforms text
into vector representations, making them compu-
tationally tractable. Formally, given a text = in a
corpus space X, embedding learning aims to train
amodel f : X x § — R? to generate continu-
ous vector representations v = fy(z) that capture
semantic information and enhance performance
in downstream tasks such as information retrieval
(IR), semantic similarity estimation, classification,
and clustering (Ni et al., 2021; Muennighoff et al.,
2022).

Advanced large language models (LLMs) have
recently demonstrated exceptional generalization
and transfer capabilities across downstream tasks.
However, Transformer-based models like GPT
(Radford, 2018) (unidirectional) and BERT (Ken-
ton and Toutanova, 2019) (bidirectional) are often
specialized in different tasks due to the influence
of pretraining tasks, with BERT excelling in Natu-
ral Language Understanding (NLU) and GPT ex-
celling in Natural Language Generation (NLG).
As a result, multiple task-specific models are re-
quired (Dong et al., 2019). Research shows that

'Our code will be available after the review process.

decoder-only models, pre-trained with next-token
prediction, achieve superior zero-shot generaliza-
tion performance across various tasks (Wang et al.,
2022), while its performance on NLU is still not
good as that of bidirectional models, some prompt
methods can be implemented to improve the em-
bedding quality (Jiang et al., 2023; Liu et al., 2024),
in this paper, we also focus on improving the em-
bedding quality of decoder-only models from the
perspective of the input text by repetition and back-
ward attention and we call it ReBA embedding
(Figure 1).

Repetition: We focus on improving the perfor-
mance of decoder-only models in a zero-shot set-
ting. Research shows that repeating input sentences
can provide additional contextual information, sig-
nificantly boosting model performance. For in-
stance, (Jelassi et al., 2024) found that text rep-
etition allows Transformer models to outperform
state-space models like S4 (Gu et al., 2021) and
Mamba (Gu and Dao, 2023). Similarly, (Arora
et al., 2024; Springer et al., 2025) demonstrates
quality improvements in language models through
repeated contexts. While repetition boosts decoder-
only models, their performance still trails bidirec-
tional models (Table 2, Figure 3). To narrow this
gap, we introduce a simple backward attention
mechanism that significantly improves context en-
coding over plain repetition and classical embed-
dings in zero-shot settings, offering insights for
future research.

Backward Attention: In decoder-only architec-
tures, forward attention is typically used, where the
attention matrix is a lower triangular matrix. This
design lacks associations with subsequent context.
Backward attention, on the other hand, represents
the relationship between a token and its subsequent
context, as reflected in the attention matrix. To en-
hance the encoding quality of the original text, we
propose leveraging repeated text. By concatenating
x with itself, represented as x + z’ using string

Repetition

ﬁ Repetition

reerk [EHE BEEN EEEE
@Backward Atlemionﬂ ﬂ
Classical l:l l:l . .
)

Figure 1: Illustration of ReBA embedding: The classical
embedding method captures only the contextual infor-
mation preceding the token. In contrast, ReBA enhances
the quality of target token embeddings by repeating the
text k£ — 1 times, computing a weighted sum of the tar-
get token’s original embedding and subsequent token
embeddings using backward attention weights. When
the sentence appears k times, the resulting embeddings
are referred to as ReBA-k embedding.

addition, the embeddings of 2’ are used to enhance
the embeddings of . Since x’ appears after z, it
is natural to consider using backward attention to
strengthen x’s encoding quality.

Bidirectional models like BERT (Kenton and
Toutanova, 2019), RoBERTa (Liu, 2019), XL-
Net (Yang, 2019), and others (Jiao et al., 2019;
Clark, 2020) use symmetric attention matrices (Fig-
ure 2). Encoder-decoder models such as TS5 (Raffel
et al., 2020) allow attention to both past and future
tokens, though not strictly symmetric. However, in
such models, adding new tokens alters all previous
embeddings, increasing computational cost.

In contrast, decoder-only models like GPT (Rad-
ford, 2018; Radford et al., 2019; Brown et al.,
2020), LLaMA (Touvron et al., 2023a,b),
Qwen (Bai et al., 2023), and Baichuan (Baichuan,
2023) use lower triangular attention (Figure 2),
where each token attends only to previous ones.
This structure avoids recomputation when append-
ing tokens, enabling efficient enhancement of spe-
cific token embeddings via backward attention.
And our contributions are as follows:

* We propose a novel algorithm that signifi-
cantly enhances the embedding quality of pre-
trained models, leading to improved perfor-
mance in downstream tasks and stronger natu-
ral language understanding capabilities.

* The method achieves these improvements
without requiring additional training of the
model, new models, or extra parameters, en-
suring simplicity and efficiency.

BERT (Bidirectional Attention)

GPT (Unidirectional Attention)

@ @ @ lowe[zr triangle
() () (=) 5

Figure 2: Illustration of Attention Relationships in
BERT (Bidirectional Attention) and GPT (Causal Atten-
tion) with Corresponding Attention Matrix Representa-
tions

symmetric

* Our algorithm maintains the advantages of
unidirectional LLMs while capturing subse-
quent context information, enabling targeted
enhancement of the embeddings of specific
tokens.

2 Preliminaries

Our goal is to obtain an embedding vector
LLM (C) € R for a sentence C and embedding
vector LLM (w|C) € R? for word w in context C.
This vector can be viewed as the semantic repre-
sentation of the sentence or word, and our aim is
to obtain a better semantic representation that can
more effectively capture the semantic information
of the sentence or word. These vectors can measure
the similarity between sentences or words, and can
be used to complete downstream tasks such as text
classification, word sense disambiguation.

We are particularly interested in extracting these
vectors using an autoregressive language model.
An autoregressive language model predicts the next
token in a sequence based on the preceding tokens.
This mechanism inherently limits the model to cap-
turing information only from earlier tokens, as re-
flected in the attention matrix—a lower triangular
matrix where each token attends only to its pre-
ceding tokens. To enhance the embedding quality,
we aim to reutilize the information in the attention
matrix to also capture insights from subsequent
tokens.

2.1 Self-Attention as Global Context
Integrator

The attention mechanism (Vaswani, 2017) can be
understood mathematically as a mapping from a
query vector q; € R to a weighted sum of a set
of key-value pairs (k;,v;), where k;,v; € RY,
¢ indexes over the tokens in the input sequence.
Formally, given an input sequence of embeddings
{x1,++,x,}, the attention mechanism computes
the output embedding v; for each token as follows:

J
v; = Zai,jvia (D
i1

where the attention weights o; € R are derived
from the query and key vectors using a compatibil-
ity function, typically the scaled dot-product:

exp(q; - ki/Vd) '
S exp(q; - kpn/Vd)

Here, q; = Wyx;,k; = Wix;, and v; = W, x;
are the query, key, and value vectors, obtained by
trainable linear transformations W,, Wy, W, €
R¥*? of the input embeddings, and d is the dimen-
sionality of the query/key space.

In Transformer-based models, each token in the
sequence simultaneously acts as a query, key, and
value, resulting in contextualized embeddings for
all tokens. This mechanism enables the model to in-
tegrate information across the entire sequence. For
example, given an input sequence {w1, -+ ,wy},
the output embedding v,, for the last token w,, is
computed as:

2

Qij =

v, = Attention(qp, {k1, -+ ,kn}, {Vi, -+, vp}),
3)
where q,, is derived from w,, and {k;, v;} are de-
rived from all preceding tokens {wy, - -, wy, }.
This computation illustrates how attention inte-
grates global context. Notably, in autoregressive
models, the attention mechanism is constrained
such that v; only depend on wy, - - - , w;, ensuring
that information flows unidirectionally. Such a
framework blurs the traditional boundary between
word and sentence embeddings. The embedding v,,
for the final token incorporates contextual informa-
tion from the entire sequence, making it a natural
representation for the full sentence. This marks a
fundamental departure from traditional word em-
bedding models like Word2Vec (Mikolov, 2013),

which lack explicit mechanisms for modeling to-

ken interactions, we will discuss it in the following
section.

2.2 Word Embedding and Sentence
Embedding

Traditional models like Word2Vec (Mikolov, 2013)
and Glove (Pennington et al., 2014) treat words in-
dependently, requiring extra processing (e.g., aver-
age pooling or Sent2Vec (Moghadasi and Zhuang,
2020)) to construct meaningful sentence embed-
dings, as individual word vectors lack contextual
information.

Unlike traditional word embedding models,
Transformer-based LLMs derive each token’s em-
bedding through interactions with other tokens. In
autoregressive models, given input wy, - - , Wy,
the output embeddings vy, - - - , v, are generated.
While v, represents wy,, it also captures the entire
sentence via attention. However, due to unidirec-
tionality, vy, - - - , vp—1 do not incorporate informa-
tion from w,,. Transformer-based models blur the
distinction between word and sentence. With at-
tention mechanisms, the last token embedding can
also effectively represent the entire sentence.

In this paper, we evaluate the performance of our
method on word and sentence embeddings. To as-
sess the quality of word embeddings, we examine
the algorithm’s performance on word sense dis-
ambiguation datasets. To evaluate the quality of
sentence embeddings, we consider the algorithm’s
performance on the C-MTEB.

2.3 Language Model Embedding

We first extract embeddings from the activations
of the final hidden layer of the language model.
Given a sentence C' = {wy, -+ ,wy}, we extract
the embeddings of the tokens w; in C' from the
model as LLM (w;|C') as the word embedding.

In practice, we consider two main methods for
sentence embedding (Wang et al., 2023; Reimers,
2019), one approach called last token pooling is
to use the embedding of the last token as the sen-
tence embedding: LLM (w_1|C'), while the other
called mean token pooling involves averaging the
embeddings of all tokens to obtain the sentence
embedding: ‘—é' > wec LLM (w|C). In this paper,
we adopt these methods to obtain sentence embed-
dings.

2.4 New Embedding via Repetition and
Backward Attention

To enhance the natural language understanding ca-
pabilities of autoregressive models while avoiding
the comprehensive update of all token embeddings
as seen in bidirectional models when new tokens
are added, we propose a novel method called ReBA
(Retrieval Backward Attention) embedding. This
approach leverages the model’s inherent capabili-
ties to more effectively capture bidirectional infor-
mation and enhance model performance.

3 Main Method

The core concept of ReBA involves repeating the
input text twice and extracting the attention ma-
trix from the model. This attention matrix is then
used to apply backward attention, updating the em-
beddings of specific tokens based on the repeated
text. Finally, the updated embeddings are com-
bined with the original embeddings to produce the
final embedding vectors.

3.1 Classical Embedding Ignores
Bidirectional Context

As discussed in Sec 2.1, classical sentence embed-
dings fail to effectively capture bidirectional infor-
mation. In autoregressive language models, the
contextualized embedding at position k encodes
information only from tokens preceding k, without
considering tokens that follow. As a result, the to-
kens at the beginning of a sentence may fail to fully
capture their intended meaning due to the lack of
semantic information from the subsequent context.

3.2 Repetition Captures Bidirectional Context

Research shows that text repetition can signifi-
cantly enhance the bidirectional information cap-
tured by sentence embeddings in autoregressive
models(Springer et al., 2025; Jelassi et al., 2024).
By repeating text, the model’s embeddings become
more contextually enriched. Instead of using a
prompt like "Rewrite the sentence: x, rewritten
sentence: x" in (Springer et al., 2025), we repeat
the sentence directly to eliminate prompt effects.
Taking "I love NLP." as an example, the repeated
sentences are:

» Repeated once: ‘I love NLP. I love NLP”

* Repeated twice: ‘I love NLP. I love NLP. I
love NLP’

For the word ‘love’, we observe that the second
and third occurrences of ‘love’ carry more contex-
tual information than the first, as they capture the
broader context. We adopt the term from (Springer
et al., 2025) and refer to these enhanced embed-
dings as Echo embeddings.

3.3 ReBA Embedding

Inspired by the benefits of text repetition, we pro-
pose a new method that does not require the use
of prompts in (Springer et al., 2025). Instead, we
directly repeat the text and introduce backward
attention to rely more on the model itself, reduc-
ing the introduction of additional parameters. Our
method has three steps:

1) First Step: Construct Attention Matrix Ex-
traction

Motivation:

(Vig and Belinkov, 2019) found that the per-
formance of GPT2’s multi-head attention matri-
ces varies across different attention heads and hid-
den layers, and some of the attention heads in the
deeper layers contribute less to the model’s per-
formance(He et al., 2024). Inspired by this obser-
vation, we aim to integrate this information and
explore a new method to leverage all attention ma-
trices to enhance the quality of embedding vectors.

To enhance the model’s understanding of con-
textual relationships, we first extract the attention
matrix. Specifically, we focus on the maximum
attention value across all layers and heads of the
transformer model. For each token pair, if any atten-
tion head in any layer assigns significant attention,
we record this interaction in the attention matrix.
This matrix effectively captures the most promi-
nent token relationships identified by the model,
irrespective of the layer or head.

Taking LLaMA-2-7B as an example, which has
32 hidden layers with 32 attention heads each layer,
we denote all attention matrices as AP9 € R™*",
where p represents the p-th attention head, g repre-
sents the g-th hidden layer, with n being the length
of the input sequence.

Methods:

This method integrates attention weights across
multiple layers to construct a comprehensive sym-
metric attention matrix A . The process involves
the following steps:

1. Layer-wise Attention Integration: For each
layer q of the transformer model, the output pro-
vides a set of attention heads represented as matri-
ces A4, These matrices capture directional atten-

tion weights for tokens in the input sequence and
are lower triangular matrix with all elements above
the diagonal being zero.

2. Symmetrization: To preserve the bidirectional
attention between tokens, each attention matrix
AP:4 is converted into a symmetric form:

AP — 4)

3. Iterative Fusion with Maximum Update Rule:
We initialize A" = 0 and iteratively fuse the
symmetric attention matrices AP? from all layers
p and heads ¢ using:

Anew 4 Apg | Anew _ Anq‘
2 2 '

Anew —

(&)

This ensures A" retains the element-wise max-
imum across all AP, yielding a symmetric and
robust representation of token interactions. See
Algorithm 1 for details.

Algorithm 1 Attention Matrix Extraction
Input: Text with length n, pretrained language
model LLM and its number of hidden layers I,
number of attention heads J.
Output: New Attention Matrix A™Y.
1. Extract all attention matrices AP? € R"*"{p =
1,---,I;g = 1,---,J} from the pretrained
model, initialize A™% = (.
2.forp=1,2,--- ,1I:

forqg=1,2,--- . J:

Apa — APIH(AP)T

2
Aneu7+Ap,q + ‘A”IEU)_APvﬂ
2 2

Anew —
3. Return A"V,

2) Second Step: Backward Attention and Text
Repetition
To compute text embeddings effectively, we inte-
grate text repetition and a backward attention mech-
anism as outlined in Algorithm 2 (for word embed-
ding) and Algorithm 3 (for sentence embedding).
Given a text sequence C' = {wy, wa, ..., wy,}, we
first apply text repetition by duplicating the se-
quence to form a new input:
C"™ = {wy, we, ..

ey Wy, Wi 1y« -+, Wy

where w; with ¢ > n represents the repeated token.

Next, we compute the attention matrix A™*" €
R27%2n with Algorithm 1 to capture the contextual
dependencies across both the original and repeated
sequences.

The backward attention mechanism is applied
to strengthen semantic propagation by iteratively
tracing the connections from the repeated tokens
{Wn+41, Wnyo,..., we,} back to the original se-
quence {w1, ws,...,w,}. For a target token w; €
C, the embedding e; is computed as:

2n
€; = Z aé}kvk, (backward attention) (6)
k=i

where o, = AP'?" is the attention weight from

token wy, to w;, and vy, = LLM (wy,, C™") repre-
sents the contextualized embedding of the token
W.

This approach propagates semantic relation-
ships—especially from later tokens—into the final
representation.

3) Final Step: Embedding Vector Construc-
tion

Under different pooling strategies, the resulting
sentence vectors vary. For the case of last token
pooling, we directly use e,, as the sentence encod-
ing. In contrast, for mean token pooling, we take
the average of all ¢;, defined as % Z?:l e;, as the
sentence embedding. Notably, the order of summa-
tion can be exchanged for efficient computation:

n n 2n

1 1 ,
—Dei=)) 0
i=1 =1 k=1
2n min (n,k)
Y o
= — o LU
7 . i,kVk
k=1 =1
2
1 <=
= g Oék'l)k-,
k=1

where af, = > 0 (nk) ;. is the sum of the k-

th column of A™". By exchanging the order of
summation, we can first sum over each column of
A" and then perform the remaining calculations.
This reduces the original computational complexity
from O(n?) to O(n).

For word embeddings, we compute the embed-
ding e; of w; directly using Eq. (6), without re-
quiring additional operations. The detailed compu-
tation process of all methods we use is shown in
Table 1.

3.4 Time Efficiency of ReBA

Assuming the model has I hidden layers, each with
J attention heads, and an input sequence of length
n, the traditional method has a time complexity of

Method Input Tokens Embedding for Evaluation
Word Embedding for Sentence Embedding Sentence Embedding
w; (Mean Pooling) (Last Pooling)
kn n
ReBA-k (Ours) {wi,- -+ , Wkn} e =y o ;v; L3 e en
=i i=1
J Jl on
Echo-k {wi, -+ ,wkn} V(k—1)n+i (h—D)n Z Uj Vkn
Jj=n
Classical {wi, - ,wn} v; L5y Un

Table 1: Introduction of our experimental settings. (1) In both ReBA and Echo method we need to repeat the original

sentence, We use wy, - - -

, Wy, to denote the original input tokens, and the repeated tokens are wy = wyy,, When

k > n, e; is the new embeddings. (2) v; is the original output of w; which is denoted as v; := LLM (w;|C) where
C' is the context , and ozg’ ; 18 the i-th value of j-th column of the attention weight extracted by Algorithm 1. (3)
ReBA-1 is equivalent to classical sentence embedding evaluation with last pooling strategy so we only test ReBA-1

for word embedding evaluation.

O(IJn?). This arises from extracting I x J atten-
tion matrices, each of size n x n, and performing
operations like symmetry computation and maxi-
mum attention update, both of which take O(n?)
for a single matrix.

Algorithm 2 Word Embedding with ReBA Mecha-
nism

Input: Text sequence C' = {wjy,ws,...,wy},
pretrained language model LL M, target word w;.
Output: Word embedding e;.

1. Duplicate the input:
{wy,wa, ..., wa,} as new input.
2. Compute the attention matrix A™? ¢ R2nx2n
using Algorithm 1.

3. Extract the embedding e; of w; {7 < n} based
on A"V ¢; = 211 OéngUk where aéyk = Al
is the i-th value of k-th column of A" and
v = LLM (wg|C).

5. Return ¢;.

Cnew —

Algorithm 3 Sentence Embedding with ReBA
Mechanism

Input: Text sequence C' = {wy, wo, ..
trained language model LL M.
Output: Sentence embedding F.

1. Extract word embeddings e; for each token w;
in C' using Algorithm 2.

2. If last token pool: £ = e,.

Else if mean token pool: £ = 13" ¢,

3. Return .

., Wy}, pre-

4 Experiments

4.1 Datasets

We will test our method on several datasets, in-
cluding text classification, text clustering, text pair
classification, text reranking, text retrieval, sen-
tence similarity, etc. In particular, we will also
test its performance on Chinese polysemous word
understanding task.

4.1.1 Chinese Massive Text Embedding
Benchmark (For Sentence Embedding)

To evaluate sentence embedding, we use the Chi-
nese Massive Text Embedding Benchmark (C-
MTEB), it is a collection of datasets from six cate-
gories: classification, clustering, pair classification,
reranking, retrieval, sentence similarity and con-
tains 31 datasets in total. Due to the scale of this
dataset, we will only test two unidirectional lan-
guage models: the fine-tuned versions of GPT-2
and LLaMA-2-7B’s Chinese pre-trained models.

4.1.2 Chinese Polysemous Word
Disambiguation Dataset (For Word
Embedding)

These datasets evaluate a model’s ability to under-
stand polysemous words and assess word embed-
ding performance. The first dataset, the Sentence
Level Polysemous Words Classification (SLPWC)
subset of the C-SEM? (Chinese Semantic Evalua-
tion Dataset) benchmark, contains 300 questions
where the task is to identify which option repre-
sents a different meaning of a polysemous word.

ZAccessible at: https://github.com/FlagOpen/
FlagEval/tree/master/csem

https://github.com/FlagOpen/FlagEval/tree/master/csem
https://github.com/FlagOpen/FlagEval/tree/master/csem
https://github.com/FlagOpen/FlagEval/tree/master/csem

Strategy Model Pool Clas. P.Cls. Clus. Retr. STS Rera. Total Average
Main results:

ReBA-2 (Ours) GPT-2 Last 0.5414 0.5422 0.3243 0.2173 0.2118 0.2979 0.3634
Echo-2 GPT-2 Last 0.5010 0.5456 0.2255 0.1757 0.1756 0.2460 0.2907
Classical GPT-2 Last 0.4990 0.5413 0.2305 0.1474 0.1446 0.2101 0.2590
ReBA-2 (Ours) LLaMA-2 Last 0.6889 0.5225 0.3918 0.6640 0.1949 0.3653 0.4801
Echo-2 LLaMA-2 Last 0.6759 0.5503 0.4136 0.5629 0.2636 0.3784 0.4733
Classical LLaMA-2 Last 0.6574 0.5228 0.3354 0.4667 0.1506 0.2816 0.3951
Ablations: Different Pool Strategy

ReBA-2 (Ours) GPT-2 Mean 0.5538 0.5554 0.3275 0.4484 0.2567 0.3000 0.3977
Echo-2 GPT-2 Mean 0.5480 0.5588 0.3275 0.3691 0.2360 0.2964 0.3734
Classical GPT-2 Mean 0.5465 0.5452 0.3166 0.2959 0.2515 0.2959 0.3499
Ablations: More Repetitions

Echo-3 GPT-2 Last 04973 0.5473 0.1969 0.1845 0.1845 0.2488 0.2924
ReBA-3 (Ours) GPT-2 Last 0.5422 0.5446 0.3246 0.2119 0.2284 0.3010 0.3699
Comparison: Bidirectional model

Classical BERT Mean 0.6734 0.5435 0.4225 0.5537 0.2594 0.3445 0.4658
Classical BERT CLS 0.6628 0.5604 0.3598 0.3003 0.2070 0.2546 0.3679

Table 2: Zero-shot average scores on C-MTEB to evaluate the performance of Sentence Embeddings. The top two
rows are the main results, testing the scores of ReBA, simple repetition and traditional encoding on GPT-2-Chinese
and LLaMA-2-Chinese-7B. The third row is an ablation experiment, testing different pooling strategies. The
fourth row is an ablation experiment with more repetitions, testing the effect of repeating twice. The fifth row is
a comparison experiment with bidirectional model using mean pooling or the first token *CLS’, BERT refers to

bert-base-chinese model with 102M params here.

We extract embeddings of the target word in differ-
ent contexts using an LLM, and the correct answer
is determined by summing the embedding distances
(Cosine or Euclidean). The second dataset, Word
Sense Disambiguation (WSD, (Yan et al., 2023)), is
a Chinese semantic dataset used for word sense dis-
ambiguation tasks. We evaluate performance based
on accuracy and adapt it into a 4-choice format to
suit our algorithm.

4.2 Model

In our experiments, we use pretrained autoregres-
sive models based on the Transformers architec-
ture, including fine-tuned versions of GPT-2 and
LLaMA-2’s Chinese pretrained models GPT-2-
Chinese, LLaMA-2-Chinese-7B, as well as mod-
els like Qwen-7B, BaiChuan-7B, and Falcon-7B,
which are suitable for evaluation on Chinese
dataset. All model details are presented in Ap-
pendix A.2.

4.3 Results

The overall results (see Table 2 and Figure 3) show
that the ReBA encoding method significantly out-
performs traditional encoding methods for both
sentence and word embeddings. In particular, our
method demonstrates a significant improvement in
accuracy on semantic understanding tasks. This in-
dicates that our algorithm effectively enhances lan-

guage models’ understanding of natural language
in zero-shot setting.

4.3.1 Sentence Embedding Evaluation

We primarily evaluate GPT-2-Chinese (we call it
GPT-2 for simplicity) and LLaMA-2-Chinese-7B
(LLaMA-2, for simplicity) on C-MTEB, and com-
pare the performance of our method with tradi-
tional encoding approaches under different pool-
ing strategies. Across nearly all tasks, our method
demonstrate significant improvements over tradi-
tional methods. Results are concluded as follows:

(1) ReBA consistently enhances unidirectional
language models. ReBA achieves greater improve-
ments on GPT-2 compared to simple repetition.
For LLaMA-2, while our method outperforms tra-
ditional encoding, the gains on certain tasks (e.g.,
STS) are less pronounced compared to simple rep-
etition;

(2) Increasing the repetition count does not yield
additional benefits. We compare the effects of re-
peating once and twice (ReBA-2 and ReBA-3),
finding that while repeating twice achieves better
results, the improvement is marginal. This conclu-
sion holds for both ReBA and simple repetition;

(3) Our method remains effective across different
pooling strategies. With last-pooling, the algorithm
achieves substantial improvements, while the gains
with mean-pooling are comparatively smaller.

Impact of Repetitions on SLPWC

Impact of Repetitions on WSD

Accuracy

—8— ReBA (baichuan)
-~ Echo (baichuan)
=== Baseline (baichuan)
—8— ReBA (qwen)
- Echo (qwen)
—-=- Baseline (qwen)
ReBA (falcon)
Echo (falcon)
Baseline (falcon)
—8— ReBA (llama2)
-‘M- Echo (llama2)
--- Baseline (Ilama2)
—=- Baseline (bert)

00 05 10 15 20 25 30 35 40
Repetitions

05 1.0 15 20 25 3.0 35 40
Repetitions

Figure 3: Performance on SLPWC and WSD tasks using Euclidean distances to evaluate word embeddings. The
results show that ReBA encoding significantly enhances model performance on polysemous word understanding
tasks. While performance fluctuates with the number of repetitions, increasing the repetition count does not neces-
sarily lead to significant improvements. Based on this experiment, we observe that simple sentence repetition is not
effective for improving word-level embeddings and only contributes to sentence-level understanding. Furthermore,
the backward attention mechanism remains crucial for achieving further performance enhancements.

4.3.2 Word Embedding Evaluation

We evaluate the performance of LLaMA-2-
Chinese-7B, Qwen-7B, BaiChuan-7B, and
Chinese-Falcon-7B and Bert-base-chinese (102M)
on the Chinese polysemous word understanding
task using the Chinese SEMantic evaluation dataset
(C-SEM) and the Word Sense Disambiguation
dataset (WSD). Results are presented in Figure 3:

(1) ReBA encoding performs exceptionally well
as a word embedding method. ReBA significantly
surpassing classical embeddings;

(2) Backward attention is the essential operation.
We test Echo embeddings as word embeddings by
using the embedding of the target word’s last oc-
currence. Surprisingly, repetition alone degrade
performance, but adding backward attention signif-
icantly improve it. ReBA embeddings outperform
both Echo and classical embeddings;

(3) Increasing the repetition count does not yield
additional benefits. Also in the word embedding
task, we find that repeating twice does not bring
more benefits than repeating once, this conclusion
is consistent with the sentence embedding task.

5 Conclusion and Discussion

We propose a context-enhanced encoding method
using backward attention and repetition, achieving
notable improvements on LLLMs across tasks. On
sentence embedding evaluation datasets, we ob-
serve that the backward attention mechanism was
not a decisive factor—simply repeating sentences

was sufficient to improve sentence vector quality.
This effect was particularly pronounced in larger
models like LLaMA-2, where the gains from back-
ward attention are minimal.

However, on word embedding evaluation
datasets, the backward attention mechanism plays
a crucial role. In these cases, simply repeating sen-
tences leads to performance degradation, whereas
incorporating backward attention results in substan-
tial improvements. Consequently, ReBA is a more
general method for improving language model en-
coding quality.

Now we discuss a possible improvement mea-
sure, repeating the entire text doubles the sequence
length, introducing an additional computational
overhead of O(L?). We propose a potential alter-
native for future study: First encode the original
sequence S of length L using an LLM to obtain
the initial embeddings. Next, we divide S into
subsequences Sy, S1, ..., Sp, each of length L.
For each subsequence .5;, we repeat it to form 2.5;
and then extract the attention weights between the
original and repeated embeddings of S;, we apply
backward attention to enhance the initial embed-
dings of S;, then we can extract the embeddings
of word appears in S; for word embedding or use
mean pooling to get the whole sentence embed-
ding. This approach reduces the additional compu-
tational overhead caused by repetition from O(L?)
to O(L - Ly). When L is small enough, the addi-
tional cost becomes negligible.

6 Limitations

While our method is simple and effective, it re-
quires traversing all attention layers, which can be
time-consuming, this cost is justified by the richer
information it extracts. Our experiments are cur-
rently limited to smaller models (e.g., 7B), and
future work will explore scalability to larger mod-
els (e.g., 70B) and optimize attention extraction to
reduce overhead.

References

Simran Arora, Aman Timalsina, Aaryan Singhal, Ben-
jamin Spector, Sabri Eyuboglu, Xinyi Zhao, Ashish
Rao, Atri Rudra, and Christopher Ré. 2024. Just read
twice: closing the recall gap for recurrent language
models. arXiv preprint arXiv:2407.05483.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, and 1 others. 2023. Qwen technical report.
arXiv preprint arXiv:2309.16609.

Baichuan. 2023. Baichuan-7b: A large-scale 7b pre-
training language model developed by baichuan-inc.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, and 1 others. 2020. Language models are
few-shot learners. Advances in neural information
processing systems, 33:1877-1901.

K Clark. 2020. Electra: Pre-training text encoders as
discriminators rather than generators. arXiv preprint
arXiv:2003.10555.

Li Dong, Nan Yang, Wenhui Wang, Furu Wei, Xi-
aodong Liu, Yu Wang, Jianfeng Gao, Ming Zhou,
and Hsiao-Wuen Hon. 2019. Unified language model
pre-training for natural language understanding and
generation. Advances in neural information process-
ing systems, 32.

Albert Gu and Tri Dao. 2023. Mamba: Linear-time
sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752.

Albert Gu, Karan Goel, and Christopher Ré. 2021. Effi-
ciently modeling long sequences with structured state
spaces. arXiv preprint arXiv:2111.00396.

Shwai He, Guoheng Sun, Zheyu Shen, and Ang Li.
2024. What matters in transformers? not all attention
is needed. arXiv preprint arXiv:2406.15786.

Samy Jelassi, David Brandfonbrener, Sham M Kakade,
and 1 others. 2024. Repeat after me: Transform-
ers are better than state space models at copying.
In Forty-first International Conference on Machine
Learning.

Ting Jiang, Shaohan Huang, Zhongzhi Luan, Deqing
Wang, and Fuzhen Zhuang. 2023. Scaling sentence
embeddings with large language models. arXiv
preprint arXiv:2307.16645.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao
Chen, Linlin Li, Fang Wang, and Qun Liu. 2019.
Tinybert: Distilling bert for natural language under-
standing. arXiv preprint arXiv:1909.10351.

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina
Toutanova. 2019. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. In
Proceedings of naacL-HLT, volume 1, page 2. Min-
neapolis, Minnesota.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding,
Yujie Qian, Zhilin Yang, and Jie Tang. 2024. Gpt
understands, too. Al Open, 5:208-215.

Yinhan Liu. 2019. Roberta: A robustly opti-
mized bert pretraining approach. arXiv preprint
arXiv:1907.11692, 364.

Tomas Mikolov. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781, 3781.

Mahdi Naser Moghadasi and Yu Zhuang. 2020.
Sent2vec: A new sentence embedding representation
with sentimental semantic. In 2020 IEEE Interna-
tional Conference on Big Data (Big Data), pages
4672-4680. IEEE.

Niklas Muennighoff, Nouamane Tazi, Loic Magne, and
Nils Reimers. 2022. Mteb: Massive text embedding
benchmark. arXiv preprint arXiv:2210.07316.

Jianmo Ni, Chen Qu, Jing Lu, Zhuyun Dai, Gus-
tavo Hernandez Abrego, Ji Ma, Vincent Y Zhao,
Yi Luan, Keith B Hall, Ming-Wei Chang, and 1 oth-
ers. 2021. Large dual encoders are generalizable
retrievers. arXiv preprint arXiv:2112.07899.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 conference
on empirical methods in natural language processing
(EMNLP), pages 1532-1543.

Alec Radford. 2018. Improving language understanding
by generative pre-training.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, and 1 others. 2019.
Language models are unsupervised multitask learn-
ers. OpenAl blog, 1(8):9.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the lim-
its of transfer learning with a unified text-to-text
transformer. Journal of machine learning research,
21(140):1-67.

N Reimers. 2019. Sentence-bert: Sentence embed-
dings using siamese bert-networks. arXiv preprint
arXiv:1908.10084.

Jacob Mitchell Springer, Suhas Kotha, Daniel Fried,
Graham Neubig, and Aditi Raghunathan. 2025. Rep-
etition improves language model embeddings. In
The Thirteenth International Conference on Learn-
ing Representations.

Hugo Touvron, Thibaut Lavril, Gautier [zacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, and 1 others. 2023a. Llama: Open and ef-
ficient foundation language models. arXiv preprint
arXiv:2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, and 1 others. 2023b. Llama 2: Open foun-
dation and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

A Vaswani. 2017. Attention is all you need. Advances
in Neural Information Processing Systems.

Jesse Vig and Yonatan Belinkov. 2019. Analyzing
the structure of attention in a transformer language
model. arXiv preprint arXiv:1906.04284.

Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang,
Rangan Majumder, and Furu Wei. 2023. Improving
text embfeddings with large language models. arXiv
preprint arXiv:2401.00368.

Thomas Wang, Adam Roberts, Daniel Hesslow, Teven
Le Scao, Hyung Won Chung, 1z Beltagy, Julien Lau-
nay, and Colin Raffel. 2022. What language model
architecture and pretraining objective works best for
zero-shot generalization? In International Con-
ference on Machine Learning, pages 22964-22984.
PMLR.

Fukang Yan, Yue Zhang, and Zhenghua Li. 2023. Con-
struction of a modern chinese word sense dataset
based on online dictionaries. In Proceedings of
the 22nd Chinese National Conference on Computa-
tional Linguistics, pages 43-53, Harbin, China. Chi-
nese Information Processing Society of China.

Zhilin Yang. 2019. Xlnet: Generalized autoregres-
sive pretraining for language understanding. arXiv
preprint arXiv:1906.08237.

A Appendix

A.1 Datasets
A.1.1 Sentence Embedding Evaluation

To evaluate sentence embeddings, we use the Chi-
nese Massive Text Embedding Benchmark (C-
MTEB), which is a collection of datasets across

10

six categories: classification, clustering, pair classi-
fication, reranking, retrieval, and sentence similar-
ity. In total, there are 31 datasets. The dataset
is available at https://huggingface.co/datasets/C-
MTEB, and the leaderboard can be found
at https://huggingface.co/spaces/mteb/leaderboard.
Data preprocessing: A brief overview of the C-
MTEB datasets is provided below:

Figure 4: Information about C-MTEB, with most text
lengths within 1000 tokens.

In our experiments, since GPT models have an
input sequence limit of 512 tokens, we applied
text truncation accordingly. By analyzing the text
length distribution in the C-MTEB dataset, we
found that most texts are under 512 tokens (Figure
4), and a substantial portion remains below 1024
tokens even when repeated three times. Therefore,
for our experiments with LLaMA-2, in order to
avoid potential memory overflow issues caused by

a small number of long texts, we truncated the text
to a maximum length of 1024 tokens.

The detailed results can be found in Table 2.
Additionally, Table 3 presents the results for GPT-2
on C-MTEB using the last pooling strategies.

A.1.2 Word Embedding Evaluation

To evaluate word embeddings, we use the Chinese
SEMantic evaluation dataset (C-SEM), a bench-
mark dataset for semantic evaluation. We use
the Sentence Level Polysemous Words Classifica-
tion (SLPWC) subset of C-SEM as our evaluation
dataset. This subset is designed to test a model’s
ability to understand polysemy (i.e., words with
multiple meanings). The evaluation involves pre-
senting a word in different contexts and expecting
the model to identify semantic differences.

1. SLPWC:

The SLPWC dataset contains 300 polysemous
words, each of which appears in four sentences.
In three of the sentences, the polysemous word
has the same meaning, while in the remaining sen-
tence, the word has a different meaning. The task
is to identify the sentence with the different mean-
ing, the data presents a question format: “Which
of the following sentences uses ‘word’ differently
from the others? A. sentencel; B. sentence2; C.
sentence3; D. sentence4.” An example from the
dataset is presented in section A.1.2.

2. WSD:

The Word Sense Disambiguation (WSD) dataset
contains 1,023 polysemous words, each associated
with multiple meanings, and each meaning linked
to several example sentences. The dataset is struc-
tured as: {word: {sensel: [sentencel, sentence2,
sentence3]; sense2: [sentence4]}}. To ensure con-
sistent evaluation, we converted the WSD dataset
into the SLPWC format. Specifically, three sen-
tences are randomly selected from one meaning and
one from another. The transformed data presents
a question format: ‘Which of the following sen-
tences uses ‘word’ differently from the others?
A. sentencel; B. sentence2; C. sentence3; D. sen-
tence4.” Below is an example of question in these
two dataset:

Question: PR BFAJIE A HH 22 B 3 BB (al
%5 2 AT AR -

A PR BEEEET DER R FIRM
BRE T E EEAE -

B. BOF - SKREM . AU - PRI - BE1E
RSE RIS iR, AR EIN, oA
Frem s IR -

11

C. F2ER 0N T I H D EREE S R FUMIX
SLHIBCE A -

D. FATHI2ARE — Pt P 22 E i 55
R, BT R A R R AR
It o

The question asks which of the following sen-
tences is the meaning (or usage) of "H12%" different
from the other sentences, the correct answer ‘B’
(means Chinese culture, "# %" in A,C,D means
"middle school’) for this problem will also show in
the dataset as label.

A.1.3 Attention Matrix Processing

We also conducted comparative experiments with
symmetric attention matrices and last-layer-only
attention. The results are shown in Table 2. Both
methods underperformed compared to our ap-
proach.

A.2 Model Detail

Here we provide some details of the models we use
in our experiments: BERT-base-chinese?, GPT2-
base-chinese* ,Chinese-llama-2-7b° , Qwen—7B6,
Chinese-Falcon-7b’ and BaiChuan-7B® as our
models.

The BERT-base-chinese model, developed by
Google, is a pre-trained language model tailored for
Chinese natural language processing tasks. Built
on the BERT architecture, it comprises 12 layers,
768 hidden units, and 12 attention heads, total-
ing approximately 110 million parameters. Pre-
trained on large Chinese corpora, including Chi-
nese Wikipedia, using Masked Language Modeling
(MLM) and Next Sentence Prediction (NSP) ob-
jectives, it effectively captures word and sentence-
level semantics. This model serves as a robust base-
line for tasks such as text classification, named en-
tity recognition, and question answering, offering
strong performance across diverse Chinese NLP
applications.

The GPT series is a family of pretrained mod-
els based on the Transformer architecture, with

SBERT-base-chinese:https: //huggingface.co/
google-bert/bert-base-chinese

4GPT2-base-chinese:https://huggingface.co/
ckiplab/gpt2-base-chinese

SChinese-llama-2-7b:https: //huggingface.co/
LinkSoul/Chinese-Llama-2-7b

5Qwen-7B:https: //huggingface.co/Qwen/Qwen-7B

"Falcon-7B: https://huggingface.co/Linly-AI/
Chinese-Falcon-7B

$BaiChuan-7B:https: //huggingface.co/
baichuan-inc/Baichuan-7B

https://huggingface.co/google-bert/bert-base-chinese
https://huggingface.co/ckiplab/gpt2-base-chinese
https://huggingface.co/ckiplab/gpt2-base-chinese
https://huggingface.co/ckiplab/gpt2-base-chinese
https://huggingface.co/LinkSoul/Chinese-Llama-2-7b
https://huggingface.co/Qwen/Qwen-7B
https://huggingface.co/Linly-AI/Chinese-Falcon-7B
https://huggingface.co/baichuan-inc/Baichuan-7B
https://huggingface.co/google-bert/bert-base-chinese
https://huggingface.co/google-bert/bert-base-chinese
https://huggingface.co/ckiplab/gpt2-base-chinese
https://huggingface.co/ckiplab/gpt2-base-chinese
https://huggingface.co/LinkSoul/Chinese-Llama-2-7b
https://huggingface.co/LinkSoul/Chinese-Llama-2-7b
https://huggingface.co/Qwen/Qwen-7B
https://huggingface.co/Linly-AI/Chinese-Falcon-7B
https://huggingface.co/Linly-AI/Chinese-Falcon-7B
https://huggingface.co/baichuan-inc/Baichuan-7B
https://huggingface.co/baichuan-inc/Baichuan-7B

Task Type Task Name Classical Repetition only (1 time) Repetition only (2 times) ReBA ReBA-3

Classification TNews 0.2775 0.2679 0.2766 0.3061 0.3055
Classification TFlyTek 0.2288 0.1915 0.2099 0.3094 0.3099
Classification MultilingualSentiment 0.4851 0.4838 0.4865 0.5044 0.5064
Classification JDReview 0.6989 0.7092 0.7069 0.7357 0.7342
Classification OnlineShopping 0.6637 0.6626 0.6681 0.6943 0.6948
Classification ‘Waimai 0.6398 0.6687 0.6580 0.6991 0.7026
Clustering CLSClusteringS2S 0.1282 0.1505 0.1446 0.2289 0.2308
Clustering CLSClusteringP2P 0.2086 0.1077 0.1480 0.3081 0.3107
Clustering ThuNewsClusteringS2S 0.2419 0.2587 0.2678 0.3250 0.3246
Clustering ThuNewsClusteringP2P 0.3433 0.2708 0.3417 0.4352 0.4322
Pair Classification ~ Ocnli 0.5338 0.5306 0.5349 0.5382 0.5382
Pair Classification ~ Cmnli 0.5488 0.5639 0.5562 0.5462 0.5511
Reranking T2Reranking 0.5254 0.5539 0.5462 0.5570 0.5613
Reranking MMarcoReranking 0.0263 0.0574 0.0535 0.0709 0.0714
Reranking CMedQAv1 0.1399 0.1800 0.1852 0.2788 0.2811
Reranking CMedQAv2 0.1488 0.2037 0.1993 0.2852 0.2903
Retrieval T2Retrieval 0.0564 0.1018 0.0972 0.2079 0.2265
Retrieval MMarcoRetrieval 0.2201 0.3305 0.3316 0.4766 0.4925
Retrieval DuRetrieval 0.1076 0.1456 0.1512 0.3076 0.3417
Retrieval CovidRetrieval 0.0464 0.0105 0.0200 0.1628 0.1786
Retrieval CmedqaRetrieval 0.2199 0.3171 0.3105 0.4196 0.4188
Retrieval EcomRetrieval 0.2430 0.3880 0.3660 0.5330 0.5620
Retrieval MedicalRetrieval 0.0820 0.1700 0.1520 0.2860 0.2990
Retrieval VideoRetrieval 0.2040 0.4490 0.3710 0.5670 0.5810
STS ATEC 0.1321 0.1476 0.1453 0.1652 0.1769
STS BQ 0.1902 0.2239 0.2134 0.2532 0.2561
STS LCQMC 0.1116 0.2111 0.1830 0.3199 0.3329
STS PAWSX 0.1234 0.1185 0.1195 0.1331 0.1327
STS STSB 0.2563 0.3429 0.3268 0.3469 0.3660
STS AFQMC 0.0798 0.0780 0.0789 0.0997 0.1060
STS QBQTC 0.1189 0.1696 0.1628 0.1651 0.1512
Total average N/A 0.2591 0.2924 0.2907 0.3634 0.3699

Table 3: Main Results: Zero-shot scores of GPT-2 models on C-MTEB under last pooling strategy with different
methods. *Classical’ refers to the traditional encoding method, *Repetition only (1 time)’ and ’Repetition only (2
times)’ refer to the methods that only repeat the text without backward attention, and 'ReBA’ and 'ReBA-3’ refer to
our proposed method with one and two repetitions, respectively, the scores we choose are “accuracy’, ’v_measure’ ,
’map’, ’cos_sim :accuracy’, ‘cos_sim :pearson’, ‘recall_at_1000’ for Classification, Clustering, Reranking, Pair
Classification, STS, Retrieval.

12

GPT-2 (Radford et al., 2019) being the second-
generation generative pretrained model released by
OpenAl in 2019. We used the Chinese version of
GPT-2, GPT2-base-chinese, which is fine-tuned on
Traditional Chinese datasets to better adapt to Chi-
nese contexts. It has 12 layers, 768 hidden units,
and 12 attention heads.

LLaMA-2 (Large Language Model Meta Al 2)
(Touvron et al., 2023a) is the second-generation
LLM released by Meta (formerly Facebook), de-
signed to handle various language tasks, includ-
ing text generation, comprehension, and question-
answering. It is an enhanced version of the original
LLaMA model, featuring improved performance
and adaptability. We used a Simplified Chinese
fine-tuned version of LLaMA-2 for our experi-
ments. It has 32 layers, 4096 hidden units, and
32 attention heads.

Qwen-7B (Tongyi Qianwen) is a unidirectional
language model developed by Alibaba Group. With
7 billion parameters, it is designed to handle a wide
range of tasks, including text generation, content
summarization, and intelligent decision-making.
The model excels in Chinese language processing
and supports multilingual tasks, making it suitable
for diverse real-world applications.

Baichuan-7B is a unidirectional language model
with 7 billion parameters, developed in China for
Chinese and multilingual NLP tasks. It demon-
strates strong capabilities in machine translation,
text classification, and semantic understanding.
The model is widely recognized for its adaptability
and practical application across various industries.

The Chinese-Falcon-7B, developed by Linly-Al,
is an adaptation of the original Falcon architecture,
tailored specifically for Chinese natural language
processing tasks. With 32 Transformer layers, 71
attention heads per layer, and a hidden size of 4544,
it retains the efficient design of Falcon while being
pre-trained on a large-scale Chinese corpus. This
specialization enables superior performance in Chi-
nese text understanding and generation, making
it suitable for applications such as summarization,
sentiment analysis, and conversational Al

Here are the basic statistics of the models used
in our experiments:

13

Model Layers Hidden Units Heads
BERT 12 768 12
GPT-2 12 768 12
LLaMA-2 32 4096 32
Qwen 32 4096 32
BaiChuan 32 4096 32
Falcon 32 4544 71

Table 6: Basic Statistics of the Models

A.3 Details of the Sentence Evaluation: Task
Description and Metrics

There are six types of tasks in the C-MTEB
dataset: Classification, Clustering, Pair Classifi-
cation, Reranking, Retrieval, and STS. Each task
has specific evaluation metrics and requirements,
as detailed below:

The Classification task involves assigning la-
bels to text inputs from predefined categories. For
example, the TNews dataset requires predicting
news categories based on headlines. The primary
evaluation metric for this task is accuracy, defined
as:

N,
Accuracy = Fc

where N, is the number of correct predictions, and
N is the total number of samples.

The Clustering task groups text samples based
on their semantic similarity without predefined la-
bels. An example is the CLSClusteringS2S dataset,
where similar sentences need to be grouped to-
gether. The evaluation metric is V-measure, defined

as:
HxC

H+C

where H represents homogeneity, and C' represents
completeness.

The Reranking task focuses on reordering re-
trieved documents by their relevance to a query.
For instance, in the T2Reranking dataset, the task
involves ranking candidate documents for search
queries. The main evaluation metric is Mean Aver-
age Precision (MAP). For a query ¢, the Average
Precision (AP) is defined as:

V=2x

where R, is the number of relevant documents for
query ¢, P(k) is the precision at position k, and
0(k) is an indicator function that equals 1 if the

document at position k is relevant, otherwise 0.
MAP is the mean of AP over all queries.

The Pair Classification task determines whether
two sentences are semantically equivalent. An ex-
ample dataset is Ocnli, which focuses on classify-
ing sentence pairs into categories such as entail-
ment, contradiction, or neutral. The evaluation
metrics used are cosine similarity-based accuracy
and Pearson correlation. Cosine similarity between
embedding vectors u and v is defined as:

cos(u,v) = LV
[[ul[[[v]]
Cosine similarity-based accuracy measures the
alignment between predicted similarity and seman-
tic equivalence, while Pearson correlation evaluates
the linear relationship between cosine similarity
scores and human-labeled ground truth.

The STS (Semantic Textual Similarity) task
evaluates the degree of semantic similarity between
pairs of sentences by comparing their embeddings.
For example, the ATEC dataset assesses sentence
similarity in financial question matching scenarios.
The primary evaluation metric used is Pearson cor-
relation, which quantifies the linear relationship
between the predicted similarities and the ground
truth labels. The Pearson correlation coefficient
between predicted cosine similarities y and true
similarities y is computed as:

S (i —)y —)
2?21(171' - ?5)2 Z?:l(yi - 37)2

The Retrieval task evaluates a model’s ability
to identify relevant documents in a large collection.
For example, the MMarcoRetrieval dataset involves
retrieving relevant documents for search queries.
The primary evaluation metric is Recall at 1000,
defined as:

N,
Recall@1 = —
ecall@1000 N,

where N, is the number of relevant documents

retrieved within the top 1000 results, and Ny is the
total number of relevant documents.

A.4 Details of the Word Evaluation: Task
Description and Metrics

We consider a four-choice question in the word
evaluation, where each question has four options.
For each question, we extract the word embeddings

14

corresponding to the target word w; using differ-
ent methods (ReBA, Echo, Classical) (see Table
1). After obtaining the four word embeddings, we
calculate the pairwise Euclidean distances between
the four vectors and select the word with the largest
sum of distances to the other three vectors as the an-
swer. The Euclidean distance between two vectors
u and v is:

d(u,v) = [lu—v]|

In addition, we also consider the cosine distance,
which measures the similarity between vectors as:
The results using cosine distance are shown in fig-
ure 5.

Impact of Repetitions on SLPWC (Euclidean)

Impact of Repetitions on WSD (Euclidean)

Distance Shift

0.0

05 1.0 15 20 25 30 35
Repetitions

Impact of Repetitions on SLPWC (Cosine)

4.0

0.0

0.5 1.0 15 2.0 25 3.0 3.5

Repetitions

Impact of Repetitions on WSD (Cosine)

Cosine Shift

0.50

Cosine Shift

Figure 5: Performance on SLPWC and WSD tasks using Euclidean and Cosine distances to evaluate word

0.5 1.0 1.5 2.0 2.5 3.0 35

Repetitions

4.0

embeddings, it shows that our results still hold under different distances,

15

ReBA (baichuan)

- Echo (baichuan)

Baseline (baichuan)
ReBA (qwen)

- Echo (qwen)

Baseline (qwen)
ReBA (falcon)
Echo (falcon)
Baseline (falcon)
ReBA (llama2)

« Echo (llama2)

Baseline (Ilama2)
Baseline (baichuan)
Baseline (qwen)
Baseline (falcon)
Baseline (Ilama2)

Task Type Task Name Classical Echo-2 ReBA-2

Classification TNews 0.3048 0.3090 0.3102
Classification IFlyTek 0.3414 0.3179 0.3474
Classification MultilingualSentiment 0.4952 0.5062 0.5058
Classification JDReview 0.7272 0.7432 0.7373
Classification OnlineShopping 0.6957 0.7021 0.7028
Classification Waimai 0.7150 0.7095 0.7193
Clustering CLSClusteringS2S 0.2188 0.2473 0.2430
Clustering CLSClusteringP2P 0.3186 0.3189 0.3208
Clustering ThuNewsClusteringS2S 0.3065 0.3222 0.3217
Clustering ThuNewsClusteringP2P 0.4225 0.4214 04245
Pair Classification Ocnli 0.5452 0.5501 0.5485
Pair Classification Cmnli 0.5452 0.5675 0.5624
Reranking T2Reranking 0.5553 0.5518 0.6061
Reranking MMarcoReranking 0.0365 0.0629 0.0431
Reranking CMedQAvl 0.2326 0.2771 0.2680
Reranking CMedQAv2 0.2587 0.2941 0.2833
Retrieval T2Retrieval 0.1360 0.1992 0.3603
Retrieval MMarcoRetrieval 0.2843 0.4798 0.4190
Retrieval DuRetrieval 0.1698 0.2856 0.3261
Retrieval CovidRetrieval 0.3335 0.1581 0.7758
Retrieval CmedqaRetrieval 0.3590 0.4296 0.3962
Retrieval EcomRetrieval 0.3860 0.5550 0.4970
Retrieval MedicalRetrieval 0.1660 0.2680 0.2360
Retrieval VideoRetrieval 0.5330 0.5780 0.5770
STS ATEC 0.1678 0.1950 0.1886
STS BQ 0.2918 0.2761 0.2926
STS LCQMC 0.4296 0.3853 0.4352
STS PAWSX 0.1448 0.1036 0.1214
STS STSB 0.4450 0.5140 0.4917
STS AFQMC 0.1018 0.1117 0.1105
STS QBQTC 0.1799 0.1366 0.1571
Total average N/A 0.3499 0.3734 0.3977

Table 4: Ablations: Zero-shot scores of GPT-2 models on C-MTEB under mean pooling strategy with different
methods. *Classical’ refers to the traditional encoding method, *Echo-2’ refer to the methods that only repeat the
text without backward attention, and 'ReBA’ refer to our proposed method with one repetition, respectively, the
scores we choose are ’accuracy’, 'v_measure’ , "'map’, ’cos_sim’, *pearson’, 'recall_at_1000’.

16

Task Type Task Name Classical Echo-2 Echo-3 ReBA-2

Classification TNews 0.5194 0.5264 0.5203 0.5334
Classification IFlyTek 0.3663 0.4082 0.3552 0.4429
Classification MultilingualSentiment 0.6474 0.6554 0.6476 0.6645
Classification JDReview 0.7645 0.7717 0.7497 0.7976
Classification OnlineShopping 0.8521 0.8724 0.8674 0.8745
Classification Waimai 0.7951 0.8214 0.8226 0.8206
Clustering CLSClusteringS2S 0.2446 0.2836 0.3000 0.3021
Clustering CLSClusteringP2P 0.2858 0.3169 0.3049 0.2972
Clustering ThuNewsClusteringS2S ~ 0.4841 0.5572 0.5522 0.5702
Clustering ThuNewsClusteringP2P 0.3272 04968 0.5216 0.3976
Pair Classification Ocnli 0.5181 0.5463 0.5355 0.5176
Pair Classification Cmnli 0.5276 0.5543 0.5498 0.5275
Reranking T2Reranking 0.5949 0.5806 0.5708 0.6185
Reranking MMarcoReranking 0.0437 0.0774 0.0867 0.0619
Reranking CMedQAvl 0.2390 0.3976 0.3948 0.3667
Reranking CMedQAv2 0.2489 0.4581 04713 0.4142
Retrieval T2Retrieval 0.4387 0.4699 03840 0.6334
Retrieval MMarcoRetrieval 0.6340 0.7425 0.7423 0.7923
Retrieval DuRetrieval 0.5701 0.7322 0.6740 0.7936
Retrieval CovidRetrieval 0.5896 0.2819 0.1923 0.6723
Retrieval CmedgaRetrieval 0.3713 0.6642 0.6775 0.5355
Retrieval EcomRetrieval 0.5990 0.7180 0.7700 0.8310
Retrieval MedicalRetrieval 0.2090 0.4760 0.5030 0.4170
Retrieval VideoRetrieval 0.3220 0.4190 0.5780 0.6370
STS ATEC 0.1328 0.1880 0.1793 0.1876
STS BQ 0.1852 0.3185 0.3199 0.2385
STS LCQMC 0.2397 0.4924 0.4886 0.3136
STS PAWSX 0.1113 0.1402 0.1399 0.1112
STS STSB 0.2656 0.4559 0.4187 0.3443
STS AFQMC 0.1095 0.1549 0.1373 0.1488
STS QBQTC 0.0105 0.0956 0.1907 0.0206
Total average N/A 0.3951 0.4733 04724 0.4801

Table 5: Ablations: Zero-shot scores of LLaMA-2 model on C-MTEB under last pooling strategy with different
methods. *Classical’ refers to the traditional encoding method, *Echo-2’ refer to the methods that only repeat the
text without backward attention, and "'ReBA-2’ refer to our proposed method with one repetition, respectively, the
scores we choose are ’accuracy’, 'v_measure’ , "'map’, ’cos_sim’, *pearson’, 'recall_at_1000’.

17

	Introduction
	Preliminaries
	Self-Attention as Global Context Integrator
	Word Embedding and Sentence Embedding
	Language Model Embedding
	New Embedding via Repetition and Backward Attention

	Main Method
	Classical Embedding Ignores Bidirectional Context
	Repetition Captures Bidirectional Context
	ReBA Embedding
	Time Efficiency of ReBA

	Experiments
	Datasets
	Chinese Massive Text Embedding Benchmark (For Sentence Embedding)
	Chinese Polysemous Word Disambiguation Dataset (For Word Embedding)

	Model
	Results
	Sentence Embedding Evaluation
	Word Embedding Evaluation

	Conclusion and Discussion
	Limitations
	Appendix
	Datasets
	Sentence Embedding Evaluation
	Word Embedding Evaluation
	Attention Matrix Processing

	Model Detail
	Details of the Sentence Evaluation: Task Description and Metrics
	Details of the Word Evaluation: Task Description and Metrics

