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Figure 1: QuadGPT can generate diverse, high-quality quad meshes conditioned on point clouds.

ABSTRACT

The generation of quadrilateral-dominant meshes is a cornerstone of professional
3D content creation. However, existing generative models generate quad meshes
by first generating triangle meshes and then merging triangles into quadrilaterals
with some specific rules, which typically produces quad meshes with poor topol-
ogy. In this paper, we introduce QuadGPT, the first autoregressive framework for
generating quadrilateral meshes in an end-to-end manner. QuadGPT formulates
this as a sequence prediction paradigm, distinguished by two key innovations: a
unified tokenization method to handle mixed topologies of triangles and quadrilat-
erals, and a specialized Reinforcement Learning fine-tuning method tDPO for bet-
ter generation quality. Extensive experiments demonstrate that QuadGPT signif-
icantly surpasses previous triangle-to-quad conversion pipelines in both geomet-
ric accuracy and topological quality. Our work establishes a new benchmark for
native quad-mesh generation and showcases the power of combining large-scale
autoregressive models with topology-aware RL refinement for creating structured
3D assets.

1 INTRODUCTION

In the creation of high-fidelity 3D assets for game development, quadrilateral-dominant meshes play
a fundamental role in ensuring modeling efficiency, deformation stability, and animation readiness.
The structured topology provided by quad-dominant layouts facilitates smoother subdivision sur-
faces, more natural articulation, and easier UV unwrapping, all of which are essential in production
environments (Lei et al., 2025). Consequently, quad meshes have become the industry standard,
especially in character and organic modeling, where clean edge flow and controllable curvature are
critical.
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Marching Cube&Simplification Trimesh Generation Trimesh & Tri2Quad QuadGPT (Ours)

Figure 2: Comparison of topological quality across different pipelines. Iso-surfacing meth-
ods produce dense, unstructured triangular meshes. Autoregressive triangle generation followed
by heuristic conversion fails to create coherent structure. Our QuadGPT directly generates native
quadrilateral meshes with clean, artist-friendly edge flow.

In the pursuit of automated generation of artist-ready 3D assets from inputs such as text or images,
existing approaches typically decouple the problem into two separate stages: geometry generation
and topology generation. For geometry, latent diffusion models (LDMs) have achieved remarkable
success in generating 3D shapes (Zhao et al., 2025b; Li et al., 2025d) via implicit representations
like SDF (Li et al., 2024). Meshes are then extracted with iso-surface algorithms (Lorensen & Cline,
1998; Shen et al., 2021; 2023), inevitably resulting in unstructured dense meshes. On the other hand,
topology-focused methods using cross-field guidance (Huang et al., 2018; Dong et al., 2025a) aim
for structure but are often not robust, requiring pristine input meshes and failing to produce the
adaptive, artist-like tessellation where polygon density matches geometric complexity.

More recently, autoregressive mesh generation methods such as MeshAnything (Chen et al., 2025b),
BPT (Weng et al., 2025) and Mesh-RFT (Liu et al., 2025) have shown promise by modeling mesh
sequences with Transformer architectures. While these approaches capture artist-like topology, they
remain limited to generating only triangular meshes. Converting these outputs into quadrilateral
meshes still requires triangle-merging algorithms that often break natural edge flow and introduce
artifacts, as demonstrated in Figure 2. Consequently, even high-quality triangle meshes are hard
to translate into production-ready quad layouts, highlighting a fundamental discrepancy between
generated 3D assets and industrial applications.

To address these challenges, we propose an end-to-end autoregressive framework for direct genera-
tion of native quadrilateral meshes. Our model consumes a point cloud as input and produces a struc-
tured face sequence as output. Recognizing that artist-crafted meshes are typically quad-dominant
yet usually incorporate a small number of triangles, we design a novel unified representation that ex-
plicitly supports mixed-element topologies through a tailored padding strategy for triangular faces.
For computation efficiency, we employ an Hourglass Transformer architecture that first condenses
the face sequence and subsequently compresses vertex information. The model is trained using a
truncated sequence strategy, enabling support for high-poly meshes. To further improve topology
quality, we introduce a reinforcement learning fine-tuning phase with truncated direct preference
optimization (tDPO) that rewards the formation of coherent edge loops, a characteristic feature
of professionally designed assets. Our reinforcement learning framework is specifically designed
to evaluate and compare truncated sequences, ensuring effective optimization even for large-scale
meshes.

Extensive experiments on the Toys4K dataset (Stojanov et al., 2021) confirm that QuadGPT con-
sistently generates higher-quality 3D meshes than state-of-the-art baselines. By leveraging a large-
scale, carefully curated dataset and comprehensive pre-training and post-training protocols, we fur-
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ther evaluate QuadGPT on dense meshes generated by Hunyuan3D (Zhao et al., 2025b). The model
demonstrates robust performance across both soft-surface models (e.g., human characters) and hard-
surface objects (e.g., props). To ensure a rigorous comparison, we trained an triangle-only variant
(TriGPT) followed by triangle-to-quad conversion. As shown in Figure 2, QuadGPT’s native quadri-
lateral architecture yields significantly superior topology. This breakthrough establishes QuadGPT
as an unequivocally state-of-the-art solution, effectively bridging the gap between text/image inputs
and production-ready 3D artist meshes.

The main contributions of this paper are summarized as follows:

• We present QuadGPT, the first autoregressive model that generates native quad-dominant meshes
in an end-to-end manner.

• We propose a unified sequence representation for mixed-element meshes with a padding-based
serialization, enabling the scalable process of heterogeneous mesh topologies.

• We introduce tDPO, which is designed to optimize global quadrilateral flow through a novel re-
ward mechanism that encourages the formation of structured edge loops.

• QuadGPT achieves state-of-the-art performance, producing game-ready meshes that exceed exist-
ing methods in both geometric and topological quality.

2 RELATED WORK

Indirect and Field-Guided Mesh Generation. A dominant paradigm in 3D generation relies on
continuous neural representations like vecsets (Zhang et al., 2023; 2024; Li et al., 2024; Zhao et al.,
2023; Wu et al., 2024; Li et al., 2025b; Zhao et al., 2025b) or sparse voxels (Xiang et al., 2024;
Ye et al., 2025; He et al., 2025; Wu et al., 2025; Li et al., 2025d). A universal limitation of these
methods is their reliance on an iso-surfacing step, such as Marching Cubes (Lorensen & Cline,
1998), which invariably yields dense, topologically unstructured triangular meshes. Concurrently,
traditional approaches to quadrilateral meshing are predominantly guided by cross-field computa-
tion. These methods are either optimization-based, requiring slow, per-shape optimization (Bommes
et al., 2009; Jakob et al., 2015; Huang et al., 2018; Bommes et al., 2013; Ebke et al., 2016; Campen
& Kobbelt, 2014; Jiang et al., 2015; Diamanti et al., 2015), or more recent learning-based techniques
that accelerate field prediction (Dielen et al., 2021; Li et al., 2025c; Dong et al., 2025b;a). However,
all field-guided methods depend on multi-stage pipelines that are not end-to-end generative frame-
works.

Native Triangle Mesh Generation. To address the limitations of indirect methods, a promising
direction has been the direct autoregressive generation of mesh sequences. This field, pioneered by
MeshGPT (Siddiqui et al., 2024), has seen rapid progress. Subsequent work has largely focused
on three key areas: (1) developing more efficient tokenization and compression schemes to manage
long sequences (Chen et al., 2024; 2025c; Tang et al., 2025; Weng et al., 2025; Lionar et al., 2025;
Song et al., 2025; Kim et al., 2025); (2) achieving scalability to tens of thousands of faces through
architectural innovations, most notably with the Hourglass Transformer in Meshtron (Hao et al.,
2024); and (3) enhancing output quality and alignment with human preferences via reinforcement
learning, as demonstrated by DeepMesh (Zhao et al., 2025a) and Mesh-RFT (Liu et al., 2025).
Complementary efforts have focused on areas such as acceleration (Chen et al., 2025a; Wang et al.,
2025a;b) and continuous level-of-detail (Zhang et al., 2025). Despite these significant advances, all
existing methods in this domain are fundamentally confined to generating triangular meshes. This
reveals a critical gap between the state-of-the-art in generative modeling and the practical need for
industry-standard quadrilateral assets. Unlike the above works, QuadGPT makes the first attempt to
bridge this gap, presenting a scalable generative model for native quadrilateral mesh generation.

3 QUADGPT

Our approach, QuadGPT, introduces the first autoregressive framework for the direct generation of
native quadrilateral and mixed-element meshes. The methodology consists of three core pillars: (1)
a unified serialization scheme to represent mixed-topology meshes as a single token sequence; (2)
a powerful autoregressive architecture for generative pre-training; and (3) tDPO stage with a novel
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Figure 3: Pipeline of QuadGPT. First, an autoregressive Hourglass Transformer is pre-trained to
generate mesh sequences conditioned on an input point cloud. Subsequently, the model is fine-tuned
using Truncated Direct Preference Optimization (tDPO), where a preference dataset is automatically
constructed by comparing truncated sequences via a novel topological reward.

topological reward for direct topological optimization. An overview of our pipeline is presented in
Figure 3.

3.1 UNIFIED SERIALIZATION FOR MIXED-ELEMENT MESHES

We formulate mixed-element mesh generation as a sequence prediction problem, transforming a
mesh M into a single, linear sequence of discrete integer tokens. Our serialization scheme is de-
signed to be canonical and to uniformly handle both triangular (n = 3) and quadrilateral (n = 4)
faces. A mesh is represented at three hierarchical levels:

M = {f1, f2, ... fNf } Face Level

= {S(f1), S(f2), ... S(fNf )} Token Block Level (1)

= {τpad, ..., c
1
1, ..., c

1
3︸ ︷︷ ︸

e.g., Triangle Block

, c21, ..., c
2
4︸ ︷︷ ︸

e.g., Quad Block

, ...} Coordinate− Token Level

where S(·) is the face serialization function and τpad is a special padding token.

Canonical Representation. To ensure a deterministic sequence for any given geometry, we first
establish a canonical representation. Vertex coordinates are normalized to a [−0.95, 0.95]3 cube
and then quantized. To minimize precision loss, we employ a high-resolution 1024-level (10-bit)
quantization, mapping each coordinate to an integer in {0, 1, . . . , 1023}. All unique vertices are
then sorted lexicographically by (z, x, y) coordinates, and the face set is sorted accordingly. This
multi-step process guarantees a unique mapping from mesh to sequence.

Unified Token Block Structure. The cornerstone of our approach is a unified fixed-length block
representation. Each face, regardless of its valence, is tokenized into a consistent 12-token block
using the padding token τpad (integer value 1024). A quadrilateral face is tokenized by directly
flattening its 4 × 3 = 12 vertex coordinate tokens. A triangular face is prepended with three τpad
tokens, followed by its 3 × 3 = 9 coordinate tokens, also forming a 12-token block. This design
allows the model to implicitly learn the face type from the presence of padding.

This unified structure offers several advantages: it creates a simple, highly parallelizable tokeniza-
tion process that scales effortlessly; it simplifies the model architecture; and it allows the Trans-
former to naturally differentiate face types without explicit type tokens.

3.2 AUTOREGRESSIVE PRE-TRAINING

The pre-training stage is designed to teach QuadGPT the fundamental distribution of mesh geometry
and connectivity by training it to predict the next token in a sequence. The model is optimized using
a standard cross-entropy loss objective:

Lce = CrossEntropy(Ŝ[: −1],S[1 :]), (2)
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where S is the ground-truth token sequence and Ŝ represents the predicted logits. Our approach
incorporates a powerful hierarchical architecture, shape conditioning, and a specialized training
strategy tailored for structured geometric data.

Hierarchical Model Architecture. Rather than treating mesh generation as a generic sequence
task, we leverage the inherent hierarchical structure of mesh data. To this end, we utilize the
Hourglass Transformer architecture (Hao et al., 2024; Nawrot et al., 2021), which processes
the input sequence at multiple levels of abstraction. Let the input token sequence embeddings be
E(0) ∈ RL×D0 . The architecture employs a series of causality-preserving shortening layers to cre-
ate a computational bottleneck. The sequence is first processed by a Transformer block and then
shortened by a factor of 4, and subsequently by a factor of 3:

E(1) = Shorten4(TransformerBlock1(E
(0))) ∈ R(L/4)×D1 (3)

E(2) = Shorten3(TransformerBlock2(E
(1))) ∈ R(L/12)×D2 (4)

This hierarchical processing enables the model to efficiently capture high-level global context in
its bottleneck layers and fine-grained local details in its outer layers before upsampling back to the
original sequence length for prediction.

Shape and Topological Conditioning. QuadGPT’s generation is guided by two primary condi-
tions. First, a point cloud with normals, P = {pi ∈ R6}Np

i=1, is encoded into a global shape em-
bedding Eshape by a pre-trained Michelangelo encoder (Zhao et al., 2023). To ensure this geometric
context remains influential throughout the generation of long sequences, the embedding is supplied
to the decoder via cross-attention:

H′ = CrossAttn(H,Eshape,Eshape), (5)
where H represents the decoder’s hidden states. Second, to enable our training curriculum, we
introduce a learnable embedding conditioned on a quad-dominance parameter r ∈ [0, 1]. This
parameter explicitly controls the target ratio of face types, from purely triangular (r = 0) to mixed
quadrilateral (r = 1), providing the mechanism for our curriculum learning strategy.

Training Strategy. Our training strategy combines truncated sequence training for efficiency with
a novel curriculum for stability. To manage the long sequences of high-resolution meshes, we em-
ploy truncated training, using fixed-length segments (e.g., 36,864 tokens) to enable efficient, large-
batch processing. Furthermore, to ensure stable learning of complex quadrilateral topology, we in-
troduce a curriculum learning strategy. We first initialize QuadGPT with weights from a model
pre-trained exclusively on triangular meshes. We then progressively finetune this model, using our
quad-dominance condition r to gradually anneal the training data distribution from purely triangular
(r = 0) to quad-dominant (r → 1). This graduated exposure allows the model to master basic
geometric syntax before tackling the more complex rules of quadrilateral topology, significantly
improving stability and convergence speed.

Data Strategy. The scarcity of dedicated quad-mesh datasets is addressed by a novel curation
pipeline. Starting from diverse 3D sources, we apply automated triangle-to-quad conversion and
multi-stage quality filtering to select 1.3 million high-quality models. This dataset is pivotal for
training QuadGPT. Further details on our data curation can be found in Appendix A.

3.3 TOPOLOGICAL REFINEMENT WITH REINFORCEMENT LEARNING

While pre-training teaches syntactic validity, the cross-entropy loss is a local objective that cannot
optimize for global, emergent properties like clean topology. To address this, we introduce a rein-
forcement learning (RL) stage using Direct Preference Optimization (DPO) (Rafailov et al., 2023)
to explicitly align our model with the topological structures preferred in professional 3D workflows.

Topological Scoring Standard. Our alignment is guided by a specialized scoring standard de-
signed to evaluate the quality of generated mesh subsequences. The reward function quantifies
topological integrity by primarily rewarding the formation of long, continuous edge loops (Lavg)
and penalizing generation fractures (Rfrac). These metrics are computed automatically, providing
a scalable signal for topological quality. The detailed formulation of these metrics is provided in
Appendix B.
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Truncated DPO(tDPO)-based Post-Training. We finetune the pretrained QuadGPT policy by
forming preference pairs using our topological rewards and optimizing a DPO-style objective on
the collected pairs. Let πθ denote the trainable policy being fine-tuned, πref the frozen reference
model, and β > 0 a parameter controlling the deviation from πref. The current policy πθ produces
candidates for input x, which are ranked by topological rewards to yield preference pairs

(
yw, yl

)
with

Lavg(yw) > Lavg(yl), (6)
Rfrac(yw) < Rfrac(yl). (7)

We assume pairwise preferences follow a Bradley–Terry (BT) likelihood parameterized by an im-
plicit reward rθ(y|x). In KL-regularized policy optimization with reference πref, the optimal policy
satisfies

πθ(y|x) ∝ πref(y|x) exp
(
rθ(y|x)/β

)
, (8)

which implies the implicit reward is (up to an x-only constant c(x)):

rθ(y|x) = β[log πθ(y|x)− log πref(y|x)] + c(x). (9)

Substituting equation 9 into the BT model cancels c(x) and yields

Pθ(yw ≻ yl |x) = σ

(
β
[
log πθ(yw|x)

πref(yw|x) − log πθ(yl|x)
πref(yl|x)

])
. (10)

where σ(z) = 1/(1 + e−z).

To make this process computationally tractable for long sequences, we train on random prefixes of
length m∼U{1, . . . , L}, where L is the total length of the mesh. Let ym:m+τ denote the sequence
from the prefix to the truncation window, where τ is the window length (e.g., 36,864 tokens), then
maximizing the BT likelihood equation 10 gives the tDPO loss

LtDPO(θ) = −ED Em

[
log σ

(
β
[
log

πθ(yw,m:m+τ |x)
πref(yw,m:m+τ |x) − log

πθ(yl,m:m+τ |x)
πref(yl,m:m+τ |x)

])]
. (11)

tDPO optimizes each face sequence block S(f j) within the truncation window. This teaches
QuadGPT to make locally optimal decisions that lead to globally superior topology. After tDPO
optimization, QuadGPT presents a higher quality quad-mesh with more structured edge loops and
reduced fractures.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets QuadGPT is pretrained on a curated dataset of 1.3 million quad-dominant models, as-
sembled through an extensive collection, conversion, and filtering pipeline from sources including
ShapeNetV2 (Chang et al., 2015), 3D-FUTURE (Fu et al., 2021), Objaverse (Deitke et al., 2023b),
Objaverse-XL (Deitke et al., 2023a), and proprietary licensed assets. For preference alignment,
we construct a specialized post-training dataset built upon 500 diverse, high-quality dense meshes
(including both hard-surface and organic models) generated by Hunyuan3D 2.5 (Lai et al., 2025).
After an initial quality filter via rejection sampling, we generate multiple candidates from these
source meshes to construct an initial set of approximately 2,000 preference pairs for fine-tuning.
This core set of 500 meshes serves as the foundation for DPO. To enhance the model’s robustness
against noisy, dense inputs, point clouds during pre-training are densely sampled at 40,960 points
and augmented with random perturbations.

Implementation Details We pretrain QuadGPT on a cluster of 64 NVIDIA A100 GPUs for 7 days
using the AdamW optimizer (Loshchilov & Hutter, 2019) (β1 = 0.9, β2 = 0.95) with a learning
rate of 1e-4 and a linear warmup schedule. The Decoder is a 1.1B parameter model featuring 24
Transformer layers arranged in a three-stage hourglass architecture. This architecture employs linear
downsample layers with factors of 4 and 3 to efficiently process long sequences. The subsequent RL
fine-tuning stage is performed for 4 hours on the same hardware setup, using a reduced learning rate

6
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Original Mesh Point Cloud BPT DeepMeshMeshAny FastMesh Ours

Figure 4: Qualitative Comparison against Indirect Autoregressive Pipelines. The top four rows
show results on out-of-distribution dense meshes generated by Hunyuan3D (Lai et al., 2025), while
the bottom four rows showcase performance on artist-designed meshes. Baseline methods followed
by tri-to-quad conversion often produce topological artifacts and lose geometric detail. QuadGPT
consistently generates meshes with superior topological coherence and fidelity across both domains.

of 1e-7. Both pre-training and fine-tuning leverage a truncated sequence strategy to manage the long
contexts of high-resolution meshes. During inference, the architecture supports a context window of
36,864 tokens. We generate meshes using a combination of top-k and nucleus (top-p) sampling with
k = 10 and p = 0.95, along with a temperature of T = 0.5, to balance output diversity and stability.
To optimize performance, inference is accelerated through a custom implementation of KV caching
and CUDA graphs, specifically tailored for the hourglass architecture. This achieves a generation
speed of approximately 230 tokens per second on a single A100 GPU.

Baselines. We evaluate QuadGPT against two primary categories of state-of-the-art mesh gen-
eration methods. The first category comprises leading autoregressive models that generate tri-
angular meshes, including MeshAnythingV2 (Chen et al., 2025c), BPT (Weng et al., 2025),
DeepMesh (Zhao et al., 2025a), and FastMesh (Kim et al., 2025). Since these methods are fun-
damentally designed to produce triangular outputs, we apply a robust triangle-to-quadrilateral con-
version algorithm like (Muntoni & Cignoni, 2021) as a post-processing step to facilitate a fair com-

7
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Original Mesh QuadriFlow Ours Original Mesh QuadriFlow Ours

Figure 5: Qualitative Comparison against a Field-Guided Method. Field-guided methods like
QuadriFlow can be unstable on meshes with complex topology or sharp features.

Table 1: Quantitative comparison with other baselines in Artist and Dense Meshes. Our ap-
proach achieves superior performance compared to existing baselines. Quadriflow∗ are computed
only on the subset of inputs for which it successfully generated a mesh; its user study score incor-
porates a score of 0 for all failure cases.

Data Type Dense Meshes Artist Meshes

Metrics CD ↓ HD ↓ QR ↑ US ↑ CD ↓ HD ↓ QR ↑ US ↑
Quadriflow∗ (Huang et al., 2018) 0.045 0.099 100% 1.6 0.281 0.531 100% 0.3
MeshAnythingv2 (Chen et al., 2025c) 0.153 0.394 53% 1.4 0.096 0.251 60% 2.1
BPT (Weng et al., 2025) 0.115 0.283 43% 2.7 0.051 0.125 49% 3.1
DeepMesh (Zhao et al., 2025a) 0.246 0.435 64% 3.3 0.236 0.417 66% 2.8
FastMesh (Kim et al., 2025) 0.105 0.257 3% 1.1 0.052 0.141 17% 1.9
Ours 0.057 0.147 80% 4.9 0.043 0.095 78% 4.8

parison. The second category represents specialized quad-meshing techniques, for which we include
the well-established field-guided method QuadriFlow (Huang et al., 2018). This selection provides
a comprehensive benchmark against both the latest in generative modeling and classic, topology-
focused approaches.

4.2 QUALITATIVE RESULTS

We first present a qualitative comparison of QuadGPT against existing baselines across two distinct
domains: challenging, out-of-distribution dense meshes from other AI models, and in-distribution,
high-quality artist-designed meshes. Visual inspection is crucial, as it reveals the subtle yet critical
differences in topological quality that metrics alone cannot fully capture. As illustrated in Fig-
ure 4, the indirect pipeline of converting triangular meshes from autoregressive baselines often
struggles. These methods frequently produce meshes with significant topological artifacts, miss-
ing geometric details, or overly simplified structures that fail to capture the original shape’s nu-
ance. In contrast, QuadGPT consistently generates meshes that are significantly more coherent
and artistically plausible, producing the clean edge flow characteristic of professional work. Our
model demonstrates strong robustness on challenging AI-generated assets and achieves near-perfect
topological reconstruction on artist-designed meshes. Figure 5 compares our method against the
field-guided approach of QuadriFlow. The baseline exhibits significant instability on meshes with
complex topology or sharp features, often resulting in severe geometric degradation or catastrophic
failures. QuadGPT, in contrast, demonstrates exceptional robustness, faithfully reconstructing ge-
ometry while maintaining high-quality, structured topology in all examples.

4.3 QUANTITATIVE RESULTS

Table 1 summarizes the quantitative comparison of QuadGPT against all baselines across both artist-
designed and AI-generated dense meshes. We evaluate geometric fidelity using Chamfer Distance
(CD) and Hausdorff Distance (HD), topological quality via Quad Ratio (QR), and perceptual quality

8
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Point Cloud Post-trainPre-train

Figure 6: Effectiveness of tDPO-Pro. Our comprehensive training strategy significantly enhances
both the geometric quality and structural integrity of the generated quad-meshes.

Dense Mesh Point Cloud TriGPT(Q) TriGPT+RLTriGPT TriGPT+RL(Q) QuadGPTImage

Figure 7: Native Generation vs. Conversion Pipeline. (Q) denotes the use of a triangle-to-quad
conversion step. Although TriGPT employs the same RL fine-tuning to mitigate fractures, its topo-
logical quality is inherently constrained by the post-processing conversion, yielding significantly
inferior edge flow compared to our native QuadGPT.

through a comprehensive user study (US). The results demonstrate that QuadGPT consistently and
significantly outperforms competing approaches in both quality and robustness. The user study,
where experts ranked the outputs of all six methods from best (5 points) to worst (0 points), reveals
a decisive preference for our method. This confirms that its advantages in producing production-
ready assets are not only quantitatively measurable but also perceptually significant.

9
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4.4 ABLATION STUDIES

4.4.1 EFFECTIVENESS OF TDPO

We analyze the impact of our DPO components by comparing three variants: standard DPO (fine-
tuning on full, low-face-count meshes), tDPO (truncated training with a basic fracture penalty),
and our full tDPO-Pro model (truncated training with the complete topological reward). Table 2
shows that standard DPO fails to generalize to complex meshes. In contrast, tDPO dramatically im-
proves performance, while tDPO-Pro achieves the best results across all metrics. This improvement,
visualized in Figure 6, provides strong empirical support for our comprehensive, topology-aware,
truncated DPO framework.

4.4.2 EFFECTIVENESS OF CURRICULUM-BASED PRE-TRAINING

Table 2: Quantitative Evaluation of Training Strat-
egy. User study scores reflect expert rankings of the five
methods, ranging from 0 (worst) to 4 (best).

Method CD ↓ HD ↓ QR ↑ US ↑
From Scratch 0.081 0.203 75% 0.6
Finetune 0.065 0.167 72% 1.3
DPO 0.073 0.188 74% 1.1
tDPO 0.061 0.156 78% 3.3
tDPO-Pro 0.057 0.147 80% 3.7

We validate our curriculum learning strategy by
comparing it against a model trained directly
on quad-dominant meshes from scratch (“From
Scratch”). As shown in Table 2, the “From
Scratch” model struggles to converge, result-
ing in poor geometric fidelity. This difficulty
arises because predicting a quadrilateral face is
inherently more complex than predicting a tri-
angle, as it is topologically equivalent to pre-
dicting two correlated triangles simultaneously.
Initializing weights from a converged triangle-generation model (“Finetune”) yields significantly
superior results. This confirms that our curriculum strategy leveraging the simpler task of trian-
gle generation as a warmup is essential for establishing the stable geometric foundation required to
master the more challenging patterns of quadrilateral topology.

4.4.3 NATIVE GENERATION VS. CONVERSION PIPELINE

To isolate the benefits of our native approach, we introduce a strong baseline, TriGPT, which gen-
erates triangles that are then converted to quads. To ensure a fair comparison, TriGPT shares the
identical architecture, 1.3 million mesh training dataset, and tDPO reinforcement learning
strategy as QuadGPT. This setup controls for all confounding variables, testing only the efficacy of
the end-to-end native pipeline versus the generation-then-conversion paradigm.

Table 3: Native vs. Conversion Pipeline. QuadGPT
is compared against a strong triangle-generation base-
line (TriGPT), both with and without RL. US scores are
expert rankings (0–2).

Method CD ↓ HD ↓ QR ↑ US ↑
TriGPT(Q) 0.062 0.160 70% 0.2
TriGPT+RL(Q) 0.051 0.138 72% 0.5
QuadGPT (Ours) 0.057 0.147 80% 1.3

The results in Table 3 and Figure 7 confirm our
hypothesis. While the highly optimized triangle
baseline (TriGPT+RL) achieves slightly bet-
ter geometric scores (CD/HD), it cannot match
the topological quality of our native approach.
QuadGPT demonstrates a substantially higher
Quad Ratio (QR) and, crucially, a user prefer-
ence score 2.6x higher than the strongest base-
line. This decisive gap in perceptual quality
confirms that while post-hoc conversion struggles to create coherent global structures, our end-
to-end native framework excels at learning the artist-preferred topologies, validating its superior
practical utility.

5 CONCLUSION

We present QuadGPT, the first autoregressive framework that directly generates native quadrilateral
and mixed-element meshes. It achieves state-of-the-art results in generative meshing, setting a new
standard for both geometric fidelity and topological quality. Our scalable, neural-first approach
departs from previous triangle-based methods and conversion pipelines, which rely on heuristic
post-processing to approximate quad topology. By leveraging a unified serialization scheme and a
novel topology-aware fine-tuning stage (tDPO), QuadGPT directly optimizes for global structure,
making it well-suited for the automated creation of production-ready 3D assets.

10
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6 ETHICS STATEMENT

This work introduces QuadGPT, an autoregressive framework for direct generation of production-
ready, quad-dominant meshes. The model was trained on a blend of public and professionally
sourced data, subjected to rigorous quality filtering. Our primary goal is to demonstrate that a
scalable, end-to-end framework is effective for industrial-quality mesh generation, and we encour-
age the community to explore further along this scalable paradigm. To support practical adoption, a
public API and online interface will be provided. The authors declare no conflicts of interest.

7 REPRODUCIBILITY STATEMENT

This paper presents a scalable autoregressive framework for native quad-mesh generation. Although
full model release is not feasible at this stage, the method is comprehensively detailed in terms
of data representation, network architecture, and training protocols to facilitate replication and ex-
tension. We emphasize that high-quality data curation, including rigorous collection, processing,
and filtering of open-source data, is essential for achieving comparable performance. To support
validation and downstream use, we will provide a public API and Code.
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APPENDIX

A DATASET CURATION PIPELINE

The foundation of QuadGPT is a large-scale, high-quality dataset. This section details our three-
stage pipeline for its construction: data sourcing and augmentation, multi-stage quality filtering, and
final compilation.

A.1 DATA SOURCING AND AUGMENTATION

The foundation of QuadGPT is a large-scale, high-quality dataset. This section details our three-
stage pipeline for its construction: data sourcing and augmentation, multi-stage quality filtering, and
final compilation. We aggregate 3D models from diverse sources, including Objaverse-XL Deitke
et al. (2023a) and professional modeling repositories. To substantially augment our training data
with quad-dominant examples, we developed a Triangle-to-Quadrilateral Conversion Operator.
Given a triangle meshMT , the goal is to find an optimal set of internal edges Eint ⊂MT to dissolve.
We formulate this as an Integer Linear Programming (ILP) problem. For each edge e ∈ Eint, we
define a binary decision variable xe ∈ {0, 1}. The optimization objective is:

maximize
∑
e∈Eint

we · xe (12)

subject to the constraint that for any triangle t ∈MT ,

∑
e∈edges(t)

xe ≤ 1 (13)

The weight we is a quality score that favors dissolving edges that form well-conditioned quadrilat-
erals. Constraint 13 ensures each triangle participates in at most one merge operation, preserving
manifold integrity. Following this conversion, we perform a crucial geometric validation step: any
newly formed quadrilateral exhibiting a maximum interior angle greater than 150 degrees is deemed
geometrically unstable and is split back into its two original constituent triangles. This ensures our
automated pipeline produces only high-quality, well-shaped quadrilaterals.

A.2 MULTI-STAGE QUALITY FILTERING

The initial dataset, while extensive, contains numerous low-quality models. We employ a rigorous,
two-stage filtering pipeline to ensure data fidelity. First, we apply a suite of rule-based operators
to discard models with specific flaws, including high-aspect-ratio faces and patterns characteristic
of poor automated decimation. A critical component is our Fractured Geometry Detector (Algo-
rithm 1), which identifies open seams by performing a ”test weld” and checking for a significant
reduction in edge count without a loss of faces. Second, to filter for aesthetic quality, we trained a
vision-based quality assessment model on a manually annotated corpus of 100,000 models, allow-
ing us to automate the removal of assets with poor, albeit technically valid, edge flow.

A.3 FINAL DATASET COMPILATION

Following this pipeline, we selected models with face counts between 500 and 20,000 to form our
final training dataset, comprising 1.3 million high-quality, production-ready 3D models.
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Algorithm 1: Fractured Geometry Detection
Input : Mesh ObjectM
Output: Boolean ‘has fracture‘

M′′ ← Preprocess(M) /* Remove duplicates and loose geometry */
Components← SeparateIntoConnectedComponents(M′′);
for component in Components do

if num vertices(component) ¡ τvtx min then
continue;
/* Ignore small fragments */

end
if not IsManifold(component) then

Ebefore, Fbefore ← GetEdgeAndFaceCount(component);
component’← MergeVerticesByDistance(component, threshold = τweld);
Eafter, Fafter ← GetEdgeAndFaceCount(component’);
if Ebefore − Eafter > τedge delta and Fbefore = Fafter then

return true;
/* Fracture detected */

end
end

end
return false;

Algorithm 2: Fracture Count Calculation
Input : Partial MeshMk = (Vk,Fk)
Output: Fracture Count Cfrac

/* Define generation frontier from the last generated face. */
flast ← last face in the sequence of Fk;
if flast is null then

return 0;
end
yfrontier ← minv∈flast(v.y);

/* Count boundary faces at or below the frontier. */
Fboundary ← set of faces in Fk on the mesh boundary;
Cfrac ← 0;
for face f in Fboundary do

if ∀v ∈ f, v.y ≤ yfrontier then
Cfrac ← Cfrac + 1;

end
end
return Cfrac

B TOPOLOGICAL QUALITY METRICS FOR TRUNCATED SEQUENCES

This section provides a formal definition of the metrics used to evaluate the topological quality
of partially generated quadrilateral meshes. These metrics are specifically designed to operate on
truncated sequences, forming the basis of the reward signal for our Direct Preference Optimization
(DPO) fine-tuning stage.

B.1 FRACTURE DETECTION

A primary failure mode in autoregressive generation is fractures. Since our serialization is canoni-
cally ordered bottom-to-top, we detect fractures by identifying boundary faces at the current gener-
ation frontier. Algorithm 2 formalizes this by defining the frontier based on the lowest Y-coordinate
of the last generated face. A non-zero count indicates a failure to generate an adjacent face in the
expected upward direction, signaling a topological break.
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B.2 QUANTIFYING EDGE FLOW: QUAD RINGS AND LINES

The hallmark of high-quality quad topology is structured edge flow, which we quantify by identi-
fying two key structures: Quad Rings (closed loops of faces) and Quad Lines (open strips), as
illustrated in Figure 8. Algorithm 3 formalizes an edge-based traversal that ”walks” across adjacent
quadrilateral faces. If a path terminates, it is classified as a Quad Line; if it returns to its starting
edge, it forms a Quad Ring. From the discovered sets of rings (R) and lines (L), we compute the
final reward components: the ratio of faces participating in closed rings and the average length of
the open lines, both of which are maximized during DPO.

Algorithm 3: Quad Ring and Line Discovery
Input : Partial MeshMk

Output: Set of Quad Rings R (face lists), Set of Quad Lines L (face lists)

R,L← ∅, ∅;
Eprocessed ← ∅;
for edge estart inMk.edges do

if estart /∈ Eprocessed then
path faces← ∅; path edges← ∅;
current edge← estart;
while current edge ̸= null and current edge /∈ path edges do

add current edge to path edges;
adj quad← a quadrilateral face adjacent to current edge;
if adj quad exists then

add adj quad to path faces;
current edge← edge opposite to current edge in adj quad;

end
else

current edge← null;
end

end
Eprocessed.add(path edges);
/* Classify the discovered path based on closure. */
if current edge is null or current edge ̸= estart then

add path faces to L;
end
else

add path faces to R;
end

end
end
return R,L

C MORE RESULTS

To further demonstrate the superiority of our direct generation approach, we provide extensive quali-
tative comparisons in Figure 9 and Figure 10. These results highlight the robustness and high fidelity
of QuadGPT across a wide variety of complex geometries. Additionally, to illustrate the structural
integrity of our generated models, we present multi-view renderings of several samples in Figure 11.
Finally, we compare our method with closed-source, commercial quad mesh generation techniques,
including Tripo Team (2025) and Quad Remesher Exoside (2019) in Figure 12.

D ADDITIONAL EXPERIMENTAL ANALYSIS

In this section, we provide further analysis to complement the experiments in the main paper.
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Figure 8: An illustration of a Quad Ring which is closed loop of quadrilateral faces. Our tDPO
reward is designed to encourage the formation of such desirable, structured patterns.

D.1 IMPACT OF CURRICULUM LEARNING AND TOPOLOGY-AWARE REWARDS

Figure 13(a) compares the next token prediction loss curves between from-scratch quadrilateral
mesh training and fine-tuning from pre-trained triangle mesh weights. Fine-tuning achieves faster
convergence and lower loss, confirming that inheriting triangle mesh knowledge provides better ini-
tialization for quadrilateral generation. Figure 13(b) presents the reward curves during DPO training,
where our tDPO-Pro approach with truncated edge loop optimization consistently achieves the high-
est reward, validating the effectiveness of our complete topological reward design. The progressive
improvement from DPO to tDPO and finally tDPO-Pro demonstrates the cumulative benefits of our
methodological contributions.

D.2 THE INHERENT LIMITATIONS OF TRIANGLE-TO-QUAD CONVERSION

To illustrate the limitations of any post-hoc conversion pipeline, we conduct a best-case scenario
experiment. We begin with a high-quality artist-created quad mesh and triangulate it. This process
represents an irreversible information loss: the artist’s original topological intent becomes ambigu-
ous, creating a complex combinatorial problem that heuristic algorithms struggle to solve.

As shown in Figure 14, we compare our own ILP-based operator against the default methods
in MeshLab Tarini et al. (200) and Blender Blender Foundation. While our optimized operator
performs best, none of the methods can perfectly recover the original edge flow, leaving behind
topological artifacts.
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Original Mesh Point Cloud BPT DeepMeshMeshAny FastMesh Ours

Figure 9: Extended Qualitative Comparison against triangle generation.

This challenge is significantly amplified when the input is an AI-generated triangle mesh, which
often has an edge flow unsuitable for conversion, as seen in our TriGPT experiments (Figure 7).
This compounding effect of a suboptimal input and an imperfect algorithm reinforces the need for
our native generation approach.

Furthermore, algorithms from adjacent fields like Blossom-Quad (?), designed for 2D finite element
analysis, are too restrictive for complex 3D surfaces. Its perfect-matching requirement caused it to
fail on all but our simplest test cases, underscoring the need for a domain-specific, learning-based
solution like QuadGPT.
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Figure 10: A qualitative comparison against the field-guided method QuadriFlow. This example
highlights the superior robustness and topological quality of our direct generative approach.

D.3 ANALYSIS OF COMPRESSED VS. DIRECT COORDINATE REPRESENTATION

A critical design choice in autoregressive mesh generation is the tokenization strategy. Methods like
DeepMesh (Zhao et al., 2025a) and BPT (Weng et al., 2025) employ compressed representations.
Our experiments with these methods on triangle meshes confirmed a similar finding: compressed
tokenizers lead to faster initial convergence due to shorter sequence lengths. However, we argue that
faster convergence does not necessarily lead to better final performance. As shown in Table 4, our ex-
tensive experiments at the 1B-parameter scale show that a simple, direct coordinate representation
ultimately achieves superior results in both geometric fidelity and topological quality, a finding
strongly corroborated by our user study. We hypothesize that overly complex, “over-designed” tok-
enizers can introduce an unintended inductive bias, constraining the model’s expressive capacity and
limiting its performance ceiling, especially when trained on large, diverse datasets. This observation
aligns with a broader trend in deep learning, demonstrated by models like DepthAnything V3 (Lin
et al., 2025), where simple, highly scalable architectures often outperform more complex designs
when sufficient data and compute are available. For QuadGPT, we therefore prioritized the higher
performance ceiling of the direct representation, confident that techniques like truncated training
effectively manage the longer sequence lengths.

D.4 ABLATION ON TRAINING DATA

Table 4: Quantitative Comparison: Tokenization
on Triangle Meshes. Direct coordinate representa-
tion (TriGPT) outperforms a compressed BPT-style tok-
enizer (TriGPT+BPT). User Study scores reflect expert
rankings from 0 (worst) to 1 (best). (Q) denotes outputs
were converted to quads for evaluation.

Method CD ↓ HD ↓ QR ↑ US ↑
TriGPT+BPT (Compressed) 0.078 0.198 68% 0.3
TriGPT (Direct Coord.) 0.062 0.160 70% 0.7

To disentangle the impact of our methodology
from our curated dataset, we conduct a data ab-
lation study. We train a variant, QuadGPT-OS,
using only the publicly available portions of
our dataset (e.g., ShapeNet Chang et al. (2015),
Objaverse-XL Deitke et al. (2023a)), subjected
to the same rigorous filtering pipeline described
in Section A. This experiment serves to an-
swer a critical question: can a robust, scalable
methodology achieve state-of-the-art results even when limited to open-source data?

The results, shown in Figure 15, are twofold and unequivocal. First, QuadGPT-OS still signif-
icantly outperforms all prior autoregressive baselines. This confirms that our core contribu-
tions—the scalable architecture, curriculum learning strategy, and tDPO refinement—are the pri-
mary drivers of our model’s high performance. It proves that our method is not merely a product of
better data, but a fundamentally more solid approach to the problem.

Second, our full model, trained on the complete 1.3 million mesh dataset, demonstrates a further
substantial improvement in quality over QuadGPT-OS. This highlights a key insight: while a su-
perior methodology can establish a new state of the art on public data, the full potential of a truly
scalable approach is unlocked through careful, large-scale data curation. Our work demonstrates the
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Figure 11: Multi-View Renderings of Generated Meshes.

synergistic impact of advancing both the model and the data to push the frontier of production-ready
3D generation.

E DOWNSTREAM APPLICATIONS

This section demonstrates the advantages of high-quality topology in downstream applications, such
as UV mapping and animation. Thanks to our superior quad mesh structure, the models facilitate
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Original Mesh Tripo OursImage Quad Remesher

Figure 12: Comparison with closed-source commercial quad mesh generation methods. Our
approach preserves more geometric details, especially edge loops, which are crucial for UV seg-
mentation and animation. Compared to Blender’s remeshing plugin, our method produces compact
faces.

(a) (b)

Figure 13: Training Dynamics Analysis. (a) Next token prediction loss comparison between from-
scratch quadrilateral mesh training and fine-tuning from pre-trained triangle mesh weights. Fine-
tuning demonstrates faster convergence and lower loss. (b) DPO reward curves for different vari-
ants, showing that our tDPO-Pro approach achieves the highest reward with truncated edge loop
optimization.

high-quality UV unwrapping Li et al. (2025a). Furthermore, the abundance of edge loops enables
more natural mesh deformation.

F LIMITATION AND FUTURE WORK

Despite the promising results of QuadGPT, several limitations present important avenues for future
research.

Domain Gap and Part-based Generation. Our framework operates within the prevailing two-
stage paradigm, where topology generation follows geometry generation. This creates a critical
domain gap: the model is trained on point clouds from clean, artist-crafted assets but is often de-
ployed on noisy point clouds derived from AI-generated implicit fields. This mismatch can lead
to fractures and other failures on complex, out-of-distribution shapes, as shown in Figure 17. A
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Quad-to-Tri Tri2Quad(M) Tri2Quad(B) Tri2Quad(Our)Original Quad

Figure 14: The Irreversibility of Triangulation and Limitations of Conversion Algorithms. (a)
A high-quality artist-created quad mesh with clean edge flow. (b) The same mesh after triangu-
lation—the ground truth topological information is now ambiguous. (c-e) The results of applying
different tri-to-quad conversion algorithms to (b). While our ILP-based operator (e) produces a bet-
ter result than the default methods in MeshLab (c) and Blender (d), none can perfectly recover the
original topology, resulting in broken edge loops and artifacts. This demonstrates the fundamental
limitations of post-hoc conversion.

promising direction is to develop an end-to-end model that co-generates geometry and topology,
bypassing the intermediate dense mesh entirely. Furthermore, since professional assets are inher-
ently part-based, integrating part-aware generation, potentially building on recent advances in part
generation (Yan et al., 2025), could significantly improve robustness and fidelity.
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Figure 15: Qualitative results of our data ablation study. “QuadGPT-OS” is trained exclusively
on filtered public datasets, while “QuadGPT” uses our complete curated dataset. “QuadGPT-OS”
already demonstrates a significant improvement in topological coherence and geometric detail over
prior baselines. The full model shows further refinement, particularly in achieving cleaner, more
professional edge flow, validating the scalability of our approach with high-quality data.

Lack of Controllable Polygon Number. QuadGPT currently cannot explicitly control the final
polygon count; attempts to add a simple number condition were ineffective. This limits its utility
in production, where generating assets with specific polygon budgets for LODs is essential. Future
work must develop a robust control mechanism.

Advancing the Reinforcement Learning Framework. Our current implementation uses off-
policy DPO for its simplicity and stability. However, our programmatic reward, while effective
at enforcing structural rules like edge loops, cannot capture the full nuance of artistic preference.
Future work could explore two key directions. First, developing a reward model trained on human
preference data from professional artists could provide a richer, more aligned optimization signal.
Second, investigating more advanced, potentially online RL algorithms could further elevate the
quality and complexity of the generated topology.
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（a） （b）

Figure 16: UV mapping and animation deformation comparison. (a) UV unwrapping result on
a quad mesh generated by our method. (b) Animation deformation comparison: the top row shows
results on a mesh from Tripo, while the bottom row presents ours. Our method captures geometric
details more effectively and produces more edge loops, leading to noticeably more realistic defor-
mation.

Figure 17: Failure Cases and Limitations. Our model can sometimes struggle to generalize to out-
of-distribution point clouds sampled from AI-generated assets, particularly for architectural models
with sharp features, which can result in fractures or incomplete geometry.
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