

QUADGPT: NATIVE QUADRILATERAL MESH GENERATION WITH AUTOREGRESSIVE MODELS

Anonymous authors

Paper under double-blind review

Figure 1: **QuadGPT** can generate diverse, high-quality quad meshes conditioned on point clouds.

ABSTRACT

The generation of quadrilateral-dominant meshes is a cornerstone of professional 3D content creation. However, existing generative models generate quad meshes by first generating triangle meshes and then merging triangles into quadrilaterals with some specific rules, which typically produces quad meshes with poor topology. In this paper, we introduce QuadGPT, the first autoregressive framework for generating quadrilateral meshes in an end-to-end manner. QuadGPT formulates this as a sequence prediction paradigm, distinguished by two key innovations: a unified tokenization method to handle mixed topologies of triangles and quadrilaterals, and a specialized Reinforcement Learning fine-tuning method tDPO for better generation quality. Extensive experiments demonstrate that QuadGPT significantly surpasses previous triangle-to-quad conversion pipelines in both geometric accuracy and topological quality. Our work establishes a new benchmark for native quad-mesh generation and showcases the power of combining large-scale autoregressive models with topology-aware RL refinement for creating structured 3D assets.

1 INTRODUCTION

In the creation of high-fidelity 3D assets for game development, quadrilateral-dominant meshes play a fundamental role in ensuring modeling efficiency, deformation stability, and animation readiness. The structured topology provided by quad-dominant layouts facilitates smoother subdivision surfaces, more natural articulation, and easier UV unwrapping, all of which are essential in production environments (Lei et al., 2025). Consequently, quad meshes have become the industry standard, especially in character and organic modeling, where clean edge flow and controllable curvature are critical.

Figure 2: **Comparison of topological quality across different pipelines.** Iso-surfacing methods produce dense, unstructured triangular meshes. Autoregressive triangle generation followed by heuristic conversion fails to create coherent structure. Our QuadGPT directly generates native quadrilateral meshes with clean, artist-friendly edge flow.

In the pursuit of automated generation of artist-ready 3D assets from inputs such as text or images, existing approaches typically decouple the problem into two separate stages: geometry generation and topology generation. For geometry, latent diffusion models (LDMs) have achieved remarkable success in generating 3D shapes (Zhao et al., 2025b; Li et al., 2025d) via implicit representations like SDF (Li et al., 2024). Meshes are then extracted with iso-surface algorithms (Lorensen & Cline, 1998; Shen et al., 2021; 2023), inevitably resulting in unstructured dense meshes. On the other hand, topology-focused methods using cross-field guidance (Huang et al., 2018; Dong et al., 2025a) aim for structure but are often not robust, requiring pristine input meshes and failing to produce the adaptive, artist-like tessellation where polygon density matches geometric complexity.

More recently, autoregressive mesh generation methods such as MeshAnything (Chen et al., 2025b), BPT (Weng et al., 2025) and Mesh-RFT (Liu et al., 2025) have shown promise by modeling mesh sequences with Transformer architectures. While these approaches capture artist-like topology, they remain limited to generating only triangular meshes. Converting these outputs into quadrilateral meshes still requires triangle-merging algorithms that often break natural edge flow and introduce artifacts, as demonstrated in Figure 2. Consequently, even high-quality triangle meshes are hard to translate into production-ready quad layouts, highlighting a fundamental discrepancy between generated 3D assets and industrial applications.

To address these challenges, we propose an end-to-end autoregressive framework for direct generation of native quadrilateral meshes. Our model consumes a point cloud as input and produces a structured face sequence as output. Recognizing that artist-crafted meshes are typically quad-dominant yet usually incorporate a small number of triangles, we design a novel unified representation that explicitly supports mixed-element topologies through a tailored padding strategy for triangular faces. For computation efficiency, we employ an Hourglass Transformer architecture that first condenses the face sequence and subsequently compresses vertex information. The model is trained using a truncated sequence strategy, enabling support for high-poly meshes. To further improve topology quality, we introduce a reinforcement learning fine-tuning phase with truncated direct preference optimization (tDPO) that rewards the formation of coherent edge loops, a characteristic feature of professionally designed assets. Our reinforcement learning framework is specifically designed to evaluate and compare truncated sequences, ensuring effective optimization even for large-scale meshes.

Extensive experiments on the Toys4K dataset (Stojanov et al., 2021) confirm that QuadGPT consistently generates higher-quality 3D meshes than state-of-the-art baselines. By leveraging a large-scale, carefully curated dataset and comprehensive pre-training and post-training protocols, we fur-

108
 109
 110
 111
 112
 113
 114
 ther evaluate QuadGPT on dense meshes generated by Hunyuan3D (Zhao et al., 2025b). The model
 demonstrates robust performance across both soft-surface models (e.g., human characters) and hard-
 surface objects (e.g., props). To ensure a rigorous comparison, we trained an triangle-only variant
 (TriGPT) followed by triangle-to-quad conversion. As shown in Figure 2, QuadGPT’s native quadri-
 lateral architecture yields significantly superior topology. This breakthrough establishes QuadGPT
 as an unequivocally state-of-the-art solution, effectively bridging the gap between text/image inputs
 and production-ready 3D artist meshes.

115
 The main contributions of this paper are summarized as follows:
 116

117
 118
 119
 120
 121
 122
 123
 124
 125
 • We present QuadGPT, the first autoregressive model that generates native quad-dominant meshes
 in an end-to-end manner.
 • We propose a unified sequence representation for mixed-element meshes with a padding-based
 serialization, enabling the scalable process of heterogeneous mesh topologies.
 • We introduce tDPO, which is designed to optimize global quadrilateral flow through a novel re-
 ward mechanism that encourages the formation of structured edge loops.
 • QuadGPT achieves state-of-the-art performance, producing game-ready meshes that exceed exist-
 ing methods in both geometric and topological quality.

126
 127
2 RELATED WORK

128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
Indirect and Field-Guided Mesh Generation. A dominant paradigm in 3D generation relies on
 continuous neural representations like vecsets (Zhang et al., 2023; 2024; Li et al., 2024; Zhao et al.,
 2023; Wu et al., 2024; Li et al., 2025b; Zhao et al., 2025b) or sparse voxels (Xiang et al., 2024;
 Ye et al., 2025; He et al., 2025; Wu et al., 2025; Li et al., 2025d). A universal limitation of these
 methods is their reliance on an iso-surfacing step, such as Marching Cubes (Lorensen & Cline,
 1998), which invariably yields dense, topologically unstructured **triangular meshes**. Concurrently,
 traditional approaches to quadrilateral meshing are predominantly guided by cross-field computa-
 tion. These methods are either optimization-based, requiring slow, per-shape optimization (Bommes
 et al., 2009; Jakob et al., 2015; Huang et al., 2018; Bommes et al., 2013; Ebke et al., 2016; Campen
 & Kobbelt, 2014; Jiang et al., 2015; Diamanti et al., 2015), or more recent learning-based techniques
 that accelerate field prediction (Dielen et al., 2021; Li et al., 2025c; Dong et al., 2025b;a). However,
 all field-guided methods depend on multi-stage pipelines that are not end-to-end generative frame-
 works.

141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
Native Triangle Mesh Generation. To address the limitations of indirect methods, a promising
 direction has been the direct autoregressive generation of mesh sequences. This field, pioneered by
 MeshGPT (Siddiqui et al., 2024), has seen rapid progress. Subsequent work has largely focused
 on three key areas: (1) developing more efficient tokenization and compression schemes to manage
 long sequences (Chen et al., 2024; 2025c; Tang et al., 2025; Weng et al., 2025; Lionar et al., 2025;
 Song et al., 2025; Kim et al., 2025); (2) achieving scalability to tens of thousands of faces through
 architectural innovations, most notably with the Hourglass Transformer in Meshtron (Hao et al.,
 2024); and (3) enhancing output quality and alignment with human preferences via reinforcement
 learning, as demonstrated by DeepMesh (Zhao et al., 2025a) and Mesh-RFT (Liu et al., 2025).
 Complementary efforts have focused on areas such as acceleration (Chen et al., 2025a; Wang et al.,
 2025a;b) and continuous level-of-detail (Zhang et al., 2025). Despite these significant advances, all
 existing methods in this domain are fundamentally confined to generating **triangular meshes**. This
 reveals a critical gap between the state-of-the-art in generative modeling and the practical need for
 industry-standard quadrilateral assets. Unlike the above works, QuadGPT makes the first attempt to
 bridge this gap, presenting a scalable generative model for native quadrilateral mesh generation.

156
 157
3 QUADGPT

158
 159
 160
 161
 Our approach, QuadGPT, introduces the first autoregressive framework for the direct generation of
 native quadrilateral and mixed-element meshes. The methodology consists of three core pillars: (1)
 a unified serialization scheme to represent mixed-topology meshes as a single token sequence; (2)
 a powerful autoregressive architecture for generative pre-training; and (3) tDPO stage with a novel

Figure 3: **Pipeline of QuadGPT.** First, an autoregressive Hourglass Transformer is pre-trained to generate mesh sequences conditioned on an input point cloud. Subsequently, the model is fine-tuned using Truncated Direct Preference Optimization (tDPO), where a preference dataset is automatically constructed by comparing truncated sequences via a novel topological reward.

topological reward for direct topological optimization. An overview of our pipeline is presented in Figure 3.

3.1 UNIFIED SERIALIZATION FOR MIXED-ELEMENT MESHES

We formulate mixed-element mesh generation as a sequence prediction problem, transforming a mesh \mathcal{M} into a single, linear sequence of discrete integer tokens. Our serialization scheme is designed to be canonical and to uniformly handle both triangular ($n = 3$) and quadrilateral ($n = 4$) faces. A mesh is represented at three hierarchical levels:

$$\begin{aligned} \mathcal{M} &= \{f^1, f^2, \dots, f^{N_f}\} && \text{Face Level} \\ &= \{\mathcal{S}(f^1), \mathcal{S}(f^2), \dots, \mathcal{S}(f^{N_f})\} && \text{Token Block Level} \quad (1) \\ &= \underbrace{\{\tau_{\text{pad}}, \dots, c_1^1, \dots, c_3^1, \dots\}}_{\text{e.g., Triangle Block}} \underbrace{\{c_1^2, \dots, c_4^2, \dots\}}_{\text{e.g., Quad Block}} && \text{Coordinate – Token Level} \end{aligned}$$

where $\mathcal{S}(\cdot)$ is the face serialization function and τ_{pad} is a special padding token.

Canonical Representation. To ensure a deterministic sequence for any given geometry, we first establish a canonical representation. Vertex coordinates are normalized to a $[-0.95, 0.95]^3$ cube and then quantized. To minimize precision loss, we employ a high-resolution **1024-level (10-bit)** quantization, mapping each coordinate to an integer in $\{0, 1, \dots, 1023\}$. All unique vertices are then sorted lexicographically by (z, x, y) coordinates, and the face set is sorted accordingly. This multi-step process guarantees a unique mapping from mesh to sequence.

Unified Token Block Structure. The cornerstone of our approach is a **unified fixed-length block representation**. Each face, regardless of its valence, is tokenized into a consistent 12-token block using the padding token τ_{pad} (integer value 1024). A quadrilateral face is tokenized by directly flattening its $4 \times 3 = 12$ vertex coordinate tokens. A triangular face is prepended with three τ_{pad} tokens, followed by its $3 \times 3 = 9$ coordinate tokens, also forming a 12-token block. This design allows the model to implicitly learn the face type from the presence of padding.

This unified structure offers several advantages: it creates a simple, highly parallelizable tokenization process that scales effortlessly; it simplifies the model architecture; and it allows the Transformer to naturally differentiate face types without explicit type tokens.

3.2 AUTOREGRESSIVE PRE-TRAINING

The pre-training stage is designed to teach QuadGPT the fundamental distribution of mesh geometry and connectivity by training it to predict the next token in a sequence. The model is optimized using a standard cross-entropy loss objective:

$$\mathcal{L}_{\text{ce}} = \text{CrossEntropy}(\hat{\mathbf{S}}[: -1], \mathbf{S}[1 :]), \quad (2)$$

216 where \mathbf{S} is the ground-truth token sequence and $\hat{\mathbf{S}}$ represents the predicted logits. Our approach
 217 incorporates a powerful hierarchical architecture, shape conditioning, and a specialized training
 218 strategy tailored for structured geometric data.
 219

220 **Hierarchical Model Architecture.** Rather than treating mesh generation as a generic sequence
 221 task, we leverage the inherent hierarchical structure of mesh data. To this end, we utilize the
 222 **Hourglass Transformer** architecture (Hao et al., 2024; Nawrot et al., 2021), which processes
 223 the input sequence at multiple levels of abstraction. Let the input token sequence embeddings be
 224 $\mathbf{E}^{(0)} \in \mathbb{R}^{L \times D_0}$. The architecture employs a series of causality-preserving shortening layers to create
 225 a computational bottleneck. The sequence is first processed by a Transformer block and then
 226 shortened by a factor of 4, and subsequently by a factor of 3:
 227

$$\mathbf{E}^{(1)} = \text{Shorten}_4(\text{TransformerBlock}_1(\mathbf{E}^{(0)})) \in \mathbb{R}^{(L/4) \times D_1} \quad (3)$$

$$\mathbf{E}^{(2)} = \text{Shorten}_3(\text{TransformerBlock}_2(\mathbf{E}^{(1)})) \in \mathbb{R}^{(L/12) \times D_2} \quad (4)$$

228 This hierarchical processing enables the model to efficiently capture high-level global context in
 229 its bottleneck layers and fine-grained local details in its outer layers before upsampling back to the
 230 original sequence length for prediction.
 231

232 **Shape and Topological Conditioning.** QuadGPT’s generation is guided by two primary conditions.
 233 First, a point cloud with normals, $\mathcal{P} = \{\mathbf{p}_i \in \mathbb{R}^6\}_{i=1}^{N_p}$, is encoded into a global shape embedding
 234 $\mathbf{E}_{\text{shape}}$ by a pre-trained Michelangelo encoder (Zhao et al., 2023). To ensure this geometric
 235 context remains influential throughout the generation of long sequences, the embedding is supplied
 236 to the decoder via cross-attention:
 237

$$\mathbf{H}' = \text{CrossAttn}(\mathbf{H}, \mathbf{E}_{\text{shape}}, \mathbf{E}_{\text{shape}}), \quad (5)$$

238 where \mathbf{H} represents the decoder’s hidden states. Second, to enable our training curriculum, we
 239 introduce a learnable embedding conditioned on a quad-dominance parameter $r \in [0, 1]$. This
 240 parameter explicitly controls the target ratio of face types, from purely triangular ($r = 0$) to mixed
 241 quadrilateral ($r = 1$), providing the mechanism for our curriculum learning strategy.
 242

243 **Training Strategy.** Our training strategy combines truncated sequence training for efficiency with
 244 a novel curriculum for stability. To manage the long sequences of high-resolution meshes, we em-
 245 ploy **truncated training**, using fixed-length segments (e.g., 36,864 tokens) to enable efficient, large-
 246 batch processing. Furthermore, to ensure stable learning of complex quadrilateral topology, we in-
 247 troduce a **curriculum learning** strategy. We first initialize QuadGPT with weights from a model
 248 pre-trained exclusively on triangular meshes. We then progressively finetune this model, using our
 249 quad-dominance condition r to gradually anneal the training data distribution from purely triangular
 250 ($r = 0$) to quad-dominant ($r \rightarrow 1$). This graduated exposure allows the model to master basic
 251 geometric syntax before tackling the more complex rules of quadrilateral topology, significantly
 252 improving stability and convergence speed.
 253

254 **Data Strategy.** The scarcity of dedicated quad-mesh datasets is addressed by a novel curation
 255 pipeline. Starting from diverse 3D sources, we apply automated triangle-to-quad conversion and
 256 multi-stage quality filtering to select 1.3 million high-quality models. This dataset is pivotal for
 257 training QuadGPT. Further details on our data curation can be found in Appendix A.
 258

259 3.3 TOPOLOGICAL REFINEMENT WITH REINFORCEMENT LEARNING

260 While pre-training teaches syntactic validity, the cross-entropy loss is a local objective that cannot
 261 optimize for global, emergent properties like clean topology. To address this, we introduce a rein-
 262 force learning (RL) stage using Direct Preference Optimization (DPO) (Rafailov et al., 2023)
 263 to explicitly align our model with the topological structures preferred in professional 3D workflows.
 264

265 **Topological Scoring Standard.** Our alignment is guided by a specialized scoring standard de-
 266 signed to evaluate the quality of *generated mesh subsequences*. The reward function quantifies
 267 topological integrity by primarily rewarding the formation of long, continuous edge loops (L_{avg})
 268 and penalizing generation fractures (R_{frac}). These metrics are computed automatically, providing
 269 a scalable signal for topological quality. The detailed formulation of these metrics is provided in
 Appendix B.

270 **Truncated DPO(tDPO)-based Post-Training.** We finetune the pretrained QuadGPT policy by
 271 forming preference pairs using our topological rewards and optimizing a DPO-style objective on
 272 the collected pairs. Let π_θ denote the trainable policy being fine-tuned, π_{ref} the frozen reference
 273 model, and $\beta > 0$ a parameter controlling the deviation from π_{ref} . The current policy π_θ produces
 274 candidates for input x , which are ranked by topological rewards to yield preference pairs (y_w, y_l)
 275 with

$$L_{\text{avg}}(y_w) > L_{\text{avg}}(y_l), \quad (6)$$

$$R_{\text{frac}}(y_w) < R_{\text{frac}}(y_l). \quad (7)$$

279 We assume pairwise preferences follow a Bradley–Terry (BT) likelihood parameterized by an im-
 280 plicit reward $r_\theta(y|x)$. In KL-regularized policy optimization with reference π_{ref} , the optimal policy
 281 satisfies

$$\pi_\theta(y|x) \propto \pi_{\text{ref}}(y|x) \exp(r_\theta(y|x)/\beta), \quad (8)$$

284 which implies the implicit reward is (up to an x -only constant $c(x)$):

$$r_\theta(y|x) = \beta[\log \pi_\theta(y|x) - \log \pi_{\text{ref}}(y|x)] + c(x). \quad (9)$$

286 Substituting equation 9 into the BT model cancels $c(x)$ and yields

$$\mathbb{P}_\theta(y_w \succ y_l | x) = \sigma\left(\beta\left[\log \frac{\pi_\theta(y_w|x)}{\pi_{\text{ref}}(y_w|x)} - \log \frac{\pi_\theta(y_l|x)}{\pi_{\text{ref}}(y_l|x)}\right]\right). \quad (10)$$

291 where $\sigma(z) = 1/(1 + e^{-z})$.

293 To make this process computationally tractable for long sequences, we train on random prefixes of
 294 length $m \sim \mathcal{U}\{1, \dots, L\}$, where L is the total length of the mesh. Let $y_{m:m+\tau}$ denote the sequence
 295 from the prefix to the truncation window, where τ is the window length (e.g., 36,864 tokens), then
 296 maximizing the BT likelihood equation 10 gives the tDPO loss

$$\mathcal{L}_{\text{tDPO}}(\theta) = -\mathbb{E}_{\mathcal{D}} \mathbb{E}_m \left[\log \sigma\left(\beta\left[\log \frac{\pi_\theta(y_{w,m:m+\tau}|x)}{\pi_{\text{ref}}(y_{w,m:m+\tau}|x)} - \log \frac{\pi_\theta(y_{l,m:m+\tau}|x)}{\pi_{\text{ref}}(y_{l,m:m+\tau}|x)}\right]\right)\right]. \quad (11)$$

299 tDPO optimizes each face sequence block $\mathcal{S}(\mathbf{f}^j)$ within the truncation window. This teaches
 300 QuadGPT to make locally optimal decisions that lead to globally superior topology. After tDPO
 301 optimization, QuadGPT presents a higher quality quad-mesh with more structured edge loops and
 302 reduced fractures.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

308 **Datasets** QuadGPT is pretrained on a curated dataset of 1.3 million quad-dominant models, as-
 309 sembedded through an extensive collection, conversion, and filtering pipeline from sources including
 310 ShapeNetV2 (Chang et al., 2015), 3D-FUTURE (Fu et al., 2021), Objaverse (Deitke et al., 2023b),
 311 Objaverse-XL (Deitke et al., 2023a), and proprietary licensed assets. For preference alignment,
 312 we construct a specialized post-training dataset built upon 500 diverse, high-quality dense meshes
 313 (including both hard-surface and organic models) generated by Hunyuan3D 2.5 (Lai et al., 2025).
 314 After an initial quality filter via rejection sampling, we generate multiple candidates from these
 315 source meshes to construct an initial set of approximately 2,000 preference pairs for fine-tuning.
 316 This core set of 500 meshes serves as the foundation for DPO. To enhance the model’s robustness
 317 against noisy, dense inputs, point clouds during pre-training are densely sampled at 40,960 points
 318 and augmented with random perturbations.

319 **Implementation Details** We pretrain QuadGPT on a cluster of 64 NVIDIA A100 GPUs for 7 days
 320 using the AdamW optimizer (Loshchilov & Hutter, 2019) ($\beta_1 = 0.9, \beta_2 = 0.95$) with a learning
 321 rate of 1e-4 and a linear warmup schedule. The **Decoder** is a 1.1B parameter model featuring 24
 322 Transformer layers arranged in a three-stage hourglass architecture. This architecture employs linear
 323 downsample layers with factors of 4 and 3 to efficiently process long sequences. The subsequent RL
 fine-tuning stage is performed for 4 hours on the same hardware setup, using a reduced learning rate

Figure 4: **Qualitative Comparison against Indirect Autoregressive Pipelines.** The top four rows show results on out-of-distribution dense meshes generated by Hunyuan3D (Lai et al., 2025), while the bottom four rows showcase performance on artist-designed meshes. Baseline methods followed by tri-to-quadrilateral conversion often produce topological artifacts and lose geometric detail. QuadGPT consistently generates meshes with superior topological coherence and fidelity across both domains.

of 1e-7. Both pre-training and fine-tuning leverage a truncated sequence strategy to manage the long contexts of high-resolution meshes. During inference, the architecture supports a context window of 36,864 tokens. We generate meshes using a combination of top-k and nucleus (top-p) sampling with $k = 10$ and $p = 0.95$, along with a temperature of $T = 0.5$, to balance output diversity and stability. To optimize performance, inference is accelerated through a custom implementation of KV caching and CUDA graphs, specifically tailored for the hourglass architecture. This achieves a generation speed of approximately 230 tokens per second on a single A100 GPU.

Baselines. We evaluate QuadGPT against two primary categories of state-of-the-art mesh generation methods. The first category comprises leading autoregressive models that generate triangular meshes, including **MeshAnythingV2** (Chen et al., 2025c), **BPT** (Weng et al., 2025), **DeepMesh** (Zhao et al., 2025a), and **FastMesh** (Kim et al., 2025). Since these methods are fundamentally designed to produce triangular outputs, we apply a robust triangle-to-quadrilateral conversion algorithm like (Muntoni & Cignoni, 2021) as a post-processing step to facilitate a fair com-

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
Figure 5: **Qualitative Comparison against a Field-Guided Method.** Field-guided methods like QuadriFlow can be unstable on meshes with complex topology or sharp features.

Table 1: **Quantitative comparison with other baselines in Artist and Dense Meshes.** Our approach achieves superior performance compared to existing baselines. Quadriflow* are computed only on the subset of inputs for which it successfully generated a mesh; its user study score incorporates a score of 0 for all failure cases.

Data Type	Dense Meshes				Artist Meshes				
	Metrics	CD ↓	HD ↓	QR ↑	US ↑	CD ↓	HD ↓	QR ↑	US ↑
Quadriflow* (Huang et al., 2018)	0.045 0.099 100%	1.6	0.281	0.531	100%	0.3			
MeshAnythingv2 (Chen et al., 2025c)	0.153 0.394	53%	1.4	0.096 0.251	60%	2.1			
BPT (Weng et al., 2025)	0.115 0.283	43%	2.7	0.051 0.125	49%	3.1			
DeepMesh (Zhao et al., 2025a)	0.246 0.435	64%	3.3	0.236 0.417	66%	2.8			
FastMesh (Kim et al., 2025)	0.105 0.257	3%	1.1	0.052 0.141	17%	1.9			
Ours	0.057 0.147	80%	4.9	0.043 0.095	78%	4.8			

parison. The second category represents specialized quad-meshing techniques, for which we include the well-established field-guided method **QuadriFlow** (Huang et al., 2018). This selection provides a comprehensive benchmark against both the latest in generative modeling and classic, topology-focused approaches.

4.2 QUALITATIVE RESULTS

We first present a qualitative comparison of QuadGPT against existing baselines across two distinct domains: challenging, out-of-distribution dense meshes from other AI models, and in-distribution, high-quality artist-designed meshes. Visual inspection is crucial, as it reveals the subtle yet critical differences in topological quality that metrics alone cannot fully capture. As illustrated in Figure 4, the indirect pipeline of converting triangular meshes from autoregressive baselines often struggles. These methods frequently produce meshes with significant topological artifacts, missing geometric details, or overly simplified structures that fail to capture the original shape’s nuance. In contrast, QuadGPT consistently generates meshes that are significantly more coherent and artistically plausible, producing the clean edge flow characteristic of professional work. Our model demonstrates strong robustness on challenging AI-generated assets and achieves near-perfect topological reconstruction on artist-designed meshes. Figure 5 compares our method against the field-guided approach of QuadriFlow. The baseline exhibits significant instability on meshes with complex topology or sharp features, often resulting in severe geometric degradation or catastrophic failures. QuadGPT, in contrast, demonstrates exceptional robustness, faithfully reconstructing geometry while maintaining high-quality, structured topology in all examples.

4.3 QUANTITATIVE RESULTS

Table 1 summarizes the quantitative comparison of QuadGPT against all baselines across both artist-designed and AI-generated dense meshes. We evaluate geometric fidelity using Chamfer Distance (CD) and Hausdorff Distance (HD), topological quality via Quad Ratio (QR), and perceptual quality

Figure 6: **Effectiveness of tDPO-Pro.** Our comprehensive training strategy significantly enhances both the geometric quality and structural integrity of the generated quad-meshes.

Figure 7: **Native Generation vs. Conversion Pipeline.** (Q) denotes the use of a triangle-to-quad conversion step. Although TriGPT employs the same RL fine-tuning to mitigate fractures, its topological quality is inherently constrained by the post-processing conversion, yielding significantly inferior edge flow compared to our native QuadGPT.

through a comprehensive user study (US). The results demonstrate that QuadGPT consistently and significantly outperforms competing approaches in both quality and robustness. The user study, where experts ranked the outputs of all six methods from best (5 points) to worst (0 points), reveals a decisive preference for our method. This confirms that its advantages in producing production-ready assets are not only quantitatively measurable but also perceptually significant.

486
487

4.4 ABLATION STUDIES

488
489

4.4.1 EFFECTIVENESS OF TDPO

490
491

We analyze the impact of our DPO components by comparing three variants: standard DPO (fine-tuning on full, low-face-count meshes), tDPO (truncated training with a basic fracture penalty), and our full tDPO-Pro model (truncated training with the complete topological reward). Table 2 shows that standard DPO fails to generalize to complex meshes. In contrast, tDPO dramatically improves performance, while tDPO-Pro achieves the best results across all metrics. This improvement, visualized in Figure 6, provides strong empirical support for our comprehensive, topology-aware, truncated DPO framework.

492
493
494
495
496

4.4.2 EFFECTIVENESS OF CURRICULUM-BASED PRE-TRAINING

497
498

We validate our curriculum learning strategy by comparing it against a model trained directly on quad-dominant meshes from scratch (“From Scratch”). As shown in Table 2, the “From Scratch” model struggles to converge, resulting in poor geometric fidelity. This difficulty arises because predicting a quadrilateral face is inherently more complex than predicting a triangle, as it is topologically equivalent to predicting two correlated triangles simultaneously.

500
501
502
503
504
505
506
507
508
509
510
511

Initializing weights from a converged triangle-generation model (“Finetune”) yields significantly superior results. This confirms that our curriculum strategy leveraging the simpler task of triangle generation as a warmup is essential for establishing the stable geometric foundation required to master the more challenging patterns of quadrilateral topology.

512
513

4.4.3 NATIVE GENERATION VS. CONVERSION PIPELINE

514
515
516
517
518

To isolate the benefits of our native approach, we introduce a strong baseline, **TriGPT**, which generates triangles that are then converted to quads. To ensure a fair comparison, TriGPT shares the **identical architecture, 1.3 million mesh training dataset, and tDPO reinforcement learning strategy** as QuadGPT. This setup controls for all confounding variables, testing only the efficacy of the end-to-end native pipeline versus the generation-then-conversion paradigm.

519
520
521
522
523
524
525
526
527
528
529
530
531
532

The results in Table 3 and Figure 7 confirm our hypothesis. While the highly optimized triangle baseline (TriGPT+RL) achieves slightly better geometric scores (CD/HD), it cannot match the topological quality of our native approach. QuadGPT demonstrates a substantially higher Quad Ratio (QR) and, crucially, a **user preference score 2.6x higher** than the strongest baseline. This decisive gap in perceptual quality confirms that while post-hoc conversion struggles to create coherent global structures, our end-to-end native framework excels at learning the artist-preferred topologies, validating its superior practical utility.

5 CONCLUSION

533
534
535
536
537
538
539

We present QuadGPT, the first autoregressive framework that directly generates native quadrilateral and mixed-element meshes. It achieves state-of-the-art results in generative meshing, setting a new standard for both geometric fidelity and topological quality. Our scalable, neural-first approach departs from previous triangle-based methods and conversion pipelines, which rely on heuristic post-processing to approximate quad topology. By leveraging a unified serialization scheme and a novel topology-aware fine-tuning stage (tDPO), QuadGPT directly optimizes for global structure, making it well-suited for the automated creation of production-ready 3D assets.

Table 2: **Quantitative Evaluation of Training Strategy.** User study scores reflect expert rankings of the five methods, ranging from 0 (worst) to 4 (best).

Method	CD ↓	HD ↓	QR ↑	US ↑
From Scratch	0.081	0.203	75%	0.6
Finetune	0.065	0.167	72%	1.3
DPO	0.073	0.188	74%	1.1
tDPO	0.061	0.156	78%	3.3
tDPO-Pro	0.057	0.147	80%	3.7

Table 3: **Native vs. Conversion Pipeline.** QuadGPT is compared against a strong triangle-generation baseline (TriGPT), both with and without RL. US scores are expert rankings (0–2).

Method	CD ↓	HD ↓	QR ↑	US ↑
TriGPT(Q)	0.062	0.160	70%	0.2
TriGPT+RL(Q)	0.051	0.138	72%	0.5
QuadGPT (Ours)	0.057	0.147	80%	1.3

540

6 ETHICS STATEMENT

541
 542 This work introduces QuadGPT, an autoregressive framework for direct generation of production-
 543 ready, quad-dominant meshes. The model was trained on a blend of public and professionally
 544 sourced data, subjected to rigorous quality filtering. Our primary goal is to demonstrate that a
 545 scalable, end-to-end framework is effective for industrial-quality mesh generation, and we encour-
 546 age the community to explore further along this scalable paradigm. To support practical adoption, a
 547 public API and online interface will be provided. The authors declare no conflicts of interest.
 548

549

7 REPRODUCIBILITY STATEMENT

550
 551 This paper presents a scalable autoregressive framework for native quad-mesh generation. Although
 552 full model release is not feasible at this stage, the method is comprehensively detailed in terms
 553 of data representation, network architecture, and training protocols to facilitate replication and ex-
 554 tension. We emphasize that high-quality data curation, including rigorous collection, processing,
 555 and filtering of open-source data, is essential for achieving comparable performance. To support
 556 validation and downstream use, we will provide a public API and Code.
 557

558

REFERENCES

559
 560 Blender Foundation. Blender. URL <https://www.blender.org>.
 561 D. Bommes, M. Campen, H.-C. Ebke, P. Alliez, and L. Kobbelt. Integer-grid maps for reliable quad
 562 meshing. *ACM Transactions on Graphics (TOG)*, 32(4):98, 2013.
 563
 564 David Bommes, Henrik Zimmer, and Leif Kobbelt. Mixed-integer quadrangulation. *ACM Transac-
 565 tions on Graphics*, 28(3):1–10, 2009.
 566
 567 Marcel Campen and Leif Kobbelt. Dual strip weaving: Interactive design of quad layouts using
 568 elastica strips. *ACM Transactions on Graphics*, 33(6):183:1–183:10, 2014.
 569
 570 Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li,
 571 Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, et al. Shapenet: An information-rich 3d
 572 model repository. *arXiv preprint arXiv:1512.03012*, 2015.
 573
 574 Dian Chen, Yansong Qu, Xinyang Li, Ming Li, and Shengchuan Zhang. Xspecmesh: Quality-
 575 preserving auto-regressive mesh generation acceleration via multi-head speculative decoding.
 576 *arXiv preprint arXiv:2507.23777*, 2025a.
 577
 578 Sijin Chen, Xin Chen, Anqi Pang, Xianfang Zeng, Wei Cheng, Yijun Fu, Fukun Yin, Billzb Wang,
 579 Jingyi Yu, Gang Yu, et al. Meshxl: Neural coordinate field for generative 3d foundation models.
 580 *Advances in Neural Information Processing Systems*, 37:97141–97166, 2024.
 581
 582 Yiwén Chen, Tong He, Di Huang, Weicai Ye, Sijin Chen, Jiaxiang Tang, Zhongang Cai, Lei Yang,
 583 Gang Yu, Guosheng Lin, and Chi Zhang. Meshanything: Artist-created mesh generation with
 584 autoregressive transformers. In *The Thirteenth International Conference on Learning Repre-
 585 sentations*, 2025b. URL <https://openreview.net/forum?id=KGZAs8VcOM>.
 586
 587 Yiwén Chen, Yikai Wang, Yihao Luo, Zhengyi Wang, Zilong Chen, Jun Zhu, Chi Zhang, and Gu-
 588 osheng Lin. Meshanything v2: Artist-created mesh generation with adjacent mesh tokenization.
 589 *IEEE International Conference on Computer Vision*, 2025c.
 590
 591 Matt Deitke, Ruoshi Liu, Matthew Wallingford, Huong Ngo, Oscar Michel, Aditya Kusupati, Alan
 592 Fan, Christian Laforte, Vikram Voleti, Samir Yitzhak Gadre, et al. Objaverse-xl: A universe of
 593 10m+ 3d objects. *Advances in Neural Information Processing Systems*, 36:35799–35813, 2023a.
 594
 595 Matt Deitke, Dustin Schwenk, Jordi Salvador, Luca Weihs, Oscar Michel, Eli VanderBilt, Ludwig
 596 Schmidt, Kiana Ehsani, Aniruddha Kembhavi, and Ali Farhadi. Objaverse: A universe of anno-
 597 tated 3d objects. In *Proceedings of the IEEE/CVF conference on computer vision and pattern
 598 recognition*, pp. 13142–13153, 2023b.

594 O. Diamanti, A. Vaxman, D. Panozzo, and O. Sorkine-Hornung. Integrable polyvector fields. *ACM*
 595 *Transactions on Graphics (TOG)*, 34(4):38, 2015.
 596

597 Alexander Dielen, Isaak Lim, Max Lyon, and Leif Kobbelt. Learning direction fields for quad mesh
 598 generation. In *Computer Graphics Forum*, volume 40, pp. 181–191. Wiley Online Library, 2021.
 599

600 Qiujie Dong, Jiepeng Wang, Rui Xu, Cheng Lin, Yuan Liu, Shiqing Xin, Zichun Zhong, Xin Li,
 601 Changhe Tu, Taku Komura, et al. Crossgen: Learning and generating cross fields for quad mesh-
 602 ing. *arXiv preprint arXiv:2506.07020*, 2025a.
 603

604 Qiujie Dong, Huibiao Wen, Rui Xu, Shuangmin Chen, Jiaran Zhou, Shiqing Xin, Changhe Tu, Taku
 605 Komura, and Wenping Wang. Neurcross: A neural approach to computing cross fields for quad
 606 mesh generation. *ACM Trans. Graph.*, 44(4), 2025b.
 607

608 Hans-Christian Ebke, Patrick Schmidt, Marcel Campen, and Leif Kobbelt. Interactively controlled
 609 quad remeshing of high resolution 3d models. *ACM Transactions on Graphics*, 35(6):218:1–
 218:13, November 2016.
 610

611 Exoside. Exoside quad remesher: Automatic quad remeshing plugin, 2019. URL <https://exoside.com/>.
 612

613 Huan Fu, Rongfei Jia, Lin Gao, Mingming Gong, Binqiang Zhao, Steve Maybank, and Dacheng
 614 Tao. 3d-future: 3d furniture shape with texture. *International Journal of Computer Vision*, 129:
 615 3313–3337, 2021.
 616

617 Zekun Hao, David W Romero, Tsung-Yi Lin, and Ming-Yu Liu. Meshtron: High-fidelity, artist-like
 618 3d mesh generation at scale. *arXiv preprint arXiv:2412.09548*, 2024.
 619

620 Xianglong He, Zi-Xin Zou, Chia-Hao Chen, Yuan-Chen Guo, Ding Liang, Chun Yuan, Wanli
 621 Ouyang, Yan-Pei Cao, and Yangguang Li. Sparseflex: High-resolution and arbitrary-topology
 622 3d shape modeling. *arXiv preprint arXiv:2503.21732*, 2025.
 623

624 Jingwei Huang, Yichao Zhou, Matthias Niessner, et al. Quadriflow: A scalable and robust method
 625 for quadrangulation. *Computer Graphics Forum*, 2018. ISSN 1467-8659.
 626

627 Wenzel Jakob, Marco Tarini, Daniele Panozzo, and Olga Sorkine-Hornung. Instant field-aligned
 628 meshes. *ACM Transactions on Graphics*, 34(6):189, 2015.
 629

630 Tengfei Jiang, Xianzhong Fang, Jin Huang, et al. Frame field generation through metric customiza-
 631 tion. *ACM Transactions on Graphics*, 34(4):1–11, 2015.
 632

633 Jeonghwan Kim, Yushi Lan, Armando Fortes, Yongwei Chen, and Xingang Pan. Fastmesh: Efficient
 634 artistic mesh generation via component decoupling. *arXiv preprint arXiv:2508.19188*, 2025.
 635

636 Zeqiang Lai, Yunfei Zhao, Haolin Liu, Zibo Zhao, Qingxiang Lin, Huiwen Shi, Xianghui Yang,
 637 Mingxin Yang, Shuhui Yang, Yifei Feng, et al. Hunyuan3d 2.5: Towards high-fidelity 3d assets
 638 generation with ultimate details. *arXiv preprint arXiv:2506.16504*, 2025.
 639

640 Biwen Lei, Yang Li, Xinhai Liu, Shuhui Yang, Lixin Xu, and Chunchao Guo. Hunyuan3d studio:
 641 End-to-end ai pipeline for game-ready 3d asset generation, 2025.
 642

643 Weiyu Li, Jiarui Liu, Rui Chen, Yixun Liang, Xuelin Chen, Ping Tan, and Xiaoxiao Long. Crafts-
 644 man: High-fidelity mesh generation with 3d native generation and interactive geometry refiner.
 645 *arXiv preprint arXiv:2405.14979*, 2024.
 646

647 Yang Li, Victor Cheung, Xinhai Liu, Yuguang Chen, Zhongjin Luo, Biwen Lei, Haohan Weng,
 648 Zibo Zhao, Jingwei Huang, Zhuo Chen, et al. Auto-regressive surface cutting. *arXiv preprint
 649 arXiv:2506.18017*, 2025a.
 650

651 Yangguang Li, Zi-Xin Zou, Zexiang Liu, Dehu Wang, Yuan Liang, Zhipeng Yu, Xingchao Liu,
 652 Yuan-Chen Guo, Ding Liang, Wanli Ouyang, et al. Triposg: High-fidelity 3d shape synthesis
 653 using large-scale rectified flow models. *arXiv preprint arXiv:2502.06608*, 2025b.
 654

648 Zezeng Li, Zhihui Qi, Weimin Wang, Ziliang Wang, Junyi Duan, and Na Lei. Point2quad: Gen-
 649 erating quad meshes from point clouds via face prediction. *IEEE Transactions on Circuits and*
 650 *Systems for Video Technology*, 2025c.

651

652 Zhihao Li, Yufei Wang, Heliang Zheng, Yihao Luo, and Bihan Wen. Sparc3d: Sparse representa-
 653 tion and construction for high-resolution 3d shapes modeling. *arXiv preprint arXiv:2505.14521*,
 654 2025d.

655

656 Haotong Lin, Sili Chen, Junhao Liew, Donny Y Chen, Zhenyu Li, Guang Shi, Jiashi Feng, and
 657 Bingyi Kang. Depth anything 3: Recovering the visual space from any views. *arXiv preprint*
 658 *arXiv:2511.10647*, 2025.

659

660 Stefan Lionar, Jiabin Liang, and Gim Hee Lee. Treemeshgpt: Artistic mesh generation with au-
 661 toregressive tree sequencing. In *Proceedings of the Computer Vision and Pattern Recognition*
 662 *Conference*, pp. 26608–26617, 2025.

663

664 Jian Liu, Jing Xu, Song Guo, Jing Li, Jingfeng Guo, Jiaao Yu, Haohan Weng, Biwen Lei, Xianghui
 665 Yang, Zhuo Chen, et al. Mesh-rft: Enhancing mesh generation via fine-grained reinforcement
 666 fine-tuning. *arXiv preprint arXiv:2505.16761*, 2025.

667

668 William E Lorensen and Harvey E Cline. Marching cubes: A high resolution 3d surface construction
 669 algorithm. In *Seminal graphics: pioneering efforts that shaped the field*, pp. 347–353. 1998.

670

671 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In *International Confer-
 672 ence on Learning Representations*, 2019. URL <https://openreview.net/forum?id=Bkg6RiCqY7>.

673

674 Alessandro Muntoni and Paolo Cignoni. PyMeshLab, January 2021.

675

676 Piotr Nawrot, Szymon Tworkowski, Michał Tyrolski, Łukasz Kaiser, Yuhuai Wu, Christian Szegedy,
 677 and Henryk Michalewski. Hierarchical transformers are more efficient language models. *arXiv*
 678 *preprint arXiv:2110.13711*, 2021.

679

680 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
 681 Finn. Direct preference optimization: Your language model is secretly a reward model. *Advances*
 682 *in Neural Information Processing Systems*, 36:53728–53741, 2023.

683

684 Tianchang Shen, Jun Gao, Kangxue Yin, Ming-Yu Liu, and Sanja Fidler. Deep marching tetrahedra:
 685 a hybrid representation for high-resolution 3d shape synthesis. *Advances in Neural Information*
 686 *Processing Systems*, 34:6087–6101, 2021.

687

688 Tianchang Shen, Jacob Munkberg, Jon Hasselgren, Kangxue Yin, Zian Wang, Wenzheng Chen, Zan
 689 Gojcic, Sanja Fidler, Nicholas Sharp, and Jun Gao. Flexible isosurface extraction for gradient-
 690 based mesh optimization. *ACM Trans. Graph.*, 42(4):37–1, 2023.

691

692 Yawar Siddiqui, Antonio Alliegro, Alexey Artemov, Tatiana Tommasi, Daniele Sirigatti, Vladislav
 693 Rosov, Angela Dai, and Matthias Nießner. Meshgpt: Generating triangle meshes with decoder-
 694 only transformers. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
 695 *recognition*, pp. 19615–19625, 2024.

696

697 Gaochao Song, Zibo Zhao, Haohan Weng, Jingbo Zeng, Rongfei Jia, and Shenghua Gao. Mesh
 698 silksong: Auto-regressive mesh generation as weaving silk. *arXiv preprint arXiv:2507.02477*,
 699 2025.

700

701 Stefan Stojanov, Anh Thai, and James M. Rehg. Using shape to categorize: Low-shot learning with
 702 an explicit shape bias. In *CVPR*, pp. 1798–1808, June 2021.

703

704 Jiaxiang Tang, Zhaoshuo Li, Zekun Hao, Xian Liu, Gang Zeng, Ming-Yu Liu, and Qinsheng Zhang.
 705 Edgerunner: Auto-regressive auto-encoder for artistic mesh generation. In *The Thirteenth In-
 706 ternational Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=81cta3WQVI>.

702 Marco Tarini, Nico Pietroni, Paolo Cignoni, Daniele Panozzo, and Enrico Puppo. Practical quad
 703 mesh simplification. *Computer Graphics Forum (Special Issue of Eurographics 2010 Conference)*,
 704 29(2), 200.

705

706 Tripo AI Team. Tripo ai: Intelligent remesher, 2025. URL <https://studio.trip03d.ai/workspace/remesh>.

707

708 Hanxiao Wang, Biao Zhang, Weize Quan, Dong-Ming Yan, and Peter Wonka. iflame: Interleaving
 709 full and linear attention for efficient mesh generation. *arXiv preprint arXiv:2503.16653*, 2025a.

710

711 Yuxuan Wang, Xuanyu Yi, Haohan Weng, Qingshan Xu, Xiaokang Wei, Xianghui Yang, Chunchao
 712 Guo, Long Chen, and Hanwang Zhang. Nutilus: Locality-aware autoencoder for scalable mesh
 713 generation. *IEEE International Conference on Computer Vision*, 2025b.

714

715 Haohan Weng, Zibo Zhao, Biwen Lei, Xianghui Yang, Jian Liu, Zeqiang Lai, Zhuo Chen, Yuhong
 716 Liu, Jie Jiang, Chunchao Guo, et al. Scaling mesh generation via compressive tokenization.
 717 In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 11093–11103,
 718 2025.

719

720 Shuang Wu, Youtian Lin, Feihu Zhang, Yifei Zeng, Jingxi Xu, Philip Torr, Xun Cao, and Yao Yao.
 721 Direct3d: Scalable image-to-3d generation via 3d latent diffusion transformer. *arXiv preprint
 722 arXiv:2405.14832*, 2024.

723

724 Shuang Wu, Youtian Lin, Feihu Zhang, Yifei Zeng, Yikang Yang, Yajie Bao, Jiachen Qian, Siyu
 725 Zhu, Xun Cao, Philip Torr, et al. Direct3d-s2: Gigascale 3d generation made easy with spatial
 726 sparse attention. *arXiv preprint arXiv:2505.17412*, 2025.

727

728 Jianfeng Xiang, Zelong Lv, Sicheng Xu, Yu Deng, Ruicheng Wang, Bowen Zhang, Dong Chen, Xin
 729 Tong, and Jiaolong Yang. Structured 3d latents for scalable and versatile 3d generation. *arXiv
 730 preprint arXiv:2412.01506*, 2024.

731

732 Xinhao Yan, Jiachen Xu, Yang Li, Changfeng Ma, Yunhan Yang, Chunshi Wang, Zibo Zhao, Ze-
 733 qiang Lai, Yunfei Zhao, Zhuo Chen, et al. X-part: high fidelity and structure coherent shape
 734 decomposition. *arXiv preprint arXiv:2509.08643*, 2025.

735

736 Chongjie Ye, Yushuang Wu, Ziteng Lu, Jiahao Chang, Xiaoyang Guo, Jiaqing Zhou, Hao Zhao,
 737 and Xiaoguang Han. Hi3dgen: High-fidelity 3d geometry generation from images via normal
 738 bridging. *arXiv preprint arXiv:2503.22236*, 2025.

739

740 Biao Zhang, Jiapeng Tang, Matthias Niessner, and Peter Wonka. 3dshape2vecset: A 3d shape
 741 representation for neural fields and generative diffusion models. *ACM Transactions On Graphics
 742 (TOG)*, 42(4):1–16, 2023.

743

744 Longwen Zhang, Ziyu Wang, Qixuan Zhang, Qiwei Qiu, Anqi Pang, Haoran Jiang, Wei Yang, Lan
 745 Xu, and Jingyi Yu. Clay: A controllable large-scale generative model for creating high-quality 3d
 746 assets. *ACM Transactions on Graphics (TOG)*, 43(4):1–20, 2024.

747

748 Xiang Zhang, Yawar Siddiqui, Armen Avetisyan, Chris Xie, Jakob Engel, and Henry Howard-
 749 Jenkins. Vertexregen: Mesh generation with continuous level of detail. *IEEE International
 750 Conference on Computer Vision*, 2025.

751

752 Ruowen Zhao, Junliang Ye, Zhengyi Wang, Guangce Liu, Yiwen Chen, Yikai Wang, and Jun Zhu.
 753 Deepmesh: Auto-regressive artist-mesh creation with reinforcement learning. *IEEE International
 754 Conference on Computer Vision*, 2025a.

755

756 Zibo Zhao, Wen Liu, Xin Chen, Xianfang Zeng, Rui Wang, Pei Cheng, Bin Fu, Tao Chen, Gang Yu,
 757 and Shenghua Gao. Michelangelo: Conditional 3d shape generation based on shape-image-text
 758 aligned latent representation. *Advances in neural information processing systems*, 36:73969–
 759 73982, 2023.

760

761 Zibo Zhao, Zeqiang Lai, Qingxiang Lin, Yunfei Zhao, Haolin Liu, Shuhui Yang, Yifei Feng,
 762 Mingxin Yang, Sheng Zhang, Xianghui Yang, et al. Hunyuan3d 2.0: Scaling diffusion models for
 763 high resolution textured 3d assets generation. *arXiv preprint arXiv:2501.12202*, 2025b.

APPENDIX

A DATASET CURATION PIPELINE

The foundation of QuadGPT is a large-scale, high-quality dataset. This section details our three-stage pipeline for its construction: data sourcing and augmentation, multi-stage quality filtering, and final compilation.

A.1 DATA SOURCING AND AUGMENTATION

The foundation of QuadGPT is a large-scale, high-quality dataset. This section details our three-stage pipeline for its construction: data sourcing and augmentation, multi-stage quality filtering, and final compilation. We aggregate 3D models from diverse sources, including Objaverse-XL Deitke et al. (2023a) and professional modeling repositories. To substantially augment our training data with quad-dominant examples, we developed a **Triangle-to-Quadrilateral Conversion Operator**. Given a triangle mesh \mathcal{M}_T , the goal is to find an optimal set of internal edges $E_{\text{int}} \subset \mathcal{M}_T$ to dissolve. We formulate this as an Integer Linear Programming (ILP) problem. For each edge $e \in E_{\text{int}}$, we define a binary decision variable $x_e \in \{0, 1\}$. The optimization objective is:

$$\text{maximize} \quad \sum_{e \in E_{\text{int}}} w_e \cdot x_e \quad (12)$$

subject to the constraint that for any triangle $t \in \mathcal{M}_T$,

$$\sum_{e \in \text{edges}(t)} x_e \leq 1 \quad (13)$$

The weight w_e is a quality score that favors dissolving edges that form well-conditioned quadrilaterals. Constraint 13 ensures each triangle participates in at most one merge operation, preserving manifold integrity. Following this conversion, we perform a crucial **geometric validation** step: any newly formed quadrilateral exhibiting a maximum interior angle greater than 150 degrees is deemed geometrically unstable and is split back into its two original constituent triangles. This ensures our automated pipeline produces only high-quality, well-shaped quadrilaterals.

A.2 MULTI-STAGE QUALITY FILTERING

The initial dataset, while extensive, contains numerous low-quality models. We employ a rigorous, two-stage filtering pipeline to ensure data fidelity. First, we apply a suite of **rule-based operators** to discard models with specific flaws, including high-aspect-ratio faces and patterns characteristic of poor automated decimation. A critical component is our **Fractured Geometry Detector** (Algorithm 1), which identifies open seams by performing a "test weld" and checking for a significant reduction in edge count without a loss of faces. Second, to filter for aesthetic quality, we trained a **vision-based quality assessment model** on a manually annotated corpus of 100,000 models, allowing us to automate the removal of assets with poor, albeit technically valid, edge flow.

A.3 FINAL DATASET COMPILED

Following this pipeline, we selected models with face counts between 500 and 20,000 to form our final training dataset, comprising **1.3 million** high-quality, production-ready 3D models.

810

Algorithm 1: Fractured Geometry Detection

811

Input : Mesh Object \mathcal{M}

812

Output: Boolean ‘has_fracture’

813

 $\mathcal{M}'' \leftarrow \text{Preprocess}(\mathcal{M})$ /* Remove duplicates and loose geometry */

814

Components $\leftarrow \text{SeparateIntoConnectedComponents}(\mathcal{M}'')$;

815

for component in Components **do**

816

if num_vertices(component) $< \tau_{\text{vtx_min}}$ **then**

817

continue;

818

/* Ignore small fragments

819

end

820

if not IsManifold(component) **then**

821

 $E_{\text{before}}, F_{\text{before}} \leftarrow \text{GetEdgeAndFaceCount}(\text{component})$;

822

 component' $\leftarrow \text{MergeVerticesByDistance}(\text{component}, \text{threshold} = \tau_{\text{weld}})$;

823

 $E_{\text{after}}, F_{\text{after}} \leftarrow \text{GetEdgeAndFaceCount}(\text{component}')$;

824

if $E_{\text{before}} - E_{\text{after}} > \tau_{\text{edge_delta}}$ **and** $F_{\text{before}} = F_{\text{after}}$ **then**

825

return true;

826

/* Fracture detected

827

end

828

end

829

return false;

830

831

Algorithm 2: Fracture Count Calculation

832

Input : Partial Mesh $\mathcal{M}_k = (\mathcal{V}_k, \mathcal{F}_k)$

833

Output: Fracture Count C_{frac}

834

/* Define generation frontier from the last generated face. */

835

 $\mathbf{f}_{\text{last}} \leftarrow \text{last face in the sequence of } \mathcal{F}_k$;

836

if \mathbf{f}_{last} is null **then**

837

return 0;

838

end

839

 $y_{\text{frontier}} \leftarrow \min_{v \in \mathbf{f}_{\text{last}}} (v.y)$;

840

/* Count boundary faces at or below the frontier.

841

 $\mathcal{F}_{\text{boundary}} \leftarrow \text{set of faces in } \mathcal{F}_k \text{ on the mesh boundary}$;

842

 $C_{\text{frac}} \leftarrow 0$;

843

for face f in $\mathcal{F}_{\text{boundary}}$ **do**

844

if $\forall v \in f, v.y \leq y_{\text{frontier}}$ **then**

845

 $C_{\text{frac}} \leftarrow C_{\text{frac}} + 1$;

846

end

847

end

848

return C_{frac}

849

850

851

B TOPOLOGICAL QUALITY METRICS FOR TRUNCATED SEQUENCES

852

This section provides a formal definition of the metrics used to evaluate the topological quality of partially generated quadrilateral meshes. These metrics are specifically designed to operate on truncated sequences, forming the basis of the reward signal for our Direct Preference Optimization (DPO) fine-tuning stage.

853

B.1 FRACTURE DETECTION

854

855

856

857

858

A primary failure mode in autoregressive generation is fractures. Since our serialization is canonically ordered bottom-to-top, we detect fractures by identifying boundary faces at the current generation frontier. Algorithm 2 formalizes this by defining the frontier based on the lowest Y-coordinate of the last generated face. A non-zero count indicates a failure to generate an adjacent face in the expected upward direction, signaling a topological break.

864 B.2 QUANTIFYING EDGE FLOW: QUAD RINGS AND LINES
865

866 The hallmark of high-quality quad topology is structured edge flow, which we quantify by identifying
867 two key structures: **Quad Rings** (closed loops of faces) and **Quad Lines** (open strips), as
868 illustrated in Figure 8. Algorithm 3 formalizes an edge-based traversal that “walks” across adjacent
869 quadrilateral faces. If a path terminates, it is classified as a Quad Line; if it returns to its starting
870 edge, it forms a Quad Ring. From the discovered sets of rings (\mathbb{R}) and lines (\mathbb{L}), we compute the
871 final reward components: the ratio of faces participating in closed rings and the average length of
872 the open lines, both of which are maximized during DPO.

873 **Algorithm 3:** Quad Ring and Line Discovery

874 **Input :** Partial Mesh \mathcal{M}_k
875 **Output:** Set of Quad Rings \mathbb{R} (face lists), Set of Quad Lines \mathbb{L} (face lists)

876 $\mathbb{R}, \mathbb{L} \leftarrow \emptyset, \emptyset;$
877 $E_{\text{processed}} \leftarrow \emptyset;$
878 **for** edge e_{start} in $\mathcal{M}_k.\text{edges}$ **do**
879 **if** $e_{\text{start}} \notin E_{\text{processed}}$ **then**
880 path_faces $\leftarrow \emptyset$; path_edges $\leftarrow \emptyset$;
881 current_edge $\leftarrow e_{\text{start}}$;
882 **while** $current_edge \neq \text{null}$ **and** $current_edge \notin path_edges$ **do**
883 add $current_edge$ to $path_edges$;
884 adj_quad \leftarrow a quadrilateral face adjacent to $current_edge$;
885 **if** adj_quad exists **then**
886 add adj_quad to $path_faces$;
887 $current_edge \leftarrow$ edge opposite to $current_edge$ in adj_quad ;
888 **end**
889 **else**
890 $current_edge \leftarrow \text{null}$;
891 **end**
892 **end**
893 $E_{\text{processed}}.\text{add}(path_edges)$;
894 /* Classify the discovered path based on closure. */
895 **if** $current_edge$ is null **or** $current_edge \neq e_{\text{start}}$ **then**
896 add $path_faces$ to \mathbb{L} ;
897 **end**
898 **else**
899 add $path_faces$ to \mathbb{R} ;
900 **end**
901 **end**
902 **return** \mathbb{R}, \mathbb{L}

903
904 C MORE RESULTS
905

906 To further demonstrate the superiority of our direct generation approach, we provide extensive qualitative
907 comparisons in Figure 9 and Figure 10. These results highlight the robustness and high fidelity
908 of QuadGPT across a wide variety of complex geometries. Additionally, to illustrate the structural
909 integrity of our generated models, we present multi-view renderings of several samples in Figure 11.
910 Finally, we compare our method with closed-source, commercial quad mesh generation techniques,
911 including Tripo Team (2025) and Quad Remesher Exoside (2019) in Figure 12.
912

913
914 D ADDITIONAL EXPERIMENTAL ANALYSIS
915

916 In this section, we provide further analysis to complement the experiments in the main paper.
917

Figure 8: An illustration of a Quad Ring which is closed loop of quadrilateral faces. Our tDPO reward is designed to encourage the formation of such desirable, structured patterns.

D.1 IMPACT OF CURRICULUM LEARNING AND TOPOLOGY-AWARE REWARDS

Figure 13(a) compares the next token prediction loss curves between from-scratch quadrilateral mesh training and fine-tuning from pre-trained triangle mesh weights. Fine-tuning achieves faster convergence and lower loss, confirming that inheriting triangle mesh knowledge provides better initialization for quadrilateral generation. Figure 13(b) presents the reward curves during DPO training, where our tDPO-Pro approach with truncated edge loop optimization consistently achieves the highest reward, validating the effectiveness of our complete topological reward design. The progressive improvement from DPO to tDPO and finally tDPO-Pro demonstrates the cumulative benefits of our methodological contributions.

D.2 THE INHERENT LIMITATIONS OF TRIANGLE-TO-QUAD CONVERSION

To illustrate the limitations of any post-hoc conversion pipeline, we conduct a best-case scenario experiment. We begin with a high-quality artist-created quad mesh and triangulate it. This process represents an irreversible information loss: the artist’s original topological intent becomes ambiguous, creating a complex combinatorial problem that heuristic algorithms struggle to solve.

As shown in Figure 14, we compare our own **ILP-based operator** against the default methods in MeshLab Tarini et al. (200) and Blender Blender Foundation. While our optimized operator performs best, none of the methods can perfectly recover the original edge flow, leaving behind topological artifacts.

Figure 9: Extended Qualitative Comparison against triangle generation.

This challenge is significantly amplified when the input is an AI-generated triangle mesh, which often has an edge flow unsuitable for conversion, as seen in our TriGPT experiments (Figure 7). This compounding effect of a suboptimal input and an imperfect algorithm reinforces the need for our native generation approach.

Furthermore, algorithms from adjacent fields like Blossom-Quad (?), designed for 2D finite element analysis, are too restrictive for complex 3D surfaces. Its perfect-matching requirement caused it to fail on all but our simplest test cases, underscoring the need for a domain-specific, learning-based solution like QuadGPT.

Figure 10: A qualitative comparison against the field-guided method QuadriFlow. This example highlights the superior robustness and topological quality of our direct generative approach.

D.3 ANALYSIS OF COMPRESSED VS. DIRECT COORDINATE REPRESENTATION

A critical design choice in autoregressive mesh generation is the tokenization strategy. Methods like DeepMesh (Zhao et al., 2025a) and BPT (Weng et al., 2025) employ compressed representations. Our experiments with these methods on triangle meshes confirmed a similar finding: compressed tokenizers lead to faster initial convergence due to shorter sequence lengths. However, we argue that faster convergence does not necessarily lead to better final performance. As shown in Table 4, our extensive experiments at the 1B-parameter scale show that a simple, **direct coordinate representation ultimately achieves superior results** in both geometric fidelity and topological quality, a finding strongly corroborated by our user study. We hypothesize that overly complex, “over-designed” tokenizers can introduce an unintended inductive bias, constraining the model’s expressive capacity and limiting its performance ceiling, especially when trained on large, diverse datasets. This observation aligns with a broader trend in deep learning, demonstrated by models like DepthAnything V3 (Lin et al., 2025), where simple, highly scalable architectures often outperform more complex designs when sufficient data and compute are available. For QuadGPT, we therefore prioritized the higher performance ceiling of the direct representation, confident that techniques like truncated training effectively manage the longer sequence lengths.

D.4 ABLATION ON TRAINING DATA

To disentangle the impact of our methodology from our curated dataset, we conduct a data ablation study. We train a variant, **QuadGPT-OS**, using only the publicly available portions of our dataset (e.g., ShapeNet Chang et al. (2015), Objaverse-XL Deitke et al. (2023a)), subjected to the same rigorous filtering pipeline described in Section A. This experiment serves to answer a critical question: can a robust, scalable methodology achieve state-of-the-art results even when limited to open-source data?

Table 4: **Quantitative Comparison: Tokenization on Triangle Meshes.** Direct coordinate representation (TriGPT) outperforms a compressed BPT-style tokenizer (TriGPT+BPT). User Study scores reflect expert rankings from 0 (worst) to 1 (best). (Q) denotes outputs were converted to quads for evaluation.

Method	CD ↓	HD ↓	QR ↑	US ↑
TriGPT+BPT (Compressed)	0.078	0.198	68%	0.3
TriGPT (Direct Coord.)	0.062	0.160	70%	0.7

The results, shown in Figure 15, are twofold and unequivocal. First, **QuadGPT-OS still significantly outperforms all prior autoregressive baselines**. This confirms that our core contributions—the scalable architecture, curriculum learning strategy, and tDPO refinement—are the primary drivers of our model’s high performance. It proves that our method is not merely a product of better data, but a fundamentally more solid approach to the problem.

Second, our full model, trained on the complete 1.3 million mesh dataset, demonstrates a further substantial improvement in quality over QuadGPT-OS. This highlights a key insight: while a superior methodology can establish a new state of the art on public data, the full potential of a truly scalable approach is unlocked through careful, large-scale data curation. Our work demonstrates the

Figure 11: Multi-View Renderings of Generated Meshes.

synergistic impact of advancing both the model and the data to push the frontier of production-ready 3D generation.

E DOWNSTREAM APPLICATIONS

This section demonstrates the advantages of high-quality topology in downstream applications, such as UV mapping and animation. Thanks to our superior quad mesh structure, the models facilitate

Figure 12: **Comparison with closed-source commercial quad mesh generation methods.** Our approach preserves more geometric details, especially edge loops, which are crucial for UV segmentation and animation. Compared to Blender’s remeshing plugin, our method produces compact faces.

Figure 13: **Training Dynamics Analysis.** (a) Next token prediction loss comparison between from-scratch quadrilateral mesh training and fine-tuning from pre-trained triangle mesh weights. Fine-tuning demonstrates faster convergence and lower loss. (b) DPO reward curves for different variants, showing that our tDPO-Pro approach achieves the highest reward with truncated edge loop optimization.

high-quality UV unwrapping Li et al. (2025a). Furthermore, the abundance of edge loops enables more natural mesh deformation.

F LIMITATION AND FUTURE WORK

Despite the promising results of QuadGPT, several limitations present important avenues for future research.

Domain Gap and Part-based Generation. Our framework operates within the prevailing two-stage paradigm, where topology generation follows geometry generation. This creates a critical domain gap: the model is trained on point clouds from clean, artist-crafted assets but is often deployed on noisy point clouds derived from AI-generated implicit fields. This mismatch can lead to fractures and other failures on complex, out-of-distribution shapes, as shown in Figure 17. A

1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Figure 14: The Irreversibility of Triangulation and Limitations of Conversion Algorithms. (a) A high-quality artist-created quad mesh with clean edge flow. (b) The same mesh after triangulation—the ground truth topological information is now ambiguous. (c-e) The results of applying different tri-to-quad conversion algorithms to (b). While our ILP-based operator (e) produces a better result than the default methods in MeshLab (c) and Blender (d), none can perfectly recover the original topology, resulting in broken edge loops and artifacts. This demonstrates the fundamental limitations of post-hoc conversion.

promising direction is to develop an end-to-end model that co-generates geometry and topology, bypassing the intermediate dense mesh entirely. Furthermore, since professional assets are inherently part-based, integrating part-aware generation, potentially building on recent advances in part generation (Yan et al., 2025), could significantly improve robustness and fidelity.

Figure 15: **Qualitative results of our data ablation study.** “QuadGPT-OS” is trained exclusively on filtered public datasets, while “QuadGPT” uses our complete curated dataset. “QuadGPT-OS” already demonstrates a significant improvement in topological coherence and geometric detail over prior baselines. The full model shows further refinement, particularly in achieving cleaner, more professional edge flow, validating the scalability of our approach with high-quality data.

Lack of Controllable Polygon Number. QuadGPT currently cannot explicitly control the final polygon count; attempts to add a simple number condition were ineffective. This limits its utility in production, where generating assets with specific polygon budgets for LODs is essential. Future work must develop a robust control mechanism.

Advancing the Reinforcement Learning Framework. Our current implementation uses off-policy DPO for its simplicity and stability. However, our programmatic reward, while effective at enforcing structural rules like edge loops, cannot capture the full nuance of artistic preference. Future work could explore two key directions. First, developing a reward model trained on human preference data from professional artists could provide a richer, more aligned optimization signal. Second, investigating more advanced, potentially online RL algorithms could further elevate the quality and complexity of the generated topology.

G LLM USAGE STATEMENT

The authors used Gemini 2.5 Pro exclusively for grammar checking and language polishing of the manuscript text. All technical content, experimental design, data analysis, and scientific conclusions are the original work of the authors. The LLM was not involved in generating scientific ideas, conducting experiments, or interpreting results.

1296

1297

1298

1299

Figure 16: **UV mapping and animation deformation comparison.** (a) UV unwrapping result on a quad mesh generated by our method. (b) Animation deformation comparison: the top row shows results on a mesh from Tripo, while the bottom row presents ours. Our method captures geometric details more effectively and produces more edge loops, leading to noticeably more realistic deformation.

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

Figure 17: **Failure Cases and Limitations.** Our model can sometimes struggle to generalize to out-of-distribution point clouds sampled from AI-generated assets, particularly for architectural models with sharp features, which can result in fractures or incomplete geometry.

1344

1345

1346

1347

1348

1349