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ABSTRACT

Despite their impressive capabilities, aligned large language models (LLMs) of-
ten generate outputs that lack diversity. What drives this consistency in the gen-
eration? We investigate this phenomenon through the lens of probability con-
centration in the model’s output distribution. To quantify this concentration, we
introduce the Branching Factor (BF)–a token-invariant measure of the effective
number of plausible next steps during generation. Our empirical analysis reveals
two key findings: (1) BF often decreases as generation progresses, suggesting that
LLMs become more predictable as they generate. (2) alignment tuning substan-
tially sharpens the model’s output distribution from the outset, reducing BF by
nearly an order of magnitude (e.g., from 12 to 1.2) relative to base models. This
stark reduction helps explain why aligned models often appear less sensitive to
decoding strategies. Building on this insight, we find this consistency has surpris-
ing implications for complex reasoning. Aligned Chain-of-Thought (CoT) models
(e.g., DeepSeek-distilled models), for instance, leverage this effect; by generating
longer reasoning chains, they push generation into later, more deterministic (lower
BF) stages, resulting in more stable outputs. We hypothesize that alignment tun-
ing does not fundamentally change a model’s behavior, but instead steers it toward
stylistic tokens (e.g., “Sure”) that unlock low-entropy trajectories already present
in the base model. This view is supported by nudging experiments, which show
prompting base models with such tokens can similarly reduce BF. Together, our
findings establish BF as a powerful diagnostic for understanding and controlling
LLM outputs - clarifying how alignment reduces variability, how CoT promotes
stable generations, and how base models can be steered away from diversity.

LLM Probability 
Concentration

Aligned Model Generations 
Lack Diversity?

Tree Search is so brittle in 
the middle of generation?

Base Models are MORE 
Sensitive to Decoding 

Methods in Reasoning?

T=1.0T=0.6

“Stubborn” Agent?

You are absolutely 
correct!

(a)

[Prompt]

Sure,

Let’s think

I’d

Answer:
A

love

step

…
…

…
…

…
…

…
…

D
….by

…

to

…

Answer is

Alignment

More Diverse 
Generations
At Beginning 

More Stable 
Generations as 

Decoding Proceeds

CoT
CoT CoT CoT CoT

Most High-Probability Outputs
 (Base Model)

Most High-Probability Outputs 
(Aligned Model)

Alignment

…

2000th 
timestep

LLM Probability Concentration

(b)
Figure 1: (a): LLM probability concentration connects and explains several disparate yet critical
phenomena in aligned LLMs. (b): A conceptual illustration of how alignment and CoT influence
the generation space of LLMs. While base models begin with high output diversity, alignment tuning
sharply concentrates early probability mass, leading to more stable outputs. CoT extends this effect
into later positions, flattening output sample variation and reducing sensitivity to decoding.
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1 INTRODUCTION

While alignment tuning improves helpfulness and safety in large language models (LLMs), it often
introduces a tradeoff: reduced output diversity (Padmakumar & He, 2024; Chakrabarty et al., 2024;
Tian et al., 2024; Kirk et al., 2024; Lu et al., 2025) and increased determinism (Saparov & He,
2023; Song et al., 2024; Renze & Guven, 2024; Bigelow et al., 2024; West & Potts, 2025). Our
own case study on MMLU (Hendrycks et al., 2021) confirms that aligned models exhibit reduced
variance under Chain-of-Thought (CoT) prompting (Wei et al., 2022). These findings suggest a
core phenomenon we call LLM probability concentration (Figure 1a) – i.e., a tendency to produce
semantically and structurally similar outputs.

But how should we conceptualize this concentration? Autoregressive language generation is inher-
ently a traversal through a branching tree: at each step, the model selects a token and expands the
sequence along a specific branch. This structure, illustrated conceptually in Figure 1b, naturally
defines a space of possible continuations, independent of specific token identities. To analyze how
concentrated this space is during generation, we introduce the Branching Factor (BF) as a local,
average-case measure of LLMs’ output breadth, offering a microscopic lens on how local branching
behavior gives rise to global output concentration.

To quantify BF, we leverage perplexity, an information-theoretic proxy for the effective size of a
models output space. Unlike standard perplexity evaluations that are computed over a dataset us-
ing teacher-forcing, our goal is to estimate the perplexity of the models full output distribution
over continuations–i.e., the number of diverse, high-probability sequences it is likely to generate.
However, directly computing this quantity is intractable due to the exponential number of possible
outputs, especially for long generations. To address this, we leverage the Asymptotic Equiparti-
tion Property (AEP) (Shannon, 1948; Mudireddy et al., 2024), which implies that the average log-
probability of sufficiently long samples approximates the length-averaged entropy of the underlying
distribution. This lets us estimate BF directly from naturally sampled completions, without requiring
teacher-forcing or exhaustive enumeration.

To see what variables control BF, we investigate how BF varies with output length, model size,
prompt complexity, and training paradigms. Our findings reveal: ¬ BF typically declines over the
course of generation, indicating that model output becomes increasingly constrained, and thus more
predictable, with each successive token. ­ Among various factors, alignment tuning (e.g., RLHF)
exerts the strongest and most consistent impact, sharply compressing the branching factor by nearly
an order of magnitude (e.g., 12 → 1.2). This pronounced narrowing offers a quantitative basis for
the reduced output variance and decoding sensitivity observed in aligned models, highlighting a key
behavioral divergence from their base counterparts.

Is the BF reduction merely a statistical artifact, or does it indicate that the model is actively honing in
on a narrower target space? To probe this, we conduct resampling experiments, requiring the model
to choose an alternative to its top-ranked token at an intermediate generation step. We observe a
sharp drop in accuracy, suggesting that aligned models not only concentrate probability mass but
also commit to specific generative pathways early in the process. Building on these theoretical and
empirical insights, we also hypothesize and empirically validate that aligned CoT models exhibit
particularly low BF and reduced output variability under majority voting. This consistency arises
because CoT encourages long reasoning chains, shifting key information to later tokens–precisely
where BF tends to be lowest. As a result, different completions often converge to similar answers,
making CoT a natural stabilizer in generation.

Why does alignment tuning exert such a dominant effect on BF? Inspired by the superficial align-
ment hypothesis (Zhou et al., 2024) and recent advances in tuning-free alignment (Lin et al., 2023;
Fei et al., 2024), we hypothesize that base models already encode low-entropy conditional distri-
butions, and that alignment tuning primarily steers generation toward certain stylistic tokens (e.g.,
“Sure”), thereby narrowing the conditional output space. To test this, we replicate nudging exper-
iments (Fei et al., 2024) as a form of tuning-free alignment. We find that when conditioning base
models on prefixes typically produced by aligned models, BF drops more rapidly than when condi-
tioning on self-generated prefixes. This supports our hypothesis that base models already contain
low-entropy subspaces, which alignment surfaces rather than fundamentally reshaping.

In summary, by measuring LLM probability concentration via BF (§ 4), our contributions are:
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¬ We find that aligned models possess a BF of around 1.2, nearly an order of magnitude lower
than their base counterparts. This low BF helps explain reduced output diversity and randomness
for aligned models. Also, the BF diminishes as generation progresses, reducing the influence of the
decoding method further and suggesting LLMs become more predictable as they generate. (§ 5)
­ Using this framework, we uncover an unexpected source of consistency in complex reasoning.
We show that aligned CoT models, by generating extended reasoning chains, pushes generation into
later, more deterministic (lower BF) regions. This indicates CoT stabilizes generations. (§ 6)
® Perhaps most surprisingly, we find alignment surfaces low-entropy trajectories already latent in
base models. Our evidence suggests when conditioning base models on low-probability prefixes
typically produced by aligned models, BF drops more rapidly than under self-generated prefixes.
This raises important questions about how to achieve alignment while preserving the rich generative
capacity of base models. (§ 7)

2 BACKGROUND

Autoregressive Language Models LLMs are typically trained to predict the next token and the prob-
ability of output P (y1:N |x; θ) can be decomposed as: P (y1:N |x; θ) = ΠN

t=1P (yt|[x, y1:t−1]; θ),
where y1:t−1 is the output up to position t− 1, θ is the model parameter, and x is the prompt. Each
output sample is generated via token-by-token sampling, and the generation of multiple samples nat-
urally forms a search tree (Yao et al., 2023; Hao et al., 2023; Wan et al., 2024). Modern LLMs would
go through multiple training stages. In this paper, we would use base models to refer to the mod-
els trained without alignment tuning techniques (Touvron et al., 2023), including instruction tuning
and Reinforcement Learning from Human Feedback (RLHF) (Ouyang et al., 2022; Bai et al., 2022)
(e.g., “Llama-2-13B” (Touvron et al., 2023)) and aligned models to refer to models undergoing these
additional fine-tuning stages (e.g., “Llama-2-13B-Chat”).

LLM Decoding and Entropy Though LLMs are trained with a large vocabulary size |V |, the de-
sired tokens often concentrate on a much smaller set of tokens under distribution P (yt|x, y1:t−1; θ).
Common decoding methods (Holtzman et al., 2020; Hewitt et al., 2022) utilize this observation and
propose various heuristics to truncate vocabulary V as Vt at each step t. The next token is then sam-
pled from the renormalized distribution P̃ (yt|[x, y1:t−1]; θ) = 1(yt ∈ Vt)

P (yt|x,y1:t−1;θ)∑
yt∈Vt

P (yt|x,y1:t−1;θ)
.

Since tokens are sampled from the truncated distribution P̃ ,1 we use P̃ to compute the token-level
conditional entropy H̃ for a given prefix instance y1:t−1:2

H̃ (Yt|[x, y1:t−1]; θ) = −
∑
yt

P̃ (yt|[x, y1:t−1]; θ) log P̃ (yt|[x, y1:t−1]; θ) (1)

To generalize, we can compute the expected conditional entropy over the distribution of prefix se-
quences Y1:t−1: H̃ (Yt|[x,Y1:t−1]; θ) = Ey1:t−1H̃ (Yt|[x, y1:t−1]; θ). Conventionally, we use up-
percase Y to denote the random variable for an output and lowercase y for its specific realization.

3 CASE STUDY: IS DECODING METHOD CRUCIAL FOR MODERN LLMS?

Many prevalent decoding methods were introduced before LLMs scaled to billions of parameters
and underwent multiple training stages. Additionally, model developers adopt different decoding
strategies when reporting LLM capabilities (Touvron et al., 2023; Dubey et al., 2024; Yang et al.,
2024; Guo et al., 2025), raising questions about the significance of decoding choices for modern
LLMs. To explore this, we benchmark various decoding methods on standard LLM reasoning tasks,
extending prior work (Song et al., 2024; Renze & Guven, 2024) to the latest models including
DeepSeek-distlled models (Guo et al., 2025), which would generate long CoT before the final an-
swer.3 Specifically, we evaluate model performance on MMLU-STEM (Hendrycks et al., 2021)

1Our main experiments employ mild decoding settings (T=1.0, p=0.9). These settings approximate the
full distribution, align with standard evaluation practices, and ensure coherent generation from base models.
Stronger truncation settings are explicitly noted where applied.

2The common convention setting 0 log 0 = 0 for entropy computation is followed.
3For Llama-3 series models, in our prior study, we find there is only a minor performance difference between

Llama-3 and Llama-3.x. We mainly use Llama-3 in this paper as it includes the most diverse model collection.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

under CoT prompting across different temperatures (T= 0.6/1.0) in temperature sampling and trun-
cation thresholds (p=0.9/1.0) in nucleus sampling (Holtzman et al., 2020). Further implementation
details can be found in Appendix A.

Models Default (T=0.6, p=0.9) T=0.6, p=1.0 T=1.0, p=0.9 Min (T=1.0, p=1.0) Default−Min
Default %

Llama-3-70B-Instruct 78.50 (± 2.09) 77.60 (± 2.23) 77.50 (± 2.60) 75.90 (± 2.85) 3.31
Llama-3-70B 78.00 (± 3.52) 74.00 (± 3.80) 72.00 (± 4.38) 63.50 (± 5.02) 18.59
DeepSeek-R1-Distill-Llama-8B 66.30 (± 3.51) 65.70 (± 3.84) 62.70 (± 4.14) 59.70 (± 4.65) 9.95
Llama-3.1-8B-Instruct 63.00 (± 4.01) 61.50 (± 4.37) 57.50 (± 4.92) 50.50 (± 5.34) 19.84
Llama-3.1-8B 54.00 (± 4.61) 53.50 (± 4.92) 47.00 (± 5.21) 37.00 (± 5.48) 31.48

Table 1: Experiment Results across decoding methods on STEM subset of MMLU. We follow
the common practice of using 5-shot CoT prompting. Default−Min

Default % indicates the maximum relative
performance drop when deviating from the default decoding configuration.

The results in Table 1 reveal that for aligned models, decoding configurations have a limited impact
– typically around 10% (up to 20%) relative performance changes. Among Llama-3.1-8B models,
DeepSeek-distilled Llama-8B (based on Llama-3.1-8B), which is trained to generate long CoT, ex-
hibits the smallest relative performance changes. In contrast, base models exhibit greater sensitivity,
with performance varying by up to 31%. Additionally, lowering the temperature (T ) generally im-
proves performance across all models more than adjusting truncation threshold (p), though excessive
reduction (e.g., greedy decoding when T=0) may lead to repetition issues (Guo et al., 2025). Based
on these observations and findings in existing literature, we propose the following hypotheses:

Hypo 1 Aligned models produce tokens with a more concentrated distribution than base mod-
els (Padmakumar & He, 2024; Bigelow et al., 2024; Lu et al., 2025; West & Potts, 2025).
Hypo 2 Larger models have more concentrated distributions compared with smaller models (Ye
et al., 2024; Xiong et al., 2024), though may varied by tasks (Lu et al., 2025; West & Potts, 2025).
Hypo 3 As LLMs generate more tokens, its next-word prediction probability distribution becomes
increasingly concentrated (Tian et al., 2024; Chakrabarty et al., 2024).

Researchers often assess probability concentration using token-level metrics such as entropy or log-
likelihood. However, these offer only a narrow lens on model behavior: they capture local properties
but miss the global structure of the output space–how probability mass is distributed across plausible
sequences. This motivates our proposal of the BF as a structural measure of generative breadth.

4 MEASURING BRANCHING FACTOR

The generative process of language models can be viewed as moving down a branching tree, with
each token choice selecting a path forward. While the full tree spans O(|V |N ) sequences for vocab-
ulary size |V | and sequence length N , LLMs concentrate probability mass on a far smaller subset.
This high-probability subset forms a complex, sparse “effective tree” T . To quantify how this tree
expands—that is, how many options the model seriously considers at each step—we introduce the
Branching Factor (BF). Since calculating the precise structure of T is intractable, we model it as an
equivalent balanced B-ary tree of the same depth N . A balanced tree with depth N has BN leaf
nodes. By equating this to the number of high-probability sequences |T | in the effective tree, we
define the Branching Factor as B def

= |T |1/N . This section describes how to compute |T | and B.

4.1 INTUITIVE PERSPECTIVE: EXPONENTIATED ENTROPY (PERPLEXITY) AS BRANCHES

We propose to use the exponentiated entropy (perplexity) to quantify |T |: |T | def
=

exp (H(Y1:N |x; θ)). This reflects the effective number of equally probable outcomes with the
same total uncertainty (O’Connor, 2013). Analogously, it is like sampling from a fair |T |-sided
die, where entropy equals −

∑
1

|T | log
1

|T | = H(Y1:N |x; θ). Thus, B(x; θ) = exp
(
H̄(Y1:N |x; θ)

)
where H̄(Y1:N |x; θ) = 1

N H̃ (Y1:N |x; θ) is the averaged entropy per output token up to position N .
A larger B(x; θ) indicates a greater potential for diverse outputs.

For short outputs, where it’s tractable to sample sufficiently many sequences to closely estimate the
conditional entropy at each position, we can estimate the BF by computing the conditional entropy

4
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Figure 2: AEP Empirical verification for Llama-3-8B-Instruct. (a, b): length-averaged NLL
closely tracks length-averaged Entropy. (c, d): Standard deviation of length-averaged NLL dimin-
ishes with output length.

at each position and then aggregating as:

B(x; θ) ≈ exp

 1

M

M∑
i=1

∑|y(i)|
t=1 H̃(Yt|[x, y(i)

1:t−1]; θ)

|y(i)|

 (2)

where H̃(Yt|[x, y(i)1:t−1]; θ) is the entropy of the distribution at position t for sample i.

4.2 PRACTICAL BF ESTIMATOR VIA ASYMPTOTIC EQUIPARTITION PROPERTY

While the above approach works for short outputs, it is challenging for longer sequences. Sam-
pling a tiny fraction of the exponentially large output space leads to a systematic underestimation
of the true entropy, an issue we demonstrate empirically in Appendix C. In such cases, we show
that when LLMs generate sufficiently long outputs, the average log-probability of each output se-
quence will be roughly the same, and can approximate average output entropy well, following the
Asymptotic Equipartition Property (AEP) (Shannon, 1948; Breiman, 1957; Cover, 1999). The origi-
nal AEP proof requires additional assumptions about the generation process, such as that it needs to
be stationary and ergodic, often violated by LLMs. But as noted by Mudireddy et al. (2024), these
assumptions are unnecessary if we do not require H̄ (Y1:N |x; θ) to converge to a constant:

Theorem 4.1 (AEP for LLMs) Given 0 < ϵ < 1, we have:

lim
N→∞

P

(∣∣∣∣− 1

N
log P̃ (y1:N |x; θ)− H̄ (Y1:N |x; θ)

∣∣∣∣ < ϵ

)
= 1 (3)

Theorem 4.1 is equivalent to the statement: for sufficiently large N , the probability of any length-N
high-probability output y1:N under P̃ can be approximated as exp

(
−NH̄(Y1:N |x; θ)

)
, rendering

log-probability asymptotically ineffective for distinguishing among them.

The proof can be found in Appendix H.4 This result holds under the mild and practical assumptions
that the model is autoregressive and runs with finite precision (e.g., bfloat16)—conditions met by
most popular LLMs. As an empirical demonstration, we plot the standard deviation of the average
negative log-likelihood of Llama-3-8B-Instruct over multiple datasets5 in Figure 2, where we can see
that with the increased output length, the difference between length-averaged entropy and negative
log-likelihood (NLL) is reduced, and the standard deviation of average NLL also quickly reduces
within the first 50 output tokens. A key additional benefit of our AEP-based estimator is computa-
tional efficiency, as it only requires the log-probability of sampled tokens, avoiding potential GPU
memory surge for full-distribution computation, enabling long-form generation analysis.

Therefore, for long sequences,6 we can estimate BF using the NLL of sampled sequences as:

B(x; θ) ≈ exp

(
− 1

M

M∑
i=1

1

|y(i)|
log P̃

(
y1:|y(i)||x; θ

))
(4)

4We provide a simplified proof with minor changes to the original proof of Mudireddy et al. (2024). Notably,
our goal is only to show the approximation between length-averaged log-likelihood and entropy for a typical
sequence, so we do not require stricter assumptions like ergodicity or stationarity.

5For dataset-specific details, we refer readers to Appendix B.
6For short sequences, direct computation (§ 4.1) is preferred, as AEP estimation is unreliable.
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Figure 3: Shrinking BF with output length over various tasks for Llama-3-70B and Llama-3-
70B-Instruct. For better visualization, we compute the exponential moving averaged values of BF
with the smoothing factor set as 0.1.

This approach allows us to compute BF in a sample-efficient way. For task-wise BF, we simply
compute it via averaging all instance-wise BF: B(X; θ) =

∑
x p(x)B(x; θ).

5 BENCHMARKING AND ATTRIBUTING BRANCH FACTORS

Models and Sampling. We run experiments on models from Llama-2 (Touvron et al., 2023) and
Llama-3 (Dubey et al., 2024) families as they are widely-used open-weight model families. For each
model family, we include both base and aligned models to investigate how alignment tuning affects
BF. We set p=0.9 and T=1.0 to sample outputs to conform with the setting for most datasets.

We set M=50 sequences to estimate BF, which yields a reliable estimation across datasets in prior
studies. For aligned models, we apply the official chat templates to prompts. In addition, we care-
fully control the lengths of all inputs plus outputs to be within the context window of the models.

Tasks. We consider a variety of tasks covering common application scenarios of LLM generation,
including reasoning and open-ended generation: MMLU (Hendrycks et al., 2021) (Reasoning),
COGNAC (Chen et al., 2022) (Controlled Generation), BBCLATESTNEWS (Li et al., 2024b) (News
Generation), and CREATIVE STORY GENERATION (Chakrabarty et al., 2024) (Creative Generation).
To test subjective randomness bias (Bigelow et al., 2024), we also prepare a synthetic task RANDOM
STRINGS where the prompt is generated via random characters. See Appendix B for dataset details.

Impact Factors (IFs). We consider modulating these factors that may impact BF computations:
PROMPT COMPLEXITY (C), ALIGNMENT TUNING (AT ∈ {Instruct,Base}), MODEL SIZE (S ∈
{8B/13B, 70B}), and MODEL GENERATION (G ∈ {2, 3}). C controls the informativeness of the
input prompt x (e.g., the number of banned words in Cognac, the number of in-context samples in
MMLU). Intuitively, providing more information in x should make the model more confident in its
outputs, resulting in a lower BF. Dataset-specific setups for C are detailed in Appendix B. AT, S,G
represent model-wise variations to explore how different configurations of θ affect B(X; θ).

5.1 BF DYNAMIC IN GENERATION PROCESS

Both BF and the output length N are functions of the output Y, and BF computation relies on N . To
avoid confounding effects, we first analyze how BF varies with N before intervening IFs In Figure 3,
we demonstrate BF trajectories over different output positions by running Llama-3-70B and Llama-
3-70B-Instruct on three representative tasks. Specifically, we compute BF over every five output
tokens, conditioning on the prompt and all previously generated output tokens.7

7See Appendix D for full results across all models and tasks. Our findings also generalizes to summarization,
multilingual tasks, and Qwen family (Team, 2025) (Appendix G).
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(c) BBCNews
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(d) Creative StoryGen

Figure 4: Pareto Analysis of BF across various IFs. AT indicates whether the model is aligned. C
denotes the prompt complexity. S refers to model size, and G refers to model generation (Llama-2
vs. Llama-3). Across all settings, alignment tuning has the most pronounced impact on BF.

As we can see, first, the average BF for the base model ( ≈ 12) is roughly ten times higher
than the aligned model (≈ 1.2). Therefore, there are actually very few candidate next-token to be
truncated in decoding for the aligned models. This explains why the decoding method would assert
weaker effects for aligned models, as we see in § 3. Also, in most cases, BF would often drop
smoothly as more output tokens are generated. Under the same task, when C > 0, different C
mainly controls the starting point and the rate of decreasing, while in the end, they would converge
to roughly the same point. When almost zero knowledge is provided (C = 0), the output will end
much earlier compared to C > 0 cases. These findings also provide support that the future token
generation is gradually becoming predictable and the model may have a certain generation plan to
follow, resonating with recent observation in interpretability (Pal et al., 2023; Wu et al., 2024; Li
et al., 2024a) and inference acceleration (Cai et al., 2024; Welleck et al., 2024).

We further examine potential confounds such as prompt likelihood and data contamination in Ap-
pendix L, and find they do not fully account for the observed BF reductions.

5.2 PARETO ANALYSIS OF BF

We perform a Pareto analysis to identify the relative influence of all IFs of BF. For each factor Di,
we define the unnormalized Impact Ĩ(Di) as the average absolute pairwise difference in BF when
varying Di while holding other dimensions constant:

Ĩ(Di) =

∑
di,dj∈Domain(Di),di ̸=dj

|Avg(B(·|Di = di))− Avg(B(·|Di = dj))|
|Domain(Di)| ∗ |Domain(Di)− 1| . (5)

Then we normalize it as I(Di) =
Ĩ(Di)∑
Ĩ(Di)

. The results, shown in Figure 4, indicate that alignment
tuning is the most influential factor affecting BF, surpassing model size, model generation, and
prompt complexity by a large margin. For tasks with richer inputs–such as MMLU (with more
in-context examples) and BBCLatestNews (with more headlines)–prompt complexity C and model
size M emerge as the next most impactful factors. In contrast, for open-ended tasks like Cognac and
Story Generation, model generation G–particularly improvements from Llama-2 to Llama-3–plays
a more dominant role. This shift likely reflects gains the use of larger, more diverse datasets in
training (Dubey et al., 2024).

Among these secondary factors, prompt complexity C has a noteworthy effect: contrary to intuition,
more context provided in the prompt does not always reduce BF but can in fact increase it, potentially
due to the cognitive burden of processing complex linguistic structures. A detailed case study and
comprehensive task-wise BF results are presented in Appendices E and F.

6 REDUCED BF NEGLECTS ALTERNATIVE GENERATION AND FORKING

Building on our findings that BF declines over the generation process (§ 5.1) and is lower in aligned
models (§ 5.2), we derive a practical implication: aligned CoT models, by starting with low BF
and delaying decisive tokens, shrink the output space more aggressively and produce fewer high-
probability variants. To test this, we evaluate output variability on MMLU-STEM using 200 samples
per model, measuring the standard deviation of Majority@K accuracy for K = 1, 3, 8, 16 under
temperature T = 0.6 and truncation threshold p = 0.9. As shown in Table 2, among models with
similar capacity, those with lower BF–especially the aligned CoT model–exhibit markedly lower
variance. This confirms that BF is a reliable predictor of sampling consistency.

7
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Model Maj@1 Std Maj@3 Std Maj@8 Std Maj@16 Std BF

DeepSeek-R1-Distill-Llama-70B 14.34 8.29 4.99 3.21 1.23
Llama-3-70B-Instruct 16.37 11.40 7.50 5.12 1.28
Llama-3-70B 27.78 19.53 13.22 9.23 1.31

DeepSeek-R1-Distill-Llama-8B 27.10 20.91 13.93 9.14 1.23
Llama-3.1-8B-Instruct 31.54 24.64 17.30 12.90 1.31
Llama-3.1-8B 36.41 29.78 20.43 14.05 1.35

Table 2: Majority Voting@K standard deviation on MMLU-STEM with 200 samples. We
compute the standard deviation over 100 bootstrapping trials, each using 64 samples per instance.
We set T = 0.6, p = 0.9 to match standard benchmarking settings, differing from T = 1.0, p = 0.9
setup in § 5. Lower temperature concentrates probability mass on fewer tokens, reducing BF and
making direct comparisons more difficult. Still, BF remains a strong predictor of standard deviation.

Output
Position

1st output
token

BF@1=1.77

25th output
token

BF@25=1.29

200th output 
token

BF@200=1.24
Resample! Resample!

Forced Resampling continuations 
from 𝑃(y25:| 𝑥; 𝑦1:24 ; 𝜃) brings 
some unlikely sequences, 
leading to roughly 5% Maj@K drop. 

Forced Resampling continuations 
from 𝑃(𝑦200:| 𝑥; 𝑦1:199 ; 𝜃) brings 
many very unlikely sequences,
leading to roughly 25% further Maj@K drop. 
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Figure 5: Resampling from different output positions to assess the effect of interrupting BF
reduction. We resample new continuations at the 25th and 200th output token of DeepSeek-Distilled
Llama-8B MMLU outputs. Results show substantial performance drops at both positions.

But is this narrowing of BF merely a reflection of concentrated token probabilities, or does it reflect
a deeper commitment to specific generative paths? To examine this, we conduct a resampling ex-
periment: at various points in the generation process, we force the model to take a different path
by replacing the remainder of the output with a newly sampled continuation. As shown in Figure 5,
performance drops sharply when resampling occurs at a later, lower-BF position in the sequence.
This suggests that aligned models arent just concentrating probability mass locally, but are actively
locking into trajectories, making late-stage deviations more error-prone. In practice, this highlights
a key application of BF: parallel sampling should be applied early, while BF remains high, to
ensure meaningful diversity and avoid quality degradation.

7 HOW DOES ALIGNMENT TUNING IMPACT BF?
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(b) Nudging Ratio Histogram
Figure 6: Nudging Experi-
ments over Just-Eval-Instruct.

Why does alignment tuning exert such a pronounced effect on BF?
Building on the superficial alignment hypothesis (Zhou et al., 2024)
(“Alignment tuning might simply teach base LLMs to select a sub-
distribution of data formats for interacting with users.”) and recent
tuning-free alignment work (Lin et al., 2023; Fei et al., 2024), we
hypothesize base models already encode low-entropy conditional
distributions. In this view, alignment tuning doesn’t reshape gener-
ation from scratch, but instead nudge the model toward stylistic to-
kens (e.g., “Sure”), thereby narrowing the conditional distribution.

To test this hypothesis, we reproduce the nudging experiments (Fei
et al., 2024), over Just-Eval-Instruct (Lin et al., 2023) and MMLU
datasets. We employ Llama-3-70B for drafting most outputs. How-
ever, when the base model’s Top-1 probability is low, we apply
nudging by switching to Llama-3-8B-Instruct to generate a single
word. BF was computed as in prior experiments. The results, shown
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in Figure 6,8 indicate that after most nudging occurs early in the generation process – indicating the
prefix generated by the nudging model is of low probability. These observations collectively support
our hypothesis. Considering that nudging not only reduces BF but also improves aligned model per-
formance on these tasks (Fei et al., 2024), our results highlight the dual effect of alignment training:
reducing BF while preserving or even enhancing task performance.

8 RELATED WORKS

Uncertainty Quantification for LLM. Uncertainty quantification (UQ) for LLMs has gained sig-
nificant attention due to its importance in real-world applications, particularly in high-stakes do-
mains (Desai & Durrett, 2020; Jiang et al., 2021; Wang et al., 2022; Kadavath et al., 2022; Xiong
et al., 2024; Ye et al., 2024; Gupta et al., 2024). Existing methods typically address closed-domain
tasks such as classification and question-answering, where outputs are discrete and easier to assess.
However, as Kuhn et al. (2023) note, these approaches often overlook challenges specific to open-
ended generation, such as semantic equivalence across outputs. They introduce “semantic entropy”
to quantify uncertainty in LLM output space by first clustering the sampled output and then quan-
tifying uncertainty over cluster distribution. This method empirically works well in hallucination
detection (Farquhar et al., 2024). In this paper, we focus on investigating the probability concentra-
tion phenomenon for LLMs. We introduce BF to quantify this concentration, whichapplies broadly
across tasks without imposing strong assumptions on output categories.

Reduced Diversity in Aligned Models. Recent studies have consistently shown that alignment
tuning reduces output diversity in language models (Perez et al., 2022; Padmakumar & He, 2024;
Chakrabarty et al., 2024; Tian et al., 2024; Kirk et al., 2024; Lu et al., 2025; West & Potts, 2025).
Our work aims at connecting reduced diversity with related observations on diminished randomness
and robustness in aligned models (Saparov & He, 2023; Song et al., 2024; Renze & Guven, 2024;
Bigelow et al., 2024), and proposes a unifying explanation: increased probability concentration. Tra-
ditional diversity metrics such as n-gram lexical diversity (Li et al., 2016) are sensitive to vocabulary
size and output length (Liu et al., 2022; Tevet & Berant, 2021; Guo et al., 2024; Kirk et al., 2024) and
cannot work well with most recent long CoT models. In Appendix K, we demonstrate that lexical
diversity poorly correlates with BF and fails to robustly measure generation concentration.

Our work also resonates with information density research in cognitive science and linguistic theo-
ries, and we present a short discussion in Appendix J.

9 DISCUSSION

Practical Implications. A key practical implication of our findings is that reduced BF neglects
alternative generations and forking. Consequently, simply tweaking decoding parameters (e.g., tem-
perature), is unlikely to restore diversity without severely degrading quality (Renze & Guven, 2024).
Our work suggests that efforts to mitigate diversity loss should target the training process itself. This
represents a more promising, albeit more challenging, direction. Future work could involve curating
more diverse alignment data or designing novel training objectives that balance instruction-following
with distributional diversity (Wang et al., 2024; Kwon et al., 2024; Lanchantin et al., 2025; Chung
et al., 2025). System-level interventions (e.g., model collaboration) also present a viable path for-
ward (Fei et al., 2024; Lu et al., 2024; Venkatraman et al., 2025; Ismayilzada et al., 2025). While our
paper’s primary contribution is diagnostic, we believe this foundational understanding is a necessary
prerequisite for developing such effective countermeasures.

Which Training Stage Reduces BF Most? While our analysis does not disentangle which stage of
alignment (supervised fine-tuning, reward modeling, or RL) contributes most to BF reduction, we
hypothesize that the RL stage is the primary driver. This hypothesis is informed by concurrent work
investigating entropy dynamics during RL for language models. These studies suggest that the nature
of RL training, particularly with sparse reward signals, is the main cause of probability distribution
shrinkage (Cui et al., 2025; Wu et al., 2025b). A fine-grained, checkpoint-by-checkpoint analysis of
BF throughout the entire alignment pipeline remains an important direction for future investigation.

8We present results on Just-Eval-Instruct in short of space. MMLU results are included in Appendix I.
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10 ETHICS STATEMENT

Our work identifies a key dynamic in modern LLMs: alignment tuning significantly reduces the
Branching Factor (BF), leading to more homogenized and predictable outputs. While this can be
beneficial, it also carries potential negative societal impacts. In applications such as automated con-
tent generation, creative writing, or decision-support systems (Padmakumar & He, 2024; Sorensen
et al., 2024; Wu et al., 2025a; Murthy et al., 2025; Ashkinaze et al., 2025; Lake et al., 2025), this
reduction in diversity could inadvertently reinforce social biases, stifle creativity, and limit the ex-
ploration of novel ideas. We believe that formally understanding and quantifying the mechanisms
of probability concentration, as we do in this paper, is a critical and necessary first step toward de-
veloping alignment techniques that mitigate these risks and foster models that are not only helpful
and harmless but also diverse and robust. All experiments in this work were conducted on publicly
available datasets.

11 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our findings, we will release all code used for our experiments upon
publication. All datasets used in this paper are publicly available, with detailed descriptions, sources,
and processing steps provided in Appendix B. Our experimental setup, including hyperparameters
and model configurations, is detailed in § 5. The formal proof for the Asymptotic Equipartition
Property for LLMs, central to our BF estimation, is provided in its entirety in Appendix H.

12 USAGE OF LARGE LANGUAGE MODELS

In this work, besides running LLMs in experiments, we use LLMs for the following purposes:

1. Aid or Polish Writing (Gemini 2.5 Pro, ChatGPT 4/5)
2. Literature Retrieval and Discovery (e.g., finding related work) (Gemini 2.5 Pro Deep Re-

search, ChatGPT Deep Research)
3. Assisting Code Writing and Debugging (Claude 3.5 Sonnet)

We fully understand the responsibility of using LLMs in academic research. We carefully monitor
any potential problems, such as plagiarism or scientific misconduct (e.g., fabrication of facts) when
using LLMs. We make sure these problems do not occur in the paper.
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Figure 7: BF Output Dynamic for Llama-2-families. For better visualization, we compute the
exponential moving averaged values of perplexity with the smoothing factor set as 0.1.

A CASE STUDY IMPLEMENTATION DETAILS

We use the scripts in Qwen-2.5-Math (Yang et al., 2024) for standard reasoning benchmarks.9 We
sample 200 examples from MMLU-STEM and compute the performance numbers under 64 trials
and report the average performance.

B DATASET-SPECIFIC PROCESSING

For all datasets we used in the paper, we carefully controlled whether the prompt length and expected
output length would exceed the model’s maximum length.

MMLU (Hendrycks et al., 2021) is a widely-used multiple-choice reasoning question. Unless
otherwise explained, we use the full test set of MMLU to avoid potential contamination, following
benchmarking settings reported in most LLM technical reports(Touvron et al., 2023; Dubey et al.,
2024; Guo et al., 2025). We formulate prompt complexity C as the number of in-context samples.
For example, C = 1 means we only add one in-context sample. For prompting setup and postpro-
cessing details, we follow the standard implementation in Qwen-2.5-Math (Yang et al., 2024).

Cognac (Chen et al., 2022) is a controlled generation task requiring language model not to gen-
erate specified banned words provided in the prompt. We use the WordNet subset (Miller, 1995)
of Cognac as this is the only released setting in Cognac paper, where the topic is a root node and

9https://github.com/QwenLM/Qwen2.5-Math/tree/main
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the constraint is defined as a subtree. We sampled 200 instances using the provided data generation
codes in our experiments. To ensure most model generations ended properly in the decoding process,
we relax the constraint of maximum decoded tokens T from 60 to 512. We use the same prompt
templates following their Github repo.10

Creative Story Generation (Chakrabarty et al., 2024) provides the plots and story continuation
from both machine and human. We adopt the provided 11 human-written story plots in the original
dataset as the prompt. In this task, we set the maximum token T = 1024 to ensure the continued
story written by LLM can have a proper ending. We formulate prompt complexity C as providing
C × 25 words in the plot.

Random Strings Similar to Bigelow et al. (2024), we sample 200 random strings with length
L ∼ U(256, 512) from the tokenizer vocabulary as the prompt. Prompt complexity C is formulated
by providing C × 15 tokens in the prompt, ensuring each article contains at least 100 tokens.

BBCLatestNews (Li et al., 2024b) is a news collection dataset aims at collecting news that is
beyond the time cut for training LLMs. Unlike creative story plots, news articles are typically more
structured and organized, although headlines can still be surprising. We select news articles from
January to July 2024 to minimize data contamination, as the Llama models have a knowledge cut-off
in late 2023. We formulate prompt complexity C as providing C × 15 words in the prompt.

C ENTROPY UNDERESTIMATION VIA MONTE CARLO SAMPLING

To demonstrate the limitations of Monte Carlo (MC) sampling for entropy estimation in long se-
quences, we conducted an empirical study. We prompted Llama-3-8B-Instruct with 5-shot CoT
examples from the MMLU dataset. We then estimated the entropy of its generated responses using
a varying number of MC samples: M ∈ {4, 8, 16, 32, 64}.

As illustrated in Figure 9, the estimated entropy consistently increases with the number of samples.
This trend confirms that MC estimation with a small sample size systematically underestimates
the true entropy because it fails to capture the long tail of the full probability distribution. While
increasing the sample count mitigates this bias, it does so at a significant computational cost. In
contrast, AEP Theorem 4.1 allows us to use the negative log-likelihood (NLL) of a single typical
sequence for a more efficient and accurate estimation.

D FULL BF OUTPUT DYNAMICS INVESTIGATION

Here we present full task-wise and model-wise BF output dynamic for Llama-2 in Figure 7 and
Llama-3 in Figure 8. We can observe the trends as in § 5.1: ¬ The average BF for the base model
( ≈ 12) is roughly ten times higher than the aligned model (≈ 1.2). ­ BF would often drop
smoothly as more output tokens are generated.

E CURIOUS CASE OF PROMPT COMPLEXITY

Intuitively, greater prompt specificity (larger C) reduces BF by narrowing the models output space
through more informative context. However, our experimental results reveal task-varied effects. As
illustrated in Figure 10 for the Cognac task, greater prompt complexity can increase BF–potentially
due to the cognitive burden of processing negation or complex linguistic structures. In contrast,
for tasks like News Generation, higher C generally leads to lower BF, consistent with the expected
narrowing of output diversity. Comprehensive task-wise BF results are provided in Appendix F.

F FULL TASK-WISE BF EVALUATION ON DIFFERENT PROMPT COMPLEXITY

The full task-wise BF evaluation results over different prompt complexity can be found in Figure 11.
Here we can see that prompt complexity modulates BF in highly non-consistent ways across models

10https://github.com/princeton-nlp/Cognac/tree/main
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Figure 8: BF Output Dynamic for Llama-3-families. For better visualization, we compute the
exponential moving averaged values of perplexity with the smoothing factor set as 0.1.
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Figure 9: Monte Carlo (MC) sampling systematically underestimates entropy. The plot shows
that the estimated entropy of sequences from Llama-3-8B-Instruct increases with the number of MC
samples (M ). A small sample size fails to cover the vast output space, leading to an underestimation
of the true entropy. This bias is difficult to eliminate without incurring substantial computational
costs.

and tasks, and there are no clear monotonic patterns, contradicting the intuition that with more
context given, the model should have more confidence in what to generate.
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Figure 10: Task-varied influence of prompt complexity C on BF. On Cognac, we see BF in-
creases with increased C, while on BBCNewsLatest, increasing C can lead to reduced BF.
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Figure 11: BF changes with prompt complexity (C) for Different Tasks. We can see prompt com-
plexity affects BF in a task-varied way.

G GENERALIZATION TO ADDITIONAL TASKS AND MODELS

To confirm the generalizability of our findings (§ 5), we extend our experiments to new domains:
summarization on XSUM (Narayan et al., 2018), multilingual tasks on AYA (Singh et al., 2024).
We formulate prompt complexity C as providing C × 25 words in the prompt. We also verify
our findings on a new model, Qwen3-4B (Team, 2025).11 As presented in Figure 12, our core
conclusions remain robust across these diverse conditions.

H PROOF OF AEP

The following proof is a simplified version of the one in (Mudireddy et al., 2024), presented for
completeness and to refine its original bounds. For the formal measure-theoretical treatment, we

11For the Qwen3 family, we use the Qwen3-4B-Base and Qwen3-4B-Instruct-2507 pair. Other aligned
variants can be activated into a reasoning mode, exhibiting behavior distinct from the models in our main study,
and were thus excluded for a fair comparison.
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Figure 12: Additional Verification on Summarization, Multilingual and Qwen Model family.
For better visualization, we compute the exponential moving averaged values of perplexity with the
smoothing factor set as 0.1.

refer readers to the original paper. While a more direct proof using the weak law of large numbers is
possible, we use Chebyshev’s inequality to provide a more self-contained and accessible argument.

The key observation here is that under current computation architecture, the probability imple-
mented by transformers are log-precision (Merrill & Sabharwal, 2023), and thus | logP (y1:N |x; θ) |
is bounded (e.g., | logP (y1:N |x; θ) | ≤ M ). For the truncated probability P̃ (y1:N |x; θ), we can es-

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

sentially only consider the non-zero probability over truncated vocabulary and the same thing holds.
Depending on the quantization scheme implemented, examples of M include 32, 64, etc.

Then, note that H̄ (Y1:N |x; θ) is actually the first moment of variable logP (y1:N |x; θ) divided by
N , if we can further show that the second moment of logP (y1:N |x; θ) is bounded by some G(N)
which only increases linearly in N , by Chebyshev Inequality (Cohen, 2015), we can prove:

P

(∣∣∣∣− 1

N
log P̃ (y1:N |x; θ)− H̄ (Y1:N |x; θ)

∣∣∣∣ ≥ ϵ

)
≤ Var(logP (y1:N |x; θ))

N2ϵ2
≤ G(N)

N2ϵ2
(6)

Then taking N → ∞ on both sides, we will see:

P

(∣∣∣∣− 1

N
log P̃ (y1:N |x; θ)− H̄ (Y1:N |x; θ)

∣∣∣∣ ≥ ϵ

)
→ 0 (7)

Equivalently:

lim
N→∞

P

(∣∣∣∣− 1

N
log P̃ (y1:N |x; θ)− H̄ (Y1:N |x; θ)

∣∣∣∣ < ϵ

)
= 1 (8)

and we can complete the proof.

Now let’s prove a specific choice of G(N) = NM2 upper-bounds Var [logP (y1:N |x; θ)].
First, we note that

logP (y1:N |x; θ) =
N∑
t=1

logP (yt|[x; y1:t−1]; θ) (9)

H (Y1:N |x; θ) =
N∑
t=1

H (Yt|[x; Y1:t−1]; θ) =

N∑
t=1

Ey1:t−1
[H (Yt|[x, y1:t−1]; θ)]

(10)

Var [logP (yt|[x, y1:t−1]; θ)] = E [logP (yt|[x, y1:t−1]; θ)−H (Yt|[x; Y1:t−1]; θ)]
2

= E[log2 P (yt|[x, y1:t−1]; θ)]−H2 (Yt|[x; Y1:t−1]; θ)

≤ M2 (11)
The last line is because | logP (y1:N |x; θ) | ≤ M .

Following Mudireddy et al. (2024), we use induction on N to prove Var [logP (y1:N |x; θ)] ≤ NM2.
N = 1 trivially holds as Var [logP (y1|[x]; θ)] ≤ 1 ·M2 (directly set N = 1 in Equation (11)).

Assuming Var [logP (y1:N |x; θ)] ≤ NM2 holds for N = K, for N = K + 1, we have:

Var [logP (y1:K+1|x; θ)] = E [logP (y1:K+1|x; θ)−H (Y1:K+1|x; θ)]2

= E[logP (y1:K |x; θ)−H (Y1:K |x; θ)
+ logP (yK+1|[x, y1:K ]; θ)−H(YK+1|[x,Y1:K ]; θ)]2

= E[C(K)]2 + 2 ∗ E[C(K)D(K + 1)] + E[D(K + 1)]2

≤ KM2 + 2 ∗ E[C(K)D(K + 1)] +M2 (12)
where:

C(K) = logP (y1:K |x; θ)−H (Y1:K |x; θ) (13)
D(K + 1) = logP (yK+1|[x, y<K+1]; θ)−H(YK+1|[x,Y1:K ]; θ) (14)

Using the law of iterated expectation, we can compute E[C(K)D(K + 1)] as:
E[C(K)D(K + 1)] = Ey1:K

E[C(K)D(K + 1)|y1:K
]

= Ey1:K
[C(K)E[D(K + 1)|y1:K

]] (15)

= Ey1:K

[
C(K)EyK+1|y1:K

[logP (yK+1|y1:Kx; θ)−H(YK+1|[x, y1:K ]; θ)]
]

(16)
= Ey1:K

[C(K) · 0] = 0 (17)
Equation (15) is because C(K) is a deterministic function when y1:K has been realized. Equa-
tion (16) is because H(YK+1|y1:K)] = E[logP (yK+1|y1:Kx; θ)].

Plug Equation (17) in Equation (12), we can obtain Var [logP (y1:K+1|x; θ)] ≤ (K +1)M2, which
completes the induction. With this specific choice of G(N) = NM2, we can prove Equation (8).
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I FULL NUDGING EXPERIMENT RESULTS

Due to space limits, we put the nudging experiment results for MMLU here. Though on MMLU,
nudging does not reduce BF that quickly as over Just-Eval-Instruct, it does bring down BF of base
models significantly, which verifies our hypothesis in § 7.
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Figure 13: Output Perplexity Dynamics in Nudging Experiments.
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Figure 14: Nudging Ratio Histogram.

J BF AND INFORMATION DENSITY

Our BF measure can also be interpreted as capturing the information density that LLMs target to
facilitate efficient communication (Genzel & Charniak, 2002; Jaeger & Levy, 2006; Levy, 2008;
Mahowald et al., 2013; Meister et al., 2021; Verma et al., 2023). Prior work has leveraged both
token-level log-probabilities and entropy rates (H̄) as proxies for information density in human
and machine communication. In Theorem 4.1, we formalize the connection between these views,
showing that BF–defined as the exponentiated entropy rate–aligns naturally with this theoretical
framework. Unlike prior studies focused primarily on linguistic theory or cognitive science, our
work operationalizes this principle at scale across modern LLMs, linking information density to
alignment training, decoding dynamics, and output variability in a unified analysis.

K DISCUSSION: DIVERSITY AND BF CORRELATION

Following the branching factor (BF) analysis in § 2, a higher BF suggests greater lexical diversity
in finite samples. To examine the relationship between BF and traditional diversity metrics, we
compute Distinct-N (Li et al., 2016), incorporating necessary LLM-specific adaptations (Tevet &
Berant, 2021; Guo et al., 2024; Kirk et al., 2024). We then conduct a correlation analysis between
Distinct-N and BF.

Our results, presented in Figure 15, show no consistent correlation between BF and Distinct-N.
Depending on the model and task, the relationship can be strongly positive, strongly negative, or
entirely absent (e.g., Llama-3-70B-Instruct on Cognac at Figure 15b). This empirical inconsistency
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highlights a fundamental conceptual point: BF measures a property of the underlying probability
distribution, whereas diversity metrics measure a surface property of finite samples.

BF, as the exponentiated entropy, characterizes the “width” of the model’s entire output distribution.
In contrast, metrics like Distinct-N describe a small set of sampled outputs and are known to be
unreliable proxies for distributional properties, being sensitive to confounding factors like genera-
tion length (Liu et al., 2022).12 This distinction is critical, as two models can produce samples of
similar diversity while having fundamentally different underlying distributions (e.g., with infinite
KL-divergence), a nuance that BF captures but sample-based metrics miss. Therefore, our work
focuses on probability concentration, measured by BF, as a more fundamental and insightful tool for
understanding a model’s generative process.

Viewing alignment through the lens of BF reduction provides a unified framework that explains sev-
eral disparate observations: it clarifies how alignment shrinks the generative horizon, why aligned
models are less sensitive to decoding methods, and how techniques like Chain-of-Thought stabi-
lize generation by shifting information to low-BF regions. This focus on distributional properties
aligns with emerging research highlighting the importance of a model’s entropy in understanding
and improving advanced reasoning capabilities Cui et al. (2025); Wu et al. (2025b).

L CONFOUNDER INVESTIGATION: DATA CONTAMINATION

A potential confounder in our analysis is the influence of data contamination. If prompts closely
resemble the training data (including pretraining and alignment tuning, i.e., "data contamination"),
smaller BF values would be expected, and vice versa. To evaluate this, we use the Min-K% met-
ric (Shi et al., 2024), which quantifies the overlap between experimental prompts and training data.
Following Shi et al. (2024), we set K = 20 and compute the average log-likelihood for the mini-
mum K% of tokens. Using these Min-K% values, we perform a linear regression with BF to assess
their correlation. For each task-model pair, Signed R2 values are reported to indicate the strength
and sign (positive or negative) of the correlation.

The results of the Min-K% analysis are presented in Figure 16. Significant negative correlations be-
tween BF and Min-K% are observed for models such as Llama-3-8B-Instruct, Llama-3-70B-Instruct,
and Llama-2-70B-Chat across several tasks. Conversely, Llama-3-8B and Llama-2-13B-Chat mod-
els exhibit positive correlations. For other models, correlations are notably weaker. Overall, there is
no consistent correlation pattern between BF and Min-K% across datasets and models, suggesting
that data contamination cannot fully explain our findings.

12While the EAD metric (Liu et al., 2022) mitigates this issue, it remains influenced by vocabulary size and
is not model-agnostic.
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Figure 15: Correlational Analysis of BF and Distinct-N. We can find there is no consistent correla-
tion between Distinct-N and BF.
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Figure 16: Signed R2 values heatmap investigating correlation between EBF and Min-K %.
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