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Abstract

Implicit neural representations (INRs) use neural networks to provide continuous
and resolution-independent representations of complex signals with a small number
of parameters. However, existing INR models often fail to capture important
frequency components specific to each task. To address this issue, in this paper, we
propose a Fourier Kolmogorov–Arnold network (FKAN) for INRs. The proposed
FKAN utilizes learnable activation functions modeled as Fourier series in the first
layer to effectively control and learn the task-specific frequency components. The
activation functions with learnable Fourier coefficients improve the ability of the
network to capture complex patterns and details, which is beneficial for high-
resolution and high-dimensional data. Experimental results show that our proposed
FKAN model outperforms four state-of-the-art baseline schemes across various
tasks, including image representation, 3D occupancy volume representation, and
image inpainting.

1 Introduction

Implicit neural representations (INRs), which model continuous functions from discrete data, have
gained attention for their effectiveness in representing 2D images, 3D shapes, neural radiance fields,
and other complex structures (Mildenhall et al., 2020; Sitzmann et al., 2020; Park et al., 2019; Shi
et al., 2024). Unlike traditional convolutional neural networks (CNNs) which are limited to 3D inputs,
coordinate networks use 1D vectors, providing a flexible framework for solving inverse problems
in any dimension. INR models build on the multi-layer perceptron (MLP) structure and alternate
between linear layers and non-linear activation functions, benefiting from its continuity nature and
expressive power. MLP-based INR models avoid the locality bias problem that often restricts the
effectiveness of CNNs. However, ReLU-based MLPs in coordinate networks exhibit spectral bias,
prioritizing low-frequency signals. As a result, these networks learn high-frequency components
more slowly (Rahaman et al., 2019; Xu, 2018; Shi et al., 2024; Radl et al., 2024). This suggests that
MLPs generally capture basic patterns in real-world data, focusing on the low-frequency aspects of
the target function (Xu, 2018; Arpit et al., 2019).

To overcome the challenge of capturing high-frequency components, several approaches have been
explored. Spatial encoding techniques like frequency decomposition, high-pass filtering, and Fourier
features (Tancik et al., 2020) help emphasize high-frequency components, while architectural modi-
fications such as multi-scale representations (Saragadam et al., 2022) capture both low-frequency
and high-frequency details. Additionally, methods like SIREN (Sitzmann et al., 2020) and WIRE
(Saragadam et al., 2023) use periodic activation functions, such as sine functions, for automatic
frequency tuning (Ramasinghe & Lucey, 2022; Lindell et al., 2022). However, the aforementioned
approaches introduce new challenges. The effectiveness of the SIREN model relies heavily on the
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proper selection of hyperparameters, like frequency. It is sensitive to initialization and requires careful
design to prevent random variations. Moreover, due to the unknown frequency distribution of the
signal, spatial encoding techniques face a mismatch between the predefined frequency bases and the
signal’s inherent properties, causing an incomplete or inaccurate representation (Liu et al., 2024a;
Xie et al., 2023).

To address the aforementioned issues, in this paper, we propose a novel approach that enhances
the hierarchical representation of INRs for improved signal reconstruction in tasks like image
representations and 3D structure modeling. We develop an adaptive mapping function that can
manage non-linearity and intricate frequency distributions. We hypothesize that a polynomial
approximation of activation functions in the initial layer can capture fine-grained high-frequency
details. Inspired by Kolmogorov–Arnold networks (Liu et al., 2024b; Xu et al., 2024), we introduce
Fourier Kolmogorov–Arnold network (FKAN) to learn task-specific frequency components for
INRs. Our key contributions are summarized as follows:

• FKAN Architecture: The proposed FKAN adjusts spectral bias using adaptive Fourier
coefficients. Specifically, learnable activation functions modeled with the Fourier series
enable the network to capture a broad range of frequency information flexibly. By utilizing
the spectral characteristics of the Fourier series, they efficiently represent both the low-
frequency and high-frequency elements of the input signal.

• Performance Evaluation: We evaluate the performance of the proposed FKAN on signal
representation tasks, including image representation and 3D occupancy volume represen-
tation, as well as on inverse problems, such as image inpainting. We compare it with
the following baselines: SIREN (Sitzmann et al., 2020), WIRE (Saragadam et al., 2023),
INCODE (Kazerouni et al., 2024), and FFN (Tancik et al., 2020). Experimental results
show that the proposed FKAN can improve the peak signal-to-noise ratio (PSNR) and
structural similarity index measure (SSIM) for image-based tasks. The proposed FKAN
improves intersection over union (IoU) for the 3D occupancy volume representation task.
The proposed FKAN achieves faster convergence than baseline models in both tasks.

2 Problem Formulation

INRs can be interpreted as approximating a function that maps input features to the output signal.
As an example, in the context of 2D images, the input features could be spatial coordinates, and
the output signal could be pixel values. This mapping function can be parameterized using a neural
network. Let x ∈ Rdi denote the input features and y ∈ Cdo denote the output signal. The neural
network that maps the input features to the output signal is denoted as f(·;Φ) : Rdi → Cdo , where
Φ represents the set of neural network parameters.

The parameters Φ are determined by minimizing the error between the predicted values of the neural
network and the ground truth signal. This can be expressed as:

argmin
Φ

1

N

N∑
n=1

L (f (xn;Φ) ,yn) , (1)

where L denotes a pre-defined loss function and N represents the number of training samples. In this
paper, we consider the L2 loss function, i.e., L = ||f (xn;Φ)− yn||2. Also, xn and yn denote the
input and output signal for the n ∈ {1, . . . , N} training sample, respectively.

3 Proposed Fourier Kolmogorov-Arnold Network

To capture task-specific frequency components in a fine-grained manner, we propose FKAN. Moti-
vated by the Kolmogorov-Arnold representation theorem (Kolmogorov, 1957) and KANs (Liu et al.,
2024b), which employ learnable activation functions on edges instead of nodes as in vanilla MLPs,
our proposed FKAN utilizes learnable activation functions modeled as Fourier series. This approach
allows for learning a higher spectral resolution for signals. The first layer of the proposed spectral
FKAN can be expressed as follows:
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Figure 1: Illustration of the proposed FKAN model. The proposed architecture includes an FKAN
block for capturing task-specific frequency components with learnable activation functions and
includes L hidden layers to learn non-linear patterns in the signals.
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...
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...
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(·)


︸ ︷︷ ︸

Ψ(·)


x1
x2
...
xdi

 , (2)

where ψi,j(·) : R → R denotes a learnable function. The function matrix Ψ(·) : Rdi → RH1

transforms the input features into a latent hidden space with dimension H1. The fundamental idea of
KAN is to create an arbitrary function at each hidden neuron through the superposition of multiple
non-linear functions applied to the input features.

In (Liu et al., 2024b), spline functions are used to parameterize the learnable functions. However,
splines are piecewise polynomial functions, which can be advantageous for localized approximation
but require more parameters to achieve similar accuracy globally, resulting in higher training com-
plexity. In addition, splines do not provide a direct frequency-domain representation. To address this
issue, as shown in Figure 1, we leverage Fourier series representation (Nussbaumer & Nussbaumer,
1982) to parameterize each learnable function as follows:

ψ(x) =

K∑
k=1

(ak sin kx+ bk cos kx) , (3)

where ak and bk denote the learnable Fourier coefficients, and K is the number of frequency
components (or grid size), which can be fine-tuned as a hyper-parameter. The proposed architecture
can control and capture a wide range of frequency components, leveraging the spectral properties
of the Fourier series to efficiently represent both low-frequency and high-frequency components of
the input signal. Moreover, Fourier series representation has a lower training complexity compared
to spline functions. The FKAN with a single layer of learnable activation functions is sufficient to
achieve a high-quality spectral representation of the input signal.

To learn the intrinsic non-linear patterns in data, as shown in Figure 1, we utilize L hidden layers, each
performing a linear transformation followed by a fixed non-linear activation function. The final layer
then applies a linear transformation to generate the output signal. The non-linear activation in hidden
layers plays an important role in improving the representation capacity of INRs (Saragadam et al.,
2023). To this end, we use the tanh(·) activation function for the hidden layers. The architecture of
the hidden layers is as follows:

hi = W izi + bi,

γi = tanh (ω0hi), i = 1, . . . , L, (4)
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Ground Truth
INCODE

PSNR: 32.03

FFN

PSNR: 31.92

FKAN

PSNR: 33.88

SIREN

PSNR: 30.00

WIRE

PSNR: 20.07

Figure 2: Comparison of the image representation between proposed FKAN and baselines.

where zi is the input to the i-th hidden layer, with z1 = Ψ(x), W i ∈ RHi×Hi+1 and bi ∈ RHi+1

are the learnable weights for the linear transformation in the i-th hidden layer. ω0 ∈ R+ is a pre-
defined positive scalar to control the frequency and convergence of the model, with ω0 = 30 in our
implementations. In addition, we initialize the weights in the hidden layers using uniform distribution
W i ∼ U

(
−
√
6/di,

√
6/di

)
.

For the final layer, we apply a linear transformation to generate the output signal as follows:

y = W fγL + bf , (5)

where W f ∈ CHL×do and bf ∈ Cdo are the learnable weights for the linear transformation in the
final layer.1

4 Performance Evaluation

Table 1: Comparison of the number of parameters
and performance for image representation task be-
tween methods.

Methods #Parameters PSNR (dB) SSIM

SIREN 528, 387 33.13± 3.78 0.864± 0.041

WIRE 528, 643 30.99± 3.44 0.823± 0.055

INCODE 436, 775 34.81± 3.78 0.889± 0.038

FFN 466, 179 33.14± 3.28 0.881± 0.033

FKAN 436, 367 37.91± 3.46 0.939± 0.24

Implementation Details: We evaluate the ef-
fectiveness of our proposed FKAN on signal
representation tasks, including image represen-
tation and 3D occupancy volume representation,
as well as on inverse problems, such as image
inpainting. Our experiments are conducted on
an Nvidia RTX 4070 GPU with 12GB of mem-
ory. To implement the neural networks, we use
PyTorch library (Paszke et al., 2019) and Adam
optimizer (Kingma & Ba, 2015). We choose
H1 = 128 for the latent dimension of the FKAN
block with grid size K = 270. We choose L = 4 for the number of hidden layers with 256, 256, 256,
and 512 hidden neurons in each layer, respectively. We consider 500 training epochs for image-based
tasks and 200 epochs for occupancy volume representation tasks, respectively. We compare the
performance of our proposed FKAN with the following baselines: 1 SIREN (Sitzmann et al., 2020),
2 WIRE (Saragadam et al., 2023), 3 INCODE (Kazerouni et al., 2024), and 4 FFN (Tancik et al.,

2020).

1As mentioned in Section 2, the output signal can contain complex values. Therefore, we initialize the
weights in the final layer as complex numbers to generate a complex-valued output signal. Complex-valued
operations are managed based on Wirtinger calculus (Mehrabian & Wong, 2024a; 2024b). For cases where the
output signal is real-valued, the weights in the final layer are initialized as real numbers.
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Ground Truth
INCODE

 IoU: 0.9846

FFN

  IoU: 0.9406 

FKAN

  IoU: 0.9941

SIREN

 IoU: 0.9799

WIRE

 IoU: 0.9567

Figure 3: Comparison of the occupancy volume representation between proposed FKAN and base-
lines.

4.1 Signal Representations

4.1.1 Image Representation

We conducted image representation experiments on the Kodak dataset (Eastman Kodak Company,
1999), which consists of images with resolutions of either 512× 768 or 768× 512 pixels, all in RGB
format. The learning rate is set to 0.0001. To evaluate the performance of the models for the image
representation task, we consider PSNR and SSIM metrics. Table I presents the experimental results
for the image representation task and the number of parameters for the models. As shown in Table I,
the proposed FKAN outperforms all the baselines in both metrics. In particular, the proposed FKAN
achieves improvements in PSNR and SSIM metrics, with gains of 8.91% for PSNR and 5.62% for
SSIM compared to INCODE as the second-best model, respectively. As depicted in Figure 2, the
reconstructed image by FKAN illustrates FKAN’s ability to capture intricate details of the ground
truth image compared to baselines.

4.1.2 Occupancy Volume Representation

We conduct experiments on the Thai statue dataset from the Stanford 3D Scanning Repository with
WIRE system setting (Saragadam et al., 2023), which maps 3D coordinates (i.e., di = 3) to signed
distance function (SDF) values (i.e., do = 1). We create an occupancy volume through point sampling
on a 512× 512× 512 grid. The learning rate is set to 0.0001. To evaluate the performance of our
proposed FKAN for the occupancy volume representation task, we consider the IoU metric. We plot
the reconstructed 3D shapes in Figure 3. We observe that our proposed FKAN model outperforms
all the baselines. In particular, the proposed FKAN provides 0.96% improvements on the IoU
metric compared to the INCODE. FKAN utilizes learnable activation functions that can capture both
low-frequency smooth regions and high-frequency details, resulting in the highest IoU scores.

4.2 Inverse Problems

4.2.1 Image Inpainting

In image inpainting, models are trained on a fraction of the pixel data and are tasked with predicting
the entire image. To evaluate the performance of the models, we use an image from the Kodak dataset
with a resolution of 768 × 512 × 3. The sampling mask is generated randomly, with an average
of 20% of the pixels being sampled. The learning rate is set to 0.001. We plot the reconstructed
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Ground Truth

FKAN

PSNR: 31.09

SSIM: 0.8483

INCODE

PSNR: 27.98

SSIM: 0.7617

SIREN

PSNR: 27.55

SSIM: 0.7497

FFN

PSNR: 25.38

SSIM: 0.6843

WIRE

PSNR: 25.51

SSIM: 0.6712

Figure 4: Comparison of the image inpainting between proposed FKAN and baselines.
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Figure 5: Illustration of the convergence rates of the
models for the image representation task.
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Figure 6: Illustration of the convergence rates of the
models for the occupancy volume representation
task.

images in Figure 4. As can be seen, the proposed FKAN outperforms all the baselines in both metrics
and demonstrates a superior ability to capture intricate features, particularly edges. Unlike other
methods that often result in blurred outputs and loss of fine details, FKAN preserves clarity and
sharpness, distinguishing itself in terms of image quality. In particular, the proposed FKAN achieves
improvements in PSNR and SSIM metrics, with gains of 11.12% for PSNR and 11.37% for SSIM
compared to INCODE as the second-best model, respectively.

4.3 Comparison of Convergence Rate

In Figure 5, we plot the convergence rate of the models for the image representation task. We observe
that the proposed FKAN has a faster convergence compared to baselines and there is a significant
gap between the proposed FKAN and INCODE as the second-best model. In Figure 6, we plot
the convergence rate of the models for the occupancy volume representation task. We observe that
the proposed FKAN has a faster convergence compared to all baselines. This indicates that FKAN
effectively captures and represents complex data structures with high accuracy, achieving superior
results in fewer training iterations.

5 Conclusion

In this paper, we proposed FKAN for implicit neural signal representations. The proposed FKAN
utilizes learnable activation functions modeled as Fourier series to capture task-specific frequency
components and learn complex patterns of high-dimensional signals in a fine-grained manner. We
investigated the performance of our proposed FKAN on various tasks, namely image representation,
image inpainting, and 3D occupancy volume representation. Experimental results demonstrate that
our proposed FKAN outperforms four state-of-the-art baselines with faster convergence. It improves
the PSNR and SSIM for the image representation and image inpainting tasks and IoU for the 3D
occupancy volume representation task, respectively. For future work, we will consider the neural
radiance field task.
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A Baseline Methods

We adopt four state-of-the-art baseline methods for performance comparison. We introduce the
baselines as follows:

1 SIREN (Sinusoidal Representation Networks): SIREN utilizes periodic activations (sine
functions) into MLPs for representing continuous signals like images and 3D shapes. The sinusoidal
activations allow it to capture high-frequency details and represent structures that standard neural
networks struggle with, particularly in neural rendering and solving PDEs. SIREN also overcomes
initialization issues associated with periodic activations by using a specialized weight initialization
method, ensuring effective gradient flow throughout the network. We download the source code from
github.com/vsitzmann/siren and follow the recommended system settings.

2 WIRE (Wavelet Implicit Neural Representations): WIRE utilizes a Gabor wavelet activation
function to introduce spatial and frequency compactness, making it more robust for signal processing
tasks like image reconstruction. The wavelet transform offers fast signal approximation rates and
better fits to image signals, avoiding overfitting to noise. We download the source code from
github.com/vishwa91/wire and follow the recommended system settings with 2D Gabor activation
function.

3 INCODE (Implicit Neural Conditioning with Prior Knowledge Embeddings): INCODE
is designed to handle multi-modal data by embedding prior knowledge into the INR. It extends
traditional INRs by conditioning the model on learned embeddings, improving its capacity to
reconstruct and generalize across different signal types. We download the source code from
github.com/xmindflow/INCODE and follow the recommended system settings.

4 FFN (Fourier Feature Networks): FFN employs Fourier feature mappings to project input
coordinates into a high-dimensional space, allowing the neural network to better capture fine details
and complex patterns, especially in periodic or high-frequency signals. We download the source code
from github.com/tancik/fourier-feature-networks and follow the recommended system setting.
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