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Abstract

Contextual multi-armed bandits are a popular
choice to model sequential decision-making. E.g.,
in a healthcare application we may perform vari-
ous tests to asses a patient condition (exploration)
and then decide on the best treatment to give (ex-
ploitation). When humans design strategies, they
aim for the exploration to be fast, since the pa-
tient’s health is at stake, and easy to interpret
for a physician overseeing the process. However,
common bandit algorithms are nothing like that:
The regret caused by exploration scales with v/ H
over H rounds and decision strategies are based
on opaque statistical considerations. In this paper,
we use an original classification view to meta learn
interpretable and fast exploration plans for a fixed
collection of bandits M. The plan is prescribed by
an interpretable decision tree probing decisions’
payoff to classify the test bandit. The test regret
of the plan in the stochastic and contextual setting
scales with O(A~2C\ (M) log? (M H)), being M
the size of M, A a separation parameter over
the bandits, and C\(M) a novel classification-
coefficient that fundamentally links meta learn-
ing bandits with classification. Through a nearly
matching lower bound, we show that C\ (M) in-
herently captures the complexity of the setting.

1. Introduction

In the Multi-Armed Bandits model (MAB, Lattimore &
Szepesvari, 2020), a decision-maker, called the agent, faces
a collection of unknown probability distributions over re-
als, called arms, representing alternative decisions and their
corresponding payoff (a.k.a. reward), which the agent re-
peatedly takes, or pulls, to maximize the mean cumulative
reward collected over time. In some settings, called contex-
tual MABs (Audibert & Bubeck, 2010), the reward of an
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Figure 1: Left: An excerpt from a clinical flowchart for the
medical diagnosis of Asthma (GIf, 2023). Right: Illustration
of an interpretable exploration plan for a MAB.

arm depends also on a context, a vector of features that the
agent observes before deciding which arm to pull. The main
challenge in MABs is how to pull arms in a way that effec-
tively balances information gathering (called exploration)
and immediate rewards (called exploitation).

A multitude of decision-making problems, ranging from
recommender systems (Li et al., 2010) to treatment allo-
cation (Berry, 1978), pricing of goods (Rothschild, 1974),
advertising (Schwartz et al., 2017), can be modelled as MAB
problems. However, although the problem structure is fit-
ting, typical MAB algorithms are often very different from
human-designed decision plans. For example, consider the
clinical diagnosis plan illustrated in Figure 1 (left). In ma-
chine learning parlance, this plan takes several exploration
actions (diagnosis tests) to yield a diagnosis, which will
later be treated by appropriate medical actions (exploita-
tion). It is clear that (i) the plan is short — fast diagnosis
is imperative; and (ii) the plan is interpretable, and can be
easily communicated both to physicians and patients. Our
goal in this work is to develop a framework for short and
interpretable action plans in the setting of MABs.

To this end, we consider the stochastic contextual MAB
formulation, a model of non-adversarial problems whose
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theoretical barriers are well-understood (Lai & Robbins,
1985; Auer et al., 2002). Even when the context is fixed,
the regret the agent has to pay, defined as the difference
between the cumulative reward of their decisions and those
of the optimal strategy, inevitably scales with v K H in
the worst case, being H and K the number of pulls and
arms respectively. The latter rate might not be compelling
enough in settings in which the regret translates to money
losses, such as in pricing or advertising scenarios, or even a
negative impact on a patient’s health condition, like in the
clinical diagnosis problem mentioned above.

Faster performance is possible when prior knowledge about
the class of bandits the agent faces may be available, such
as from historical data or powerful simulators. For example,
Thompson sampling (Thompson, 1933) allows to exploit
a prior distribution over the problem parameters through
a Bayesian-inspired approach. In favorable circumstances,
the latter yields an average regret rate that is at most loga-
rithmic in the number of arms K (Russo & Van Roy, 2016).
Another formulation, called latent bandits (Maillard & Man-
nor, 2014; Hong et al., 2020a), assumes that the problem
parameters are coming from a finite collection of bandits.
The latter allows to trade a factor of v/K with /M in the
regret, being M the number of bandits in the collection.

Here we consider a meta learning version of latent bandits.
We can interact with the collection of bandits to meta-train
an algorithm that is then tested against one bandit in the
collection, whose identity is not revealed to the algorithm.
Unfortunately, any prior knowledge we can extract at meta
training cannot improve the /M H rate in the worst case,
which holds even for a collection of two bandits (Lattimore
& Szepesvari, 2020). This changes when we assume that
the bandits in the collection are meaningfully different, i.e.,
the reward distribution of their arms have some statistical
separation (Chen et al., 2022b; Mutti & Tamar, 2024). The
separation condition is relevant in practice: If two patients
do not respond differently to at least one treatment, there is
little point in modeling them with different bandits. Whereas
this can help achieving fast rates, previous work, either with
or without separation, do not yield interpretable plans.

To design interpretable exploration plans for bandits, our
main technical contribution is connecting ideas from the
classification literature to MAB analysis. In principle, the
idea is to take advantage of separation to explicitly clas-
sify the test task from data with high probability, and then
exploit the optimal strategy for the classified task. This clas-
stfication view allows to break the common barriers for meta
learning bandits, while providing an elegant and original
characterization of the regret dynamics under separation.

The contributions of the paper are organized as follows. In
Section 2, we describe problem of meta learning bandits
and the separation condition. In Section 3, we formalize the

classification view of MABs by introducing a novel measure
of complexity, the classification-coefficient Cy(M) for a A-
separated set of bandits M and a space of tests Iz, which
captures the hardness of the learning problem: When M is
known, a simple Explicit Classify then Exploit (ECE) proce-
dure, which runs a classification algorithm to classify the test
task and then exploits the optimal policy of the classified
task, achieves a test regret of O(A\~2C\ (M) log*(M H))
over H rounds. Through a sample complexity lower bound
to identify the optimal policy at test time, we show that the
factor A\=2C'\ (M) is indeed unavoidable in the worst case.
In Section 4, we provide a practical implementation of ECE
with decision trees — a standard tool in interpretable deci-
sion making (Bressan et al., 2024) — that nearly matches the
regret above while yielding a fully interpretable exploration
plan (like in Figure 1 right). The latter is robust to mis-
specifications of Ml, which is estimated through a tractable
meta training routine. Notably, all of our results hold for
the contextual setting. Section 5 provides numerical experi-
ments that showcase our algorithms against UCB/TS-like
approaches for latent bandits (Hong et al., 2020a). Section 6
is dedicated to related works. The proofs of the theorems
are in the appendix.

2. Problem setting

Let us consider a finite collection of contextual bandit prob-
lems M := {v;},car), where [M] = {1,..., M}. Each
bandit instance v;, which we will sometimes call a task, is
a linear contextual bandit (Wang et al., 2005) that maps
an action k € [K] and context v € X C R into a reward
distribution v;(z,k) = x' 0, + nix, where 0, € R? is
a vector of parameters and 7, is a (subgaussian) random
noise with zero mean and variance 0%, < o2. A special
yet important case is when the space of contexts is a single-
ton X = {x}, which we call non-contextual bandit, or just
bandit for simplicity.

Following a typical stochastic bandit setup (Lattimore &
Szepesvari, 2020), the decision maker, i.e., the agent, inter-
acts with a bandit v; € M, which identity is not revealed to
the agent. The interaction protocol goes as follows: At each
step t > 0, the agent observes a context x; € X drawn from
some fixed distribution P, it selects an arm k; € [K], and
it collects a reward 1 ~ v;(x¢, k¢ ). The agents decides the
arm to pull according to a policy 7 : X — [K], a mapping
between contexts and arms, which the agent updates given
previous observations of contexts and rewards.

The goal of the agent is to maximize the cumulative reward
collected over a time horizon H or, equivalently, to mini-
mize the regret of pulling an arm other than the optimal one.
For instance, to minimize the number of times a treatment
different from the optimal one is administered to a patient.
Since the identity of the bandit problem (unobserved charac-
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Figure 2: The meta learning bandits problem setting.

teristic of the patient in the example) is hidden to the agent,
the regret is typically computed over the worst-case task in
M. Formally, the worst-case regret is given by

Regy (M) := sup E
v; EM

[ max x; O — 1y (1
ke[K]

te[H|

where the contexts zj,...zy are sampled independently

from the fixed distribution P and r; ~ v;(xy, k) being

ki ~ mw(z) the arm pulled by the agent.

In this paper, we consider a meta learning variation (e.g.,
Cella et al. 2020; Kveton et al. 2020) of the common bandit
setup described above. The learning setting (Figure 2) is
composed of two separate and consecutive stages, which we
call meta training and test, respectively.

Meta training. In the first stage, the agent can interact
offline with the set of bandits Ml. Differently from a pure ex-
ploration setup (Audibert & Bubeck, 2010), here we interact
with a set of bandits instead of a single one. We are not just
interested in discovering an optimal policy for each bandit,
but also to devise an exploration plan, which we denote as
Plan(M), that we can transfer to the test phase to minimize
the regret. Since the meta training itself happens entirely
offline, no regret is incurred at this stage. In practice, this
is reasonable when working with a simulator or previously
collected data, such as an historical record of treatments
administered to patients. However, we may operate under
resource constraints, so that it is important to investigate the
sample and computational complexity of meta training.

Test. In the second stage, the agent faces a single and
unknown bandit task v; € M, which we call the test task,
with the goal of minimizing the regret (1). This matches
the stochastic bandit setting exactly, except that the learning
algorithm takes decisions according to the exploration plan
devised during meta training, i.e., k; ~ P1lan(M). Whereas
the plan is fixed a priori, it is still adaptive, as it conditions
the decisions with the history of interactions in the test
task. For instance, the plan can be a strategy to administer
treatments to a patient informed by historical data.

What are the theoretical barriers for the described problem
of meta learning bandits? A natural question is whether the
meta training can benefit the test regret in a substantial way.
Perhaps unsurprisingly,! without any assumption on how

"The result is obvious from classical minimax lower bound

the collection of bandits M is constructed, the meta learning
problem is not easier than the classical stochastic bandit.

Theorem 2.1 (Lai & Robbins 1985). Let M a set of M > 2
bandits and let X = {x} be a singleton. The test regret is

Regy (M) = Q(VMH).

The latter can be proved through a hard instance in which
the two bandits are identical expect for a pair of arms whose
mean reward differ for a small quantity depending on H. In
many scenarios, those instances have limited interest, as we
may model the pair of bandits with a single task, at the cost
of a (bounded) sub-optimality. Similarly to previous meta
learning settings (Chen et al., 2022b; Mutti & Tamar, 2024),
we consider a separation assumption built on this premise.

Assumption 1. For all i # j € [M] and a policy class 1,
there exists at least one policy w € 11, s.t. Dy(PT,PT) > A,

us

where Dy is the Hellinger distance and P, PT are the joint

context-arm-reward distributions induced by 7 in v;, v;.

The separation guarantees that the bandits in the collection
are meaningfully different, such as assuming that different
patient groups respond differently to at least one treatment.

We have now a formal picture of the setting we consider:
Meta learning bandits under separation. Before going ahead
with the investigation of the setting, we introduce additional
notation for later use.

Notation. We will consider a fixed context distribution
‘P for both meta training and test stages. For a random
variable A and event £, we use Ep[A],Pp[£] as short-
cuts for [ _. P(x)E[Alz]dz and [ _, P(x)P(€|x)dz
respectively. For any finite set S, we denote 2° the
powerset of S. For any two probability distributions
p,q over some measurable space X, let Dy(p,q) :=

2

szX (\/p(x) — \/q(a:)) dz be the Hellinger distance
between them. For every v; € M, we denote u;r, =
Ep [z 60;1] the mean of r ~ v;(x, k) for z ~ P. We fur-
ther assume ' 0;;, € [0,1] and both ||z, ||0ix||1 to be
bounded. We denote as II the space of policies and the
optimal policy 7} (x) := argmax cr @' Oix(z), playing
the arm k; € arg max () ¢ ' 0% with the optimal mean
reward for any x € X. For a bandit v; € M and policy
m € II, we denote PT the joint distribution of context-
arm-rewards. The action gap of bandit v; and context x
is denoted A;(z,k) := 20+ — 270;, and we define
A = mine ) pex pe(k] iz, k)2

constructions for stochastic bandits. See the one in Chapter 15
of Lattimore & Szepesvari (2020) for a gentle introduction.

“Note that, whenever the context vector is the zero vector, the
gap A; collapses to zero for every i. We assume that the space of
contexts X’ is designed properly, so that it does note include such
dummy context vectors.



A Classification View on Meta Learning Bandits

3. Meta learning bandits with classification

In this section, we present a framework to study meta learn-
ing bandits under separation through the lenses of multi-
class classification. First, we analyze the regret of a strategy,
i.e., an exploration plan P1an(M), based on classifying the
test task to then exploit the optimal policy of the classified
task. Then, we show that classifying the test is necessary
for regret minimization under separation. As we shall see,
the two results are brought together by a novel measure of
complexity, which we call the classification-coefficient.

For the ease of presentation, we assume to know the true
distributions of all bandits v; € M, and we leave the study
of misspecifications to later sections. We consider classifi-
cation algorithms in the following interaction protocol:

1. Start with ¢ = 0 and an initial hypothesis class Sy =
{1,2,..., M}.

2. Terminate if |:S;| = 1. Otherwise, decide on a classifica-
tion test m; € Il¢ (either deterministically or randomly)
from the set of tests II¢, and draw N = O~()\’2) sam-
ples with 7.

3. Update the hypothesis class S;;1 with the generated
samples. ¢ «— ¢t 4+ 1 and go to Step 2.

The complexity of classification depends on how many hy-
potheses we can rule out from a test 7; from the remaining
hypotheses each round. As we are allowed to use O()FQ)
samples, we can at least rule out \-separated hypotheses
from the underlying instance. Specifically, given the remain-
ing hypothesis class S; € 2/*! and the underlying instance
i, we can remove ST, (i) := {m € S;|Dy(PF,P},) > A}
through hypothesis testing (e.g., using likelihood ratio test).

To formalize the concept, we define the deterministic
classification-coefficient:
S|

max min max —— 2)
se2ll |s|>1nelle ies |ST(i)]’

C(Ilg) :=
and the randomized classification-coefficient:

~ . 1S
Cy\(Ilg) := max min max —————
A(Ie) se2M]|5|>1peA(lle) i€S Erp[|ST(2)]]

» 3)

In essence, these coefficients measure the classification com-
plexity of a class of bandits through the pessimistic rounds
of classification, where S is the worst-case remaining hy-
potheses when the test task is ¢, and 7, p are the optimal
deterministic and randomized greedy strategies, respectively.
The latter take the test (resp. distribution over tests) inducing
the most even split (resp. expected split) of the remaining
hypotheses S. Interestingly, we can derive an upper bound
on the size of the split when employing the deterministic
greedy strategy

|Si+1] 1 1
E <1-—-— 11 .
{ A ‘St < 20/\( c)

Algorithm 1 Explicit Classify then Exploit

: input set of tasks M, N
: Initialize So = [M],t =0
: while |S¢| > 1do ~
Tt = MaXrelle Milies, |SE (1)

D; < Ngjs 1.1.d. samples drawn with 7,

Get Sy4+1 with Algorithm 2

t—t+1

: end while

. Extract the classified task m™ € S; and execute 7*(z) =
arg max, o Vm* (%, k) for the remaining steps Exploit

Explicit Classify

Algorithm 2 Update Remaining Hypotheses

1: input set of tasks St, test 7, samples Dy

2: Letli =3, yep, log(Pi* (2,7)) foralli € S,
3: Let m = arg maxies, ¢i

4: return Si41 < {i € S¢|l; > ly, — 3log(M/0)}

Clearly, the smaller the classification-coefficients, the more
hypothesis we can rule out in a single round, the easier it is
to classify the test task. In the following result, we formally
link the complexity of classification with the regret.

To this end, we consider a simple algorithm, called Explicit
Classify then Exploit (ECE, Algorithm 1), which is based
on the classification protocol described above to classify the
test task (lines 2-8), then deploying the optimal policy for
the classified task (line 9). We can prove the following.

Theorem 3.1. Suppose Assumption 1 holds with a test class
Ile and a family of M bandit instances M. Then with
probability at least 1 — 6, the while-loop in Algorithm 1
ends after T rounds with N.s samples per round where

T = O (Cx(I¢) log(M/6)),

Consequently, the expected test regret of Algorithm I for H
steps is

C\(M¢) log?(M/6)
)\2

Regy (M) <O ( ) + 0H.

The theorem states that we can identify the test task w.h.p.
taking N T = O(A\ =2 - Oy (I1¢) log? (M /§)) samples. We
can translate the latter into a regret rate by bounding the
regret caused by classification failure with § H. We can set
0 = o(1/H) to make the classification failure negligible,
settling the regret O(A~2C\(Il¢) log?(M H)).> Next, we
show that the latter rate is nearly optimal by developing a
lower bound to the regret for bandits under separation.

3For randomized classification, we can change Algorithm 1 to
perform a randomized test, and the same conclusion holds with

replacing C by Ch.
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3.1. Necessity of classification with separation

While the ECE approach may not always be the best al-
gorithm to minimize regret, it is a near-optimal solution
whenever the optimal actions and the separating actions do
not overlap. To see this, suppose a family of M multi-armed
bandit instances M with arbitrarily many K arms. Each i*"
instance has its unique optimal arm &, but only with margin
O(e), i.e., instances are not well-separated with respect to
optimal arms. In such scenarios, it is always better to first
identify the task with A-separating arms.

To formalize the fundamental link between regret and clas-
sification, for the remainder of the section we are going to
consider a class of worst-case multi-armed bandit instances
M, which we refer as hard, defined as follows:

1. For each bandit instance ¢ € [M], there is a unique
optimal arm &} € [K] such that

3 3
wi(ky) = 1 106, (k7)) = 1 A

2. All other arms k € [K]/{k]}icqas are information-
revealing, i.e., either one of the following holds:
+ A 1-A

5 or u;(k) = —5 Vi € [M],

pi(k) = !

where €, \ satisfy 1 > A2 > ¢ye - C(M) for some suffi-
ciently large absolute constant cy > 0 and the random-
ized classification-coefficient C'(M) (defined below).

Classification complexity. Let C*(M) be the optimal depth
of a deterministic decision tree classifier for the hard in-
stance, constructed by probing the true means of separat-
ing arms Ay := [K]/{k] };c;n). Let C*(M) be the opti-
mal average depth of randomized decision trees. In this
case, the classification-coefficient in (2) can be defined
as C(M) := C\(A,), and similarly for the randomized
classification-coefficient C'(M) := C (Ay).* Note that the
classification-coefficients defined previously are concerned
with the (worst-case) most even split on the hypotheses S,
and thus they can be interpreted as measures for greedy
classification strategies. The following is a well-known re-
lationship between these greedy measures and the optimal
depth of (deterministic) decision trees (Arkin et al., 1993)

C(M) < C(M) < C*(M) < C(M)log(M).  (5)
We note that these classification complexities can be as
large as M in the worst case, while in practical scenarios
we can often design effective information-revealing actions
to ensure C* (M) = O(log M).

Statistical barriers of separated bandits. What is the
lower bound to the test regret for M? To quantify this,

*From here on, we denote a classification-coefficient C (Il¢)
as Cx (M) when the space of tests Il¢ is a (sub)set of arms.

we recall a PAC-variant of DEC from (Chen et al., 2022a).
Specifically, given some v > 0, we define the coefficient

decy(M) := max min  max

weA([M]) meA([K]) i€[M]
Epor [Ai (k)] = Yk i [DF (vi (k) v (K))], (6)

where A; (k) := p;(k¥) — p; (k). We can verify the follow-
ing relation between v and dec,:

Lemma 3.2. There exists an absolute constant ¢, > 0 such
that for all v < ¢, A~2C (M), we have dec.,(M) > 3e.

As a corollary of (Chen et al., 2022a, Theorem 10), this
implies the lower bound on the high probability regret:

Theorem 3.3. There exists an absolute constant ¢ > 0,
such thatif 1/ H < ce, then any algorithm must suffer regret
Q(min(eH, ¢, A~2C(M))) with probability at least 1/ H.
Thus, any algorithm guarantees with probability at least
1 — 1/H must suffer at least Q(C(M)A\~2) test regret, cap-
turing the fundamental limits of separated bandits. Note that
the lower bound depends on the randomized classification-
coefficient, though deterministic strategies can still be pre-
ferred due to their simplicity in practice.

4. A more practical ECE algorithm

In the previous section, we analyzed the ECE algorithm
in an ideal setting in which the reward distributions of all
the bandits in M and the context distribution P are fully
known.> Here, we present a more practical variation of
the algorithm, Decision Tree ECE (DT-ECE), which (i) is
robust to misspecifications of Ml caused by estimation errors
at meta training, (ii) only accesses samples coming from the
context distribution P, (iii) lays down a fully interpretable
exploration plan through a decision tree classifier.

In this section, we work under a special case of the sepa-
ration condition (Ass. 1) which assumes separation on the
mean of the rewards instead of their distribution.

Assumption 2. For some A > 0 and every v;,v; € M,
there exists k € [K] such that | Epop[z " (0 — 0;1)]] > A

First, we describe the meta training stage with the corre-
sponding estimation guarantees, sample and computational
complexity (Section 4.1). Then, we present the DT-ECE
test algorithm and we analyze its regret (Section 4.2).

4.1. Meta training

In this section, we describe a provably efficient algorithm to
meta train an exploration plan P1an(M) by only accessing
offline simulators of the tasks in M and samples from P.°

3 Algorithm 2 access P to compute the log likelihood at step 2.
8 An analogous algorithm accessing pre-logged historical data
can be developed. The reported guarantees shall transfer verbatim
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Algorithm 3 Meta Training

Algorithm 4 Decision Tree

1: input simulators M, Nest
2: Initialize Ml = ()
3: for: € [M] do
4:  fork € [K] do
5: Sample Nes; contexts X = (x,, ~ P)
6: Sample Negt rewards © = (rn ~ v (n, k))
7: Compute O = (XXT)ler
8: Compute jij; = ﬁ >onTn
9:  end for N R
10: M.append(ﬁi = ([Qil, ,ail], L. [9”{7 ﬂlK]))
11: end for

12: Build a decision tree classifier t ree (M) with Algorithm 4

13: output exploration plan P1an(M) prescribed by t ree(M)

The meta training algorithm, whose pseudocode is in Al-
gorithm 3, has two main procedures. First, it estimates the
parameters of each task v; by doing regression on the class
of linear functions of the context (lines 2-11). Second, it
takes the (possibly misspecified) resulting class M to build
a deterministic decision tree classification model over the
tasks (line 12). The following lemma provides an estimation
guarantee over M from the analysis of random design linear
regression (Hsu et al., 2011).

Lemma 4.1. Let M be a set of M linear contextual bandits
and let M their estimation obtained by Algorithm 3 with

16002d log(4HM K)

Nest = .
‘ min(A2; \2)

For every bandit i € [M] and arm k € [K|, it holds
. A A 1
"0 —z'0; n(=,2))<—-—.
]P(]E'p {|:17 Oir. — T 9%@ >m1n(2,4)> < SHME

The latter guarantees that the identity of the optimal arm
and the separation condition is preserved w.h.p. by the esti-
mation process. As we shall see, these properties will prove
useful at test stage. Before going to that, it is worth detailing
how the decision tree classifier is built (Algorithm 4).

We consider a set of tests IT¢ equal to the set of arms [K],
for which we are going to test the mean reward /i, against
a threshold b € [0, 1]. Since computing the optimal test is
NP-hard in general (Hyafil & Rivest, 1976), we turn to a
greedy approximation which gives the test with the most
even split (Arkin et al., 1993; Nowak, 2011). Algorithm 5 in
Apx. C.1 gives a tractable procedure with which the greedy
test can be computed. In order to make the tests along the
tree statistically robust when computed with samples from
the test task, we consider soft splits (Olaru & Wehenkel,
2003): We let the test fi;, < b be simultaneously true and
false inside a A\-band around b (see Figure 3).

under natural conditions on the size and quality of the dataset.

1: input set of tasks S

2: if |\S| > 1 then

3:  Compute (ur < b) < greedy(S) with Algorithm 5

4:  Define tree(S) := (ur < b)

5:  Compute St = {v; € S| px < b+ A/2}

6: Compute S~ = {v; € S| pir > b— \/2}

7:  Define tree(S,true) := S and tree(S, false) := S~
8:  Call Algorithm 4 on ST and S~ recursively
9: end if

tree(S) N

S (k)1< b tree(S,false)
vie Yoz T g

Vi@ _—-- el

D, & \\\~—__, b:’_:’

\\\ b—)\/Q \‘.l)‘j _
AT _ %0, S
. tree(S, true)

Figure 3: Visualization of a generic split of t ree(M).

The meta training algorithm that we just described is fully
tractable, both in terms of computational resources and
sample complexity, as proved by the result below.
Theorem 4.2. Algorithm 3 runs in time O(d>M3K/\*)
and collects a total number of samples

16002 M K dlog(AT M K)
min(A2; \2)

Finally, we can provide a guarantee on the cost of the greedy
approximation with respect to the depth of the optimal de-
terministic decision tree on M, i.e., C5 (M).

Lemma 4.3. Algorithm 4 builds a decision tree with depth
D = O(log M + 1)C5 (M).

4.2. Test

Here we analyze the test algorithm implementing the explo-
ration plan P lan(M) prescribed by the decision tree classi-
fier tree(M), which we call DT-ECE. As said above, this
test algorithm is a slight variation of ECE (Algorithm 1) and
mostly follow similar steps. Here we comment on the dif-

ferences and we leave a complete pseudocode to Apx. C.2.

Without turning to the appendix, we can look at the pseu-
docode in Algorithm 1 and picture that, at line 4, DT-ECE
would extract a test g, < b from tree(S;) on the current
hypotheses S;, collecting data like in line 5 with the policy
m; = k prescribed by the test. Then, instead of updating
the remaining hypotheses S;1 with log likelihood tests
(line 6), it takes Sy 1 by following the left or right split in
the tree according to whether the test resulted true or false,
respectively. Those changes lead to the following regret.



A Classification View on Meta Learning Bandits

Theorem 4.4. Suppose Assumption 2 holds on a set of tasks
M and let t ree(M) be obtained from Algorithm 3. The
expected test regret of DT-ECE (Algorithm 6) for H steps is

* 2 *
Regy (M) = O (CA(M) log )(\SA(M)MH))

The result above shows that DT-ECE matches the regret
of ECE with a factor C%(M) in place of the classification-
coefficient Cy(M). This implies an additional log(M) fac-
tor at most (see 5). This means the estimation error does
not significantly affect the regret, thanks to the guarantee in
Lemma 4.1. Finally, the regret holds in a contextual bandit
setting, but does not depend on the size of the context d,
which only impacts the meta training complexity.

5. Experiments

In this section, we provide a brief numerical validation to
illustrate how the above theoretical analysis on the classifica-
tion view of meta learning bandits translates to compelling
empirical results, which we compare with previous methods
in the literature of latent bandits (Hong et al., 2020a).”

To the purpose of the experiments, we consider a non-
contextual stochastic MAB setting in which the collection
of bandits is fully known, without covering class misspecifi-
cations. We design two family of collections, one inspired
by the hard instance presented in Section 3.1, which we
henceforth call hard, and one randomly generated collec-
tion, which we call rand. For the former, we consider
two instances with size M = 5 and arms K = 10, with
varying values of the separation parameters A (0.4 and 0.04
respectively). For the latter, we consider a small instance
M = 10, K = 20 and a large instance M = 40, K = 40.
We use rejection sampling to control A (set to 0.4) in the ran-
domly generated collection. In all the considered instances,
the reward distributions are Bernoulli.

We compare the regret suffered by our decision tree imple-
mentation of the Explicit Classify then Exploit routine (DT-
ECE, described in Section 4 and Algorithm 6 of Apx. C.2)
with traditional bandit approaches, i.e., mUCB (Azar et al.,
2013) and mTS (Hong et al., 2020a). The latter algorithms
adapt UCB and Thompson sampling to the meta/latent ban-
dits setting. While they are not designed to take advantage
of separation specifically, they exploit knowledge of the
collection of bandits and they constitute relatively strong
baselines. Before going ahead with the experimental results,
it is worth spending a few words on how the spirit of our
algorithm differs to theirs. DT-ECE is designed to produce
easy-to-interpret exploration plans, which can be entirely
pre-computed offline. Instead, the exploration prescribed

"The code to reproduce the experiments can be found at
https://github.com/muttimirco/ece.

by mUCB and mTS is hardly interpretable nor predictable,
making them and DT-ECE orthogonal solutions for different
applications rather than direct challengers. It is satisfying,
however, to see that DT-ECE performance is on par with
such renowned algorithms.

In Figure 4 (a, b) we see that DT-ECE achieves a small
regret by classifying the test task in a handful of interactions
(coarsely, the classification occurs at the elbow of the curves)
both when separation is large (a) or small (b). DT-ECE is
able to commit to the optimal strategy even before mTS,
whose posterior takes slightly longer to converge around the
test task, although DT-ECE suffers larger regret due to pure
exploration. The most important trait of the hard instance
is that optimal actions and informative actions do not over-
lap, so that optimistic strategy like mUCB are bound to fail.
By mostly pulling nearly optimal yet non-informative ac-
tions, mUCB cannot identify the test task efficiently, and the
regret grows steady. Optimism works considerably better in
the rand family (Figure 4 c, d), although mUCB does not
match the efficiency of DT-ECE and mTS in those experi-
ments either. It is remarkable that DT-ECE can classify the
test task into a set of 40, with 40 arms each, by taking less
than 1000 samples on average (d).

Finally, DT-ECE comes with sharp theoretical guarantees
and it is designed for the worst case, which can limit the
performance of the algorithm in more forgiving instances
(such as the rand family). However, the design of a fully
practical version of the ECE ideas is beyond the scope of this
paper and constitute interesting matter for future studies.

6. Related work

To the best of our knowledge, our classification view of
meta learning bandits under separation is original and has
not been studied. There are anyway several connections be-
tween our results and the literature, which we revise below.

Contextual bandits. Obviously, our setting relates to con-
textual bandits (Wang et al., 2005; Li et al., 2010; Abbasi-
Yadkori et al., 2011; Hao et al., 2020) and, indeed, our
results hold for the contextual setting. The contextual nature
of individual tasks is an orthogonal dimension w.r.t. a sec-
ond, unobserved context typical of meta learning settings:
The task description itself.

Latent bandits. The setting that most closely relates to
ours is latent bandits (Azar et al., 2013; Maillard & Mannor,
2014; Zhou & Brunskill, 2016; Hong et al., 2020a;b; Pal
et al., 2023). Actually, our setting can be seen as a partic-
ular instance of latent bandits under separation and a meta
learning protocol. Azar et al. (2013); Maillard & Mannor
(2014) also consider bandit tasks coming from a finite and
known set, with or without misspecification. They do not
consider separation, which allows to specialize the regret
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Figure 4: Regret of DT-ECE (ours), mUCB (Azar et al., 2013), mTS (Hong et al., 2020a). Captions report envname—M-K,
denoting the name of the collection of bandits, the size of the collection, and the number of arms, respectively, together with
the value of the separation parameter A. The curves average 20 independent runs, shaded regions are 95% c.i.

from O(v/H) to O(log H). Similarly to ours, the setting
in (Zhou & Brunskill, 2016) includes a phase in which the
models are learned from data and then exploited on future
tasks. In their formulation, however, the tasks are coming
into a sequence online, so that the meta learning itself adds
to the regret instead of being carried out offline. An offline
learning phase is considered by Hong et al. (2020a) in a
problem formulation that almost perfectly matches ours, yet
leads to mostly orthogonal results: They do not consider
separation; Their analysis is not instance-dependent and
does not tie the regret to the classification complexity of
the instance; They consider traditional UCB/TS-style al-
gorithms in place of our ECE; They do not detail the meta
training algorithm. Most importantly, our classification view
is original in the latent bandits literature and constitutes the
main novelty of our work.

Low-rank bandits. Low-rank bandits (Kveton et al., 2017;
Lale et al., 2019; Lu et al., 2021) essentially generalize
the latent bandits formulation (and ours) by assuming the
existence of a low-rank latent representation conditioning
the arms payoffs. Just like in latent bandits, previous works
do not touch on the connection between classification and
regret, which may be generalized to low-rank bandits.

Structured bandits. In structured bandits (Lattimore &
Munos, 2014; Combes et al., 2017; Tirinzoni et al., 2020)
the rewards of the arms are correlated according to a known
structure class with hidden parameters. These parameters
have some similarity of the hidden task context of our setting
(and latent bandits). Our results connecting classification
and regret may be generalized to structured bandits.

Thompson sampling. Extensive work has been done over
exploiting prior knowledge in bandits through Bayesian ap-
proaches. The most notable is Thompson sampling (Thomp-
son, 1933; Kaufmann et al., 2012; Agrawal & Goyal, 2012;
Russo & Van Roy, 2016), in which knowledge over the test
task is incorporated into a prior. The set of tasks of our
setting can be seen as a prior, although our results are in a
frequentist setting. As such, they are independent from the
prior distribution and robust to misspecifications, differently

from Thompson sampling (Simchowitz et al., 2021).

Meta learning bandits. Meta learning bandits has been
considered in (Kveton et al., 2021; Hong et al., 2022b;a)
where tasks are assumed to come from an unknown prior.
The agent aims to infer the prior from interaction, assuming
it is itself coming from a known hyper-prior. This can be
seen as a Bayesian version of our setting, where the hyper-
prior stands for the set of tasks, and the priors play the role
of the tasks. Related to this stream, other works (Cella et al.,
2020; Basu et al., 2021) have considered meta learning a
prior over tasks for regret minimization.

7. Conclusion

In this paper, we took an original classification view on the
problem of meta learning bandits under separation. Thanks
to this novel approach, our work delivers on its promise of
providing principled algorithms for learning interpretable
and efficient exploration plans from offline data, just like
they were designed by humans. As a by product to this effort,
we contribute an elegant framework to study the regret of
learning algorithms through the complexity of classifying
the task online within a set of previously seen tasks.

We believe the significance of our findings are hardly lim-
ited to the considered contextual multi-armed bandits, and
that they may inspire future works targeting yet more gen-
eral problem settings (and corresponding applications) by
following our blueprint for meta learning with classification.

A natural next step is to introduce dynamics over contexts
to extend the framework to full-fledged Markov Decision
Processes (MDPs) and reinforcement learning, where we
would consider a test MDP coming from a collection of
MDPs, known a priori or accessed offline. A framework of
similar kind has been introduced under the name of contex-
tual MDPs (Hallak et al., 2015) and latent MDPs (Kwon
et al., 2021b;a; 2023b;a; 2024). Previous works have also
studied meta learning policies for efficient exploration in
MDPs and their regret (Chen et al., 2022b; Ye et al., 2023;
Mutti & Tamar, 2024). None of the above has considered
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our classification view of the problem to get efficient and
interpretable exploration plans. In the MDP setting, our
decision tree classifier resembles a hierarchical strategy de-
ploying policies, or options (Sutton et al., 1999), to probe
information-revealing states of the environment. Can these
policies be learned with a tractable offline algorithm? Would
the exploration plan enjoy similar regret guarantees beyond
the contextual MAB setting? This is an exciting direction
with the potential to open the door to countless applications,
such as autonomous driving, robotics, and many others.
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A. Auxiliary Lemmas
The following lemma is the famous Ville’s inequality for super-martingales:
Lemma A.1 (Ville’s Inequality). Let {W;};>0 be a non-negative super-martingale sequence, such that
E[Wi1|We] < Wi,
for any 6 > 0, the following holds:
P(Ve, W, <Wy/0) > 1—4.

The following lemmas are the standard concentration of log-likelihood values of the models within the confidence set.
The proofs are standard in model-based RL and can also be found in (e.g., Liu et al. 2022; Agarwal et al. 2020). We let
D be the observational data o = (x, k, r) collected by running 7 on some underlying distribution »* € M. We denote
B :=1log(M/§). Then, the following holds:

Lemma A.2 (Uniform Bound on the Likelihood Ratios). With probability 1 — 6 for any § > 0, for any v € M,
> log(P}(0)) — B< Y log(P}. (0)). 7

ocD o€D

Lemma A.3 (Concentration of Maximum Likelihood Estimators). With probability 1 — o, for all v € M, we have

D2 (P™ PT.) <Zl ( ) +35>

B. Proofs
B.1. Proofs of Section 3
B.1.1. PROOF OF THEOREM 3.1

We first analyze whether the true model m* remains in the hypothesis class for all T" rounds. To see this, by Lemma A.2, for
alli € Sy and ¢ € [T, we have

> log(Pf(0) = B < ) log(PF,.(0))
0€D; o€D;

where 8 = log(MT/d). Hence, due to our construction of the next hypothesis set in Algorithm 2, with probability 1 — § /7,
m* € S¢y1. As the worst-case classification round does not exceed M with Assumption 1, without loss of generality, we
assume that T = O(M).

Next, for every ' round, we prove that Sy 1 C S;/ 5’; § (m*) where

Sra(m*) = {i € Sy|Da(P]*, P} ) > A},
Note that with probability 1 — 6 /7,

0> Zlog (PT .. Zlog ) > -8,

o€D; o€Dy

for all ¢ € S;. From Lemma A.3, for all ¢ € S¢1, by taking union bound, it must satisfy that
EDY 1og< ) > 2N, - D2(PT, PT.) — 38,
0o€D,

where the first inequality holds due to our construction of S;41. Thus, for all ¢ € Sy, we must have

2
D2(PF,Prt.) < Nﬁ, Vi € Siy1.

cls
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This means with N > 2%\% test samples per round, Sy C St/gt’ft)\(m*).
Finally, with our design of 7, we always choose 7; such that

1ST5(m*)] > Ca(Ile) ™" - [Sy].
This implies with probability at least 1 — § /7", we always have

|St+1|
|51

<1-Cy\(e)™t,

which translates to

Sialig) 1~ Loy
E Sil <1—-=C\(II .
otls] <1 s0me

Note that in the worst case, the ratio remains 1 with probability less than § /7. Let W, := (1 + %C A(HC)’I)t |S¢|. Then
{Wi}i>0 is a super-martingale, and thus, by Lemma A.1, we have

1 g 1
(1+ 50 Isel < 3150l

with probability at least 1 — d. Under this success event, as soon as 7' > 2C\ (Il¢) - log(M /), we must have |St| = 1.

To summarize, if we use Ngs = O(A~2 - log(M/§) samples per classification round for T = O(C\(Il¢) - log(M/4§))
rounds, the algorithm terminates with the correct task identifier m* with probability at least 1 — §, concluding the proof.

B.1.2. PROOF OF LEMMA 3.2

Following the definition of DEC in (6), we have that

decy(M) > max it maxBex[Ai(k)] = VExr met(s)[Da(vi(k), v (k).

Recall that the randomized coefficient in (3) can be rewritten as the following:

-1
C M) = i inE ~ E ~T 1 i k m k )
Com = (_ymin, | winBoneas Eis (L (8) # o ()]

and let S, 4, be the outer solution of the above min-max-min optimization. Now for any = € A([K]), let i*(7) be the one
that achieves

i*(7) i= arg_min Eygis) B [1{1s(k) # (k) }]): (8)

1€Sadv
We claim that there must exist i(7) € Sqa,/{i*(7)} such that the following holds:
Epat(s) Bk [1{1t7(k) # tim (B)H] < 4Bnai(s) [ [L{ i () (k) # pan (B)}]] - ©)
To see this, note that
(k) # pm (k) } < W{pz(k) # prie oy (B)} + L pris () (B) # pm (F) },
and then, by taking i(7) := argmin;eg, ,, /{i* (r)} Bkror [1{iti-(x) (k) # pi(k)}], we can verify that
Epeor [1{ i () (k) # 113(B)}] < 2Ernmitt(Saan) (B [1{tim () (k) # 1 (K)}]

since |Sqqy| > 1 and the indicator function is nonnegative. Note that for all 7 € A(A,), by construction,
Epmti(s) [Bamr [1{tti= () (@) # pim(a)}]] < C(M) 7.
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Now going back to the DEC lower-bound, we have
decy(M) > min - max Epwr[Ai(k)] = VB Emnti(S,a0) [Df Vi), v (k)]

TEA([K]) i€Sadv

1
> i A;(k) -m(k)+=m(ke A 10
> il 2 )b+ gl € 4 1

I

— v [ 200€% - w(k & A\) + Bt (50an) [Bmms [Da(vi(K), v (k)] - m(k € Ay) | (11)

11

where we define 7y = 7(-|k € Ay). Now for every 7 and the corresponding 7y, let i*(my) as defined in (8) and
i(mx) = Saav/{i*(mx)}. Now we either choose i = i*(my) if

(ki o)) < (ki)

and i(7)) in the other case. We divide into two cases.

L 7 (K (y)) < w(kf(m)): In the former case, note that for all m # ¢*(my),

Az*(ﬂx)(k* ) > 10¢,

m

and therefore,

> Apiry (k)m(k) > Ber(k ¢ Ay).

aG{k’fn}m
Therefore, we have I > 5em(k ¢ Ay) + gm(k € Ay)in (11).
For the second term, note that

Epitt(Suan) [Ennoms [DF Wi () (8)s Vi ()] € Nt (S000) [Einoms [L{Vie () (B), vin () }]] < NC(M) ™"

Therefore, the second term becomes 11 < 200e2m(k ¢ Ay) + A2C (M)~ 1n(k € Ay).

2. (k. (m)) > W(kg‘(m)): In the latter case, repeat the same process except that now we take the worst-case inner-instance

i = i(m)), we get the same inequalities.

Combining all results, we can conclude that

I —~IT > (5e — 200e%y)m(k & Ay) + (; - vAQC‘(M)_1> m(k € Ay) > 3¢,

for any 7 € A([K]) with v < ¢, min (6_1, A2 (M)) for some sufficiently small ¢, > 0. Therefore,

decy (M) > 3e,

concluding the proof.

B.1.3. PROOF OF THEOREM 3.3

To identify the optimal arm (so that we can play it for the majority of rounds), it must hold dec, (M) < e. On the other
hand, we have the following lower bound, which is a reminiscent of lower bound results in (Chen et al., 2022a) and (Foster
et al., 2021):

Theorem B.1. For any § € (0,1) and a regret minimization algorithms for H rounds,

Regy (M) > Cy - max  min ((decy(M) —6) - H,7),
y>C1-vVH

with probability at least § for some absolute constant Cy, Co > 0.
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Thus, we must have 7 = Q(A~2C(M)) so that we can have dec., (M) < 3e for all y greater than this threshold. Otherwise,
any algorithm must suffer from at least Q2(min(eH, \~*>C(M))) regret with probability at least § = 1/H < e. Furthermore,
since Regy; > Regy, forany H > Hy, it holds that for all H > Hy = A~*C(M)?, we must suffer Reg;; = Q(A"2C(M)).

B.1.4. PROOF OF THEOREM B.1

The proof follows Section C.1 in (Foster et al., 2021) with minor modification. Let us define a regret for individual instance:

H
Regly = Zﬂm(k;kn) — fm (Ke).

Let &, an event such that {Reg}; < ¢1} with some sufficiently small constant ¢;. For any algorithm, v > 0 and § = 1/H
we consider, we assume that for all m € [M], P,,,(€,,) > 1 — 0 since otherwise the algorithm suffers from at least v regret
with probability at least d.

Let us fix an algorithm A such that at #*" round with previous observations H'~! = (01, ..., 0;_1) where o; = (x4, az, 7¢),

and the policy at each round is decided by an algorithm 7; = A(-|z;, H*"1)). Let PZ be the distribution of sequential
observations (01, ..., 05 ) for H rounds with bandit v,,,. Following Lemmas are adapted from (Foster et al., 2021):

Lemma B.2 (Lemma A.11 in Foster et al. 2021). For any two distributions j, v on a measurable space X, and any bounded
real-valued function h : X — R with 0 < h(X) < B, we have

[Eu[P(X)] = Eu[R(X)]] < \/QB(Eu[h(X)] + By [(X)]) - Di(p, v).
In particular,
B, [h(X)] = By [1(X)]] < 3B, [h(X)] + 4BDj (1, v).
Lemma B.3 (Lemma A.13 in Foster et al. 2021). For any two bandit instances v;, v; € M,
DR P < Crt 3Ly BalBrr, [DR (v (8), 3 ()],
where Cir > 0 is a sufficiently large absolute constant.

Given the lemmas, for any w € A([M]) and for any algorithm that generates an adaptive policy 7, let # :=
LS w(-[HE1) (note that this is a random variable), and let 7 := E ., [7].

Lemma B.4 (Minor Edit of Lemma C.1 in Foster et al. 2021). For any two bandit instances v;,v; € M,

E;[Regl; 1{€7}] < L - DRI PH) + \ [ DY P B, By [DR(vi (), v (k)] + 6.

L
H H

We start with the following inequality for a prior w such that:

sup Eqwr[vm(az,) = vm(a)] =7 - Emnw[Banz [DF (Vin(a), vim(a))]] > dec, (M).
me[M]

Such a prior w € A([M]) must exist due to the definition of dec.,. Note that
H -Eonzlvm(ay,) — vm(a)] = EqcwBani [Vm(ar,) — vm(a)] = H - Egw[Regh]

= wnEn[Reg] = Zwm m[Reg 1{En}] +En[Regl; 1{E5}]
I II

For I, we apply Lemma B.2 to get

I < 3E,,[Reghy -1{En}] + 4yD2(PH PH) < 3R, [Reg] + 4yD2(PH PH),

15
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For 11, we apply Lemma B.4 to get

IT < (He+ e1v)DE(PE PHY + H\/Dg(IPg, PHY) - B [Exes (D2 (vin (k), vm (k))]] + H6.

Combining these inequalities, we have

Em[Reg] 2 H - decy (M Zwm- <cwD2 (Pl P +H\/D2 (PE,PH) -En [EQNﬁ[Dﬁ(Vm(a),l/m(a))]D
+vH - Epow [EaNﬁ[Dg(Vﬁ%(a)a Vm(a)m — Ho.

On the other hand, we can apply Lemma B.3 to bound that

H
Di(Py,Py) < Ch ZE B, [DF (vm (k), vin (k))]]
= CnH - Eq[Eani[DE(vin(a), vin(a))]] = CrH - Eqnr [DE (Vin(a), vin(a))]-

Plugging these results, we have

En[Regf] 2 H - decy (M) — H(ery + VH) - Z Ex [ D (vin (k), vin ()]
+YH - B [Binr [DE (i (), vin (K))]] — HO.
Note that

E o Banr [DF (v (B), vin (k)] = D winEa [DE (v (k), v (K)))-

This implies that as long as ¢; is a sufficiently small constant and v > +/H, the expected lower bound is given by
E,.[Regy] 2 H (decy (M) —9).
Proof of Lemma B.3. The general version of subadditivity lemma in (Foster et al., 2021) is stated as the following:

Lemma B.5. Let (X), Fy), ..., (X, Fn) be a sequence of measurable spaces, and let XV = TIi_, X, and FV) = ®i:1 Fi.
For each i, let 1\, 1) be probability kernels from (X(i_l), FO=D) 10 (X(i), F®). Let p,v be the laws of sequence
X1, ..., X, following the sequence of (™), ..., (™), (bW, ..., (™) respectively. Then it holds that

DH(:“? V) < 102 IOg(n) ’ EH[Z?:l DI%(;“'(i)('lev ) Xifl)v V(i)("le () Xifl))}'
Furthermore, if there exists a constant V' such that sup .. yexG-1) SUP,, c 7, Wfor all i, then

Dy(p,v) < 3log(V) - B[S0 D3 (X1, ooy Xi1), v (X1, oo, Xim1))]

Our construction belongs to the latter case, since the probability of observing r; = 1 or 7; = 0 is larger than 1 * > 1/4 for
any A < 1/2. O

Proof of Lemma B.4. In our construction, for all pair of bandit instances p, v € M, the optimal values are the same, that is,
u(ky) —v(k;) =0,

where k,, k;, are the optimal actions for y, v respectively. The remaining steps are identical to the proof in (Foster et al.,
2021) (see their Section C.1.2), and we omit them here. O]
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B.2. Proofs of Section 4
B.2.1. PROOF OF LEMMA 4.1

Proof. We can rework the result (Hsu et al., 2011, Theorem 1), originally designed for the excess quadratic loss, to write

A 502(d 4+ 2+/dlog(2/5 2log(2/6
o (5, |mT9ik_$T9ik|}>\/a< 4 \fogév/n 08(2/9) | _ ;5

where 0 is the ordinary least squares with N samples. Then, we just plug § = m in the expression to obtain the

guarantee with a few algebraic manipulations. O

B.2.2. PROOF OF THEOREM 4.2

Let us start looking at the sample complexity. Since the Algorithm 3 takes Nog; samples for every arm k € [K ] and simulator
4MK log(4HMK)

v; € M, we can conclude that the statistical complexity of meta training is —_—— Az 2

Assuming access to parallel simulators, the computational cost of meta training depends on the cost of executing line 12 in
Algorithm 3, which is calling Algorithm 4. The latter requires executing | S| evaluations at lines 5, 6, where |S| < M, and to
compute the greedy step (line 3), a cost that is paid for every call to the recursive procedure (line 8). Computing the greedy
step through Algorithm 5 is done in 4K /\* steps. Finally, we can bound the number of calls to the recursive procedure with
the total number of nodes in the tree, which is O(M?). Putting all together we get a complexity of order O(M3 K /\*).

B.2.3. PROOF OF LEMMA 4.3

Proof. The result follows directly from the approximation guarantee of the greedy algorithm to build the decision tree (Arkin
et al., 1993), which guarantees d = O(log M + 1)C%(M). Especially, we have to prove that the previous guarantee does
not degrade with our implementation, which include a \/4-discretization of the space of tests (see Algorithm 5, line 4).
Thanks to the separation condition (Assumption 2), we can prove that every test fi(k) < b with b € [0, 1] can be replicated
with at most two tests defined on the discretized space, i.e., i(k) < b with b € [0, 1], /4. Since the approximation degrades
of a constant factor only, the result D = O(log M + 1)C% (M) holds. O

B.2.4. PROOF OF THEOREM 4.4

Proof. To derive the upper bound on the regret, we aim to prove that the remaining task ,,,~ at the end of the Explicit
Classify phase corresponds, up to a small estimation error, to the true test task v* with high probability, and that the policy
7* played from there on in the Exploit phase corresponds to the optimal policy for the test task »* with high probability
(despite the mentioned estimation error).

If we let 7* () = arg max, oy xTG;(Z) the optimal policy of the (true) test task, we aim to prove
Pp(7*(z) # 7" (x)) = P(“Explicit Classify fails” V “Exploit fails”) < 1/H

which we can guarantee by showing that the Explicit Classify and Exploit phases fail with probability less than 1/2H and
then applying a union bound.

Let us first take the good event for the Explicit Classify phase, which means the remaining 7,,,~ is a “good” estimate of the
test task v*. We have that

P(“Exploit fails”) = Pp (fr*(x) £ * (:C)) (12)
<Po( U U T <07 ) (13)
i€[M] ke[K]
R - 1 1
< Ty <1051, ) < — <
< pr(x Oine(ny < T 9““>—_Z > SHIE S 3 (14)
i€[M] ke[K] i€[M] ke[K]
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where we consider any possible choice of the remaining task ,,,« and the test task * to write (13) from (12), we apply a
union bound and the estimation guarantee of Algorithm 3 (see Lemma 4.1) to write (14).

Conversely, under the good event for the Exploit phase we aim to prove that the Explicit Classify phase fails with probability
less than 1/2H. Since the Explicit Classify phase is actually a sequence of tests, we need to bound the probability that each
test fails. Formally, let J denote the number of iterations of the loop between lines 3-11 (Algorithm 6), through a union
bound we have

P(“Explicit Classify fails”) = IP’< U “test at iteration j fails”) < Z P(“test at iteration j fails”)
i€l J€lJ]

Now, we need to design N5 such that the test at each iteration fails with probablhty less than 57~ H 5 2 5AD H - where D is

the depth of tree(M). For each iteration j, take the test py < band let z = ﬂ Zne[ Nuw] T the empirical mean of the
samples 7, ~ v*(x,, k) collected from the test task at line 5 (Algorithm 6). We need to assure that the event of 7z falling on
one side of the test while the “right” fij, is on the other side (see lines 6-11 of Algorithm 6) happens with small enough
probability. Formally,

P(“test at iteration j fails”) = P({mZ < bA i > b+ A U{E >bA i, <b—A})

P([5 — ikl > A)

<
< P(E — pkl > A/2) + P(lie — prl > A/2)
For the second event, we invoke the estimation guarantee of Algorithm 3 (see Lemma 4.1) to write P(|fir, — p| > A/2) <

< For the first event, we need to assure that P(|@ — pug| > A/2) < Since i is the empirical mean of

2HJ\4K - 4HD - 4HD
2log(8H D)
2

1, by applying the Hoeffding’s inequality, we have that N5 > gives the desired guarantee.

Having demonstrated that Pp (7* () # 7*(2)) holds with probability less than 1/H, we can finally write
JNais

maX ) 0F — 1y

H
2D log(8HD
E max x, 0} — xtTH;fr*(I | = L
ke[K] ¢ A2
t=JNcs+1

Regy (M) =Ep + Ep

by taking z 0} — x;rﬁ () = = 0 in the good event, upper bounding maxyc|x] Ty J0; —r, <land JN < DN, and then
apply the approximation guarantee D = O((log M + 1)C5(M)) from Lemma 4.3 to get the result. O
B.3. Proof of Auxiliary Lemmas

B.3.1. PROOF OF LEMMA A.2

The proof of MLE-based confidence set construction is by now standard and can be found in several prior works (e.g., Liu
et al. 2022). We adapt the proofs from (Kwon et al., 2024) for completeness.
+ ﬂ)

Proof. The proof follows a Chernoff bound type of technique:
> tos (5

e (B () 2= [ ()
<P, (exp (; log (g: ((O)))> > exp (ﬁ))
exp (Z log ( >>] exp(—).

0€D
The last inequality is by the Markov’s inequality. Note that random variables are o in the trajectory dataset D, and

B | 3 tog 5 ))1 ~KL(P,.(D)|[E,(D)) < 0.

o€D

l/*
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exp (Oz;)log ( ))ﬂ —FE,. [Hoepm] =1

Combining the above, taking a union bound over v € M, letting 8 = log(M /), with probability 1 — §, the inequality in
Lemma A.2 holds. O

Furthermore,

V*

B.3.2. PROOF OF LEMMA A.3

Proof. By the TV-distance and Hellinger distance relation, for any ¢, 7, 7 and ¢ € [H],

P7 (o
0*

By the Chernoff bound,

)

(o) P7 (o)
P,- (Zlog( ~ (o )> > D] - logEONW [ P (o)

o€D
PZ (o)
exp (ZoeD log ( P4*(0)>)
<E,- v = exp(—p)
exp (|D| -log Eonpr, [ F*. (o) )
HOED ]}Erﬂi(())
=E,- vr® Bl exp(—p) = exp(—p),
E 5 (T)
TP P7. (1)

where in the last line, we used the independent property of samples. Thus, again by setting 8 = log(M /§), with probability
at least 1 — 7, we have

D] D2(PTPL) < — - 1og(ﬂm( ))w

P (0)
() (3

for all k € [K] and v € M. Now we can apply Lemma A.2, and finally have

D2(PT,PT.) ( > log ( )>+3ﬂ>

2.
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C.

Additional material

C.1. Greedy algorithm

Algorithm 5 provides the pseudocode of a tractable procedure to compute the greedy test for Algorithm 4 through a
A/4-discretization of the space of thresholds b.

Algorithm 5 Greedy Test

: input set of tasks S
: for k € [K] do

Define ST (b) :
Define S™(b) :

= ) <b—A\/2}
Compute Mk(;

ik
fi(k) > b+ A/2}

{v
{
= Alxya min([ST(B)],1S7(0)])

S
S
axbe

: end for
: Extract (k, b) = arg max¢ () Mk (D)
: output greedy test (u(k) < b)

C.2. DT-ECE

Algorithm 6 provides the pseudocode of the DT-ECE algorithm, which implements ECE (Algorithm 1) for a misspecified
set of tasks M with a decision tree classifier.

Algorithm 6 Decision Tree — Explicit Classify then Exploit

—

: input set of tasks M, decision tree tree(M), Neis =

R AR AT S e

2log(2HD)
2

: Initialize Sy = M,t =0 Explicit Classify
: while |S¢| > 1 do

Extract test (ux < b) = tree(S)
D¢ < Ngis i.i.d. samples drawn with 7 = k
if ﬁ > rep, ™ < bthen
Get Si41 < tree(Sy,true)
else
Get Si41 < tree(S, false)
end if

: end while
. Extract the classified task m™ € S and execute 7" (x) = argmax_ .y Um+ (x, k) for the remaining steps Exploit
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