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Abstract

Deep neural networks have exhibited remarkable performance in a variety of computer vi-
sion fields, especially in semantic segmentation tasks. Their success is often attributed to
multi-level feature fusion, which enables them to understand both global and local infor-
mation from an image. However, we found that multi-level features from parallel branches
are on different scales. The scale disequilibrium is a universal and unwanted flaw that leads
to detrimental gradient descent, thereby degrading performance in semantic segmentation.
We discover that scale disequilibrium is caused by bilinear upsampling, which is supported
by both theoretical and empirical evidence. Based on this observation, we propose inject-
ing scale equalizers to achieve scale equilibrium across multi-level features after bilinear
upsampling. Our proposed scale equalizers are easy to implement, applicable to any archi-
tecture, hyperparameter-free, implementable without requiring extra computational cost,
and guarantee scale equilibrium for any dataset. Experiments showed that adopting scale
equalizers consistently improved the mIoU index across various target datasets, including
ADE20K, PASCAL VOC 2012, and Cityscapes, as well as various decoder choices, including
UPerHead, PSPHead, ASPPHead, SepASPPHead, and FCNHead.

1 Introduction

Deep neural networks have shown remarkable performance, especially in the computer vision field. Their
substantial modeling capability has enabled us to develop significantly accurate models with rich image
features for a wide range of vision tasks, including object detection and semantic segmentation.

One challenge in computer vision tasks is understanding both the global and local contexts of an image (Reddi
et al., 2018; Tu et al., 2022). Indeed, the cascade architecture of a deep neural network faces difficulty in
understanding multiple contexts of an image owing to the single-level feature it uses. To address this problem,
modern vision networks have employed a parallel architecture that aggregates multi-level features in different
spatial sizes to extract both global and local information from an image. For semantic segmentation as an
example, multi-level feature fusion has been adopted in numerous models such as UPerNet (Xiao et al.,
2018), PSPNet (Zhao et al., 2017), DeepLabV3 (Chen et al., 2017), DeepLabV3+ (Chen et al., 2018b), FCN
(Long et al., 2015), and U-Net (Ronneberger et al., 2015).

Although the parallel architecture builds multiple fastlanes to facilitate multi-level features to contribute
to output, if certain features are not involved in the fusion, they simply waste computational resources.
Initially, all feature branches should be exploited to explore their potential usefulness, and after training,
their optimal combination should be obtained. Thus, the underlying assumption of multi-level feature
fusion is that, at least in an initialized state, all multi-level features will participate in producing a fused
feature. However, we claim that existing architectural design for multi-level feature fusion has a potential
problem of scale disequilibrium, which yields unwanted bias that diminishes the contribution of several
features. Specifically, the multi-level features exhibit different scales at initialization, which leads to different
contributions and gradient scales, thereby hindering training with gradient descent. We identify the cause
of the scale disequilibrium—bilinear upsampling, which is used to enlarge multi-level features to the same
spatial size. Demonstration of the scale disequilibrium caused by bilinear upsampling is provided theoretically
and empirically.
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Table 1: List of notations used in this study.

Notation Meaning
I An input image to a semantic segmentation network.
H, W, C Height, width, and the number of channels for the input image.
Ŷ Predicted result for semantic segmentation.
Nc The number of classes to be classified in the semantic segmentation task.
{Ci} A set of intermediate feature maps {Ci} from the encoder.
{Li} Laterals UPerHead.
{Fi} Outputs of the top-down pathway of the FPN.
{Pi} Outputs of the FPN, which is concatenation subjects with optional bilinear upsampling.
UPr r× blinear upsampling.
r Upsampling ratio in bilinear upsampling.
h A convolutional unit block.
Z Fused feature after multi-level feature fusion.
s Output stride, i.e., downsampling ratio at the last stage.
nb The number of branches in multi-level feature fusion.
xi ith concatenation subject in multi-level feature fusion.
wi ith weight of the linear layer in multi-level feature fusion.
b Bias in the linear layer in multi-level feature fusion.
y The fused feature y =

∑
i wixi + b in multi-level feature fusion.

∂y
∂wi

Partial derivative of y with respect to wi.
E[x] Mean of a feature x.
Var[x] Variance of a feature x.
L Loss function such as the pixel-wise cross-entropy loss function.
η Learning rate used in gradient descent.
γ Scale term in batch normalization, which is initialized to one.
β Shift term in batch normalization, which is initialized to zero.
W Weight matrix.
x Feature vector.
ReLU Rectified Linear Unit as ReLU(x) = max(0, x).
BatchNorm Batch normalization operation.
Wfuse Weight matrix of the convolutional layer in the convolutional unit block of fusion.
Zfuse An intermediate result that is obtained after the convolutional layer of fusion with Wfuse.
X Arbitrary feature.
N (µ, σ2) Normal distribution with mean µ and variance σ2.

To solve the scale disequilibrium problem, this study proposes injecting scale equalizers into multi-level
feature fusion. The scale equalizer normalizes each feature using the global mean and standard deviation,
which guarantees scale equilibrium across multi-level features. Because the proposed scale equalizer is simply
global normalization, which uses empirical values for subtraction and division, its implementation is easy
and hyperparameter-free, requires little extra computation that is actually free, and assures scale equilibrium
for any datasets and architectures. Experiments on semantic segmentation tasks showed that applying scale
equalizers for multi-level feature fusion consistently improved the mIoU index across extensive experimental
setups, including datasets and backbones.

2 Background

Formulation This study considers the standard framework for supervised learning of semantic segmenta-
tion networks because it is a representative task using multi-level feature fusion (Fig. 1). Let I ∈ RH×W ×C

be an input image to a semantic segmentation network, where H, W is the size of the image and C repre-
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Figure 1: An overview of a semantic segmentation network. Input image I is fed to the backbone to yield
encoder features {Ci}. They are used to obtain FPN outputs {Pi}, which are fused through upsampling,
concatenation, convolution, etc. Finally, a segmentation result Ŷ is generated using the fused feature Z.

sents the number of image channels. The objective of semantic segmentation is to generate a semantic mask
Ŷ ∈ RH×W ×Nc that classifies each pixel in the image I into one of the Nc categories. A deep neural network,
which comprises an encoder and decoder, is employed as a semantic segmentation model that outputs Ŷ from
the input image I. The encoder is a backbone network with several stages where the input image first goes
through. The decoder—also referred to as the head—uses a set of intermediate feature maps {Ci} from the
encoder to produce the segmentation output Ŷ. To quantify a difference between the prediction Ŷ and the
ground truth Y, a loss function such as pixel-wise cross-entropy is used. With gradient descent optimization
for the loss function, the encoder and decoder are trained together on an image-label pair dataset by the
fine-tuning strategy, where the encoder begins with a pretrained weight whereas the decoder is trained from
scratch.

2.1 Multi-Stage Feature Fusion

The last feature map of the encoder contains rich, high-level information on the image (Chen et al., 2018a)
and is included in the set of feature maps used by the decoder. However, each stage of the encoder yields a
downsampled feature map. Thus, the last feature map exhibits a severe downsampling rate, losing fine details
in the image (Chen et al., 2017). To address this problem, modern decoders have used multiple feature maps
from several stages to aggregate information with various spatial sizes (Kirillov et al., 2019; Zheng et al.,
2021). We refer to this practice as multi-stage feature fusion. For multi-stage feature fusion, the common
choice on the set of features is to use the encoder outputs of the second to fifth stages, i.e., {C2, C3, C4, C5}
(Lin et al., 2017). The use of the first stage output is commonly avoided because it requires large GPU
memory. For convolution-based residual networks (He et al., 2016) and certain vision transformers such
as Swin (Liu et al., 2021), the downsampling ratios of the four encoder features are {4, 8, 16, 32}. Others,
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Figure 2: Visualization of the architecture of modern decoders: (a) UPerHead, (b) PSPHead, (c) ASPPHead
and SepASPPHead, and (d) their general form.

such as vanilla vision transformers (Dosovitskiy et al., 2021), keep the same spatial size for the four encoder
features. Despite the promising results of the latter, in general vision tasks, progressive downsampling is
critical to encouraging heterogeneous characteristics in multiple feature maps, which advocates the former
networks. This study targets the former and describes a problem regarding feature fusion using different
downsampling ratios. The remainder of this section reviews the detailed mechanism of a modern decoder
with multi-stage feature fusion.

UPerHead UPerHead, the head deployed in UPerNet (Xiao et al., 2018), is a prime example of a decoder
designed for multi-stage feature fusion. Recent vision transformers have preferred the UPerHead for semantic
segmentation tasks (Dosovitskiy et al., 2021; Bao et al., 2022; He et al., 2022), and their remarkable perfor-
mance let it be one of the most widely used decoders in the current state. The UPerHead comprises different
modules, such as the pyramid pooling module (PPM) (Zhao et al., 2017), feature pyramid network (FPN)
(Lin et al., 2017), and convolutional unit block, which is composed of convolution, batch normalization, and
ReLU operation. Firstly, each of the three feature maps {C2, C3, C4} is subjected to a convolutional unit
block to yield laterals {L2, L3, L4}. Additionally, the last lateral L5 is produced from the last feature map
C5 using the PPM module that is described in Section 2.2. Now, a subnetwork called FPN performs the
top-down pathway to laterals to obtain its output Fi = Li + UP2(Fi+1) for i ∈ {2, 3, 4} and F5 = L5, where
the operation UPr denotes r× bilinear upsampling (Appendix A). Subsequently, FPN applies a convolu-
tional unit block hi to each result to yield its output Pi = hi(Fi) for i ∈ {2, 3, 4, 5}. The set of FPN output
{P2, P3, P4, P5} has the same spatial size as encoder features {C2, C3, C4, C5}, keeping their downsampling
ratios {4, 8, 16, 32}. Thus, feature fusion for FPN outputs requires 2i−2× bilinear upsampling for each Pi to
ensure that they share the same spatial size of H/4×W/4. Finally, they can be concatenated together with
respect to channel dimension and fused with a convolutional unit block h as

Z = h([P2; UP2(P3); UP4(P4); UP8(P5)]). (1)

The fused feature Z is then subjected to a 1×1 convolution and a 4× bilinear upsampling to yield a predicted
semantic mask Ŷ, which has the size of H ×W ×Nc.

2.2 Single-Stage Feature Fusion

Although multi-stage feature fusion uses a set of encoder features from several stages, certain decoders such
as PSPHead (Zhao et al., 2017) or ASPPHead (Chen et al., 2017) only use a single feature map from the
last stage C5. They modify the encoder to exhibit a downsampling ratio of 8 or 16 at the last stage, which
is referred to as the output stride. Denoting the output stride as s, the spatial size of the last feature map
C5 is (H/s) × (W/s). These decoder heads perform dissimilar feature fusion: From a single-stage feature,
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multiple feature maps with various sizes are produced, which are then fused. We refer to this type of feature
fusion as single-stage feature fusion. In a similar but different way, single-stage feature fusion enables the
decoder to extract both global and local contexts from the targeted feature map. The remainder of this
section reviews the detailed mechanisms of modern decoders with single-stage feature fusion.

PSPHead PSPHead refers to the head deployed in PSPNet (Zhao et al., 2017). Its underlying mechanism
is to extract global and local contexts from a feature map using multiple branches, which is referred to as
a pyramid pooling module (PPM). Targeting the last feature map C5, it performs four average poolings in
parallel, which yields features with spatial sizes 1×1, 2×2, 3×3, and 6×6. Subsequently, a convolutional unit
block is applied to each branch, and then each result is upsampled to fit the size of C5. Along with the feature
map C5, the results from the four branches are concatenated together with respect to channel dimension.
Finally, a convolutional unit block h is applied to fuse them. Denoting the outputs of convolutional unit
blocks in parallel branches as {P1, P2, P3, P6}, fusing them is represented as

Z = h([C5; UPH/s(P1); UPH/2s(P2); UPH/3s(P3); UPH/6s(P6)]), (2)

where H = W is assumed for notational simplicity. Similarly, the fused feature Z is then subjected to a
1× 1 convolution and a 4× bilinear upsampling to yield a predicted semantic mask Ŷ, which has the size of
H ×W ×Nc.

ASPPHead and Others ASPPHead refers to the head deployed in DeepLabV3 (Chen et al., 2017). It
uses atrous convolution (Yu & Koltun, 2016; Chen et al., 2018a), which generates empty space between each
element of the convolutional kernel. To extract both global and local information from a feature map, the
ASPPHead adopts multiple atrous convolutions with various atrous rates in parallel. For the last feature
map C5, the first branch applies a series of global average pooling (GAP), convolutional unit block, and
bilinear upsampling to restore the spatial size prior to the GAP. Each of the other four branches applies a
convolutional unit block whose convolutional operation adopts an atrous rate {1, a, 2a, 3a}, where a = 96/s.
The results from the five branches are concatenated together with respect to channel dimension, and then
a convolutional unit block h is applied to fuse them. Denoting the outputs of convolutional unit blocks in
parallel branches as {PGAP, P1, Pa, P2a, P3a}, fusing them is represented as

Z = h([UPH/s(PGAP); P1; Pa; P2a; P3a]). (3)

Similarly, the fused feature Z is then subjected to a 1× 1 convolution and a s× bilinear upsampling to yield
a predicted semantic mask Ŷ, which has the size of H ×W × Nc. In DeepLabV3+ (Chen et al., 2018b),
a variant called SepASPPHead is developed using depthwise separable convolutions instead, while keeping
the same decoder architecture. This single-stage feature fusion has also been used in other segmentation
networks such as FCN (Long et al., 2015) and U-Net (Ronneberger et al., 2015), which progressively repeats
fusion for two features with upsampling at each time.

Summary and Generalization As reviewed above, modern decoders of segmentation networks perform
multi- or single-stage feature fusion, which we collectively refer to as multi-level feature fusion. Although
each decoder has a distinct architecture, their feature fusions share a similar design pattern (Fig. 2). Using
single or multiple encoder features, certain operations are applied in parallel branches, and the convolutional
unit block in the ith branch generates the ith feature map Pi for i ∈ {1, · · · , nb} for the number of branches
nb. Because the spatial size of each feature map Pi differs, optional ri× bilinear upsampling is needed
to assure the same spatial size. For notational simplicity, 1× bilinear upsampling is defined as the identity
operation. Because the set of encoder features for fusion includes a feature map that does not require bilinear
upsampling, at least one branch exhibits the upsampling ratio ri = 1, whereas others use ri > 1. The fused
feature is now obtainable by concatenation with respect to channel dimension and a convolutional unit block
h as

Z = h([UPr1(P1); · · · ; UPrnb
(Pnb

)]). (4)

Below, we investigate the concatenation subjects UPri(Pi). Although we introduced the encoder features
{Ci} for detailed descriptions of decoders, they will not be further used in our analysis.
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Figure 3: Overview of the problem statement and the proposed solution. This illustration depicts a
fusion by UPerHead for two features for simplicity, but nonetheless, the common fusion scheme uses four
features. (Top) Existing multi-level feature fusion concatenates features after bilinear upsampling. The
variances of concatenation subjects, represented as chroma in this figure, exhibit disequilibrium because
bilinear upsampling decreases variance. In this fusion, P1 dominates in the fused feature as a red color,
which diminishes the contribution of P2 and causes slower training on w2. (Middle) Our proposed multi-
level feature fusion with scale equalizers guarantees consistent variance across subjects of concatenation. In
this scheme, a suitably fused feature as a purple color is produced with alive gradients with respect to both
w1 and w2. (Bottom) Efficient implementation of our proposed method, where scale equalizers are replaced
by applying auxiliary initialization for w1 and w2.

3 Scale Disequilibrium

3.1 Problem Statement

As reviewed above, the decoder of the segmentation network includes a module to fuse features of varied
sizes. Here, we claim that multi-level feature fusion requires explicit scale equalization because they exhibit
different scales, which causes scale disequilibrium on gradients (Fig. 3).

To understand feature scale, this study uses feature variance. Other measures such as the norm depend on
the size of the feature, whereas variance provides a suitably scaled result with respect to its size. Owing to
the effectiveness of variance in understanding feature scales, it has been adopted in several pieces of literature
(Glorot & Bengio, 2010; He et al., 2015; Klambauer et al., 2017). We also employ the mean of a feature to
understand its representative value as occasion arises. Using variance, we describe the scale disequilibrium
as follows.
Proposition 3.1. Consider a multi-level feature fusion, where a concatenated feature [x1; x2] is subjected
to a linear layer with weight [w1, w2] and bias b to yield the fused feature y = w1x1 + w2x2 + b. When the
two features x1 and x2 are on different scales, i.e., Var[x1] ̸= Var[x2], the gradients of the fused feature with
respect to the corresponding weight exhibit scale disequilibrium, i.e., Var[ ∂y

∂w1
] ̸= Var[ ∂y

∂w2
].

The proof is straightforward because ∂y
∂wi

= xi. From the chain rule, the gradient of a loss function L

with respect to weight wi is ∂L
∂wi

=
∑

y
∂L
∂y

∂y
∂wi

, and thus the gradient scale is affected by the scale of the
corresponding feature xi. The term linear layer indicates a fully connected layer or a convolutional layer.
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Figure 4: Illustration of scale disequilibrium. (Top) When Var[x1] > Var[x2], we obtain Var[ ∂y
∂w1

] >

Var[ ∂y
∂w2

], whose landscape is difficult to optimize through gradient descent. (Bottom) Achieving scale
equilibrium Var[x1] = Var[x2] stabilizes the landscape and corresponding gradient descent optimization with
respect to w1 and w2.

For example, consider scale disequilibrium for concatenation subjects where Var[x1] = 10Var[x2]. Then we
obtain Var[ ∂y

∂w1
] = 10Var[ ∂y

∂w2
], and thus gradient descent on w2 is on a ten times smaller scale than w1,

which slows down the training on w2 (Fig. 4). However, gradient descent optimizers inherently assume scale
equilibrium on gradients (Zeiler, 2012): For gradient descent wi ← wi − η ∂L

∂wi
, the weight initializer sets the

same scale of initial weight Var[wi] for weights within the same linear layer, and common gradient descent
uses a single learning rate η without scale discrimination, which leads to difficulty in capturing different
gradient scales Var[ ∂L

∂wi
]. Note that existing literature (Glorot & Bengio, 2010; He et al., 2015; Klambauer

et al., 2017; Bachlechner et al., 2021) have discussed matching gradient scales across inter-layers to ensure
stable gradient descent without poor training dynamics such as vanishing or exploding gradients. On top of
inter-layer gradient scales, we claim to equalize intra-layer gradient scales. For the feature fusion scenario,
matching the intra-layer gradient scales Var[ ∂y

∂w1
] = Var[ ∂y

∂w2
] requires scale equalization for the subjects

of concatenation: Var[x1] = Var[x2]. Achieving scale equilibrium eliminates the hidden factor that causes
degradation in gradient descent optimization, which enhances the training of the segmentation network as
well as the performance of semantic segmentation.

Furthermore, the gradient scale indicates the amount of contribution: A smaller scale on the gradient or
feature indicates less contribution to the predicted mask. For example, when the last feature map that
contains rich, high-level image information contributes little to the predicted mask, the quality of the seg-
mentation result would degrade. To use the last feature map while supplementing its deficient information
using multi-level features, it is desirable to ensure a balanced contribution from the multi-level features. Note
that we are not saying that the amount of feature contributions should be precisely controlled to be optimal
at initialization; rather, we would like to equalize feature contributions at the initial state and then let them
change to be optimal during training. Our claim is that unwanted imbalances in gradient scales should be
avoided at initialization. This claim is supported by the above existing literature on matching inter-layer
gradient scales, which have approached it this way and emphasized avoiding unwanted imbalances such as
vanishing or exploding gradients at the initial state; thereafter, gradient scales are allowed to change during
training. Considering this objective, our argument can be interpreted as establishing a valid initialization to
achieve scale equilibrium on gradients with respect to intra-layer weights.
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These arguments can be extended to match the mean of gradients, which requires the same mean for the
subjects of concatenation: E[x1] = E[x2]. Based on this claim, we inspect the scale of concatenation subjects
in the modern decoder of the segmentation network.

Batch Normalization Partially Equalizes Scale Fortunately, the use of batch normalization results
in a normalized feature1 and thus concatenation of several features from the output of batch normalization
is allowable. Moreover, batch normalization allows the use of convolution with arbitrary weights W and
ReLU operation without causing scale disequilibrium. This is because the output of a convolutional unit
block with the pipeline [Conv–BatchNorm–ReLU] yields a fixed mean and variance without requiring any
specific conditions on the weight W and feature x:

E[ReLU(BatchNorm(Wx))] = 1√
2π

, (5)

Var[ReLU(BatchNorm(Wx))] = π − 1
2π

. (6)

This property also implies that any architecture can be freely chosen before the input of the convolutional unit
block. Furthermore, batch normalization guarantees a consistent mean and variance for each channel (Ioffe
& Szegedy, 2015). This channel-wise normalization is preferable because the output features from multiple
branches are concatenated with respect to channel dimension. These characteristics of batch normalization
explain why it is still preferred for the decoder of segmentation networks, despite the existence of several
alternatives, such as layer normalization, which does not perform channel-wise normalization (Ba et al., 2016).
In summary, batch normalization provides a feature with a consistent scale, which allows the concatenation
of several features from convolutional unit blocks.

Bilinear Upsampling Breaks Scale Equilibrium However, even with batch normalization, feature
scales exhibit disequilibrium when subsequently using bilinear upsampling. Consider a multi-level feature
fusion for {P1, P2}, where each feature is an output of a convolutional unit block, and the latter P2 needs
r× bilinear upsampling with r > 1 to become the same spatial size as P1. Fusing them requires computing

Zfuse = Wfuse[P1; UPr(P2)], (7)

which is an intermediate result after convolutional layer of fusion with Wfuse. Here, we investigate the scale
of concatenation subjects. Although convolutional unit blocks on parallel branches assure consistent scales
for {P1, P2}, scales of concatenation subjects {P1, UPr(P2)} are not guaranteed to be equal. Indeed, we
claim that scale disequilibrium occurs during this feature fusion due to bilinear upsampling. Specifically, we
prove that bilinear upsampling decreases feature variance:
Theorem 3.2. Bilinear upsampling decreases feature variance, i.e., Var[UPr(X)] < Var[X] for upsampling
ratio r > 1 and feature X that is not a constant feature.

The constant feature here indicates a vector with the same constant elements. Note that bilinear upsampling
conserves feature mean—but not feature variance. Furthermore, variance provides a suitably scaled result
with respect to its size, which ensures that the decreased variance is not caused by the increased size
due to upsampling. The decreased variance is caused by the linear interpolation function used in bilinear
upsampling, which does not conserve the second moment that is included in the variance. See the Appendix A
for a detailed proof and further discussion.

In Section 2, we reviewed multi-level feature fusion in modern decoders and found that, as a general rule,
at least one branch uses the upsampling ratio ri = 1, whereas others show ri > 1. Therefore, Theorem 3.2
indicates that modern decoders with multi-level feature fusion exhibit scale disequilibrium. The fatal problem
is that the last feature map always requires bilinear upsampling, which reduces its feature and gradient
scales, obstructing the use of its rich information on an image. This problem arises even when using batch
normalization: Because bilinear upsampling is applied after each convolutional unit block, the equalized
scales subsequently change.

1For batch normalization γx̂ + β, the initial state where γ = 1 and β = 0 provides a normalized feature x̂.
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Figure 5: Empirical observation on decreased variance after bilinear upsampling. The black dotted line
(π − 1)/2π corresponds to the case when the output of a convolutional unit block is subjected to bilinear
upsampling.

Note that bilinear upsampling is the de facto standard for semantic segmentation, and several studies have
explicitly mentioned using bilinear upsampling in their papers (Zhao et al., 2017; Chen et al., 2017; Xiao
et al., 2018). In consideration of this practice, our study targets upsampling with bilinear interpolation.
Nevertheless, the decreased variance can also be observed for other interpolation methods such as bicubic,
and our analysis and solution seamlessly apply to those upsampling methods.

Empirical Observation Now, we empirically demonstrate decreased variance after bilinear upsampling.
Considering a practical feature fusion scenario, we generated artificial random normal data P sampled from
N (1/

√
2π, σ2), which corresponds to a feature after a convolutional unit block but before bilinear upsampling.

The feature P is set to have width 128, height 128, number of channels 256, and mini-batch size 16. Then we
applied r× bilinear upsampling to P with r ∈ {2, 4, 8} and measured the variance of each outcome. Figure 5
summarizes the results across various choices of σ ∈ (0, 1). We observed that bilinear upsampling decreased
feature variance in all simulations.

3.2 Proposed Solution: Scale Equalizer

Our claim is that we should modify the existing feature fusion method to achieve scale equilibrium for
concatenation subjects—the output of each branch that ends with bilinear upsampling. This objective may be
accomplished in several ways. The naive approach is to place batch normalization after bilinear upsampling,
changing the pipeline from [Conv–BatchNorm–ReLU–UP] to [Conv–ReLU–UP–BatchNorm]. This pipeline
yields a normalized feature with a consistent scale but requires extra computational cost. Because batch
normalization computes the mean and standard deviation (std) of the current incoming feature map across
the mini-batch, its computational complexity increases with the larger size of the feature (Huang et al.,
2018). The computational complexity of the backward operation further increases with the larger size of
the feature map because the derivative for batch normalization is much more complicated (Yao et al., 2021).
Consequently, applying batch normalization to an upsampled feature causes a significantly more expensive
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Figure 6: Scale equalizer with simple implementation (left) and efficient implementation (right). For efficient
implementation, pre-computed global mean and std are applied to the weight and bias of the fusion layer in
advance, as depicted by the gray dotted line. Here, the main training requires only black dotted lines, which
maintains the same computational cost compared with the case without scale equalizers. Furthermore, we
can remove the bias correction due to the subsequent batch normalization.

computation compared with that of a non-upsampled feature. Considering this problem, we alternatively
explore a computationally efficient solution to acquire scale equilibrium.

Here, we propose scale equalizer, a module to be injected after bilinear upsampling but before concatenation.
To achieve scale equilibrium at minimal cost, we design the scale equalizer as simple as possible. Specif-
ically, our proposed scale equalizer normalizes target feature x using global mean µ and global std σ as
ScaleEqualizer(x) := (x − µ)/σ. The global mean and std are scalars computed from the target feature
x across the training dataset, which can be performed before training. Once the global mean and std are
obtained, they can be set as fixed constants during training, which simplifies forward and backward op-
erations for the scale equalizer. By contrast, mean and std are not constants for common normalization
operations such as batch normalization or layer normalization because they use a mean and std of a current
incoming feature. Thus, compared with existing normalization operations, the proposed scale equalizer can
be implemented with little extra cost.

Scale Equalizers Equalize Scales Now consider multi-level feature fusion with scale equalizers, where
the scale equalizer is applied after bilinear upsampling of each branch but before concatenation. The con-
catenation subject ScaleEqualizeri(UPri

(Pi)) exhibits zero mean and unit variance, which assures scale
equilibrium. Because the scale equalizer uses empirically measured values of the global mean and std, the
scale equilibrium does not require architectural restrictions or specific conditions on weight. In other words,
scale equilibrium is always guaranteed for any dataset and any architecture of segmentation network.

Efficient Implementation via Initialization In fact, matching intra-layer gradient scales via scale
equalizers can be interpreted as establishing a valid initialization. For multi-level feature fusion y =

∑
i wixi+

b, after replacing xi with ScaleEqualizeri(xi) = (x− µi)/σi, we obtain

y =
∑

i

(
wi

σi

)
xi +

(
b−

∑
i

wiµi

σi

)
. (8)

Thus, injecting scale equalizers is equivalent to adopting an auxiliary initializer with w′
i = wi/σi and b′ =

b−
∑

i wiµi/σi. This auxiliary initializer means calibrating the weights and bias in the linear layer of fusion
in advance using expected feature scales (Figure 6). Furthermore, because batch normalization follows
subsequently (Section 2), the latter for bias correction is actually not needed, whereas the former for weight
calibration is still needed to control the scales of concatenation subjects. For UPerHead as a concrete
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Algorithm 1 Efficient Implementation via Initialization
Input: set of training images S, encoder e, decoder d.
Using pretrained weights Θ, initialize encoder e.
Using preferred initializers, initialize decoder d into weight Ω, including {wi}.
Set m1,i = m2,i = 0 for i ∈ {1, · · · , nb}.
for I ∈ S do

Extract FPN outputs {Pi} from I using encoder eΘ and subnetwork of decoder dΩ.
for i = 1 to nb do

m1,i = m1,i + E[UPri
(Pi)].

m2,i = m2,i + E[UPri
(Pi)2].

end for
end for
for i = 1 to nb do

Obtain the global mean µi = m1,i/|S|.
Obtain the global std σi =

√
m2,i/|S| − µ2

i .
Update wi in Ω using auxiliary initializer w′

i = wi/σi.
end for
Using the updated decoder weight Ω′, run the main training for encoder eΘ and decoder dΩ′ .

example, weights in the convolutional layer of fusion are partitioned into four groups with respect to channel
dimension, and the weights in each group wi are re-scaled via the global std σi. In summary, after primary
initialization of the decoder, we compute the global mean and std for each target feature, apply the auxiliary
initializer to weights, and then proceed with the main training (Algorithm 1). This implementation requires
no additional computational cost during main training, which enables us to achieve scale equilibrium for
free.

As mentioned earlier, there may be other ways to achieve scale equilibrium by introducing complicated
operations. Nevertheless, to demonstrate the effectiveness of scale equilibrium under the same computational
cost, we opt for injecting scale equalizers and their efficient implementation through auxiliary initialization,
which achieves scale equilibrium for free.

4 Experiments

4.1 Multi-Stage Feature Fusion

Objective So far, we have discussed the need for scale equalizers for multi-level feature fusion. The
objective here is to compare the segmentation performance before and after injecting scale equalizers into
multi-stage feature fusion. We considered extensive setups, such as the choice of backbone and target
dataset. For the backbone network, we employed recent vision transformers that achieved state-of-the-
art performance. Nine backbones of Swin-{T, S, B} (Liu et al., 2021), Twins-SVT-{S, B, L} (Chu et al.,
2021), and ConvNeXt-{T, S, B} (Liu et al., 2022) pretrained on ImageNet-1K (Deng et al., 2009) were
examined, where T, S, B, and L stand for tiny, small, base, and large models, respectively. These encoders
require bilinear upsampling for multi-stage feature fusion. Targeting multi-stage feature fusion, we employed
UPerHead (Xiao et al., 2018). Two datasets were examined, including the ADE20K (Zhou et al., 2019) and
PASCAL VOC 2012 (Everingham et al., 2015).

Hyperparameters To follow common practice for semantic segmentation, training recipes from
MMSegmentation (Contributors, 2020) were employed. For training with Swin and Twins encoders, AdamW
optimizer (Loshchilov & Hutter, 2019) with weight decay 10−2, betas β1 = 0.9, β2 = 0.999, and learning rate
6 × 10−5 with polynomial decay of the 160K scheduler after linear warmup were used. For training with
ConvNeXt encoders, AdamW optimizer with weight decay 5×10−2, betas β1 = 0.9, β2 = 0.999, learning rate
10−4 with polynomial decay of the 160K scheduler after linear warmup, and mixed precision training (Mi-
cikevicius et al., 2018) were used. The training was conducted on a 4× GPU machine, and SyncBN (Zhang

11
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Table 2: Summarization of mIoU (%) from semantic segmentation experiments with multi-stage feature
fusion using UPerHead. “Scale EQ” indicates the scale equalizers, and “Diff” indicates the mIoU difference
after injecting the scale equalizers.

Dataset ADE20K PASCAL VOC 2012 AUG
Encoder w/o Scale EQ w/ Scale EQ Diff w/o Scale EQ w/ Scale EQ Diff
Swin-T (Liu et al., 2021) 43.384 43.576 +0.192 78.750 78.996 +0.246
Swin-S 47.298 47.486 +0.188 81.940 82.138 +0.198
Swin-B 47.490 47.648 +0.158 82.200 82.378 +0.178
Twins-SVT-S (Chu et al., 2021) 44.914 45.018 +0.104 80.448 80.732 +0.284
Twins-SVT-B 47.224 47.500 +0.276 82.048 82.524 +0.476
Twins-SVT-L 48.648 48.894 +0.246 82.168 82.404 +0.236
ConvNeXt-T (Liu et al., 2022) 45.024 45.300 +0.276 80.668 80.932 +0.264
ConvNeXt-S 47.736 47.866 +0.130 82.472 82.650 +0.178
ConvNeXt-B 48.376 48.684 +0.308 82.934 83.038 +0.104

et al., 2018) was used for distributed training. We measured the mean intersection over union (mIoU) and
reported the average of five runs with different random seeds.

Datasets The ADE20K dataset contains scene-centric images along with the corresponding segmentation
labels. A crop size of 512× 512 pixels was used, which was obtained after applying mean-std normalization
and a random resize operation using a size of 2048×512 pixels with a ratio range of 0.5 to 2.0. Furthermore,
a random flipping with a probability of 0.5 and the photometric distortions were applied. The objective was
to classify each pixel into one of the 150 categories and train the segmentation network using the pixel-wise
cross-entropy loss. The same goes for the PASCAL VOC 2012 dataset with 21 categories, and we followed
the augmented PASCAL VOC 2012 dataset.

Results We observed that injecting scale equalizers into multi-stage feature fusion improved the mIoU
index compared with the same models without scale equalization (Table 2). The mIoU increases of about
+0.1 to +0.4 were consistently observed across all setups of nine backbones and two datasets. Note that our
method goes beyond the trade-off between computational cost and performance. The proposed method does
not introduce additional layers; while keeping the same architecture and expressive power of the deep neural
network, the performance gain of the proposed method can be obtained in actually free (Section 3.2). In
other words, scale equalization provides a free performance gain without incurring additional computational
expenses.

4.2 Single-Stage Feature Fusion

Objective Now we examine single-stage feature fusion. The target encoder was ResNet-101 (He et al.,
2016), which was modified to exhibit output stride s = 8 and was pretrained on ImageNet-1K. We targeted
most standard and popular decoders, including FCNHead (Long et al., 2015), PSPHead (Zhao et al., 2017),
ASPPHead (Chen et al., 2017), and SepASPPHead (Chen et al., 2018b). The target datasets were the
Cityscapes (Cordts et al., 2016) and ADE20K datasets.

Hyperparameters Similar to Section 4.1, training recipes from MMSegmentation were employed. For
training on the Cityscapes dataset, stochastic gradient descent with momentum 0.9, weight decay 5× 10−4,
and learning rate 10−2 with polynomial decay of the 80K scheduler were used. The same goes for training
on the ADE20K dataset while using the 160K scheduler instead. The training was conducted on a 4× GPU
machine, and SyncBN was used for distributed training. We measured the mIoU and reported the average
of five runs with different random seeds.

Datasets The Cityscapes dataset contains images of urban street scenes along with the corresponding
segmentation labels. A crop size of 1024× 512 pixels was used, which was obtained after applying mean-std
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Table 3: Summarization of mIoU (%) from semantic segmentation experiments with single-stage feature
fusion using various heads.

Dataset Cityscapes ADE20K
Decoder w/o Scale EQ w/ Scale EQ Diff w/o Scale EQ w/ Scale EQ Diff
FCNHead (Long et al., 2015) 76.578 76.972 +0.394 39.780 39.958 +0.178
PSPHead (Zhao et al., 2017) 79.394 79.858 +0.464 43.970 44.228 +0.258
ASPPHead (Chen et al., 2017) 79.312 79.720 +0.408 44.854 45.004 +0.150
SepASPPHead (Chen et al., 2018b) 80.448 80.592 +0.144 45.144 45.486 +0.342

normalization and a random resize operation using a size of 2048× 1024 pixels with a ratio range of 0.5 to
2.0. Furthermore, a random flipping with a probability of 0.5 and the photometric distortions were applied.
The objective was to classify each pixel into one of the 19 categories and train the segmentation network
using the pixel-wise cross-entropy loss. Experiments on the ADE20K followed the description in Section 4.1.

Results Similarly, injecting scale equalizers consistently improved the mIoU index across all setups of four
decoder heads and two datasets (Table 3), which verifies the effectiveness of scale equalizers for any choice
of architecture. See the Appendix D for more experimental results.

5 Conclusion

This study discussed the scale disequilibrium in multi-level feature fusion. First, we reviewed the mechanisms
of existing segmentation networks, which perform multi- or single-stage feature fusion. We demonstrated that
the existing multi-level feature fusion exhibits scale disequilibrium due to bilinear upsampling, which causes
degraded gradient descent optimization. To address this problem, injecting scale equalizers is proposed to
guarantee scale equilibrium for multi-level feature fusion. Experiments showed that the use of scale equalizers
consistently increased the mIoU index by about +0.1 to +0.4 across numerous datasets and architectures.
We hope that our proposed problem and solution will facilitate the research community in developing an
improved multi-level feature fusion and segmentation network.
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A Proof of Theorem 3.2

Notation In this section, we prove Theorem 3.2. Here, we consider 1D bilinear upsampling, because
2D bilinear sampling is a straightforward extension of it. For a given sequence X = {X1, · · · , Xn} of size
n, applying r× bilinear upsampling yields a sequence UPr(X) of size rn. Because these sequences are
discrete, bilinear upsampling can be thought of as a coordinate transformation, which transforms coordinate
{p1, · · · , pn} into coordinate {q1, · · · , qrn}. We follow the common option of bilinear upsampling to set
align_corners=False, where each coordinate is regularly spaced and shares its center. Within pi and pi+1
for i ∈ {1, · · · , n−1}, the upsampled coordinate has r regularly spaced points as qr(i−0.5)+j = pi+(2j−1)l for
l = pi+1−pi

2r and j ∈ {1, · · · , r}. Because bilinear upsampling is a piece-wise linear interpolation, we represent
the piece-wise linear function as f(x) where 1) for coordinate point pi, we define f(pi) := Xi for i ∈ {1, · · · , n},
2) following the behavior of align_corners=False, we define f(x) := X1 on left outer interval x ∈ (−∞, p1)
and f(x) := Xn on right outer interval x ∈ (pn, +∞), and 3) on ith interval x ∈ (pi, pi+1), we define f(x)
as a linear line f(x) := aix + bi connecting two points (pi, Xi) and (pi+1, Xi+1) where ai = Xi+1−Xi

pi+1−pi
and

bi = Xipi+1−Xi+1pi

pi+1−pi
. Using this notation, we represent bilinear upsampling as a transformation from the

original data {f(p1), · · · , f(pn)} to its upsampled data {f(q1), · · · , f(qrn)}. Finally, we represent the mean
of a sequence by sampling f as Ex∼p[f(x)] = 1

n

∑n
i=1 f(pi) and the same goes for variance.

Figure 7: Example of two coordinates and a piece-wise linear function for 4× bilinear upsampling.

Objective Firstly, we know that bilinear upsampling conserves feature mean, i.e., E[UPr(X)] = E[X].
Using the above-mentioned notation, this property can be represented as Ex∼p[f(x)] = Ex∼q[f(x)]. In fact,
mean-conservation holds by the definition of the two coordinates because they share the center. Now, we
investigate feature variance before and after bilinear upsampling. Because Var[X] = E[X2] − (E[X])2, we
inspect the second moment E[X2] for the two coordinates. In other words, we compare Ex∼p[(f(x))2] and
Ex∼q[(f(x))2].

Main Proof Firstly, we write

Ex∼p[(f(x))2] = 1
n

n∑
i=1

(f(pi))2 (9)

= 1
2n

[(f(p1))2 + {(f(p1))2 + (f(p2))2}+ · · ·+ {(f(pn−1))2 + (f(pn))2}+ (f(pn))2], (10)

Ex∼q[(f(x))2] = 1
rn

[(f(q1))2 + · · ·+ (f(qrn))2]. (11)
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This expression enables us to compare sub-terms of the above for two coordinates on each interval. For
i ∈ {1, · · · , n− 1}, we define their sub-terms as

Pi := (f(pi))2 + (f(pi+1))2

2n
, (12)

Qi :=
(f(qr(i−0.5)+1))2 + · · ·+ (f(qr(i+0.5)))2

rn
. (13)

Now we investigate Pi −Qi. Note that 1
2n (f(pi))2 = ( r

2 )( 1
rn )(f(pi))2, which can be interpreted as repeating

1
rn (f(pi))2 in r

2 times. Using this representation, we obtain

rn(Pi −Qi) ={(f(pi))2 + · · ·+ (f(pi))2︸ ︷︷ ︸
r/2 terms

}+ {(f(pi+1))2 + · · ·+ (f(pi+1))2︸ ︷︷ ︸
r/2 terms

} (14)

− {(f(qr(i−0.5)+1))2 + · · ·+ f(qri))2︸ ︷︷ ︸
r/2 terms

} − {(f(qri+1))2 · · · (f(qr(i+0.5))2︸ ︷︷ ︸
r/2 terms

)} (15)

={(f(pi))2 − (f(qr(i−0.5)+1))2}+ · · ·+ {(f(pi))2 − (f(qri))2}
+ {(f(pi+1))2 − (f(qri+1))2}+ · · ·+ {(f(pi+1))2 − (f(qr(i+0.5)))2}. (16)

Thus, the first r/2 terms indicate the squared difference between two coordinates on the left half area,
whereas the last r/2 terms similarly come from the two coordinates on the right half area.

Figure 8: Illustration of two coordinates on the ith interval of x ∈ (pi, pi+1).

For qr(i−0.5)+j on the left half area with j ∈ {1, · · · , r/2}, we have pi − qr(i−0.5)+j = −(2j − 1)l. Because
f(x) is defined as f(x) = aix+bi on the ith interval x ∈ (pi, pi+1), we know that f(x1)−f(x2) = ai(x1−x2)
and f(x1) + f(x2) = ai(x1 + x2) + 2bi. Thus, we have

(f(pi))2 − (f(qr(i−0.5)+j))2 = {f(pi)− f(qr(i−0.5)+j)}{f(pi) + f(qr(i−0.5)+j)} (17)
= ai(pi − qr(i−0.5)+j){ai(pi + qr(i−0.5)+j) + 2bi} (18)
= −ail(2j − 1){ai(pi + qr(i−0.5)+j) + 2bi}. (19)
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Similarly, on the right half area, we consider qr(i+0.5)+1−j with j ∈ {1, · · · , r/2}, which is in reversed order.
We have pi − qr(i+0.5)+1−j = (2j − 1)l, and the right half area shares f(x) = aix + bi on the left half area.
Therefore, we obtain

(f(pi))2 − (f(qr(i+0.5)+1−j))2 = {f(pi)− f(qr(i+0.5)+1−j)}{f(pi) + f(qr(i+0.5)+1−j)} (20)
= ai(pi − qr(i+0.5)+1−j){ai(pi + qr(i+0.5)+1−j) + 2bi} (21)
= ail(2j − 1){ai(pi + qr(i+0.5)+1−j) + 2bi}. (22)

Sum of Eqs. 19 and 22 yields

{(f(pi))2 − (f(qr(i−0.5)+j))2}+ {(f(pi))2 − (f(qr(i+0.5)+1−j))2}
= a2

i l(2j − 1){(pi+1 − pi) + (qr(i+0.5)+1−j − qr(i−0.5)+j)} ≥ 0. (23)

Equality holds if ai = 0, which requires Xi+1 = Xi. In summary, Eq. 16 can be written as the sum of jth
terms for j ∈ {1, · · · , r/2}, where each jth term is always non-negative. Thus, we conclude that Pi−Qi ≥ 0
for i ∈ {1, · · · , n− 1}.

So far, we have compared the sub-terms of Eqs. 10 and 11 for two coordinates on each of the ith interval
for i ∈ {1, · · · , n− 1}. We are left with two sub-terms on the left outer interval and the right outer interval.
Fortunately, by the definition of bilinear upsampling on outer intervals, we have

1
2n

[(f(p1))2 + (f(pn))2] = 1
rn

[{(f(p1))2 + · · ·+ (f(p1))2︸ ︷︷ ︸
r/2 terms

}+ {(f(pn))2 + · · ·+ (f(pn))2︸ ︷︷ ︸
r/2 terms

}] (24)

= 1
rn

[{(f(q1))2 + · · ·+ (f(q0.5r))2}+ {(f(qr(n−0.5)+1))2 + · · ·+ (f(qrn))2}]. (25)

Thus, on the outer intervals, sub-terms of Eqs. 10 and 11 are identical.

Finally, from Eqs. 10, 11, 23, and 25, we obtain Ex∼p[(f(x))2] ≥ Ex∼q[(f(x))2]. Note that equality holds
if ai = 0, i.e., Xi+1 = Xi for all i ∈ {1, · · · , n − 1}, which is only satisfied if the original feature is a
constant feature. However, because we consider original data that is not a sequence of constants, we know
that at least one of ai exhibits ai ̸= 0, which yields Ex∼p[(f(x))2] > Ex∼q[(f(x))2]. This inequality leads to
Varx∼p[f(x)] > Varx∼q[f(x)]. Therefore, we conclude that applying bilinear upsampling decreases variance.

B Mean and Variance of Convolutional Unit Block

In the main text, we wrote

E[ReLU(BatchNorm(Wx))] = 1√
2π

, (26)

Var[ReLU(BatchNorm(Wx))] = π − 1
2π

. (27)

Here, we derive these properties. Because we consider a decoder in an initialized state where γ = 1 and
β = 0, batch normalization provides a normalized feature z ∼ N (0, 1), where its probability density function
is p(z) = 1√

2π
exp
(
−x2

2

)
. Hence, we examine the mean and variance after ReLU, i.e., E[ReLU(z)] and

Var[ReLU(z)]. In the case of the mean, we have

E[ReLU(z)] =
∫ ∞

−∞
ReLU(z)p(z)dz (28)

=
∫ ∞

0
zp(z)dz (29)

= 1√
2π

, (30)
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where the last equation holds owing to the properties of a half-normal or truncated normal distribution. In
the case of the second moment, we derive

E[(ReLU(z))2] =
∫ ∞

−∞
(ReLU(z))2p(z)dz (31)

=
∫ ∞

0
z2p(z)dz (32)

= 1
2

∫ ∞

−∞
z2p(z)dz (33)

= 1
2E[z2] (34)

= 1
2 , (35)

where the third equation holds by even symmetry. Thus, we obtain

Var[ReLU(z)] = E[(ReLU(z))2]− (E[ReLU(z)])2 (36)

= 1
2 −

1
2π

(37)

= π − 1
2π

, (38)

which concludes the proof.

C Python Code for Fig. 5

1 import torch
2 import torch .nn. functional as F
3 import math
4

5 N, H, W, C = 16, 128 , 128 , 256
6

7 for v in range (1, 100):
8 v = v / 100.0
9 mean = 0.3989 * torch .ones(N, C, H, W)

10 std = math.sqrt(v)
11 x = torch . normal (mean=mean , std=std).cuda ()
12

13 A_1 = x
14 print (A_1.var( unbiased = False ).item ())
15 del A_1
16

17 A_2 = F. interpolate (x, size =(2 * H, 2 * W), mode=" bilinear ", align_corners = False )
18 print (A_2.var( unbiased = False ).item ())
19 del A_2
20

21 A_4 = F. interpolate (x, size =(4 * H, 4 * W), mode=" bilinear ", align_corners = False )
22 print (A_4.var( unbiased = False ).item ())
23 del A_4
24

25 A_8 = F. interpolate (x, size =(8 * H, 8 * W), mode=" bilinear ", align_corners = False )
26 print (A_8.var( unbiased = False ).item ())
27 del A_8
28

29 print ("")
30 del x

Listing 1: Python code for Fig. 5
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D Additional Experimental Results

We additionally provide experimental results on single-stage feature fusion using ResNet-50.

Table 4: Summarization of mIoU (%) from semantic segmentation experiments with single-stage feature
fusion using various heads.

Dataset ADE20K
Decoder w/o Scale EQ w/ Scale EQ Diff
FCNHead 36.544 36.998 +0.454
PSPHead 41.666 41.806 +0.140
ASPPHead 42.934 43.220 +0.286
SepASPPHead 43.910 44.056 +0.146
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