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Abstract
In contemporary deep learning practice, models are often trained to near zero loss i.e. to nearly interpolate

the training data. However, the number of parameters in the model is usually far more than the number of data
points 𝑛, the theoretical minimum needed for interpolation: a phenomenon referred to as overparameterization.
In an interesting piece of work that contributes to the considerable research that has been devoted to understand
overparameterization, Bubeck and Sellke considered a natural notion of what it means for a model to interpolate:
the model is said to interpolate when the model’s training loss goes below the loss of the conditional expectation of
the response given the covariate. For this notion of interpolation and for a broad class of covariate distributions
(specifically those satisfying a natural notion of concentration of measure), they showed that overparameterization
is necessary for robust interpolation i.e. if the interpolating function is required to be Lipschitz. Their main proof
technique applies to regression with square loss against a scalar response, but they remark that via a connection
to Rademacher complexity and using tools such as the Ledoux-Talagrand contraction inequality, their result can
be extended to more general losses, at least in the case of scalar response variables. In this work, we recast the
original proof technique of Bubeck and Sellke in terms of a bias-variance type decomposition, and show that this
view directly unlocks a generalization to Bregman divergence losses (even for vector-valued responses), without the
use of tools such as Rademacher complexity or the Ledoux-Talagrand contraction principle. Bregman divergences
are a natural class of losses since for these, the best estimator is the conditional expectation of the response given
the covariate, and in particular, include other practical losses such as the cross entropy loss. Our work thus gives a
more general understanding of the main proof technique of Bubeck and Sellke and demonstrates its broad utility.

1 Introduction

The recent revolution in deep learning was driven by models that are highly overparameterized [15, 19, 38], i.e. models
where the number of parameters far exceeds 𝑛, the number of training data points.1 Since this is the naive theoretical
condition needed to interpolate the training data, classical statistical theory suggests that this situation may make
these models susceptible to the risk of overfitting to the idiosyncrasies of the training data, and thereby suffer in terms
of generalizing to new inputs. On the other hand, experience with such models suggests that such overfitting does
not tend to happen. Understanding the mystery of overparameterization by resolving this apparent conflict has thus
attracted a lot of research, see e.g. [7, 10, 30, 40].

Another line of research focuses on (adversarial) robustness, i.e. whether models are susceptible to small (possibly
adversarially chosen) perturbations in the input. Several existing models are known to be brittle to adversarial
perturbations [4,8,31,33], which is a major issue for security [8] and reliability [31,33]. At the same time, understanding
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1However, this may possibly not be as true for the current LLMs, see e.g. [16], where the trend is to train on web-scale data of heterogenous
quality.
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the nature of adversarial perturbations is an interesting tool [18, 20] to understand deep learning. In fact, in an
interesting set of experiments, Madry et al. [28] gave strong evidence that overparameterization plays an important
role in adversarial robustness: their emphasis was on training models robust to adversarial attacks and they observed
that increasing the number of parameters in the model alone helps significantly.

In a recent line of work, Bubeck and Sellke [7] proved an exciting theorem that the requirement of robustness can
be used to explain overparameterization in a certain sense, and they used their theorem to explain the experimental
results of Madry et al. [28]. They considered the interpolation task on 𝑛 data points (i.e. fitting the data to “very small”
loss), and any “smoothly” parameterized class of models, which includes neural networks under certain boundedness
assumptions. (Note that the interpolation task deals with only the training data, with no concern for generalization:
since modern deep learning models are often trained to near zero loss [3], this setup is nonetheless an interesting
setup.) They showed that overparameterization is necessary for a certain notion of robustness for the interpolation
task, namely, a low Lipschitz constant for the model. More precisely, for 𝑑-dimensional covariates (assuming certain
concentration properties on the covariate distribution) and models with 𝑝 parameters, the Lipschitz constant of any
model that interpolates the training data must be at least Ω(

√︁
𝑛𝑑/𝑝), with high probability over the choice of the

training data (for precise notions of smooth parameterization, covariate distribution assumptions and interpolation,
see Section 2).

The main proof technique of [7] is designed to understand interpolation with square loss, although [7] also
sketches a proof for general Lipschitz losses (at least for the case of scalar responses) by exploiting a connection to
Rademacher complexity and then applying the Ledoux-Talagrand contraction principle (see [23, Theorem 4.12], which
improves upon [22, Theorem 5]). It is, however, also important to understand in a similar depth as the square loss
other practically motivated losses. For example, the experiments of [28] (discussed above) use the cross-entropy loss
for the classification problem on MNIST and CIFAR10. Some other often used problem-dependent losses are logistic
loss [44], KL divergence loss [28], Mahalanobis loss [35], etc. In this work, we seek a more complete understanding of
the main technique of [7] beyond the square loss, without the detour through tools such as Rademacher complexity
and the Ledoux-Talagrand contraction principle.

1.1 Our Contribution

Looking for a generalization of the main proof technique of Bubeck and Sellke [7] from the square loss to more
general losses presents two conflicting requirements: on the one hand, we would like to generalize to a sufficiently
rich family of losses; on the other hand, we would need this family of losses to share with the square loss those
properties which make the notion of interpolation of [7] make sense and their main technique work.

One of the many nice properties enjoyed by the square loss is that the optimal predictor of an observation 𝑌 with
respect to this loss, given a covariate 𝑋 , has a crisp characterization: it is the conditional expectation E [𝑌 |𝑋 ] (see,
e.g., [36, Sections 9.3-9.4]). As highlighted in more detail towards the end of this section, our main observation is that
this simple fact and its consequences play a central role in the interpolation notion and the main technique of Bubeck
and Sellke [7].

This observation leads us to the class of Bregman divergence losses. The Bregman divergence 𝐷𝜙 on R𝐾 , corre-
sponding to a differentiable convex function 𝜙 : R𝐾 → R is given by

𝐷𝜙 (𝑦1, 𝑦2) = 𝜙(𝑦1) − 𝜙(𝑦2) − ⟨∇𝜙(𝑦2), 𝑦1 − 𝑦2⟩ .

This is a rich and often-used family of losses (which are not necessarily metrics; see Section 2 for examples), and
includes, in particular, losses such as the square loss and the cross-entropy loss as special cases. Importantly for our
purposes, this family shares with the square loss the same optimal predictor: it was shown by Banerjee, Guo and
Wang [1] that this is essentially the class of losses for which the conditional expectation is the optimal predictor.

In this work, we show that this conceptual property is sufficient: we generalize the main technique of Bubeck and
Sellke [7] to Bregman divergence losses. As described above, these include the square loss and several other commonly
used losses (see Section 2 for definitions). We now proceed to an informal technical account of the result and the
proof techniques; the formal statements can be found in Section 3.
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Extending the notion of [7], in our setup, a function 𝑓 is said to 𝜖-overfit a set of samples with respect to a given
loss if its empirical loss over the samples is at least 𝜖 lower than the minimum expected loss over the distribution of
any function of the covariate. As in [7], our regularity condition on the distribution of the covariates is that it should
be a mixture of distributions satisfying measure concentration analogous to a normalized high-dimensional Gaussian:
a condition that is referred to in [7] as being a mixture of isoperimetric distributions. We defer the precise definitions
of these technical terms to Section 2, and proceed to give an informal statement of our main result.

Theorem 1.1 (Main theorem (informal, see Theorem 3.1)). Let Ω be a compact convex subset of R𝐾 for some
𝐾 > 0 and let 𝜙 : Ω → R be a continuously differentiable strictly convex function. Let 𝐷𝜙 denote the corresponding
Bregman divergence loss. For ∆ ⊆ R𝑑 , let D be a probability distribution on ∆ × Ω such that its marginal D𝑋 on ∆ ⊆ R𝑑
is a mixture of 𝑟 isoperimetric distributions. Let (𝑋𝑖 , 𝑌𝑖 )𝑛𝑖=1 be 𝑛 i.i.d samples from D. Let F be a family of functions that
admits a bounded Lipschitz parameterization with 𝑝 parameters. If 𝑛 ≥ 𝑂̃(𝐾2𝑟/𝜖2), then w.h.p. over the random choice of
these samples, the Lipschitz constant 𝐿 of any function 𝑓 ∈ F that 𝜖-overfits these samples with respect to 𝐷𝜙 satisfies

𝐿 ≥ 𝑂(1) · 𝜖
√
𝑛𝑑

𝐾

√︃
𝑝 log(1 +𝑂(

√
𝐾 )/𝜖)

. (1)

Here, the hidden constant factors depend upon the properties of 𝜙 and the Lipschitz parameterization of F .

Comparison to Bubeck and Sellke [7].

Approach of Bubeck and Sellke [7] in our setting. Bubeck and Sellke [7] sketched a proof of how a Rademacher
complexity view of their main technique yields generalization error bounds via Ledoux-Talagrand contraction [32,34],
and remarked in passing that this view yields laws of robustness for general (Lipschitz) losses for scalar responses.
Extending this view to the case of vector-valued response turns out to be trickier since the usual notion of Rademacher
complexity does not enjoy a contraction principle [27, Section 6]. One must resort to coordinate-wise Rademacher
complexity for which contraction does hold [27], or employ a lossy conversion from Rademacher to Gaussian
complexity followed by contraction via Slepian’s Lemma [2].

Our proof technique. Our approach side-steps use of contraction principles by recognizing that a bias-variance like
decomposition lies at the heart of the main proof technique of Bubeck and Sellke [7]. Using the simple but important
fact that among all 𝑋 -measurable predictors for a random variable 𝑌 , the conditional expectation E[𝑌 |𝑋 ] minimizes
not just the square loss, but any Bregman divergence loss (see, e.g., Theorem 2.3 from the work of Banerjee, Guo
and Wang [1] below), we are able to replace this with a more general decomposition (see Lemmas 3.2 and 3.6 and
Section 5 below). After this conceptual modification, we show that a structure similar to that of the main technique
of Bubeck and Sellke [7] yields an elementary proof of the law of robustness for Bregman divergence losses, even
for vector-valued responses. (The technical details of implementing the strategy are necessarily somewhat different
because of the more general decomposition that we use.) Further, as we elaborate below, this more direct and
elementary approach gives more flexibility for obtaining finer-grained laws of robustness for specific losses.

Remark on loss classes. While Bubeck and Sellke sketch an approach to go beyond square losses to Lipschitz
losses, our proof is about Lipschitz Bregman divergence losses. While this may make our approach seem restrictive
at first glance, as stated earlier, Bregman divergence losses are essentially the class of losses for which the notion
of interpolation of Bubeck and Sellke [7] can be defined independently of the function class (since the conditional
expectation E[𝑌 |𝑋 ], which is the best estimator for these losses, depends only on the data distribution and not on the
function class), and hence are the natural class of losses for Bubeck and Sellke’s notion of interpolation. In Section 4,
we present corollaries of the main theorem for a couple of specific losses (including cross-entropy loss for vector
valued responses and also the case of the square loss already considered in [7]). Our approach is flexible enough to
be adapted to provide stronger bounds in specific cases, as we show for the cross-entropy loss in Corollary 4.2. For
details, please refer to the remark after Corollary 4.2.
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1.2 Related work

Adversarial robustness experiments and overparameterization Several works other than [28] have studied
experimentally the relationship between model capacity and adversarial robustness. (Model capacity, in this context,
is an informal notion that tries to capture how rich a class of functions the model captures; in studies involving neural
networks, quantities such as the number of learnable parameters in the network are typically used to quantify model
capacity.) Liu et al. [26] studied the loss landscape of adversarial training and observed easier adversarial training in
large capacity models. Similar observations for model capacity and adversarial robustness were made by Kurakin,
Goodfellow and Bengio [21] and Xie and Yuille [39].

Other theoretical works There is a rich body of recent theoretical work on different aspects of the link between
robustness and neural network parameterizations along different lines; here we mention a few. Bubeck, Lee, and
Nagaraj [6] introduced the idea of using the Lipschitz constant to measure robustness in the interpolation regime and
formed the foundation for the work of Bubeck and Sellke [7]. For the square loss, Wu et al. [37] give a weaker law of
robustness while relaxing the condition that the covariate distribution follows the isoperimetry condition of Bubeck
and Sellke. Zhu et al. [45] gave theoretical results for robustness along more fine-grained lines of depth, width, and
initialization. Gao et al. [11] and Zhang et al. [43] studied adversarial training and overparameterization from the
perspective of convergence of gradient descent. Gao et al. [11] also showed interesting lower bounds for the VC
dimension of a model class that can robustly interpolate arbitrary well-separated data. Another interesting line of
work is studying the relationship between overparameterization and robust generalization (i.e. quantities such as
E[sup𝑥∈N(𝑋 ) ℓ(𝑓 (𝑋 ), 𝑌 )], whereN (𝑥 ) denotes a neighborhood of 𝑥 , and ℓ the loss function), rather than merely robust
interpolation. Recent works such as [9, 24] have studied the correlation of the Lipschitz constant of the model with
the robust generalization properties of the model; see also the survey [46]. More broadly, Hassani and Javanmard [13]
gave a precise analysis of robust generalization for random features regression.

2 Preliminaries

Notation We denote the standard Euclidean norm of a vector 𝑣 in R𝑑 as ∥𝑣 ∥ . The standard inner product of vectors
𝑢, 𝑣 ∈ R𝑑 is denoted ⟨𝑢, 𝑣⟩.

Bregman divergence losses To unify different kinds of losses such as square loss and cross-entropy loss, we will
use the notion of Bregman divergence losses [5] which we now describe.

Definition 2.1 (Bregman divergence). Given a convex set Ω ⊂ R𝐾 , let 𝜙 : Ω → R be a strictly convex continuously
differentiable function defined on Ω. Then, the Bregman divergence 𝐷𝜙 : Ω × Ω → R between two points 𝑥,𝑦 ∈ Ω is
defined as

𝐷𝜙 (𝑥,𝑦) = 𝜙(𝑥 ) − 𝜙(𝑦) − ⟨∇𝜙(𝑦) , 𝑥 − 𝑦⟩, (2)

where ⟨·, ·⟩ denotes the standard inner product on R𝐾 .

The Bregman divergence between two points may be viewed as a measure, depending upon the function 𝜙 , of the
distance between 𝑥 and 𝑦. It is however not a metric in general. It is well known that several commonly used losses
may be expressed as a Bregman divergence for an appropriate choice of 𝜙 : we recall some examples below.

Example 2.2. The following losses can be expressed as Bregman divergences:

1. Square loss. For 𝜙 : R𝑑 → R given as 𝜙(𝑥 ) = ∥𝑥 ∥2, 𝐷𝜙 (𝑦,𝑦) = ∥𝑦 − 𝑦∥2, the square loss for regression.

2. Mahalanobis loss. More generally, for 𝜙 : R𝑑 → R given as 𝜙(𝑥 ) = 𝑥𝑇𝐴𝑥 , where𝐴 is a positive definite matrix,
𝐷𝜙 (𝑦,𝑦) = (𝑦 − 𝑦)𝑇𝐴(𝑦 − 𝑦), the Mahalanobis loss for regression. Note that Mahalanobis loss is a symmetric
Bregman divergence loss.

4



3. KL-divergence and cross-entropy loss. Let ∆𝐾 denote the probability simplex in 𝐾 dimensions. Then, for
𝜙 : ∆𝐾 → R given as 𝜙(𝑥) = ∑𝐾

𝑖 𝑥𝑖 log𝑥𝑖 , 𝐷𝜙 (𝑦,𝑦) = 𝐾𝐿(𝑦,𝑦). For a 1-hot vector 𝑦 (i.e. 𝑦𝑖 = 1 for some 𝑖 and
𝑦 𝑗 = 0 for 𝑗 ̸= 𝑖) and 𝑦 ∈ (0, 1]𝐾 ∩ ∆𝐾 , we slightly abuse notation and write 𝐷𝜙 (𝑦,𝑦) in the limit of the non-1
coordinates of 𝑦 tending to zero, and obtain 𝐷𝜙 (𝑦,𝑦) = −∑𝐾

𝑖=1 I𝑦𝑖=1 log(𝑦𝑖 ), the cross-entropy loss for 𝐾-class
classification. Note that both these losses are asymmetric Bregman divergence losses.

4. Logistic loss. This may be seen as a special case of the previous example. Consider the binary classification
problem such that true label 𝑦 ∈ {0, 1} and predicted probability 𝑦 ∈ (0, 1). For 𝜙 : [0, 1] → R given as
𝜙(𝑝) = 𝑝 log(𝑝) + (1 − 𝑝) log(1 − 𝑝), 𝐷𝜙 (𝑦,𝑦) = −(𝑦 log(𝑦) + (1 − 𝑦) log(1 − 𝑦)), the logistic loss for classification.

Next, we state some standard and easily verified properties of the Bregman divergence that we use frequently.

1. (Continuity). 𝐷𝜙 is a continuous function on Ω × Ω.

2. (Nonnegativity). 𝐷𝜙 (𝑥,𝑦) ≥ 0 for all 𝑥,𝑦 and 𝐷𝜙 (𝑥,𝑦) = 0 iff 𝑥 = 𝑦: this is essentially equivalent to the strict
convexity of 𝜙 .

3. (Triangle equality). For any 𝑥,𝑦, 𝑧 ∈ Ω the following holds

𝐷𝜙 (𝑥,𝑦) = 𝐷𝜙 (𝑥, 𝑧) + 𝐷𝜙 (𝑧,𝑦) − ⟨𝑥 − 𝑧 , ∇𝜙(𝑦) − ∇𝜙(𝑧)⟩. (3)

We will also use the following Theorem of Banerjee, Guo and Wang [1]. Note that for the case of “well-behaved”
random variables, this is a direct consequence of the properties above (especially of item 3).

Theorem 2.3 ([1, Theorem 1]). Let (Ω𝑜 , F , 𝑃 ) be an arbitrary probability space, let 𝑋 be a random variable taking
values in R𝑑 and G be a sub- 𝜎-algebra of F generated by 𝑋 . Let 𝑌 be any F -measurable random variable taking values
in R𝐾 for which both E[𝑌 ] and E[𝜙(𝑌 )] are finite. Then, among all G-measurable random variables of the form 𝑓 (𝑋 )
such that 𝑓 : R𝑑 → R𝐾 , the conditional expectation is the unique minimizer (up to a.s. equivalence) of the expected
Bregman divergence loss, i.e.,

arg min
𝑓 :R𝑑→R𝐾

E
[
𝐷𝜙 (𝑌, 𝑓 (𝑋 ))

]
= E[𝑌 |𝑋 ]. (4)

Realistic function classes Bubeck and Sellke [7] considered the following notion of function classes for interpo-
lating given data. We use the same notion and name these classes as realistic function classes.

Definition 2.4 (Realistic function class). Let ∆ ⊆ R𝑑 and Ω ⊆ R𝐾 be compact sets. A class F of function from ∆ to
Ω is said to be a (𝑝, 𝐽 )-realistic function class if F admits a 𝐽 -Lipschitz-parametrization by 𝑝 parameters. Formally, there
exists a compact set 𝐵𝑝 ⊆ R𝑝 and a map 𝜏 : 𝐵𝑝 → F such that for all𝑤1,𝑤2 ∈ 𝐵𝑝 and all 𝑥 ∈ ∆,

∥𝜏(𝑤1)(𝑥 ) − 𝜏(𝑤2)(𝑥 )∥2 ≤ 𝐽 ∥𝑤1 −𝑤2∥2 . (5)

The set 𝐵𝑝 is called the parameter domain of F , the set ∆ is called the input domain of F , and the set Ω is called the
co-domain of F .

We now observe that both regression and classification for bounded domains using neural networks with bounded
parameters can be modeled using (𝑝, 𝐽 )-realistic function classes.

Example 2.5 (Neural networks for regression.). Let 𝐵𝑝 be a subset of R𝑝 bounded in some unspecified norm and F1
be the class of 𝑝-parameter neural networks with parameters in 𝐵𝑝 . Let X be a bounded domain for the covariates
𝑥 ∈ R𝑑 . Then, as in [7], the natural map mapping parameter space to neural networks𝜓1 : 𝐵𝑝 → F1 satisfies (5) for
all𝑤1,𝑤2 ∈ R𝑝 and 𝑥 ∈ X, for some choice of 𝐽 .

Example 2.6 (Neural networks for classification.). Let 𝐵𝑝 be a subset of R𝑝 bounded in some unspecified norm and X
be a bounded domain for covariates. Construct F2 by applying the Softmax operator on F1 as in Example 2.5 (hence
F2 has range in ∆𝐾 ). Then, since Softmax is Lipschitz (specifically with Lipschitz constant as 1 for ℓ2 norms on the
input and output), Softmax ◦𝜓1 gives a 𝐽 -Lipschitz parameterization for F2.
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Concentration of measure We will need the notion of sub-Gaussian random variables. A random variable 𝑋 with
mean 𝜇 is said to have sub-Gaussian parameter 𝜎 > 0 if for all real 𝜆, it holds that E[exp(𝜆(𝑋 − 𝜇))] ≤ 𝜆2𝜎2/2. Thus, if
𝑋1, 𝑋2, . . . , 𝑋𝑛 are independent sub-Gaussian random variables with parameters 𝜎1, 𝜎2, . . . , 𝜎𝑛 , then their sum is also
sub-Gaussian with parameter

√︃∑𝑛
𝑖=1 𝜎

2
𝑖
. If 𝑋 is sub-Gaussian with parameter 𝜎 then the Hoeffding inequality states

that for all 𝑡 > 0, it holds that

P [𝑋 ≤ E[𝑋 ] − 𝑡] ≤ exp
(
− 𝑡2

2𝜎2

)
. (6)

It is also well known that if a random variable 𝑋 has support in the interval [𝑎, 𝑏], then it is sub-Gaussian with
parameter 𝑏−𝑎2 . Combined with the above discussion this leads to the usually stated form of Hoeffding’s inequality: if
𝑋1, 𝑋2, . . . 𝑋𝑛 are i.i.d. copies of such an 𝑋 then for all 𝑡 > 0,

P

[
1
𝑛

𝑛∑︁
𝑖=1

𝑋𝑖 < E[𝑋 ] − 𝑡
]
≤ exp

(
− 2𝑛𝑡2

(𝑏 − 𝑎)2

)
. (7)

It is well known that the assumption that 𝑋1, 𝑋2, . . . , 𝑋𝑛 are i.i.d can be relaxed so that one gets the following result
(usually called Azuma’s inequality): if 𝑌0 = 0, 𝑌1, 𝑌2, . . . , 𝑌𝑛 form a martingale sequence (with respect to some filtration)
such that |𝑌𝑖 − 𝑌𝑖−1 | ≤ 𝑐 holds with probability 1 for each 1 ≤ 𝑖 ≤ 𝑛, then P [𝑌𝑛 ≤ −𝑛𝑡] ≤ exp

(
−𝑛𝑡2

2𝑐2

)
. Via the Doob

martingale construction, this inequality leads to the bounded differences inequality, one special case of which is
the following [41]: let 𝑉1,𝑉2, . . .𝑉𝑛 be independent mean zero random vectors in R𝑑 such that ∥𝑉𝑖 ∥ ≤ 𝑏 holds with
probability 1 for 1 ≤ 𝑖 ≤ 𝑛. Then for every 𝑡 > 0, P

[

∑𝑛
𝑖=1𝑉𝑖



 ≥ E
[

∑𝑛

𝑖=1𝑉𝑖


] + 𝑛𝑡

]
≤ exp

(
−𝑛𝑡2/(8𝑏2)

)
. Using the

fact that the 𝑉𝑖 are independent and have mean zero, one has E
[

∑𝑛

𝑖=1𝑉𝑖


] ≤ 𝑏

√
𝑛. Combining this with a bit of

algebra, the above inequality can be simplified to the following:2

P

[



 1
𝑛

𝑛∑︁
𝑖=1

𝑉𝑖





 ≥ 𝑡
]
≤ 2 exp

(
− 𝑛𝑡2

16𝑏2

)
for all 𝑡 ≥ 0. (8)

We also record the following well-known fact.

Fact 2.7. There exists a positive constant 𝐶 such that the following is true. If 𝑋 is a mean-zero random variable with
sub-Gaussian parameter 𝜎 , and 𝑍 is any random variable (not necessarily independent of 𝑋 ) such that E[𝑍𝑋 ] = 0 and
|𝑍 | ≤ 𝑀 a.s., then 𝑍𝑋 has sub-Gaussian parameter at most 𝐶𝑀𝜎 .

All of the above facts are standard, and those for which no reference has been provided above can be found, e.g.,
in [34, Chapter 2]. In particular, a proof of the previous fact is implicit in the calculations in [34, pp. 46–47].

The following important notion (isolated in this form by Bubeck and Sellke [7]) will play an important role.

Definition 2.8 (𝑐-isoperimetry). Given 𝑐 > 0, a distribution D on R𝑑 is said to satisfy 𝑐-isoperimetry if for very
𝐿-Lipschitz function 𝑓 : R𝑑 → R, the random variable 𝑓 (𝑋 ), when 𝑋 is sampled according to D, is sub-Gaussian with
parameter 𝐿

√
𝑐/𝑑 .

The important factor to note here is the dimension-dependent factor of 1/
√
𝑑 in the sub-Gaussian parameter.

Roughly speaking, this says that the distribution D exhibits a concentration of measure phenomenon similar to the
normalized 𝑑-dimensional standard Gaussian distribution (i.e., with mean 0 and co-variance matrix 1

𝑑
I). For further

discussion on this assumption, see [7]. Our results extend to mixtures of isoperimetric distributions as in [7].

2.1 Overfitting

We are now ready to define our notion of overfitting to the training set. Our starting point is the optimality of the
conditional expectation as an estimator (Theorem 2.3). In particular, from eq. (4) in Theorem 2.3, we can conclude
that E[𝐷𝜙 (𝑌, 𝑓 (𝑋 ))] is at least 𝜎2

𝜙
··= 𝐸[𝐷𝜙 (𝑌,E[𝑌 |𝑋 ])]

2See [42] and [23, Section 6.3] for a history of related, more sophisticated inequalities and [14] and [12, Theorem 12] for related statements.
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We thus say that 𝑓 𝜖-overfits training data {𝑥𝑖 , 𝑦𝑖 }𝑛𝑖=1 if

1
𝑛

𝑛∑︁
𝑖=1

𝐷𝜙 (𝑦𝑖 , 𝑓 (𝑥𝑖 )) < 𝜎2
𝜙
− 𝜖, (9)

i.e., if the empirical Bregman divergence loss is lower (by at least 𝜖) than the minimum, over all functions 𝑓 : R𝑑 → R𝐾 ,
of the expected Bregman divergence loss where 𝑥𝑖 ∈ R𝑑 and 𝑦𝑖 ∈ Ω. This notion of overfitting for Bregman divergence
loss generalizes that for the square loss used in [7]; in particular, when 𝐷𝜙 is the square loss, it reduces to their notion.

3 Proof of the main theorem

We are now ready to state the main result of our paper. We assume that the model for generating the covariates (𝑋,𝑌 )
is described by the following graphical model

𝐺 𝑋 𝑌
, (10)

where 𝐺 denotes the label of the mixture component. In particular, we assume that the label 𝑌 is independent of the
index of the mixture component, conditioned on the covariate 𝑋 . This is the same model as the one used by Bubeck
and Sellke [7, Theorem 3, points 2 and 3]. (See also Section 5.)

Theorem 3.1. Let Ω be a compact convex subset of R𝐾 for some 𝐾 > 0, with ℓ∞-diameter at most 𝑑Ω. Let 𝜙 : Ω → R
be a continuously differentiable strictly convex function. Let 𝐷𝜙 denote the corresponding Bregman divergence loss. For
∆ ⊆ R𝑑 , let D be a probability distribution on ∆ × Ω such that D obeys the graphical model in eq. (10) and such that the
marginal D𝑋 of D is a mixture of 𝑟 distributions (D𝑖 )𝑟𝑖=1 each of which is 𝑐-isoperimetric for some 𝑐 > 0. Assume that 𝜙
satisfies the following regularity condition: there exists a subset 𝐴 ⊆ Ω, such that a version of E(𝑋,𝑌 )∼D[𝑌 |𝑋 ] takes values
only in 𝐴, and such that 𝐴 satisfies the following:3

𝑎0 ··= sup
𝑎∈𝐴

∥𝑎∥ ≤ 𝑚0 ··= max
𝜔∈Ω

∥𝜔 ∥ < ∞, and (11)

𝑚2 ··= sup
𝑎∈𝐴

|𝜙(𝑎)| ≤ 𝑚1 ··= max
𝜔∈Ω

|𝜙(𝜔)| < ∞, and (12)

𝑚3 ··= sup
𝑎∈𝐴

∥∇𝜙(𝑎)∥ < ∞. (13)

Let F be a (𝑝, 𝐽 )-realistic function class with parameter domain 𝐵𝑝 , input domain ∆ ⊆ R𝑑 , and co-domain Ω. Assume
that

1. 𝜙 is 𝐿𝜙 -Lipschitz on the range 𝑅 ··= {𝑓 (𝑥 )|𝑥 ∈ ∆ and 𝑓 ∈ F } of F , and

2. For each 1 ≤ ℓ ≤ 𝐾 , the derivative (∇𝜙)ℓ of the ℓ th coordinate of 𝜙 is 𝐿𝑔-Lipschitz on the range 𝑅.

Further define
𝑊 ··= diam(𝐵𝑝 ) and 𝛾 ··= sup

𝑓 ∈F
𝑥∈∆

∥∇𝜙(𝑓 (𝑥 ))∥2 . (14)

Given 𝜖, 𝛿 ∈ (0, 1), fix a positive integer 𝑛 satisfying

𝑛 ≥ max

{
300 log( 10𝐾

𝛿
)

𝜖2 (𝑚1 +𝑚2 + 2 max {3𝛾,𝑚3} (𝑚0 + 𝑎0))2 ,
2048𝐾2𝛾2𝑟𝑑2

Ω log( 10𝐾𝑟
𝛿

)
𝜖2

}
.

3Since Ω is a compact convex subset of R𝐾 , it can be assumed without loss of generality that a version of E[𝑌 |𝑋 ] taking values only in Ω exists.
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Let (𝑋𝑖 , 𝑌𝑖 )𝑛𝑖=1 be 𝑛 i.i.d samples from D. Then, with probability at least 1 − 𝛿 over the random choice of these samples, the
Lipschitz constant 𝐿 of any function 𝑓 ∈ F that 𝜖-overfits (see eq. (9)) these samples satisfies

𝐿 ≥ 𝜖

32𝐶𝐾𝑑Ω𝐿𝑔
√

2𝑐

√︄
𝑛𝑑

𝑝 log(1 + 8𝐽𝑊 (𝑑Ω𝐿𝑔𝐾 + 𝐿𝜙 + 𝛾 )/𝜖) + log(5𝐾/𝛿)
. (15)

Note that when 𝜙 is a 𝐶2 function then we can take 𝐿𝑔 = max𝑥∈Ω


∇2𝜙(𝑥 )




2→2. Almost all losses used in machine

learning are 𝐶2 losses, for example, square loss, cross-entropy defined on a bounded set away from the ®0 vector and
coordinate axes.

Remark Theorem 3.1 tells us that when a Bregman divergence loss (such as cross-entropy loss, logistic loss, etc.) is
used for training, overparameterization becomes essential for robust interpolation (i.e., achieving a low Lipschitz
constant). Note that all the regularity assumptions of Theorem 3.1 are satisfied by the cross-entropy loss, provided
that the probability of each label given the covariate is bounded away from zero. For 𝐾-class classification, the
assumption P[𝑌𝑖 = 1 | 𝑋 = 𝑥] ≥ 𝛼 > 0 for all 𝑖 and all 𝑥 implies the existence of 𝐴 ⊆ ∆̃𝐾 ∩ [𝛼, 1 − 𝛼)𝐾 , where Ω = ∆̃𝐾
denotes the 𝐾-dimensional probability simplex. For further details, please refer to Corollary 4.2.

We now proceed to describe the steps of the proof of Theorem 3.1, and begin by setting up some notational
conventions. We denote the sample (𝑋𝑖 , 𝑌𝑖 ) by 𝑆𝑖 for 1 ≤ 𝑖 ≤ 𝑛. Given a function 𝑓 ∈ F , we let 𝑍𝑖 denote the random
variable 𝐷𝜙 (𝑌𝑖 , 𝑓 (𝑋𝑖 )) (the function 𝑓 would be understood from the context). When discussing a single sample, we
will often drop the index and denote these as 𝑆 = (𝑋,𝑌 ), and 𝑍 = 𝐷𝜙 (𝑌, 𝑓 (𝑋 )). Similarly, we will use the corresponding
small case letters 𝑠𝑖 , 𝑠, 𝑥𝑖 , 𝑥 , etc. to denote specific realizations of the corresponding random variables 𝑆𝑖 , 𝑆, 𝑋𝑖 , 𝑋 , etc.
The starting point of the proof is the following simple but important decomposition.

Lemma 3.2 (Decomposition). Fix 𝑓 ∈ F , and with the above notation, define (in accordance with eq. (9))

𝜎2
𝜙
··= E

(𝑋,𝑌 )∼D
[𝐷𝜙 (𝑌,E[𝑌 |𝑋 ])]. (16)

We then have

𝑍 − 𝜎2
𝜙

= Φ1 + Φ2 +
3∑︁
𝑖=1

Γ𝑖 , (17)

where Φ1,Φ2, and (Γ𝑖 )3
𝑖=1 are random variables defined as

Φ1 ··= 𝐷𝜙 (E[𝑌 |𝑋 ], 𝑓 (𝑋 )), Φ2 ··= 𝐷𝜙 (𝑌,E[𝑌 |𝑋 ]) − 𝜎2
𝜙
, (18)

Γ1 ··= ⟨𝑌 − E[𝑌 |𝑋 ],∇𝜙(E(𝑌 |𝑋 ))⟩ , Γ2 = Γ2(𝑓 ) ··= − ⟨𝑌 − E[𝑌 |𝑋 ],E [∇𝜙(𝑓 (𝑋 ))]⟩ , and (19)
Γ3 = Γ3(𝑓 ) ··= − ⟨𝑌 − E[𝑌 |𝑋 ],∇𝜙(𝑓 (𝑋 )) − E [∇𝜙(𝑓 (𝑋 ))]⟩ . (20)

Further, Φ2 and the Γ𝑖 (1 ≤ 𝑖 ≤ 3) have mean 0, and Φ1 is non-negative.

Remark As discussed earlier, our proof technique relies on a bias-variance type decomposition of Bregman
divergence losses. In the decomposition Lemma 3.2, the terms Φ1 and Φ2 correspond to the bias and variance
components, respectively, while Γ1, Γ2, and Γ3 are mean-zero terms. Specifically, the term Γ3 involves the function 𝑓
evaluated at random points.

Proof. The decomposition follows by applying the triangle decomposition for the Bregman divergence (eq. (3)) to
𝑍 = 𝐷𝜙 (𝑌, 𝑓 (𝑋 )) with the “third point” chosen as E[𝑌 |𝑋 ]. The non-negativity of Φ1 follows from the non-negativity
of Bregman divergences. E[Φ2] is zero by the definition of 𝜎2

𝜙
(eqs. (9) and (16)). We also have, for example,

E[Γ3] = E[⟨𝑌 − 𝐸[𝑌 |𝑋 ],∇𝜙(𝑓 (𝑋 )) − E[∇𝜙(𝑓 (𝑋 ))]⟩] (21)
= E[E[⟨𝑌 − E[𝑌 |𝑋 ],∇𝜙(𝑓 (𝑋 )) − E[∇𝜙(𝑓 (𝑋 ))]⟩ |𝑋 ] (22)
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(★)= E[⟨E[𝑌 − E[𝑌 |𝑋 ]|𝑋 ],∇𝜙(𝑓 (𝑋 )) − E[∇𝜙(𝑓 (𝑋 ))]⟩] = 0, (23)

where the equality marked (★) follows because ∇𝜙(𝑓 (𝑋 )) − E[∇𝜙(𝑓 (𝑋 ))] is measurable with respect to the 𝜎-field
generated by 𝑋 . The computations for Γ1 and Γ2 are similar. □

We now prove appropriate concentration results for sample estimates of Φ2 and the Γ𝑖 , beginning with Φ2.

Observation 3.3. Let Φ(1)
2 ,Φ

(2)
2 , . . . ,Φ

(𝑛)
2 be 𝑛 i.i.d. samples of Φ2 generated using 𝑛 i.i.d. samples (𝑋𝑖 , 𝑌𝑖 )𝑛𝑖=1 from D. Let

𝑀0 ··= sup(𝑥,𝑦)∈∆×Ω 𝐷𝜙 (𝑦,E(𝑋,𝑌 )∼D[𝑌 |𝑋 = 𝑥]). Then for any 𝜖 > 0.

P

(
1
𝑛

𝑛∑︁
𝑖=1

Φ(𝑖)
2 ≤ −𝜖

)
≤ 𝑒−2𝑛𝜖2/𝑀2

0 . (24)

Further, in the notation of eqs. (11) to (13) in Theorem 3.1, we can take𝑀0 =𝑚1 +𝑚2 +𝑚3(𝑚0 + 𝑎0).

Proof. The concentration claim follows directly from the Hoeffding inequality applied to the 𝑛 i.i.d. random variables
𝐷𝜙 (𝑌𝑖 ,E[𝑌𝑖 |𝑋𝑖]), 1 ≤ 𝑖 ≤ 𝑛, which are all constrained to lie in the interval [0, 𝑀0]. The bound on𝑀0 follows as given
below. For 𝑝 ∈ Ω and 𝑞 ∈ 𝐴 ⊆ Ω (with Ω and 𝐴 as defined in Theorem 3.1),

𝐷𝜙 (𝑝, 𝑞) = |𝜙(𝑝) − 𝜙(𝑞) − ⟨∇𝜙(𝑞) , 𝑝 − 𝑞⟩| (25)
≤ |𝜙(𝑝)|+|𝜙(𝑞)|+ ∥∇𝜙(𝑞)∥ ·

(
∥𝑝 ∥ + ∥𝑞∥

)
(26)

≤ 𝑚1 +𝑚2 +𝑚3 · (𝑚0 + 𝑎0) . □

An analogous application of the Hoeffding bound gives the following.

Observation 3.4. Let Γ(1)
1 , Γ

(2)
1 , . . . , Γ

(𝑛)
1 be 𝑛 i.i.d. samples of Γ1 generated using 𝑛 i.i.d. samples (𝑋𝑖 , 𝑌𝑖 )𝑛𝑖=1 from D. Then

for any 𝜖 > 0.

P

(
1
𝑛

𝑛∑︁
𝑗=1

Γ(𝑗 )
1 ≤ −𝜖

)
≤ 𝑒−2𝑛𝜖2/𝑀2

1 , (27)

where, in the notation of eqs. (11) to (13) in Theorem 3.1, we can take𝑀1 = 2𝑚3 · (𝑚0 + 𝑎0).

The proof for Γ2 is also similar, since it does not depend upon evaluations of 𝑓 on a random point.

Observation 3.5. For 𝑓 ∈ F , let Γ(1)
2 (𝑓 ), Γ(2)

2 (𝑓 ), . . . , Γ(𝑛)
2 (𝑓 ) be 𝑛 i.i.d. samples of Γ2 generated using 𝑛 i.i.d. samples

(𝑋𝑖 , 𝑌𝑖 )𝑛𝑖=1 from D. Then for any 𝜖 > 0.

P

(
∃𝑓 ∈ F s.t.

1
𝑛

𝑛∑︁
𝑗=1

Γ(𝑗 )
2 (𝑓 ) ≤ −𝜖

)
≤ 2𝑒−2𝑛𝜖2/𝑀2

2 , (28)

where, in the notation of eqs. (11) to (14) in Theorem 3.1, we can take𝑀2 = 6𝛾 · (𝑚0 + 𝑎0).

Proof. Consider the mean-zero i.i.d random vectors 𝑉𝑖 ··= 𝑌𝑖 − E[𝑌𝑖 |𝑋𝑖] where 1 ≤ 𝑖 ≤ 𝑛. From eq. (11), we also have
that ∥𝑉𝑖 ∥ ≤ 𝑚0 + 𝑎0 for each 𝑖 . Let 𝛾 be as defined in eq. (14). Applying the version of the bounded differences
inequality from eq. (8) then gives

P

[



 1
𝑛

𝑛∑︁
𝑖=1

(𝑌𝑖 − E[𝑌𝑖 |𝑋𝑖])




 ≥ 𝜖

𝛾

]
≤ 2 exp

(
−2𝑛𝜖2

𝑀2
2

)
. (29)

Denote by 𝑉 the random vector 1
𝑛

∑𝑛
𝑖=1(𝑌𝑖 − E[𝑌𝑖 |𝑋𝑖]). Note that

1
𝑛

𝑛∑︁
𝑖=1

Γ(𝑖)
2 (𝑓 ) = − ⟨𝑉 ,E[∇𝜙(𝑓 (𝑋 ))]⟩ ≥ − ∥𝑉 ∥ · ∥E[∇𝜙(𝑓 (𝑋 ))]∥ . (30)

Further, for each 𝑓 ∈ F , we have, from eq. (14), that ∥E[∇𝜙(𝑓 (𝑋 ))]∥ ≤ 𝛾 . Combining this bound with eqs. (29) and (30)
gives the claim. □
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Finally, we study Γ3. Note that of the terms in the decomposition, this is the only term which depends upon the
evaluation of a function 𝑓 from F at a random input. It is here that the notion of 𝑐-isoperimetry enters the picture.
For simplicity of presentation, we assume in the statement of Lemma 3.6 that the number 𝑟 of mixture components is
one (so that the marginal D𝑋 is itself 𝑐-isoperimetric). The full proof for the case 𝑟 > 1 is presented in Section 5.

Lemma 3.6. Fix 𝑓 ∈ F as in Theorem 3.1 and assume that 𝑓 is 𝐿-Lipschitz. Let Γ(1)
3 (𝑓 ), Γ(2)

3 (𝑓 ), . . . , Γ(𝑛)
3 (𝑓 ) be 𝑛 i.i.d.

samples of Γ3(𝑓 ) generated using 𝑛 i.i.d. samples (𝑋𝑖 , 𝑌𝑖 )𝑛𝑖=1 from D. Then for any 𝜖 > 0.

P

[
1
𝑛

𝑛∑︁
𝑖=1

Γ(𝑖)
3 (𝑓 ) ≤ −𝜖

]
≤ 𝐾 exp

(
− 𝑛𝑑𝜖2

2𝑐𝐶2𝐾2𝑑2
Ω𝐿

2𝐿2
𝑔

)
. (31)

where 𝐶 is the universal constant from Fact 2.7, 𝑑Ω represents the ℓ∞-diameter of Ω, and the remaining notation comes
from item 2 and eqs. (11) to (14) in Theorem 3.1.

Proof. Since 𝑓 remains fixed through out this proof, we drop the dependence of Γ3 on 𝑓 from the notation. For
1 ≤ 𝑖 ≤ 𝑛, and 1 ≤ ℓ ≤ 𝐾 , define

𝑈𝑖,ℓ ··= −(𝑌𝑖,ℓ − E[𝑌𝑖,ℓ |𝑋𝑖]) · (∇𝜙(𝑓 (𝑋𝑖 ))ℓ − E[∇𝜙(𝑓 (𝑋𝑖 ))ℓ ]). (32)

Note that ∑𝑛
𝑖=1 Γ(𝑖)

3 = ∑𝐾
ℓ=1

∑𝑛
𝑖=1𝑈𝑖,ℓ , so that by an union bound,

P

[
1
𝑛

𝑛∑︁
𝑖=1

Γ(𝑖)
3 ≤ −𝜖

]
≤

𝐾∑︁
ℓ=1
P

[
1
𝑛

𝑛∑︁
𝑖=1

𝑈𝑖,ℓ ≤ −𝜖/𝐾
]
. (33)

Further, note that for any fixed ℓ ∈ [𝐾], the random variables 𝑈1,ℓ ,𝑈2,ℓ , . . . ,𝑈𝑛,ℓ are i.i.d, and are also mean-
zero (by the same argument as in eq. (23)). We now proceed to estimate their sub-Gaussian parameter. From
item 2 in Theorem 3.1, we see that the function (∇𝜙)ℓ ◦ 𝑓 : R𝑑 → R is 𝐿𝑔 · 𝐿-Lipschitz. From the 𝑐-isoperimetric
assumption on the distribution of the 𝑋𝑖 , it therefore follows that for each 𝑖 ∈ [𝑛], ℓ ∈ [𝐾], the mean-zero random
variable 𝑉𝑖,ℓ ··= ∇𝜙(𝑓 (𝑋𝑖 ))ℓ − E[∇𝜙(𝑓 (𝑋𝑖 ))ℓ] is sub-Gaussian with parameter 𝐿𝑔𝐿

√
𝑐/𝑑 . Further, the random variables

𝑇𝑖,ℓ ··= −(𝑌𝑖,ℓ − E[𝑌𝑖,ℓ |𝑋𝑖]) satisfy
��𝑇𝑖,ℓ �� ≤ min {𝑑Ω,𝑚0 + 𝑎0} (by eq. (11) and the assumption on the diameter of Ω).

From Fact 2.7, it thus follows that the𝑈𝑖,ℓ are all sub-Gaussian with parameter 𝐶𝑑Ω𝐿𝑔𝐿
√
𝑐/𝑑 . Applying the Hoeffding

equality to each of the 𝐾 terms on the right hand side of eq. (33) then gives

P

[
1
𝑛

𝑛∑︁
𝑖=1

Γ(𝑖)
3 ≤ −𝜖

]
≤ 𝐾 exp

(
− 𝑛𝑑𝜖2

2𝑐𝐶2𝐾2𝑑2
Ω𝐿

2𝐿2
𝑔

)
. □

We also need the following simple lemma.

Lemma 3.7. With the setup of Theorem 3.1, let 𝑓 and 𝑔 be functions in F such that sup𝑥∈∆ ∥ 𝑓 (𝑥 ) − 𝑔(𝑥 )∥ ≤ 𝜈 . Then for
any (𝑥,𝑦) in the support of D, we have��𝐷𝜙 (𝑦, 𝑓 (𝑥 )) − 𝐷𝜙 (𝑦,𝑔(𝑥 ))

�� ≤ 𝜈 · (𝑑Ω𝐿𝑔𝐾 + 𝐿𝜙 + 𝛾
)

(34)

Proof. It is enough to prove the upper bound for 𝐷𝜙 (𝑦, 𝑓 (𝑥 )) −𝐷𝜙 (𝑦,𝑔(𝑥 )) (the bound on the absolute value follows by
interchanging the role of 𝑓 and 𝑔). For this we again employ the triangle decomposition eq. (3).

𝐷𝜙 (𝑦, 𝑓 (𝑥 )) − 𝐷𝜙 (𝑦,𝑔(𝑥 )) = 𝐷𝜙 (𝑔(𝑥 ), 𝑓 (𝑥 )) − ⟨𝑦 − 𝑔(𝑥 ),∇𝜙(𝑓 (𝑥 )) − ∇𝜙(𝑔(𝑥 ))⟩ . (35)

Here, the first term is at most 𝜈 · (𝐿𝜙 + 𝛾 ), while the second term is at most 𝑑Ω𝜈𝐿𝑔𝐾 , where the parameters are as
defined in the statement of Theorem 3.1. The claim thus follows. □

We are now ready to prove Theorem 3.1.
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Proof of Theorem 3.1. Given the above lemmas, the structure of the proof is similar to that in the work of Bubeck and
Sellke [7]. The goal is to show that if 𝐿 is not too large, then with high-probability, no 𝐿-Lipschitz function in F can
𝜖-overfit the observed data. Lemma 3.6 essentially establishes this for any particular 𝑓 ∈ F , and to perform a “union
bound” over the uncountable set F , one needs to pass to an appropriate finite net. We now proceed to the details.

For a given 𝑓 ∈ F , let
(
Φ(𝑖)

1

)𝑛
𝑖=1
,

(
Φ(𝑖)

2

)𝑛
𝑖=1

,
(
Γ(𝑖)

1

)𝑛
𝑖=1

,
(
Γ(𝑖)

2 (𝑓 )
)𝑛
𝑖=1

and
(
Γ(𝑖)

3 (𝑓 )
)𝑛
𝑖=1

be i.i.d. sequences obtained by
decomposing each 𝑍𝑖 − 𝜎2

𝜙
according to eq. (17).

Fix 𝐿 to be equal to the lower bound claimed in Theorem 3.1. Let F𝐿 ⊆ F denote the set of all 𝐿-Lipschitz functions
in F . Now, since the events considered in Observations 3.3 to 3.5 do not depend upon the choice of 𝑓 , we have

P

(
∃𝑓 ∈ F𝐿 s.t.

1
𝑛

𝑛∑︁
𝑖=1

Φ(𝑖)
2 ≤ −𝜖/8

)
≤ 𝑒−2𝑛(𝜖/8)2/𝑀2

0 , and (36)

P

(
∃𝑓 ∈ F𝐿 s.t.

1
𝑛

𝑛∑︁
𝑖=1

Γ(𝑖)
1 ≤ −𝜖/8

)
≤ 𝑒−2𝑛(𝜖/8)2/𝑀2

1 , and (37)

P

(
∃𝑓 ∈ F𝐿 s.t.

1
𝑛

𝑛∑︁
𝑖=1

Γ(𝑖)
2 (𝑓 ) ≤ −𝜖/8

)
≤ 2𝐾𝑒−2𝑛(𝜖/8)2/𝑀2

2 . (38)

Let the events on the LHS above be denoted 𝐸0, 𝐸1 and 𝐸2 for future reference. We now proceed to analyze Γ3. Recall
that by a standard argument a 𝜈/2-net for F can be modified to form a 𝜈-net of F𝐿 of the same size, all of whose
elements are also elements of F𝐿 . Further an 𝜖′-net of 𝐵𝑝 maps (under the map 𝜏 in the definition of a (𝑝, 𝐽 )-realistic
class) to a 𝐽𝜖′-net for F (under the sup norm). Note also that by standard arguments 𝐵𝑝 has an 𝜖′-net of size at most
(1 + 2𝑊 /𝜖′)𝑝 . Set 𝜈 ··= 𝜖

2(𝑑Ω𝐿𝑔𝐾+𝐿𝜙+𝛾 ) . Then, from the above arguments, we see that F𝐿 has a 𝜈-net F𝐿,𝜈 ⊆ F𝐿 of size at
most (1 + 4𝑊 𝐽/𝜈)𝑝 ≤ exp(4𝑝𝑊 𝐽/𝜈). Applying Lemma 3.6 and taking a union bound over F𝐿,𝜈 then yields

P

[
∃𝑓 ∈ F𝐿,𝜈 s.t.

1
𝑛

𝑛∑︁
𝑖=1

Γ(𝑖)
3 (𝑓 ) ≤ −𝜖/8

]
≤ 𝐾

��F𝐿,𝜈 �� · exp

(
− 𝑛𝑑(𝜖/8)2

2𝑐𝐶2𝐾2𝑑2
Ω𝐿

2𝐿2
𝑔

)
. (39)

Let the event above be denoted 𝐸3. Now, from Lemma 3.2,

1
𝑛

𝑛∑︁
𝑖=1

𝑍𝑖 (𝑓 ) − 𝜎2
𝜙

=
1
𝑛

𝑛∑︁
𝑖=1

Φ(𝑖)
1 +

1
𝑛

𝑛∑︁
𝑖=1

Φ(𝑖)
2 +

1
𝑛

𝑛∑︁
𝑖=1

Γ(𝑖)
1 +

1
𝑛

𝑛∑︁
𝑖=1

Γ(𝑖)
2 (𝑓 ) +

1
𝑛

𝑛∑︁
𝑖=1

Γ(𝑖)
3 (𝑓 ) (40)

Since the Φ(𝑖)
1 are all non-negative, a union bound gives

P

[
∃𝑓 ∈ F𝐿,𝜈 s.t.

1
𝑛

𝑛∑︁
𝑖=1

𝑍𝑖 (𝑓 ) − 𝜎2
𝜙
≤ −𝜖/2

]
≤

3∑︁
𝑗=0
P [𝐸𝑖 ] , (41)

where the 𝐸𝑖 are the events considered in eqs. (36) to (39) above. Finally, since F𝐿,𝜈 is a 𝜈-net for F𝐿 under the sup
norm, it follows from Lemma 3.7 and the choice of 𝜈 that (recall also that 𝑍𝑖 (𝑓 ) = 𝐷𝜙 (𝑌𝑖 , 𝑓 (𝑋𝑖 )))

P

[
∃𝑓 ∈ F𝐿 s.t.

1
𝑛

𝑛∑︁
𝑖=1

𝑍𝑖 (𝑓 ) − 𝜎2
𝜙
≤ −𝜖

]
≤ P

[
∃𝑓 ∈ F𝐿,𝜈 s.t.

1
𝑛

𝑛∑︁
𝑖=1

𝑍𝑖 (𝑓 ) − 𝜎2
𝜙
≤ −𝜖/2

]
. (42)

Combining eq. (42) with eq. (41) and using eqs. (36) to (39), we thus get

P

[
∃𝑓 ∈ F𝐿 s.t.

1
𝑛

𝑛∑︁
𝑖=1

𝑍𝑖 (𝑓 ) − 𝜎2
𝜙
≤ −𝜖

]
≤ 𝐾

��F𝐿,𝜈 �� · 𝑒− 𝑛𝑑 (𝜖/8)2

2𝑐𝐶2𝐾2𝑑2
Ω𝐿

2𝐿2
𝑔 + 2𝐾

2∑︁
𝑗=0

𝑒−2𝑛(𝜖/8)2/(𝑀𝑗 )2
. (43)

Using the size bound derived above for F𝐿,𝜈 , and the choice of 𝐿 and 𝑛, we conclude that the right-hand side is at
most 𝛿 , since each term is at most 𝛿/4. □
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4 Specializing the result to specific losses

In this section we show how Theorem 3.1 leads to laws of robustness for specific losses. We first verify that we
can obtain the result of Bubeck and Sellke [7] for the square loss as a special case. The calculations underlying the
following verifications can be found in Appendix A.

Consider the regression setting using the mean squared error (MSE) loss. Assume that 𝑛 input covariates and
labels ((𝑥𝑖 , 𝑦𝑖 ))𝑛𝑖=1 in R

𝑑 × [−𝑀,𝑀]𝐾 are drawn from the distribution D. Let the hypothesis class for the regression
problem be a (𝑝, 𝐽 )-realistic function class F = {𝑓 : R𝑑 → [−𝑀,𝑀]𝐾 } with parameter domain 𝐵𝑝 having diameter𝑊 .
We specialize eq. (9) to this setting (using item 1 of Example 2.2), and say that a function 𝑓 ∈ F 𝜖-overfits the data if

1
𝑛

𝑛∑︁
𝑖=1

(𝑓 (𝑥𝑖 ) − 𝑦𝑖 )2 ≤ 𝜎2 − 𝜖, (44)

where 𝜎2
𝜙

= 𝜎2 = E[Var[𝑌 |𝑋 ]].

Corollary 4.1 (Law of robustness for regression). Consider the above regression setting, and assume that for some
𝑐 > 0, the marginal D𝑋 of D on the covariates is a mixture of 𝑟 𝑐-isoperimetric distributions.

Given 𝜖, 𝛿 ∈ (0, 1), assume that the number 𝑛 of samples satisfies 𝑛 ≥
(
𝐶1𝑀

4𝐾3𝑟 log
( 10𝐾𝑟

𝛿

) )
/𝜖2, where 𝐶1 is an

absolute constant. Then, with probability at least 1 − 𝛿 over the samples, the Lipschitz constant 𝐿 of any function 𝑓 ∈ F
that 𝜖-overfits the samples satisfies

𝐿 ≥ 𝜖

128𝐶𝐾𝑀
√

2𝑐

√︄
𝑛𝑑

𝑝 log(1 + 64𝐽𝑊𝐾𝑀/𝜖) + log(5𝐾/𝛿)
. (45)

As another example, we consider the classification problem with a suitable loss. Consider the 𝐾-class classification
setting with the cross-entropy loss. Assume that 𝑛 input covariates and labels ((𝑥𝑖 , 𝑦𝑖 ))𝑛𝑖=1 in R

𝑑 × {0, 1}𝐾 are drawn
from the distributionD: here we assume that the labels are one-hot encoded as 𝐾-dimensional binary vectors. Let the
hypothesis class for the classification problem be a (𝑝, 𝐽 )-realistic function class F = {Softmax(𝑔)|𝑔 : R𝑑 → [−𝑀,𝑀]𝐾 }
such that there exists a compact set 𝐵𝑝 ⊆ R𝑝 and a 𝐽−Lipschitz map 𝜏 : 𝐵𝑝 → F , where𝑊 = diam(𝐵𝑝 ). Again, we
specialize eq. (9) to this setting (using item 3 of Example 2.2) and say that a function 𝑓 ∈ F 𝜖-overfits the data if

1
𝑛

𝑛∑︁
𝑖=1

𝐾∑︁
ℓ=1

−I{𝑦𝑖=ℓ } log(𝑓 (𝑥𝑖 )ℓ ) ≤ 𝜎2
𝜙
− 𝜖, (46)

where 𝜎2
𝜙

= 𝐻 (𝑌 |𝑋 ) is the conditional entropy of 𝑌 given 𝑋 . In addition to the positivity of 𝜎2
𝜙
, we also need another

regularity condition on D, which is that the probability of each label is bounded away from 0, even conditioned on
the covariate: the number of samples needed for our result then has a mild poly-logarithmic dependence on this
lower bound.

Corollary 4.2 (Law of robustness for classification). Consider the above 𝐾−class classification setting, and assume
that for some 𝑐 > 0, the marginal D𝑋 of D on the covariates is a mixture of 𝑟 𝑐-isoperimetric distributions. We further
assume the regularity condition that there exists an 𝛼 > 0 such that P[𝑌𝑖 = 1|𝑋 = 𝑥] ≥ 𝛼 for all 𝑖 ∈ [𝐾] and 𝑥 ∈ R𝑑
(recall that the label 𝑌 is a one-hot encoded vector).

Define 𝑎0 ··= 1 + 2𝑀 + log𝐾 . Given 𝜖, 𝛿 ∈ (0, 1), assume that the number 𝑛 of samples satisfies

𝑛 ≥
𝐶1𝐾

3𝑟 log
( 10𝐾𝑟

𝛿

)
𝜖2 · max {𝑎0, 1 + |log𝛼 |}2 ,

where 𝐶1 is an absolute constant. Then, with probability at least 1 − 𝛿 over the random choice of these samples, the
Lipschitz constant 𝐿 of any function 𝑓 for which Softmax(𝑓 ) ∈ F and which 𝜖-overfits these samples (according to
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eq. (46)) satisfies

𝐿 ≥ 𝜖

64𝐶𝐾
√

2𝑐

√︄
𝑛𝑑

𝑝 log(1 + 8𝐽𝑊 (𝑒2𝑀𝐾2 +
√
𝐾 (1 + 2𝑀 + log𝐾 ))/𝜖) + log(5𝐾/𝛿)

. (47)

Remark A direct application of the Theorem 3.1 gives only a lower bound on the Lipschitz constant of interpolating
estimators of the form Softmax(𝑓 ). However, in this case, a more appropriate quantity might be the Lipschitz constant
of the function 𝑓 , before the Softmax layer is applied. Our direct proof adapts to this and gives a better bound (by a
factor of 𝐾𝑒2𝑀 ) for the Lipschitz constant of 𝑓 whenever Softmax(𝑓 ) is interpolating. For details, please look at the
proof of Corollary 4.2 in the Appendix A.

5 Extension to mixtures

Mixture model: We assume that the model for generating the covariates (𝑋,𝑌 ) is described by the following graphical
model

𝐺 𝑋 𝑌
, (48)

where 𝐺 denotes the label of the mixture component. In particular, we assume that the label 𝑌 is independent of the
index of the mixture component, conditioned on the covariate 𝑋 . This is the same model as the one used by Bubeck
and Sellke [7, Theorem 3, points 2 and 3].4

The extension of the proof of Theorem 3.1 given in Section 3 to the case of 𝑟 > 1 mixture components has a
structure similar to the similar extension by Bubeck and Sellke [7]; however, we provide the details for completeness.
The main technical step is replacing Lemma 3.6 by a more general analog. Towards this end, we proceed to set up
some notation. In the following, we also import all the notation from the statements of Theorem 3.1 and Lemma 3.2.

Let 𝑓 ∈ 𝐹 be given. For 1 ≤ 𝑖 ≤ 𝑛 and 1 ≤ ℓ ≤ 𝐾 , define the following random variables.

𝑇𝑖,ℓ ··= −(𝑌𝑖,ℓ − E[𝑌𝑖,ℓ |𝑋𝑖]), (49)
𝑉 (𝑓 )𝑖,ℓ ··= ∇𝜙(𝑓 (𝑋𝑖 ))ℓ − E[∇𝜙(𝑓 (𝑋𝑖 ))ℓ ], (50)

𝑉 (𝑓 )𝑖,ℓ ··= ∇𝜙(𝑓 (𝑋𝑖 ))ℓ − E[∇𝜙(𝑓 (𝑋𝑖 ))ℓ |𝐺𝑖], and (51)

𝑉̃ (𝑓 )𝑖,ℓ ··= E[∇𝜙(𝑓 (𝑋𝑖 ))ℓ |𝐺𝑖] − E[∇𝜙(𝑓 (𝑋𝑖 ))ℓ ], (52)

and set
𝑈 (𝑓 )𝑖,ℓ ··= 𝑇𝑖,ℓ𝑉 (𝑓 )𝑖,ℓ = 𝑇𝑖,ℓ𝑉 (𝑓 )𝑖,ℓ +𝑇𝑖,ℓ𝑉̃ (𝑓 )𝑖,ℓ . (53)

Note that
𝑛∑︁
𝑖=1

Γ(𝑖)
3 (𝑓 ) =

𝐾∑︁
ℓ=1

𝑛∑︁
𝑖=1

𝑈 (𝑓 )𝑖,ℓ . (54)

Note that for any fixed ℓ ∈ [𝐾] and 𝑓 ∈ F , the random variables 𝑈 (𝑓 )1,ℓ ,𝑈 (𝑓 )2,ℓ , . . . ,𝑈 (𝑓 )𝑛,ℓ are i.i.d, and are also
mean-zero (by the same argument as in eq. (23)).

To further study the distribution of the 𝑈𝑖,ℓ , we will use the random variables 𝐺 = (𝐺𝑖 )𝑛𝑖=1, taking values in [𝑟 ],
which denote the mixture component distribution D𝐺𝑖 from which the 𝑖th covariate 𝑋𝑖 is sampled. Note that the 𝐺𝑖
are i.i.d.

4See also the computation leading to and following eq. (2.5) in [7], where this assumption has been used to (implicitly) deduce that the random
variable in the left hand side of their eq. (2.5) has mean 0: this can fail if 𝑌 is not independent of the mixture component when conditioned on 𝑋 .
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Note that we have the uniform bound
��𝑇𝑖,ℓ �� ≤ min {𝑑Ω,𝑚0 + 𝑎0} (by eq. (11) and the assumption on the diameter

of Ω). We also note that

E[𝑌𝑖,ℓ |𝐺] = E[𝑌𝑖,ℓ |𝐺𝑖] = E[E[𝑌𝑖,ℓ |𝐺𝑖 , 𝑋𝑖]|𝐺𝑖] = E[E[𝑌𝑖,ℓ |𝑋𝑖]|𝐺𝑖], (55)

where the first equality follows from the independence of the samples, the second from the tower property of
conditional expectation, and the last from the conditional independence of 𝑌𝑖 from𝐺𝑖 given 𝑋𝑖 . Combined again with
the independence of the samples, eq. (55) implies that

E[𝑇𝑖,ℓ |𝐺] = E[𝑇𝑖,ℓ |𝐺𝑖] = 0. (56)

We now have the following two lemmas.

Lemma 5.1. With the notation above, we have, for every 𝐿-Lipschitz 𝑓 ∈ F every 1 ≤ ℓ ≤ 𝐾 , and every 𝜖 > 0

P

[
1
𝑛

𝑛∑︁
𝑖=1
𝑇𝑖,ℓ𝑉 (𝑓 )𝑖,ℓ ≤ −𝜖

]
≤ exp

(
− 𝑛𝑑𝜖2

2𝑐𝐶2𝑑2
Ω𝐿

2𝐿2
𝑔

)
. (57)

Proof. Since 𝑓 remains fixed through the proof of the lemma, we drop the dependence of 𝑉 on 𝑓 from the notation.
We first note that E[𝑉𝑖,ℓ |𝐺𝑖] = 0, and also that 𝑉𝑖,ℓ is measurable with respect to the 𝜎-field generated by the random
variables 𝑋𝑖 and 𝐺𝑖 . Note also that

E[𝑇𝑖,ℓ |𝐺𝑖 , 𝑋𝑖] = E[𝑌𝑖,ℓ |𝐺𝑖 , 𝑋𝑖] − E[E[𝑌𝑖,ℓ |𝑋𝑖]|𝐺𝑖 , 𝑋𝑖] = E[𝑌𝑖,ℓ |𝑋𝑖] − E[𝑌𝑖,ℓ |𝑋𝑖] = 0, (58)

where the first term has been simplified using the conditional independence of 𝑌𝑖 from 𝐺𝑖 given 𝑋𝑖 , and the second
term using the tower property of conditional expectation. We thus get

E[𝑇𝑖,ℓ𝑉𝑖,ℓ |𝐺𝑖] = E[E[𝑇𝑖,ℓ𝑉𝑖,ℓ |𝑋𝑖 ,𝐺𝑖]|𝐺𝑖] = E[𝑉𝑖,ℓE[𝑇𝑖,ℓ |𝑋𝑖 ,𝐺𝑖]|𝐺𝑖]
eq. (58)= 0, (59)

where the first equality is the tower property, and the second uses the observation from above that 𝑉𝑖,ℓ is measurable
with respect to the 𝜎-field generated by the random variables 𝐺𝑖 and 𝑋𝑖 . From the independence of the samples, we
also have that the above equalities hold when conditioning on 𝐺 :

E[𝑇𝑖,ℓ𝑉𝑖,ℓ |𝐺] = E[𝑇𝑖,ℓ𝑉𝑖,ℓ ] = 0. (60)

Now, from item 2 in Theorem 3.1, we see that the function (∇𝜙)ℓ ◦ 𝑓 : R𝑑 → R is 𝐿𝑔 · 𝐿-lipschitz. From the
𝑐-isoperimetric assumption on each mixture component of the co-variate distribution, it therefore follows that
conditioned on 𝐺 , for each 𝑖 ∈ [𝑛], ℓ ∈ [𝐾], the (conditionally) mean-zero random variable 𝑉𝑖,ℓ is sub-gaussian with
parameter 𝐿𝑔𝐿

√
𝑐/𝑑 . Combining eq. (60) with the absolute bound of 𝑑Ω on 𝑇𝑖,ℓ given above and with Fact 2.7, it

thus follows that conditioned on 𝐺 , the random variables 𝑇𝑖,ℓ𝑉𝑖,ℓ are mean-zero and sub-gaussian with parameter
𝐶𝑑Ω𝐿𝑔𝐿

√
𝑐/𝑑 . Further, by the independence of samples, it also follows that for any fixed ℓ , (even when conditioned on

𝐺) they are independent. Thus, the Hoeffding inequality gives that for any 1 ≤ ℓ ≤ 𝑘 ,

P

[
1
𝑛

𝑛∑︁
𝑖=1
𝑇𝑖,ℓ𝑉𝑖,ℓ ≤ −𝜖

����𝐺]
≤ exp

(
− 𝑛𝑑𝜖2

2𝑐𝐶2𝑑2
Ω𝐿

2𝐿2
𝑔

)
. (61)

We take expectations on both sides to get the claimed “un-conditioned” bound. □

Lemma 5.2. With the notation above, we have for every 1 ≤ ℓ ≤ 𝐾 and every 𝜖 > 0

P

[
inf
𝑓 ∈F

1
𝑛

𝑛∑︁
𝑖=1
𝑇𝑖,ℓ𝑉̃ (𝑓 )𝑖,ℓ ≤ −𝜖

]
≤ 2𝑟 exp

(
−𝑛𝜖2

8𝛾2𝑟𝑑2
Ω

)
. (62)

Proof. Note that for every 𝑓 ∈ F the random variables 𝑉̃ (𝑓 )𝑖,ℓ are 𝐺𝑖-measurable and are bounded as
��𝑉̃ (𝑓 )𝑖,ℓ

�� ≤ 2𝛾
(by eq. (14)). We thus see that for any fixed ℓ , conditioned on the mixture labels 𝐺 ,
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1. the random variables 𝑉̃ (𝑓 )𝑖,ℓ become deterministic with absolute value at most 2𝛾 . In fact, 𝑉̃ (𝑓 )𝑖,ℓ = 𝑉̃ (𝑓 )𝑗,ℓ
whenever 𝐺𝑖 = 𝐺 𝑗 .

2. the𝑇𝑖,ℓ are independent (though not identically distributed), have absolute value atmost𝑑Ω, and have (conditional)
mean 0 (as argued above in eq. (56), and the paragraph preceding it).

Following Bubeck and Sellke [7], we thus define the (random) sets 𝑆𝑘 ··= {𝑖 ∈ [𝑛]|𝐺𝑖 = 𝑘}, for 1 ≤ 𝑘 ≤ 𝑟 (note that the
random sets 𝑆𝑘 are deterministic conditioned on 𝐺), and then use the Cauchy-Schwarz inequality to obtain

𝑟∑︁
𝑘=1

√︁
|𝑆𝑘 | ≤

√︄
𝑟 ·

𝑟∑︁
𝑘=1

|𝑆𝑘 | ≤
√
𝑛𝑟 . (63)

From item 1 above, 𝑉̃ (𝑓 )𝑖,ℓ is the same for each 𝑖 ∈ 𝑆𝑘 , and is at most 2𝛾 in absolute value. Thus, for each 1 ≤ 𝑘 ≤ 𝑟
we have

P

[
inf
𝑓 ∈F

∑︁
𝑖∈𝑆𝑘

𝑇𝑖,ℓ𝑉̃ (𝑓 )𝑖,ℓ ≤ −𝜖
√︂
𝑛 |𝑆𝑘 |
𝑟

����𝐺]
≤ P

[�����∑︁
𝑖∈𝑆𝑘

𝑇𝑖,ℓ

����� ≥ 𝜖

2𝛾

√︂
𝑛 |𝑆𝑘 |
𝑟

����𝐺]
. (64)

From item 2 above, the Hoeffding inequality can be applied to the right hand side above, so that we get

P

[
inf
𝑓 ∈F

∑︁
𝑖∈𝑆𝑘

𝑇𝑖,ℓ𝑉̃ (𝑓 )𝑖,ℓ ≤ −𝜖
√︂
𝑛 |𝑆𝑘 |
𝑟

����𝐺]
≤ 2 exp

(
−𝑛𝜖2

8𝛾2𝑟𝑑2
Ω

)
. (65)

Finally, by a union bound we have

P

[
inf
𝑓 ∈F

𝑛∑︁
𝑖=1
𝑇𝑖,ℓ𝑉̃ (𝑓 )𝑖,ℓ ≤ −𝑛𝜖

����𝐺]
≤

𝑟∑︁
𝑘=1
P

[
inf
𝑓 ∈F

∑︁
𝑖∈𝑆𝑘

𝑇𝑖,ℓ𝑉̃ (𝑓 )𝑖,ℓ ≤
−𝑛𝜖

√︁
|𝑆𝑘 |∑𝑟

𝑡=1
√︁
|𝑆𝑡 |

����𝐺]
eq. (63)
≤

𝑟∑︁
𝑘=1
P

[
inf
𝑓 ∈F

∑︁
𝑖∈𝑆𝑘

𝑇𝑖,ℓ𝑉̃ (𝑓 )𝑖,ℓ ≤ −𝜖
√︂
𝑛 |𝑆𝑘 |
𝑟

����𝐺]
eq. (65)
≤ 2𝑟 exp

(
−𝑛𝜖2

8𝛾2𝑟𝑑2
Ω

)
.

The claim now follows by taking expectations of both sides in the above. □

We can now describe the modifications needed to complete the proof of Theorem 3.1. These modifications are
described in terms of the notation set up above and in the proof for the case 𝑟 = 1 given in Section 3. In particular, the
𝜈-net F𝐿,𝜈 of the subset F𝐿 of 𝐿-lipschitz functions in F is as defined in that proof.

Proof of Theorem 3.1: Case 𝑟 > 1. Most of the proof of the theorem remains the same, except for use of Lemma 3.6
in the derivation of eq. (39), which now has to be replaced by applications of Lemmas 5.1 and 5.2. First, using the
decompositions in eqs. (53) and (54) above and a union bound, we have

P

[
∃𝑓 ∈ F𝐿,𝜈 s.t.

1
𝑛

𝑛∑︁
𝑖=1

Γ(𝑖)
3 (𝑓 ) ≤ −𝜖/8

]
≤

𝐾∑︁
ℓ=1

(
P

[
inf

𝑓 ∈F𝐿,𝜈

1
𝑛

𝑛∑︁
𝑖=1
𝑇𝑖,ℓ𝑉̃ (𝑓 )𝑖,ℓ ≤

−𝜖
16𝐾

]
+ P

[
inf

𝑓 ∈F𝐿,𝜈

1
𝑛

𝑛∑︁
𝑖=1
𝑇𝑖,ℓ𝑉 (𝑓 )𝑖,ℓ ≤

−𝜖
16𝐾

] )
. (66)

By construction, F𝐿,𝜈 ⊆ F , so we bound the first term using Lemma 5.2.

𝐾∑︁
ℓ=1
P

[
inf

𝑓 ∈F𝐿,𝜈

1
𝑛

𝑛∑︁
𝑖=1
𝑇𝑖,ℓ𝑉̃ (𝑓 )𝑖,ℓ ≤

−𝜖
16𝐾

]
≤

𝐾∑︁
ℓ=1
P

[
inf
𝑓 ∈F

1
𝑛

𝑛∑︁
𝑖=1
𝑇𝑖,ℓ𝑉̃ (𝑓 )𝑖,ℓ ≤

−𝜖
16𝐾

]
≤ 2𝐾𝑟 exp

(
−𝑛(𝜖/16)2

8𝐾2𝛾2𝑟𝑑2
Ω

)
.

(67)
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For the second term, we use Lemma 5.1 and a union bound over the 𝜈-net F𝐿,𝜈 of the set of 𝐿-lipschitz function in F ,
exactly as in the argument leading to eq. (39). This gives,

𝐾∑︁
𝑖=1
P

[
inf

𝑓 ∈F𝐿,𝜈

1
𝑛

𝑛∑︁
𝑖=1
𝑇𝑖,ℓ𝑉 (𝑓 )𝑖,ℓ ≤

−𝜖
16𝐾

]
≤ 𝐾

��F𝐿,𝜈 �� · exp

(
− 𝑛𝑑(𝜖/16)2

2𝑐𝐶2𝐾2𝑑2
Ω𝐿

2𝐿2
𝑔

)
. (68)

Together, these two computations, when substituted into eq. (66), give the following more general version of eq. (39).

P

[
∃𝑓 ∈ F𝐿,𝜈 s.t.

1
𝑛

𝑛∑︁
𝑖=1

Γ(𝑖)
3 (𝑓 ) ≤ −𝜖/8

]
≤ 2𝐾𝑟 exp

(
−𝑛(𝜖/16)2

8𝐾2𝛾2𝑟𝑑2
Ω

)
+ 𝐾

��F𝐿,𝜈 �� · exp

(
− 𝑛𝑑(𝜖/16)2

2𝑐𝐶2𝐾2𝑑2
Ω𝐿

2𝐿2
𝑔

)
. (69)

We then proceed with the argument exactly as before, replacing all usages of eq. (39) by eq. (69). The final bound in
eq. (43) then gets modified to the following.

P

[
∃𝑓 ∈ F𝐿 s.t.

1
𝑛

𝑛∑︁
𝑖=1

𝑍𝑖 (𝑓 ) − 𝜎2
𝜙
≤ −𝜖

]
≤ 𝐾

��F𝐿,𝜈 �� ·𝑒− 𝑛𝑑 (𝜖/16)2

2𝑐𝐶2𝐾2𝑑2
Ω𝐿

2𝐿2
𝑔 +2𝐾𝑟 exp

(
−𝑛(𝜖/16)2

8𝐾2𝛾2𝑟𝑑2
Ω

)
+2𝐾

2∑︁
𝑗=0

𝑒−2𝑛(𝜖/8)2/(𝑀𝑗 )2
. (70)

As in the proof for the 𝑟 = 1 case, each term above is at most 𝛿/5 by the choice of the parameters. □

6 Discussion

In this paper, we gave a more comprehensive understanding of the law of robustness of Bubeck and Sellke [7] for
interpolation by considering Bregman divergence losses. In applications, the objective of interest is usually robust
generalization rather than robust interpolation. We leave the extension of the line of work of this paper to robust
generalization as open. We also suggest a few specific directions of inquiry:

1. To understand robust generalization in practice, local notions of the Lipschitz constant are often tighter than
the global notion [17, 29]. Bubeck and Sellke [7] remark that the expected squared norm of the gradient
instead of the (global) Lipschitz constant does not lead to a similar law of robustness. How can we get a better
understanding of robustness for local notions of Lipschitz constants?

2. The current line of work focuses on models that overfit training data, as such models heralded the recent deep
learning revolution. However, modern model training procedures often do not fall into this paradigm. In fact
they may practice ‘early stopping’, for which a theory of overparameterization has recently been proposed [25].
Connecting the line of work of robust interpolation to practical ‘underfitting’ setups such as early stopping is
an important research problem.
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A Proofs of corollaries of the main theorem

Proof of Corollary 4.1. The square loss is a symmetric Bregman divergence loss 𝐷𝜙 with 𝜙(𝑥 ) = ∥𝑥 ∥2. We consider the
domain Ω = [−𝑀,𝑀]𝐾 for 𝜙 , which has 𝑙∞ diameter at most 𝑑Ω = 2𝑀 . Further, on this domain, 𝜙 is a 2

√
𝐾𝑀-Lipschitz

function, so we can take 𝐿𝜙 = 2
√
𝐾𝑀 . Since ∇𝜙(𝑥 ) = 2𝑥 , we can take 𝐿𝑔 = 2.

The set 𝐴 = {E[𝑌 |𝑥] : 𝑥 ∈ R𝑑 } is (by definition) contained in [−𝑀,𝑀]𝐾 . We thus get

𝑎0 = max
𝑎∈𝐴

∥𝑎∥ ≤ 𝑚0 = max
𝑎∈[−𝑀,𝑀]𝐾

∥𝑎∥ =
√
𝐾𝑀,

𝑚2 = max
𝑎∈𝐴

|𝜙(𝑎)| ≤ 𝑚1 = max
𝑎∈[−𝑀,𝑀]𝐾

|𝜙(𝑎)| = 𝐾𝑀2,

𝑚3 = max
𝑎∈𝐴

| |∇𝜙(𝑎)| |≤ max
𝑎∈[−𝑀,𝑀]𝐾

| |∇𝜙(𝑎)| |= 2
√
𝐾𝑀, 𝛾 ≤ 2

√
𝐾𝑀.

We have thus verified all assumptions of Theorem 3.1, and using that Theorem, we now get that for any (𝑝, 𝐽 )-realistic
function class F , w.h.p. over the sampling of 𝑛 independent samples (where 𝑛 is as in the statement of the corollary),
if there exists an 𝐿-Lipschitz function 𝑓 ∈ F that 𝜖-overfits the training data, then the following lower bound on 𝐿
holds:

𝐿 ≥ 𝜖

128𝐶𝐾𝑀
√

2𝑐

√︄
𝑛𝑑

𝑝 log(1 + 64𝐽𝑊𝐾𝑀)/𝜖) + log(5𝐾/𝛿)
. □

Proof of Corollary 4.2. Let ∆̃𝐾 denote the 𝐾 dimensional probability simplex. The cross-entropy loss is an asymmetric
Bregman divergence loss 𝐷𝜙 with 𝜙 : ∆̃𝐾 → R defined as 𝜙(𝑥) ··=

∑𝐾
𝑖=1 𝑥𝑖 log(𝑥𝑖 ). Note also that the ℓ∞-diameter of

Ω = ∆̃𝐾 is at most 𝑑Ω = 1. We also recall that the labels 𝑌 are one-hot encoded vectors, and the assumption that
P[𝑌𝑖 = 1|𝑥] ≥ 𝛼 for all 𝑖 ∈ [𝐾] and 𝑥 . This implies that 𝐴 = {E[𝑌 |𝑥] = (P[𝑌1 = 1|𝑥], P[𝑌2 = 1|𝑥], . . . , P[𝑌𝐾 = 1|𝑥]) : 𝑥 ∈
R𝑑 } ⊆ ∆̃𝐾 ∩ [𝛼, 1 − 𝛼)𝐾 .

Note also that the range of any function in the (𝑝, 𝐽 )-realistic function class F is a subset of 𝐵 ··= {Softmax(𝑥) :
𝑥 ∈ [−𝑀,𝑀]𝐾 } ⊂ 𝐵1 ··= {𝑥 ∈ ∆̃𝐾 : 𝑥𝑖 ≥ 𝑒−2𝑀

𝐾
∀1 ≤ 𝑖 ≤ 𝐾}, and ∇𝜙(𝑥 ) = (log(𝑥1) + 1, log(𝑥2) + 1, . . . , log(𝑥𝐾 ) + 1) is well
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defined for all 𝑥 ∈ 𝐵1. From this it follows that 𝜙 is an 𝐿𝜙 -Lipschitz function on 𝐵1 with 𝐿𝜙 =
√
𝐾 (1 + 2𝑀 + log𝐾 ). We

also have
𝑎0 = max

𝑎∈𝐴
∥𝑎∥ ≤ 𝑚0 = max

𝑏∈∆̃𝐾
∥𝑏∥ = 1,

𝑚2 = max
𝑎∈𝐴

|𝜙(𝑎)| ≤ 𝑚1 = max
𝑏∈∆̃𝐾

|𝜙(𝑏)| ≤ log𝐾,

𝑚3 = max
𝑎∈𝐴

∥∇𝜙(𝑎)∥ ≤
√
𝐾 (1 + |log(𝛼)|), 𝛾 ≤ max

𝑏∈𝐵1
∥∇𝜙(𝑏)∥ =

√
𝐾 (1 + 2𝑀 + log𝐾 ).

Further, we also see that each coordinate (∇𝜙)ℓ of the gradient of 𝜙 is an 𝐿𝑔-Lipschitz function on the set 𝐵1 with
𝐿𝑔 = 𝐾𝑒2𝑀 . Thus, we have verified all assumptions of Theorem 3.1, and using that theorem, we get that for any
(𝑝, 𝐽 )-realistic function class F , w.h.p. over the sampling of 𝑛 independent samples (where 𝑛 is as in the statement of
the corollary), if there exists an 𝐿-Lipschitz function 𝑓 ∈ F that 𝜖-overfits then the following lower bound on 𝐿 holds:

𝐿 ≥ 𝜖

32𝐶𝐾2𝑒2𝑀
√

2𝑐

√︄
𝑛𝑑

𝑝 log(1 + 8𝐽𝑊 (𝑒2𝑀𝐾2 + 2
√
𝐾 (1 + 2𝑀 + log𝐾 ))/𝜖) + log(5𝐾/𝛿)

. (71)

This bound can however be improved if we take a careful look at the internals of the proof of the Theorem 3.1. The
crucial observation is that in Lemmas 3.6 and 5.1, we only need the Lipschitz constant of the composition (∇𝜙)ℓ ◦ 𝑓 ,
which we estimate in general by multiplying the worst-case Lipschitz constants of ∇𝜙ℓ and 𝑓 ∈ F . However, in this
case, for Softmax(𝑓 ) ∈ F , we can get a better direct estimate of this Lipschitz constant of (∇𝜙)ℓ ◦ Softmax(𝑓 ) since
(∇𝜙)ℓ ◦ Softmax(𝑓 ) = log(𝑒 𝑓 (𝑥 )ℓ /

∑𝐾
𝑡=1 𝑒

𝑓 (𝑥 )𝑡 ) + 1 is a 2𝐿-Lipschitz function from R𝑑 to R𝐾 whenever 𝑓 is an 𝐿-Lipschitz
function. Thus, we can replace the factor 𝐿𝐿𝑔 appearing in the proof of Theorem 3.1 by 2𝐿. This propagates through
the proof of Theorem 3.1 and we thus obtain the following w.h.p. lower bound on the Lipschitz constant 𝐿 of 𝑔 when
Softmax(𝑔) ∈ F over-fits the data:

𝐿 ≥ 𝜖

64𝐶𝐾
√

2𝑐

√︄
𝑛𝑑

𝑝 log(1 + 8𝐽𝑊 (𝑒2𝑀𝐾2 +
√
𝐾 (1 + 2𝑀 + log𝐾 ))/𝜖) + log(5𝐾/𝛿)

. (72)
□
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