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Abstract

In the digital era, table structure recognition001
technology is a critical tool for processing and002
analyzing large volumes of tabular data. Previ-003
ous methods primarily focus on visual aspects004
of table structure recovery but often fail to effec-005
tively comprehend the textual semantics within006
tables, particularly for descriptive textual cells.007
In this paper, we introduce UniTabNet, a novel008
framework for table structure parsing based on009
the image-to-text model. UniTabNet employs010
a “divide-and-conquer” strategy, utilizing an011
image-to-text model to decouple table cells and012
integrating both physical and logical decoders013
to reconstruct the complete table structure. We014
further enhance our framework with the Vi-015
sion Guider, which directs the model’s focus016
towards pertinent areas, thereby boosting pre-017
diction accuracy. Additionally, we introduce018
the Language Guider to refine the model’s capa-019
bility to understand textual semantics in table020
images. Evaluated on prominent table struc-021
ture datasets such as PubTabNet, PubTables1M,022
WTW, and iFLYTAB, UniTabNet achieves a023
new state-of-the-art performance, demonstrat-024
ing the efficacy of our approach. The code will025
also be made publicly available.026

1 Introduction027

In this era of knowledge and information, doc-028

uments serve as crucial repositories for various029

cognitive processes, including the creation of030

knowledge databases, optical character recognition031

(OCR), and document retrieval. Among the various032

document elements, tabular structures are partic-033

ularly notable. These structures distill complex034

information into a concise format, playing a piv-035

otal role in fields such as finance, administration,036

research, and archival management (Zanibbi et al.,037

2004). Table structure recognition (TSR) focuses038

on converting these tabular structures into machine-039

readable data, facilitating their interpretation and040

utilization. Therefore, TSR as a precursor to con-041

Figure 1: The illustration of the rich textual features in
tabular images. (a) displays the original tabular image.
(b) and (c) provide zoomed-in views of the area outlined
by the red dashed box in (a). (b) shows the prediction
result of the recent state-of-the-art table structure recog-
nition method SEMv2(Zhang et al., 2024). (c) presents
the ground truth label for table structure. The red dashed
box highlights the discrepancy between the prediction
and the ground truth label.

textual document understanding will be beneficial 042

in a wide range of applications (Siddiqui et al., 043

2018; Schreiber et al., 2017). 044

Table images efficiently convey information 045

through visual clues, layout structures, and plain 046

text. However, most previous methods(Chi et al., 047

2019; Long et al., 2021; Zhang et al., 2024) in TSR 048

primarily utilize visual or spatial features, neglect- 049

ing the textual content within each table cell. The 050

structures of some tables exhibit inherent ambigui- 051

ties when assessed solely based on visual appear- 052

ance, especially for wireless tables which contain 053

cells with descriptive content, as illustrated in Fig- 054

ure 1. To enhance accuracy in TSR, it is crucial 055

to leverage the cross-modality characteristics of 056

visually-rich table images by jointly modeling both 057

visual and textual information (Peng et al., 2022). 058

Recent advancements in document understand- 059

ing, exemplified by methods such as Donut (Kim 060

et al., 2022) and Pix2Struct (Lee et al., 2023), have 061

embraced an end-to-end image-to-text paradigm. 062

These approaches leverage the Transformer archi- 063

tecture (Vaswani et al., 2017) during pre-training 064

to decode OCR results, demonstrating superior per- 065
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ception of image content. By diminishing reliance066

on traditional OCR engines, they exhibit remark-067

able adaptability across diverse document under-068

standing tasks, highlighting their robust ability to069

comprehend text embedded in images. Despite070

these advancements, the application of this frame-071

work to TSR remains unexplored. While there are072

related works (Nassar et al., 2022; Huang et al.,073

2023) that employ this framework, they primarily074

focus on reconstructing table structures from a vi-075

sual perspective, without adequately addressing the076

depth of textual understanding in images.077

In this work, we adopt the image-to-text frame-078

work and introduce a visually linguistic unified079

model for TSR, named UniTabNet. This model is080

built on a “divide and conquer” design philosophy,081

initially using the image-to-text model to decou-082

ple table cells. According to the attributes of the083

table structure (Zanibbi et al., 2004), the decou-084

pled cells contain two types of attributes: logical085

and physical. The logical attributes cover the row086

and column span information of each cell, while087

the physical attributes include the bounding box088

coordinates of the cells. To parse these attributes089

independently, we design a logical decoder and a090

physical decoder. Since table images differ signifi-091

cantly from regular document images, each step of092

the decoding output is grounded in a clear visual093

basis, specifically visual cues from rows, columns,094

and cells. Therefore, we design a Vision Guider095

module, which directs the model to focus on rel-096

evant areas and make more precise predictions.097

Furthermore, to enhance the UniTabNet’s under-098

standing of text content in images, we develop a099

Language Guider. This module enables the model100

to perceive the corresponding text content at each101

decoding step, thereby understanding the textual102

semantics within the image. Experimental results103

on multiple public TSR datasets, such as PubTa-104

bles1M (Smock et al., 2022), PubTabNet (Zhong105

et al., 2020a), iFLYTAB (Zhang et al., 2024), and106

WTW (Long et al., 2021), demonstrate that our ap-107

proach achieves state-of-the-art performance, vali-108

dating the effectiveness of our method. The main109

contributions of this paper are as follows:110

• We introduce UniTabNet, a unified visually111

linguistic model for TSR that adheres the “di-112

vide and conquer” strategy by first separating113

table cells, then using both logical and physi-114

cal decoders to reconstruct the table structure.115

• We develop the Vision Guider module, de-116

signed to direct the model’s focus towards crit- 117

ical areas such as rows and columns, thereby 118

enhancing the overall prediction accuracy. 119

• We enhance UniTabNet with the Language 120

Guider module, which enhances the model’s 121

ability to perceive textual content within im- 122

ages, thereby improving its accuracy in pre- 123

dicting the structure of tables rich in descrip- 124

tive content. 125

• Based on our proposed method, we achieve 126

state-of-the-art performance on publicly avail- 127

able datasets such as PubTabNet, PubTa- 128

bles1M, WTW and iFLYTAB. 129

2 Related Work 130

Due to the rapid development of deep learning 131

in documents, many deep learning-based TSR ap- 132

proaches have been presented. These methods can 133

be roughly divided into three categories: bottom- 134

up methods, split-and-merge based methods and 135

image-to-text based methods. 136

One group of bottom-up methods (Chi et al., 137

2019; Xue et al., 2019; Liu et al., 2022) treat words 138

or cell contents as nodes in a graph and use graph 139

neural networks to predict whether each sampled 140

node pair belongs to the same cell, row, or column. 141

These methods depend on the availability of bound- 142

ing boxes for words or cell contents as additional 143

inputs, which are challenging to obtain directly 144

from table images. To eliminate this assumption, 145

another group of methods (Raja et al., 2020; Qiao 146

et al., 2021) has proposed directly detecting the 147

bounding boxes of table cells. After cell detection, 148

they design some rules to cluster cells into rows 149

and columns. However, these methods regard the 150

cells as bounding box, which is difficult to handle 151

the cells in distorted tables. Other methods (Xing 152

et al., 2023; Long et al., 2021) detect cells through 153

detecting the corner points of cells, making them 154

more suitable for handling distorted cells. Never- 155

theless, they suffer from tables containing a lot of 156

empty cells and wireless tables. 157

Split-and-merge based methods initially split a 158

table into basic grid pattern, followed by a merg- 159

ing process to reconstruct the table cells. Previ- 160

ous methods (Tensmeyer et al., 2019; Zhang et al., 161

2022) utilize semantic segmentation (Long et al., 162

2015) for identifying rows, columns within tables 163

in the “split” stage. However, segmenting table 164

row/column separation lines in a pixel-wise man- 165
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ner is inaccurate due to the limited receptive field,166

and heuristic mask-to-line modules designed with167

strong assumptions in split stage make these meth-168

ods work only on tables in digital documents. To169

enhance the accuracy of grid splitting in distorted170

tables, RobustTabNet (Ma et al., 2023) uses a spa-171

tial CNN-based separation line predictor to propa-172

gate contextual information across the entire table173

image in both horizontal and vertical directions.174

SEMv2 (Zhang et al., 2024) formulates the table175

separation line detection as the instance segmen-176

tation task. The table separation line can be ac-177

curately obtained by processing the table separa-178

tion line mask in a row-wise/column-wise manner.179

TSRFormer with SepRETR (Lin et al., 2022) for-180

mulates the table separation line prediction as a181

line regression problem and regresses separation182

line by DETR (Carion et al., 2020), but it can’t183

regress too long separation line well. TSRFormer184

with DQ-DETR (Wang et al., 2023) progressively185

regresses separation lines, which further enhances186

localization accuracy for distorted tables.187

Image-to-text based methods conceptualize the188

structure of tables as sequential data (HTML189

or LaTeX), utilizing an end-to-end image-to-text190

paradigm to decode table structures. The EDD191

model (Zhong et al., 2020a) employs an encoder-192

dual-decoder architecture to generate both the log-193

ical structure and the cell content. During the de-194

coding phase, EDD utilizes two attention-based195

recurrent neural networks; one is tasked with de-196

coding the structural code of the table, while the197

other decodes the content. Building on this frame-198

work, TableFormer (Nassar et al., 2022) employs a199

transformer-based decoder to enhance the capabili-200

ties of EDD’s decoder. Additionally, it introduces201

a regression decoder that predicts bounding boxes202

rather than content, thus refining the focus on spa-203

tial elements. Addressing the challenge of limited204

local visual cues, VAST (Huang et al., 2023) re-205

defines bounding box prediction as a coordinate206

sequence generation task and incorporates a visual207

alignment loss to achieve more accurate bounding208

box outcomes.209

3 Task Definition210

As illustrated in Figure 2, given a table image211

I ∈ RH×W×3, our objective is to enable the212

model to predict the table structure sequence S =213

{si ∈ Rv | i = 1, . . . , T}, where T is the length214

of the sequence and v is the the size of token vo-215

Figure 2: The illustration of the table structure recogni-
tion task.

cabulary, to reconstruct the table’s layout. Previ- 216

ous methods (Zhong et al., 2020b; Nassar et al., 217

2022; Huang et al., 2023) have employed vari- 218

ous formats for the output table structure sequence 219

S, such as HTML and LaTeX. In contrast, our 220

approach simplifies the decoding process signif- 221

icantly by using only two types of tokens: <C> 222

and <NL>. <C> denotes a table cell, and <NL> 223

indicates a newline, facilitating a concise represen- 224

tation of the table structure. According to the at- 225

tributes of the table structure (Zanibbi et al., 2004), 226

each table cell encompasses both logical attribute 227

l = {lrow, lcol | lrow, lcol ∈ N+} and physical 228

attribute p = {pj ∈ N | j = 1, . . . , 8}. The 229

logical attribute l specifies the cell’s span across 230

rows and columns, while the physical attribute p 231

defines the spatial positioning of the cell within 232

the image. Consequently, the output of our pro- 233

posed model, UniTabNet, includes the structure 234

sequence S, along with logical attributes L = 235{
li ∈ R2 | i = 1, . . . , T

}
and physical attributes 236

P =
{
pi ∈ R8 | i = 1, . . . , T

}
, providing a com- 237

prehensive description of the table’s layout. 238

4 Methodology 239

As illustrated in Figure 3, UniTabNet is built upon 240

the Donut (Kim et al., 2022) and primarily con- 241

sists of a vision encoder and a text decoder, which 242

decodes image features to generate the table struc- 243

ture sequence S. To further decode the logical and 244

physical attributes contained within each cell, we 245

additionally design a logical decoder and a physical 246

decoder to predict the cell attributes l and p, respec- 247

tively. Considering the nature of table images, we 248
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Figure 3: The overall architecture of UniTabNet. It mainly consists of a vision encoder and a text decoder. Using
the text decoder’s output, the Cell Decoder decodes the physical and logical attributes of table cells. The Vision
Guider directs the model’s focus on row and column information, while the Language Guider aids in understanding
textual semantics.

incorporate a Vision Guider and a Language Guider249

at the output of the text decoder. The Vision Guider250

directs the model to focus on relevant areas during251

cell decoding, while the Language Guider aids in252

understanding the corresponding textual informa-253

tion within the cells. Detailed descriptions of these254

modules will follow.255

Vision Encoder. The vision encoder converts the256

table image I into a set of embeddings Z = {zi ∈257

RD | i = 1, . . . , N}, where N is feature map size258

and D is the dimension of the latent vectors of the259

encoder. As depicted in Figure 3, we adopt the260

Swin Transformer (Liu et al., 2021) as our primary261

vision backbone, following the Donut, to encode I262

into feature map F . Additionally, we incorporate263

positional encoding (Vaswani et al., 2017) into F264

to generate the final vision embeddings Z.265

Text Decoder. Similar to Donut, we utilize the266

BART (Lewis et al., 2020) decoder to generate267

the table structure sequence S, conditioned on the268

Z. Since UniTabNet is trained to predict the next269

tokens like LLMs (OpenAI, 2023), it only requires270

maximizing the likelihood of loss at training time.271

Llm = max
T∑
i=1

logP (si |Z, s1:i ) (1)272

Physical Decoder. Given the output H = {hi ∈273

RD | i = 1, . . . , T} from the last layer of the274

text decoder, the physical decoder decodes these275

hidden states to obtain the polygon coordinates pi276

in the image. To facilitate this prediction, we in- 277

troduce a set of 1,000 special tokens—<0>, <1>, 278

..., <999>—which are utilized for quantizing the 279

coordinates of the polygons, forming a special- 280

ized vocabulary Loc ∈ R1000×D. Specifically, 281

for each coordinate point pj in the polygon pi, 282

the prediction process is as follows: The corre- 283

sponding hidden state hi is transformed via a lin- 284

ear mapping to produce the h
pj
i , which serves as a 285

query against the vocabulary Loc. Unlike previous 286

method (Chen et al., 2022), which perform direct 287

classification over the location vocabulary, we de- 288

fine the final position of pj as the expected location 289

based on the distribution given by h
pj
i over Loc: 290

h
pj
i = Linear (hi) (2) 291

292

apj = softmax
(
h
pj
i Loc⊤

)
(3) 293

294

E (pj) =
999∑
i=0

i · apji (4) 295

The polygon regression loss is defined as follows: 296

Lpoly =
1

8

8∑
j=1

(
E(pj)− p∗j

)2 (5) 297

where p∗j denotes the ground truth label. 298
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Logical Decoder. The logical decoder predicts the299

rowspan and colspan information L for table cells300

based on the output H from the final hidden state301

of the text decoder. To illustrate, for predicting the302

rowspan information lrow within li, the hidden state303

hi is first mapped through a matrix transformation304

to a vector hlrow
i . The hlrow

i then serves as a query,305

computing the dot product with entries in the vo-306

cabulary Loc, resulting in a score vector alrow . The307

rowspan information lrow is then determined by lo-308

cating the index of the maximum value in the score309

vector alrow .310

hlrow
i = Linear (hi) (6)311

312

alrow = hlrow
i Loc⊤ (7)313

314

lrow = argmax
(
alrow

)
(8)315

Given the extreme imbalance in the distribution of316

rowspan and colspan across cells, we optimize our317

model using sigmoid focal loss (Lin et al., 2017).318

The span prediction loss for the logical decoder is319

defined as follows:320

Lspan = Lf

(
alrow , l∗row

)
+ Lf

(
alcol , l∗col

)
(9)321

where Lf represents the sigmoid focal loss func-322

tion. The vectors l∗row and l∗col are one-hot repre-323

sentations of the ground truth span information for324

rowspan and colspan, respectively.325

Vision Guider. Unlike conventional document im-326

ages, table images exhibit significant interdepen-327

dencies among cells within the same row, column,328

or cell block. To enhance the model’s ability to329

accurately capture these details during the decod-330

ing process, we develop the Vision Guider. This331

mechanism enables the model to focus more on the332

row and column information for each cell during333

decoding. Specifically, to capture the same row334

visual cues, we input the last layer’s output hi of335

the decoder into a matrix mapping to generate vec-336

tor hrow
i . The vector hrow

i , serving as the query, is337

then used to fetch attention scores arow from the338

visual embedding Z ∈ RN×D. A similar approach339

is adopted for the same column information acol.340

hrow
i = Linear (hi) (10)341

342

arow = hrow
i Z⊤ (11)343

The loss function for the Vision Guider is defined 344

as: 345

Lvis = Lf (a
row, g∗

row) + Lf

(
acol, g∗

col
)

(12) 346

where Lf denotes the sigmoid focal loss function, 347

and g∗
row and g∗

col represent the row and column 348

mask maps, respectively. 349

Language Guider. Tables present data relation- 350

ships in an exceedingly concise format. Beyond 351

the prevalent numerical tables, there are also de- 352

scriptive table images. To accurately recognize 353

these descriptive tables, it is imperative that the 354

model comprehends the content within the table to 355

make more precise structural predictions. To this 356

end, we introduce the Language Guider, which di- 357

rects the model to understand the textual semantic 358

information in the table. As illustrated in Figure 4, 359

during the training phase, in addition to the essen- 360

tial Table Structure Recognition (TSR) task, we 361

design an additional task named Table Read (TR), 362

which prompts the model to sequentially output the 363

content within table images, thereby enhancing the 364

model’s understanding of the text in the images. To 365

ensure that the tokens in TSR possess text compre- 366

hension abilities similar to those in TR, we align 367

the tokens from both tasks. Specifically, suppose 368

a token <C> in TSR produces an output hi at the 369

decoder’s last layer; we first map hi to h
lang
i using 370

a matrix mapping. The corresponding token for 371

<C> in TR, represented as h[n:m] at the decoder’s 372

last layer, is then subject to mean pooling to pro- 373

duce h∗
lang. Subsequently, a mean squared-error 374

(MSE) loss is applied between h
lang
i and h∗

lang, thus 375

endowing TSR tokens with substantial text percep- 376

tion capabilities. 377

h
lang
i = Linear (hi) (13) 378

379

h∗
lang = Mean

(
h[n:m]

)
(14) 380

381

Llang = MSE
(
h

lang
i ,h∗

lang

)
(15) 382

5 Implementation Details 383

Our methodology employs the following hyperpa- 384

rameters: The longest side of the image is resized 385

to 1600 while maintaining the original aspect ratio. 386

The downsampling factor of the visual backbone is 387

set to 32. The dimension D of the feature is set to 388

1024. The decoders consist of a stack of 4 identical 389

layers, and the number of multi-heads is set to 16. 390
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Figure 4: The illustration of the task design.

Training. To train UniTabNet, we design three391

training tasks as depicted in Figure 4. These tasks392

aim to enable the model to comprehensively per-393

ceive tabular images. Specifically, the training pro-394

cess is divided into two phases. Initially, during395

the pre-training phase, we use a synthetic dataset396

comprising 1.4 million Chinese and English en-397

tries from SynthDog (Kim et al., 2022), along with398

the training set from PubTables1M (Smock et al.,399

2022). After pre-training, the model is fine-tuned400

on specialized datasets dedicated to table struc-401

ture recognition. We fine-tune UniTabNet using402

the Adam (Kingma and Ba, 2015) optimizer with403

the learning rate of 5 × 10−5.The learning rate is404

linearly warmed up over the first 10% steps then405

linearly decayed. The training is conducted on406

8 Telsa A40 48GB GPUs. The model is trained407

for 100 epochs on the iFLYTAB (Zhang et al.,408

2024) and WTW (Long et al., 2021) datasets, and409

for 10 epochs on the PubTables1M and PubTab-410

Net (Zhong et al., 2020b) datasets.411

In the overall loss of UniTabNet, there are pri-412

marily two categories: regression losses (Lpoly,413

Llang) and classification losses (Llm, Lspan, Lvis).414

Given the significant scale differences among these415

losses, it is necessary to adjust their coefficients.416

Inspired by (Kendall et al., 2018) , we optimize the417

model by maximising the Gaussian likelihood with418

homoscedastic uncertainty.419

Ltotal =

5∑
k=1

1

2σ2
k

Lk + log
(
1 + σ2

k

)
(16)420

The σ is a learnable factor that adaptively adjusts421

the weight ratios among these losses. Lk repre-422

sents the five losses mentioned above.423

Inference. During the inference phase, we feed424

the <tsr> token into UniTabNet and utilize a greedy425

Table 1: Comparison on PubTables1M

Type Method GriTS-Top GriTS-Loc

Bottom-up Faster RCNN 86.16 72.11
DETR 98.45 97.81

Image-to-
Text

VAST 99.22 94.99
Ours 99.43 95.37

search algorithm to decode the table structure se- 426

quence S. Relying on the hidden states H from the 427

last layer of the decoder, we can decode the physi- 428

cal P and logical L information corresponding to 429

each cell. This allows for the complete reconstruc- 430

tion of the table structure. 431

6 Experiments 432

6.1 Datasets and Evaluation Metrics 433

To fully demonstrate the effectiveness of the 434

UniTabNet, we conduct experiments across four 435

datasets. Firstly, for single-scene electronic doc- 436

ument table images, we select two representative 437

datasets, PubTabNet (Zhong et al., 2020b) and Pub- 438

Tables1M (Smock et al., 2022), for evaluation. We 439

assess these datasets using the TEDS-Struct (Zhong 440

et al., 2020b) and GriTS (Smock et al., 2023) met- 441

rics to ensure comprehensive and comparative re- 442

sults. For complex scene table images, we chose 443

the WTW (Long et al., 2021) and iFLYTAB (Zhang 444

et al., 2024) datasets for evaluation, employing the 445

F1-Measure (Hurst, 2003) and TEDS-Struct met- 446

rics to quantify the model’s performance. Notably, 447

we also extract a subset from the iFLYTAB vali- 448

dation set, termed iFLYTAB-DP, which comprises 449

322 descriptive table images. For more details on 450

the datasets and evaluation metrics, please refer to 451

the Appendix A.1. 452

6.2 Results 453

In this section, we evaluate the effectiveness of 454

UniTabNet from three different perspectives. More 455

details are provided in the Appendix A.2. 456

Results from Electronic Document. As shown in 457

Table 1, compared to Image-to-Text approaches, 458

our method has achieved a new state-of-the-art 459

level. Although the bottom-up method (Carion 460

et al., 2020) performs better on the GriTS-Loc met- 461

ric, this is due to their use of the bounding box of 462

the content within the cell to adjust the predicted 463

bounding box of the cell. As illustrated in Table 2, 464

UniTabNet also performs comparably to the current 465
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Table 2: Comparison with SOTA methods across different datasets. Bold indicates the best result.

Type Method PubTabNet WTW iFLYTAB

TEDS-Struct P R F1 TEDS-Struct

Bottom-up
Cycle-CenterNet (Long et al.,
2021)

- 93.3 91.5 92.4 -

LORE (Xing et al., 2023) - 94.5 95.9 95.1 -
LGPMA (Qiao et al., 2021) 96.70 - - - -

Split-and-
merge

SEM (Zhang et al., 2022) 96.30 - - - 75.9
RobustTabNet (Ma et al.,
2023)

97.00 - - - -

TSRFormer (Lin et al., 2022) 97.50 93.7 93.2 93.4 -
SEMv2 (Zhang et al., 2024) 97.50 93.8 93.4 93.6 92.0
TRUST (Guo et al., 2022) 97.10 - - - -
SEMv3 (Qin et al., 2024) 97.50 94.8 95.4 95.1 93.2

Image-to-
Text

EDD (Zhong et al., 2020b) 89.90 - - - -
TableFromer (Nassar et al.,
2022)

96.75 - - - -

VAST (Huang et al., 2023) 97.23 - - - -
Ours 97.50 95.6 94.7 95.1 94.0

advanced methods on the PubTabNet dataset.466

Results from Complex Scenarios. As shown in467

Table 2, to demonstrate the robustness of UniTab-468

Net in visual scenarios, we conduct experiments469

on the WTW and iFLYTAB datasets. On the470

WTW dataset, our method exhibits high preci-471

sion but lower recall, primarily constrained by the472

maximum decoding length of the model. There-473

fore, compared to other non-autoregressive meth-474

ods (Bottom-up and Split-and-merge), it achieves475

lower recall but comparable overall F1 scores with476

current methods. On the iFLYTAB dataset, UniTab-477

Net achieves a new state-of-the-art performance.478

Results from Descriptive Tables. To demonstrate479

the effectiveness of UniTabNet in addressing de-480

scriptive tables, as shown in Table 3, we com-481

pare UniTabNet with the previously state-of-the-art482

SEMv3 (Qin et al., 2024) on the iFLYTAB-DP483

dataset. SEMv3 is a purely visual approach for re-484

constructing table structures. However, iFLYTAB-485

DP contains a large number of tables with descrip-486

tive cells, requiring the model to understand the tex-487

tual information within to make accurate structural488

predictions. The comparison shows that UniTabNet489

significantly outperforms SEMv3 in this scenario.490

Table 3: Results of the TEDS-Struct evaluation for the
UniTabNet model on the iFLYTAB and iFLYTAB-DB
datasets. “UL” denotes “Use of Uncertainty in Likeli-
hood Optimization” as detailed in Eq. 16. “VG” indi-
cates the inclusion of a vision guider, and “LG” signifies
the use of a language guider. “D1” and “D2” correspond
to the performance metrics on the iFLYTAB validation
set and iFLYTAB-DP set, respectively.

System UL VG LG D1 D2

SEMv3 - - - 93.2 82.6
T1 ✗ ✗ ✗ 92.4 82.9
T2 ✓ ✗ ✗ 93.2 83.3
T3 ✓ ✓ ✗ 93.7 83.6
T4 ✓ ✓ ✓ 94.0 84.9

6.3 Ablation Study 491

As shown in Table 3, to demonstrate the effective- 492

ness of each module within the model, we design 493

systems T1 through T4, which were evaluated on 494

both iFLYTAB and iFLYTAB-DP datasets. 495

The Effectiveness of Loss Design. During the en- 496

tire training process of UniTabNet, the primary 497

losses include regression loss and classification 498

loss, which differ significantly in scale. Inspired 499

by (Kendall et al., 2018), we optimize the model 500

by maximizing the Gaussian likelihood with ho- 501

moscedastic uncertainty, as described in Eq. 16. 502
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Figure 5: The illustration of the Vision Guider and Language Guider. Panels (a) and (b) compare the attention
distributions within the decoding cells (regions indicated by red dashed boxes) for systems T2 and T3, respectively.
Panels (c) and (d) display the comparative structural prediction results on iFLYTAB-DP for systems T3 and T4.
The red dashed boxes highlight the regions where the predictions differ between the two systems, with system T4
accurately predicting in these areas.

Comparing systems T1 and T2 demonstrates the503

effectiveness of this loss design.504

The Effectiveness of Vision Guider. Table images505

are distinct from conventional document images, as506

each table cell provides unique visual cues linked507

to the corresponding row or column. In UniTabNet,508

we incorporate a Vision Guider at the final decoder509

layer to steer the model’s focus towards pertinent510

visual segments of the table image. Figure 5 il-511

lustrates the cross-attention mechanisms (averaged512

across the heads of the final layer) during the decod-513

ing stages of systems T2 and T3. The visualizations514

reveal that T3 more effectively concentrates on the515

regions pertaining to table cells throughout the de-516

coding process. Furthermore, as shown in Table 3,517

T3 outperforms T2, demonstrating the effective-518

ness of the Vision Guider.519

The Effectiveness of Language Guider. Most520

previous methods for table structure recognition521

focus on reconstructing the table structure from a522

visual perspective. However, for tables rich in de-523

scriptive content, relying solely on visual cues can524

introduce ambiguities. In UniTabNet, we integrate525

a Language Guider into the final layer of the de-526

coder, enhancing the model’s capability to interpret527

the semantic content of the text. Figure 5 displays528

the prediction results for systems T3 and T4 on529

the iFLYTAB-DP dataset, illustrating that T4 effec-530

tively mitigates visual ambiguities and improves531

text comprehension. Furthermore, as demonstrated532

in Table 3, T4 significantly outperforms T3 on the533

iFLYTAB-DP dataset, highlighting the effective-534

ness of the Language Guider.535

7 Conclusion 536

In this paper, we present UniTabNet, a novel table 537

structure recognition model leveraging the image- 538

to-text paradigm, consisting of a vision encoder 539

and a text decoder. UniTabNet employs a “divide- 540

and-conquer” strategy to initially separate table 541

cells, then uses physical and logical decoders to 542

reconstruct cell polygon and span information. To 543

improve visual focus and textual understanding 544

within cells, we integrate a Vision Guider and a 545

Language Guider in the text decoder. Compre- 546

hensive experiments conducted on publicly avail- 547

able datasets, including PubTables1M, PubTabNet, 548

WTW, and iFLYTAB, demonstrate that UniTab- 549

Net achieves state-of-the-art performance in table 550

structure recognition. 551

8 Limitations 552

Although UniTabNet has significantly streamlined 553

the structure sequence of table outputs to only in- 554

clude two tokens: <C> and <NL>, its inference 555

efficiency decreases as the number of table cells 556

increases. Furthermore, due to limitations on max- 557

imum decoding length, UniTabNet exhibits rela- 558

tively lower recall rates for table images with a 559

large number of cells. Moreover, unlike the split- 560

and-merge approach which utilizes a carefully de- 561

signed merge module to handle a variety of table 562

grid structures, UniTabNet employs classification 563

to predict the span of rows and columns. This ap- 564

proach renders UniTabNet ineffective at dealing 565

with previously unseen spans. 566
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A Appendix719

A.1 Datasets and Evaluation Metrics720

As shown in Table 4, we summarize the datasets721

used during our experiments, along with the evalu-722

ation metrics employed to assess our model’s per-723

formance on each dataset. We will detail each of724

these in the subsequent sections.725

PubTabNet. PubTabNet is a large-scale table726

recognition dataset. PubTabNet annotates each ta-727

ble image with information about both the struc-728

ture of table and the text content with position of729

each non-empty table cell. All tables are also axis-730

aligned and collected from scientific articles. The731

authors also proposed a new Tree-Edit-Distance-732

based Similarity (TEDS) metric for table recogni-733

tion task, which can identify both table structure734

recognition and OCR errors. TEDS measures the735

similarity of the tree structure of tables. While us-736

ing the TEDS metric, we need to present tables as a737

tree structure in the HTML format. Finally, TEDS738

between two trees is computed as:739

TEDS(Ta, Tb) = 1− EditDist(Ta, Tb)

max(|Ta|, |Tb|)
(17)740

where Ta and Tb are the tree structure of tables in741

the HTML formats. EditDist represents the tree-742

edit distance, and |T | is the number of nodes in743

T . Since taking OCR errors into account may lead744

to an unfair comparison due to the different OCR745

models used by various TSR methods, we also746

employ a modified version of TEDS, called TEDS-747

Struct. The TEDS-Struct assesses the accuracy of748

table structure recognition, while disregarding the749

specific outcomes generated by OCR.750

PubTables1M. Both the PubTables1M and Pub-751

TabNet datasets are sourced from the PubMed Cen-752

tral Open Access (PMCOA) database. The primary753

distinction between the two lies in the richness of754

annotation provided by PubTables1M. This dataset755

includes detailed annotations for projected row756

headers and bounding boxes for all rows, columns,757

and cells, encompassing even the blank cells. Ad-758

ditionally, it introduces a novel canonicalization759

procedure aimed at correcting oversegmentation.760

The purpose of this procedure is to ensure that each761

table is presented with a unique and unambiguous762

structural interpretation. To contrast our method763

with others, we evaluated it using the GriTS met-764

ric on this dataset. The recently proposed GriTS765

metric (Smock et al., 2023) directly compares pre-766

dicted tables with the ground truth in matrix form767

and can be interpreted as an F-score reflecting the 768

accuracy of predicted cells. Exact match accuracy 769

is assessed by the percentage of tables for which all 770

cells, including blank cells, are perfectly matched. 771

WTW. WTW dataset comprises 10,970 training 772

images and 3,611 testing images, collected from 773

wild and complex scenes. This dataset is specifi- 774

cally tailored to wired tabular objects and provides 775

annotated information including tabular cell coor- 776

dinates, and row/column data. We utilize the F1- 777

Measure to evaluate our method on this dataset. To 778

apply the F1-Measure, it is essential to detect the 779

adjacency relationships among the table cells. The 780

F1-Measure calculates the percentage of correctly 781

detected pairs of adjacent cells, where both cells are 782

accurately segmented and identified as neighbors. 783

When evaluating on the WTW dataset, we employ 784

the cell adjacency relationship metric (Göbel et al., 785

2012), a variant of the F1-Measure. This metric 786

aligns a ground truth cell with a predicted cell based 787

on the Intersection over Union (IoU) criterion. For 788

our assessments, we set the IoU threshold at 0.6. 789

iFLYTAB. The iFLYTAB dataset comprises 790

12,104 training samples and 5,187 testing samples. 791

It offers comprehensive annotations for each table 792

image, including physical coordinates and struc- 793

tural information. This dataset not only includes 794

axis-aligned digital documents but also images cap- 795

tured by cameras, which present more challenges 796

due to complex backgrounds and non-rigid image 797

deformations. For evaluating our method on this 798

dataset, we employ the official TEDS-Struct met- 799

ric1. Specifically, during the evaluation process on 800

iFLYTAB, we assign a distinctive marker to each 801

text line, which signifies its individual content. 802

iFLYTAB-DP. To more precisely evaluate our 803

model’s performance on descriptive table images, 804

we select 322 images from the iFLYTAB valida- 805

tion dataset, as shown in Figure 6. To minimize the 806

influence of visual cues such as table lines, which 807

could assist the model’s predictions, we specifically 808

chose images of wireless tables. Our selection cri- 809

teria primarily focuses on the presence of extensive 810

textual descriptions within the cells. Additionally, 811

we have contacted the authors of iFLYTAB, and 812

they have agreed to make this subset of the dataset 813

available on the official website soon1. 814

1https://github.com/ZZR8066/SEMv2
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Table 4: The overview of datasets and respective metrics.

Datasets Digital Camera-captured Num Metric

Wired Wireless Wired Wireless

PubTabNet (Zhong
et al., 2020b)

✓ ✓ ✗ ✗ 568,000 TEDS-Struct

PubTables1M (Smock
et al., 2022)

✓ ✓ ✗ ✗ 948,000 GriTS

WTW (Long et al.,
2021)

✓ ✗ ✓ ✗ 14,581 F1-Measure

iFLYTAB (Zhang
et al., 2024)

✓ ✓ ✓ ✓ 17,291 TEDS-Struct

iFLYTAB-DP ✗ ✓ ✗ ✓ 322 TEDS-Struct

Figure 6: Some examples of the iFLYTAB-DP dataset.

A.2 Results815

In this section, we explain the issue of the rela-816

tively low recall rate exhibited by UniTabNet due817

to the limitation imposed by the maximum decod-818

ing length. As illustrated in Figure 7, we select819

some table images from the WTW dataset that con-820

tain a large number of cells. Due to the maximum821

decoding length constraint set at 500, this limita-822

tion significantly impacts the model’s recall perfor-823

mance. However, as shown in Table 2, UniTabNet824

achieves relatively high precision. When consid-825

ering both precision and recall, UniTabNet’s per-826

formance on the WTW dataset is comparable to827

current methods.828

Additionally, as depicted in Figure 8, we visu-829

alize the row and column information learned by830

UniTabNet through the Vision Guider. The Vision831

Guider enables UniTabNet to focus more effec-832

tively on cell-related areas during the cell decoding833

process, as demonstrated in Figure 5.834

Finally, Figure 9 presents the prediction results 835

of UniTabNet on the experimental datasets used. 836

The model effectively processes both both simple 837

and complex scenarios of table images. Notably, 838

the cell polygons detected by UniTabNet in the 839

PubTabNet dataset significantly differ from those 840

in other datasets. This discrepancy arises because 841

we directly use the official cell bounding box anno- 842

tations provided, without any postprocessing. 843
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Figure 7: The illustration of the maximum decoding length limitation in UniTabNet. The samples are from the
WTW dataset. The “PT” label in the top right corner of the image denotes the predicted results by UniTabNet, while
“GT” indicates the ground truth structure of the table. Areas missed by the model due to the maximum decoding
length limitation are highlighted with red dashed boxes.

Figure 8: The illustration of row and column information learned by the Vision Guider. Panel (a) is from the
PubTables1M dataset, and (b) is from the iFLYTAB dataset. The red dashed boxes highlight the area of the table cell
currently being decoded. The green mask indicates the row and column information of the table cell as predicted by
UniTabNet.

Figure 9: The prediction results of UniTabNet across different datasets. The blue boxes in the images represent the
cell polygons decoded by UniTabNet. Panels (a) to (c) show predictions for the PubTabNet dataset, (d) to (f) for the
PubTables1M dataset, (g) to (i) for the WTW dataset, and (j) to (l) for the iFLYTAB dataset.

13


	Introduction
	Related Work
	Task Definition
	Methodology
	Implementation Details
	Experiments
	Datasets and Evaluation Metrics
	Results
	Ablation Study

	Conclusion
	Limitations
	Appendix
	Datasets and Evaluation Metrics
	Results


