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Abstract

The ability to summarize and organize knowledge into abstract concepts
is key to learning and reasoning. Many industrial applications rely on the
consistent and systematic use of concepts, especially when dealing with
decision-critical knowledge. However, we demonstrate that, when method-
ically questioned, large language models (LLMs) often show significant
inconsistencies in their knowledge.
Computationally, the basic aspects of the conceptualization of a given do-
main can be represented as Is-A hierarchies in a knowledge graph (KG) or
ontology, together with a few properties or axioms that enable straightfor-
ward reasoning. We show that even simple ontologies can be used to reveal
conceptual inconsistencies across several LLMs. We also propose strategies
that domain experts can use to evaluate and improve the coverage of key
domain concepts in LLMs of various sizes. In particular, we have been
able to significantly enhance the performance of these LLMs with openly
available weights, using simple KG-based prompting strategies.

1 Introduction

Conceptualization is a key cognitive ability that enables abstract thinking. Through concepts
we communicate and learn complex knowledge, generalizing from instances and applying
learned principles to new situations. Conceptualization sits at the base of symbolic reasoning
and allows us to plan ahead and innovate beyond our physical experience.

For example, children can easily conceptualize ‘chair’ to the point of identifying new
instances of chairs they haven’t seen before. Furthermore, when they learn ‘armchair’, they
innately understand it is a type of chair (Is-A hierarchy) and that whatever principles we
apply to ‘chair’ also apply to its sub-concept ’armchair’. In summary, children innately
learn not only the concepts themselves, but their associated Is-A hierarchies and how to
reason about them consistently.

Such consistent use of conceptualization is critical in several industrial applications where
LLMs are used. Take, for example, a customer-facing chatbot in a property and casualty
insurance company. It has to be dependable in its knowledge of, say, vehicle types (Kout-
somitropoulos & Kalou, 2017): if a ‘vehicle‘ is defined as an ‘insurable object‘ that is covered
according to a ‘policy‘, the LLM should consistently assert that ‘cruiser motorcycle’, ‘van’ or
‘scooter’ are vehicles but a ‘child’s tricycle’ is not considered a vehicle for the purpose of an
insurance policy. Any inconsistency in identifying other sub-concepts (related by the IsA or
subConceptOf relation) of ‘vehicle’ in this context could lead to a lack of trust in the system
and downstream harm to users.

It is this consistent use of and reasoning about a concept hierarchy by LLMs that we want to
evaluate and discuss. Provided that an LLM has already some knowledge about concepts
(and sub-concepts) in a given domain, we ask, is this knowledge dependably shown when
answering direct questions? Can we correct any inconsistencies with additional context?
Can we leverage the LLM’s knowledge consistently in simple reasoning tasks, for example,
concluding that a ‘cafe racer’ and a ‘naked bike’ are both types of motorcycles and that all
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Knowledge
Base

A. Create test cases to test properties

Concept as a type - All pediatric surgeons are surgeons.

Strict subconcept - There are surgeons who are not pediatric
surgeons.
Transitivity - A pediatric surgeon is a surgeon and a surgeon is a
medical specialist. Hence a pediatric surgeon is also a medical
specialist.
Property inheritance - An orthopedic pediatric surgeon works in the
field of childhood disease since a pediatrician works in the field of
childhood disease.

B. Create test cases under realistic scenarios/policies

Policy: Surgeons are not allowed to work more than four days per
week.
Test case: Is every medical specialist allowed to work more than four
days a week?
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Figure 1: Our proposed approach to test and correct the inconsistencies in an LLM’s
knowledge of concept hierarchies and in its application to realistic scenarios.

properties of a motorcycle (like having a maximum capacity for two passengers) apply to
both of them, as well as all other sub-concepts of ’motorcycle’?

We propose a systematic and automatic method to test and correct inconsistencies, as
outlined in Figure 1. It consists of a three step process: (1) we automatically extract a
concept hierarchy to be tested from a knowledge base; (2) we generate -also automatically-
various test cases to sieve inconsistencies via direct questions (Figure 1A) that leverage
reasoning about these concepts (Figure 1B) and (3) we test the language model to identify
inconsistencies and reduce them using generated additional context.

We believe that the relation between KGs and LLMs is at the heart of a neuro-symbolic
approach to AI. KGs provide structured, factual information in an algorithmic, traceable way,
while LLMs offer advanced natural language understanding and generation. As interest
on adapting LLMs to specialized domain vocabularies is growing (Zhang et al., 2023; Shen
et al., 2024), the integration of these complementary technologies holds the potential for
creating more accurate and reliable AI systems, specially in applications requiring both
precise information and sophisticated language capabilities (AlKhamissi et al., 2022). That
is why, in general, we are interested in the various aspects of the integration of both KGs
and LLMs, including knowledge validation.

It is also worth noting that, at this point, it is not necessary to consider more complex
relations or reasoning patterns, since we already found plenty of inconsistencies at the most
basic levels of concept reasoning in all studied LLMs. Our goal is not to produce a thorough
vetting of a concept graph in an LLM, but to create a systematic baseline for the fine-grained
evaluation of inconsistencies. Understanding why these happen and how to fix them in
practice promises to be a fertile area of research.

Our main contributions are: (1) We devise methods for using ontologies to assess the
consistency and coverage of conceptualization in LLMs - this is done by creating test
cases based on the knowledge graphs (KGs) or ontologies in an automated manner, (2) we
demonstrate that several well-known LLMs with openly available weights demonstrate
many inconsistencies in their knowledge, even with very rudimentary, small ontologies, and
(3) we show that using simple prompting approaches we can reduce these inconsistencies
and improve the coverage of domain concepts in several LLMs with openly available
weights.

Our paper is structured as follows. We start with a working definition of conceptualization
(Section 2), then show how to extract a sample ontology from Wikidata for our evaluation
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(Section 3). We define the inconsistencies we look for in LLMs (Section 4), and discuss a
use case where we test the consistency in reasoning performed by LLMs for this ontology
(Section 5). The results of our evaluation are discussed in (Section 6), followed by related
work (Section 7) and conclusions/future directions (Section 8). Additional experimental
details and results for one more domain (finance) are presented in the appendix. The
datasets needed to reproduce our results along with prompts that we use are included in
the supplemental material.

2 A working definition of conceptualization for KGs

We define a concept C as a set of its instances. For example, ‘medical specialist’ describes all
the people whose professional occupation is a medical specialty. Subconcepts like ‘surgeon’
or ‘pediatrician’ represent subsets of medical specialists. A subConceptOf (also known as
IsA) hierarchy of concepts is the simplest incarnation of an ontology, where every node
represents a concept and the directed edges represent the subConceptOf relationship. This
directed graph reflects a ‘mental picture’ of the domain that users would expect to be stable
and consistent.

Here, we consider the key computational properties of conceptualization shown below:

• Concept as a type. If A is a subConceptOf B then every instance of A is an instance
of B. Paraphrasing, every A is also a B, or an A is a type of B. E.g., all pediatric
surgeons are surgeons.

• Strict subconcept property. When the subConceptOf relation is strict, there are
instances of B that are not instances of A. E.g., there are surgeons who are not
pediatric surgeons.

• Transitive property. The relation subConceptOf is transitive. I.e., if A is a sub-
ConceptOf B, and B is a subConceptOf of D, then A is a subConceptOf of D. E.g.,
Given that a pediatric surgeon is a surgeon and a surgeon is a medical specialist,
a reasonable user would infer that a pediatric surgeon is also a medical specialist.
In particular, when we apply the transitive property to a concept graph, we are
effectively adding implicit edges to those already explicit in the graph, like the edge
between a pediatric surgeon and a medical specialist. The resulting, augmented set
of edges is usually called the deductive closure of the graph.

• Subconcept property inheritance. Every property that B’s have, A’s also have. E.g.,
if we assert that ’medical specialists must be board certified’, we would also expect
that surgeons and pediatric surgeons need to be board certified.

There are other properties that apply to conceptualizations (like reflexivity, or specific
semantics of concept properties), but we consider that the properties above sum up the
behavior that most users would expect when reasoning about concepts, as well as rules and
constraints, which also require the use of subConceptOf hierarchies.

Even though this is an informal discussion about concepts and how most people would
reason about them, we must remark that in the first property above we are equating the set
theoretical definition of a concept (i.e., the set of its instances) with type theory (a concept is
also a type). Most people won’t have trouble understanding the context in which the term
‘surgeon’ is used, and we expect that an LLM would do likewise.

3 A Wikidata-based sample ontology

We start with a small ontology fragment automatically extracted from Wikidata (Vrandečić,
2012; Erxleben et al., 2014; Vrandečić & Krötzsch, 2014) from a set of seed concepts. Wikidata
is a well known KG, whose content is agreed upon by thousands of contributors. We chose
a common vocabulary, namely, medical specialties and specialists (’surgeon’, ’pediatrician’,
etc.) as shown in Figure 2. For the sake of conciseness, we have not drawn all of the
subConceptOf relations between the medical specialties, but they are part of the underlying
deductive closure of the KG.
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We tried this small vocabulary with openly available LLMs, and we found that all of them
answered correctly questions about the edges in over 90% of our dataset question clusters,
designed to test the edges and paths of the knowledge graph (see Section 6). This fact alone
demonstrates that the LLMs ’knew’ of the graph vocabulary. Also, it is worth noting that
our results are not domain specific, as we have obtained similar ones in other domains. In
Appendix B we show a simple example from personal finances.

Figure 2: A concept hierarchy snapshot: medical specialists and their specialities.

To extract the ontology, we provided two seed concepts, the main entity, ’medical specialist’
(Q3332438), and one sample property to test the property inheritance, ’medical specialty’
(Q930752). We get a graph with 3130 nodes (medical specialists and their occupations).

From this initial graph, it is straightforward to extract the segment that includes their
instances (P31) and subclasses (P279). Given that the differences between both of them are
arbitrary in a higher order graph like Wikidata (where entities can be instances of a class
and yet have instances themselves), we subsume them into the subConceptOf relation.

It is worth repeating that reasoning about these concepts means being able to assert not just
the explicit edges, but also their deductive closure, i.e., the virtual, implied edges by the
subConceptOf relation as defined above.

4 Logical and ontological inconsistencies and question clusters

The simplest form of logical contradiction is to both assert and deny the exact same fact, e.g.,
“a cardiologist is a medical specialist” and “a cardiologist is not a medical specialist”. Other
common form of logical inconsistency consists in asserting a fact and denying one of its
(more or less immediate) consequences with respect to a given set of axioms or properties.
For us, this set is described in Section 2 above. This definition aligns with the formal
definition of consistency discussed in Nguyen (2008) – “in knowledge-based systems the
notion consistency of knowledge is often understood as a situation in which a knowledge
base does not contain contradictions.”

Starting with the KG, we automatically generate a set (or cluster) of queries with a uniform
yes/no expected answer. The questions in each cluster map to statements that must collec-
tively be true or false (depending on how the cluster is designed). A set of mixed answers
reveals an inconsistency with respect to the conceptualization properties above, which can
be checked automatically and renders the cluster inconsistent.

However, there is the possibility that an LLM answers ‘no’ for an entire cluster for which
the expected answer is ‘yes’. This could be due to knowledge missing in the LLM. We call
these incomplete clusters instead of inconsistent clusters (where answers are a mix of both ’yes’
and ’no’). As we see in Section 6 the former are exceedingly rare (or non existent in several
LLMs), meaning the LLMs tested ’know’ these concepts.

While it is not possible to algorithmically sieve all the knowledge in LLMs, even using
standard heuristics that exist to determine sets of unsatisfiable statements (statements
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which cannot possibly be all true at the same time and thus reveal an inconsistency), our
approach allows an end user to define mission critical concept hierarchies and test them to
ensure consistent responses for them. These graphs are small and test the key properties of
concepts, as the general problem of identifying minimal unsatisfiable sets in KBs (equivalent
to inconsistent clusters) is NP-hard (McAreavey et al., 2014; Gernert, 2005; Pan & Zhang,
2007).

Before we describe in detail these question clusters, we emphasize that all LLMs tested have
responded correctly to some of their individual questions in over 98% of the clusters (that
is, we have very few incomplete clusters), even with a simple prompt. This means that the
LLMs can process both the vocabulary as well as the linguistic forms shown here.

Each of the cluster types defined below test one or more of the conceptualization properties
defined in Section 2.

Edge clusters We check the first two properties in Section 2 with edge clusters.

The first type of edge cluster is called a positive edge cluster. As the name indicates, it refers to
an edge that exists in the KG. We use various expressions in order to test the LLM linguistic
flexibility and robustness. Take, for example, the edge (surgeon, subconceptOf, medical
specialist). The corresponding positive edge cluster consists of the following questions:

• Is a surgeon a medical specialist?
• Is a surgeon a type of medical specialist?
• Is every surgeon a medical specialist?
• Is a surgeon also a medical specialist?

Obviously, the expected answer to all of these is ’yes’.

If an LLM answers all these questions in the negative, it is possible that it hasn’t been trained
or doesn’t know this particular edge (i.e., it’s an incomplete cluster). However, if say, all
questions except the third question are answered ’yes’, there is obviously an inconsistency
in the LLM knowledge. If every surgeon is NOT a medical specialist, it cannot be that a
surgeon IS a medical specialist or that a surgeon is a type of medical specialist. That is,
these answers imply an unsatisfiable set of statements. These questions are very simple
and, in theory, it would be possible to increase the variations in questions in each of the
clusters, but it would only likely make the model responses more inconsistent according to
our definition, so we consider that the performance we report here is an optimistic estimate.

Inverse edge clusters are used to test the strict subconcept property above, when a concept
A is strictly contained in its parent B, meaning that there are instances of B that are not
instances of A. For example, for the inverse of the positive edge cluster above, a subset of
the questions we ask would be:

• Is every medical specialist a surgeon?
• Is a medical specialist a type of surgeon?

All these questions can be generated automatically by comparing the instances (P31) of
both A and B and checking there is no ’same as’ property (P460) between them (which is
exceedingly rare, anyway).

The third type of edge cluster, the negative edge cluster tests the first set theoretic property of
conceptualization, but for non existent (false) edges. These ’false’ edges are automatically
built from the hierarchy by selecting random nodes not related by the subConceptOf rela-
tion. For example, (cardiologist, subConceptOf, dermatologist) or (surgeon, subConceptOf,
hypnotherapist). The questions are linguistically formulated as in the positive edge clusters.
In this case, a subset of the questions we have would look like:

• Is a surgeon a hypnotherapist?
• Is a surgeon a type of hypnotherapist?
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It is important to note that some of the questions where the LLM disagrees with the ground
truth answer in our dataset may be technically correct. An LLM may object to one of these
particular linguistic forms and may make a well reasoned argument for its answer. For
example, when asking “is an orthopedic pediatric surgeon an infection control physician?”
the language model (mixtral-8x7b-instruct in this case), instead of a ‘yes’ or ‘no’ answer,
offers an explanation for a non-committal answer: “it is possible that an orthopedic pediatric
surgeon may work in the field of infection control, however this is not their primary field of
occupation, which is orthopedic surgery and pediatric surgery”. This answer is technically
correct, but not consistent with the answers to the majority of similar questions such as,
“is an orthopedic pediatric surgeon a infectious disease physician ?” or ‘is an orthopedic
pediatric surgeon a hepatologist?”, and dozens of other similar questions that this LLM
answered with a simple ‘no’. Still, given that we are not testing the LLM knowledge, but its
consistency, we still have to mark this answer -when compared to the majority of similar
answers- inconsistent.

Path clusters This second type of cluster tests the transitivity of the subConceptOf relation
described in section 2 by querying a sequence of edges in a given path. Using the same
linguistic forms as before, we ask about the deductive closure of a path (the curved arrows
in fig 3). In our sample graph there are 4 such paths. Two of these are, [orthopedics pediatric
surgeon, pediatric surgeon, surgeon, medical specialist], as shown, and [orthopedics pediatric
surgeon, orthopedics surgeon, orthopedian, medical specialist]. The edges in the paths are queried
as shown in the case of the edge clusters.

Figure 3: Deductive closure between orthopedic pediatric surgeon and medical specialist.

Property hierarchy clusters The last type of cluster tests the fourth property of concep-
tualization, subconcept property inheritance. This is a core feature of conceptualization that
affords abstract reasoning. For example, consider the questions below:

• is the field of occupation of a surgeon surgery?
• is an orthopedic pediatric surgeon a surgeon ?
• is the field of occupation of a orthopedic pediatric surgeon surgery?

If the field of occupation of a surgeon is surgery, and an orthopedic pediatric surgeon is a
surgeon, we would expect that the field of occupation of an orthopedic pediatric surgeon is
also surgery. Of course, a more specific answer is that orthopedic pediatric surgery is the
occupation of an orthopedic pediatric surgeon, but the fact remains that all of the models
tested answer the above cluster in the affirmative in the majority of cases. Again, it is the
matter of consistency that concerns this study. Again, the edges in this subgraph are tested
using linguistic forms as in edge clusters.

5 Demonstrative use case

Why is it important to ensure that an LLM can consistently answer seemingly simple
questions about the edges of a given KG? Imagine a set of policies, rules or processes that a
health care network or an insurance company wants to define and use in an AI application.
Take, for example:
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1. “Only pediatric surgeons can perform surgery on patients younger than 18 years
old.”

2. “Only surgeons are required to work no more than four days per week.”

Not only the policy designers would expect to define and manage these rules using abstract
concepts, but the users of the application would expect to query these policies using more
specific vocabulary related to their case. Consequently, the application should be able to
understand whether a pediatric surgeon or a pediatrician satisfy either policy.

We have created a small dataset of 10 scenarios with simply worded policies that apply
to the medical specialists in our sample knowledge graph (included in our supplemental
materials). Each scenario is tested with two types of questions. The first one is “Does the
policy apply to every {specialist}?” where {specialist} is substituted by one of the 7 terms
in our sample graph (‘pediatrician’, ‘surgeon’, ‘orthopedic surgeon’ and so on). The second
type of question mimics the policies above, using the same type of term substitution. The
queries corresponding to the policies above are:

1. Is every {specialist} allowed to treat or operate on patients younger than 18 years
old?

2. Is every {specialist} allowed to work more than four days per week?

Knowledge of our sample graph, or the equivalent implicit knowledge, is required to answer
these straightforward questions correctly, which shows that concept hierarchies lie at the
base of this type of industrial applications. However, as we see in Table 1 many of the LLMs
with openly available weights get many individual answers wrong, even though they also
get some answers right. It is worth noting that there are no ‘incomplete’ scenarios (where
every individual question in a cluster is incorrect) here. So, we ask ourselves again, what
happened? Is it lack of specific knowledge (one particular edge or node) or lack of overall
consistency in the knowledge? Why do the LLMs fail to answer correctly in some cases and
not in others? Can we pinpoint the specific holes in the knowledge so they can be corrected?

To dig deeper into these questions, we need to generate a dataset to test systematically the
knowledge graph directly, as we have discussed in Section 4.

Table 1: Evaluation of 10 policy-based scenarios (14 questions per scenario).

LLM name
% incorrect % inconsistent
individual scenarios (10)

answers (140)

google/flan-t5-xl (Chung et al., 2022) 65.71 100
google/flan-t5-xxl (Chung et al., 2022) 24.28 90
google/flan-ul2 (Tay et al., 2023) 15 70
meta-llama/llama-2-13b-chat (Touvron et al., 2023) 22.8 80
meta-llama/llama-2-70b-chat (Touvron et al., 2023) 15 60
tiiuae/falcon-180b (Almazrouei et al., 2023) 15 60
mistralai/mistral-7b-instruct-v0-2 (Jiang et al., 2023) 13.57 60
mistralai/mixtral-8x7b-instruct-v0-1 (Mistral.AI, 2023a) 13.57 40
thebloke/mixtral-8x7b-v0-1-gptq (Mistral.AI, 2023b) 35 100

6 Evaluation and coverage improvement

The three types of clusters described above are designed to highlight the inconsistencies
of the LLM knowledge. We automatically extract them from the topology of the test KG
above, producing 119 clusters, with 96 edge clusters (the high number is due to the fact that
we have negative and inverse edge clusters representing edges NOT in the graph). More
details are provided in Appendix A, and additional results for a different domain ontology
are presented in Appendix B.
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We test this graph in 9 openly available models (see Table 1 for model information) using
a simple prompt with 11 sample questions from the medical domain. These models are
hosted in our own organization’s infrastructure. The prompt used is provided in the
supplementary materials. We ask for yes/no answers which can be automatically tallied. A
‘yes’ answer means that, for every possible instance, the question can always be answered in
the affirmative. Otherwise, the answer should be ‘no’, as it doesn’t hold for the concept (i.e.,
all its instances). The results are displayed in Table 2. For conciseness’ sake, we have added
all the edge clusters together. A few facts worth noting. First, we notice in the leftmost
column that there are very few incomplete edges (where all the individual responses in a
cluster are wrong). This means that out of the 96 edge clusters, the vast majority of them are
known to the LLMs. In fact, some LLMs have no incomplete edges. Second, we notice that
the notion of property inheritance is the most challenging, since all of the models fail over
36% of the time.

Table 2: Evaluation results by model using a simple prompting strategy.

LLM name
% incomp. % incons. % incons. % incons. % all

edges edges paths property incons.
(96) (96) (12) inherit. (11) (119)

google/flan-t5-xl 4.17 40.62 16.66 36.36 41.18
google/flan-t5-xxl 1.04 35.41 16.66 36.36 34.45
google/flan-ul2 4.17 26.04 33.33 54.54 32.77
meta-llama/llama-2-13b-chat 0 13.54 16.66 36.36 15.97
meta-llama/llama-2-70b-chat 3.13 22.91 16.66 45.45 26.89
tiiuae/falcon-180b 0 17.7 16.66 36.36 19.33
mistralai/mistral-7b-instruct-v0-2 0 4.16 25 36.36 9.24
mistralai/mixtral-8x7b-instruct-v0-1 2.08 22.91 16.6 36.36 25.21
thebloke/mixtral-8x7b-v0-1-gptq 1.04 32.29 16.66 36.36 31.93

Table 3: Evaluation results by model with context-augmented prompts

LLM name
% incomp. % incons. % incons. % incons. % all % improve.

edges edges paths property incons. (all
(96) (96) (12) inherit. (11) (119) incons.)

flan-t5-xl 1.04 10.41 25 27.27 14.29 26.89
flan-t5-xxl 1.04 10.41 0 0 9.24 25.21
flan-ul2 1.04 12.5 0 27.27 13.45 19.33
llama-2-13b-chat 0 7.29 0 9.09 6.72 9.24
llama-2-70b-chat 2.08 10.41 0 9.09 10.92 15.97
falcon-180b 1.04 13.54 0 0 11.76 7.56
mistral-7b-instruct-v0-2 0 6.25 0 0 5.04 4.20
mixtral-8x7b-instruct-v0-1 0 9.37 0 27.27 10.08 15.13
mixtral-8x7b-v0-1-gptq 0 9.375 0 27.27 10.08 21.85

Next, we look to enhance the performance of the initial prompt by adding to the queries a
context with the propositionalization of the knowledge that was missed by all the models,
i.e., we use the same context for all the models. This context is computed automatically, as
our underlying dataset (included in supplemental file) maps the cluster questions into their
corresponding assertions. For example, ’is every orthopedic surgeon a surgeon?’ is mapped
to ’every orthopedic surgeon is a surgeon’. This allows us to generate the context for queries
on a second test. This ’wholesale’ approach to context augmentation yields roughly the
same improvements as if we tailored the context to each individual model.

With this simple prompt augmentation strategy, we obtain a sizable performance enhance-
ment as shown in Table 3. The rightmost column reflects this performance enhancement in
the clusters, showing that now points of inconsistency have been reduced up to one third. It
is worth noting that even leveraging this explicit knowledge doesn’t eliminate inconsistency
altogether.
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7 Related Work

Seminal work by Petroni et al. (2019) demonstrated that a language model could learn
relational knowledge (i.e. facts one would expect to be found in a knowledge base) during
pre-training. This raised the possibility that language models could serve as approximations
for knowledge bases right out of the box. However, Elazar et al. (2021) used paraphrased
querying to show that such knowledge could not elicited consistently/reliably. This led to
the development of frameworks for measuring inconsistency in language models (Jang et al.,
2021; Laban et al., 2023; Sahu et al., 2022) as well as novel training setups with consistency-
based loss (Elazar et al., 2021). The consistency issues found in LLMs have been identified
as one of the key areas of future work needed to enhance LLMs so they share the same
strengths -and consistency- as KBs (AlKhamissi et al., 2022).

Large language models have recently been shown to exhibit abilities akin to ‘reasoning’
when prompted in certain ways. For example, chain-of-thought prompting ( Wei et al.
(2022)) gets models to provide explicit steps it took to arrive at an answer. Nevertheless, it is
not clear whether it actually demonstrates that the LLMs are actually reasoning Wei et al.
(2022); Kojima et al. (2023). Wang et al. (2023) explores the consistency of LLM results via
chain-of-thought and studies ways of making such results more consistent. A nice survey
on the current state of knowledge in reasoning in LLMs is provided by Huang & Chang
(2023). Other work has looked what LLMs actually know Yin et al. (2023); Srivastava et al.
(2023); Sun et al. (2023) and have shown that LLMs exhibit are very weak in this regard,
with performance sometimes barely surpassing random guessing Srivastava et al. (2023).

Improving consistency and factual correctness of language models is related to ongoing
work that aims to integrate external knowledge into LLMs, either from unstructured sources
like retrieved documents or from structured knowledge bases (Feng et al., 2023; Yang et al.,
2024). Approaches may be applied at different stages of the model lifecycle (Pan et al., 2024):
KGs may be used in pre-training (Yasunaga et al., 2022), tuning (Zhang et al., 2024; Cheng
et al., 2023) or information from KGs can be incorporated directly into the prompt (Andrus
et al., 2022; Fatemi et al., 2024).

Our proposed approach differs from the above related works in that we perform analysis of
consistency of knowledge of LLMs with respect to a small and targeted KG by automatically
generating test cases in the shape of query clusters. Our clusters can act as building blocks
of satisfiability -or unsatisfiability-, so we can identify small portions of knowledge to edit
or evaluate. Our generated query clusters measure the knowledge consistency of simple
edges, both positive (e.g. ’true’) and negative (e.g. ’false’), as well as the consistency of
paths and property inheritance reasoning, in contrast to other approaches which do not
discriminate the semantics of relations or take into account the deductive closure of the
graph (Rajan et al., 2024).

Also, we do not require an externally annotated dataset, such as a QA benchmark. We
also perform targeted editing of the LLM’s knowledge using prompting. This is because in
industrial applications, the domain expert requires consistency in a relatively small fragment
of a specialized KG. For example, in a general KG, a bicycle is objectively a type of vehicle,
but in our introductory insurance example, bicycles are typically not covered by vehicle
insurance and so they cannot be considered vehicles per the insurance contract. This means
that domain experts may need to edit the knowledge. While KG reasoning and editing in
general may be useful like in GraphRAG 1 or (Luo et al., 2024), we explore more targeted
editing that can be systematically tested and verified to gain the trust of the domain experts
and other relevant stakeholders.

1https://www.microsoft.com/en-us/research/blog/graphrag-unlocking-llm-discovery-on-
narrative-private-data/
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8 Conclusions and future work

Consistent conceptualization, especially when addressing mission critical data, is key in
industrial applications. We have shown that inconsistencies creep in LLMs even when using
common vocabulary and even after prompting the system with targeted content.

There are some natural future directions that emerge from these insights. The first looks
to identify fine-grained knowledge issues and systematically evaluate an LLM for them.
This may be done by mapping the knowledge from a KG to richer, linguistically more
challenging queries that users may realistically pose to the LLM or using train-of-thought
factoring of the user query into simpler queries, like the ones we produce, may help in this
mapping.

The second line or research is to allow for questions that require non-committal answers and
thereby handle ambiguous contexts. For example, the question ‘does a pediatric surgeon
always work with children?’ may have a correct ‘maybe’ answer, as pediatric surgeons
also work with teenagers. Part of establishing trust in the LLM is to ensure that ambiguous
queries are properly, and consistently, dealt with. We are currently working to address
these complex scenarios in various domains, like Software, Natural Disasters, Music Genres,
Academic Disciplines, Occupations, etc.
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A Cluster dataset construction

Starting with the seed concept ‘orthopedic pediatric surgeon’, we automatically generate a
data set that comprises 109 clusters, with a total of 584 questions, which include 4 different
linguistic forms per query, so we have approximately 146 semantically different queries (some
of the property clusters have 2 questions only per medical specialty). The size of the dataset
is as follows:

• 15 positive edge clusters.
• 66 negative edge clusters. The number of these can be adjusted with a parameter.

Obviously, in a small hierarchy, looking for unrelated nodes becomes harder if the
top number is higher.

• 15 inverse edge clusters.
• 12 path clusters.
• 11 property inheritance clusters.

Each cluster, regardless of type is made up of the following:

• Expected answer. ‘yes’ or ‘no’.
• Source. This is the source node in the directed graph
• Target. The target node of an edge or a path cluster.
• Questions. These are generated from fixed linguistic patterns for subConceptOf and

for property edges. For example: “is a orthopedic pediatric surgeon a medical spe-
cialist ?”, “is a orthopedic pediatric surgeon a type of medical specialist ?”, “is every
orthopedic pediatric surgeon a medical specialist ?” and “is a orthopedic pediatric
surgeon also a medical specialist ?” for an edge cluster with source ‘orthopedic
pediatric surgeon’.

• Statements. The corresponding statements to the questions above: “a orthopedic
pediatric surgeon is a medical specialist”, “a orthopedic pediatric surgeon is a type
of medical specialist”, “every orthopedic pediatric surgeon is a medical specialist”
and “a orthopedic pediatric surgeon is also a medical specialist”. These statements
are used to create augmented context to improve the consistency of the LLMs.

Our full json dataset is provided in the supplementary file.

B The finance domain

To prove how pervasive the inconsistencies in LLMs are, we tried several domains: govern-
ment agencies, corporate occupations and finance. In this later case, we created a simple
graph with just one path, so we can test the first three properties of conceptualization.

Figure 4: Finance domain: home equity loan path

This dataset has 75 edges and only 4 hierarchy clusters. The results below may not be
statistically significant but we include them here because even in this Hello World example,
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we get inconsistencies in similar percentages as above. Also, it is interesting that even after
specifically adding the context in the prompt, we don’t necessarily improve the performance
in all models with respect to this simple path.

Finally, the fact that after prompting some models degrade slightly in performance (probably
without statistically significance), indicates that only prompting may not be the only answer.

Figure 5: Finance domain: eval with simple prompt and with context

C Ethics statement

Our datasets were created by ourselves using publicly available wikidata ontologies. The
content of our knowledge graphs is common knowledge and we do not involve any human
subjects for data generation or validation.

One of the key motivations of our proposed approach is to enable users calibrate trust
in LLMs and improve the consistency of LLMs in specific domains to make them more
trustworthy. We believe that exhaustive testing using methods such as ours is necessary in
any high-stakes application. A potential issue in using exhaustive testing methods such as
what we propose is that a lot of inference calls need to be made to LLM and this increases
their power consumption. However, this is mitigated by the fact that this needs to be done
only for the domains of application in which the LLM is used. This testing will also reduce
downstream harms for users that may happen due to inconsistent knowledge in the models.

D Reproducibility statement

We provide the dataset that we generated in the supplementary material. This can be
used to test any model in the domains that we presented in the paper. We also discuss
the methodology by which we created the dataset in sufficient detail in the paper. Any
knowledgeable reader can use a similar methodology to test their own model in a domain
of interest.
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