R-Zero:Self-Evolving Reasoning LLM
from Zero Data

Chengsong Huang'>f,Wenhao Yu'?, Xiaoyang Wang' ,Hongming Zhang', Zongxia Li'*,
Ruosen Li'*, Jiaxin Huang?, Haitao Mi', Dong Yu'
ITencent Al Seattle Lab, 2Washington University in St. Louis,
3University of Maryland, College Park, The University of Texas at Dallas
1 Core contributors
chengsong@wustl.edu; wenhaowyu@global.tencent.com

Abstract

Self-evolving Large Language Models (LLMs) offer a scalable path toward super-
intelligence by autonomously generating, refining, and learning from their own
experiences. However, existing methods for training such models still rely heav-
ily on vast human curated tasks and labels, typically via fine-tuning or reinforce-
ment learning, which poses a fundamental bottleneck to advancing Al systems
toward capabilities beyond human intelligence. To overcome this limitation, we
introduce R-Zero, a fully autonomous framework that generates its own training
data from scratch. Starting from a single base LLM, R-Zero initializes two inde-
pendent models with distinct roles — a Challenger and a Solver. These models
are optimized separately and co-evolve through interaction: the Challenger is re-
warded for proposing tasks near the edge of the Solver’s capability, and the Solver
is rewarded for solving increasingly challenging tasks posed by the Challenger.
This process yields a targeted, self-improving curriculum without any pre-existing
tasks and labels. Empirically, R-Zero substantially improves reasoning capability
across different backbone LLMs, e.g., boosting the Qwen3-4B-Base by +6.49 on
math reasoning benchmarks, and +7.54 on general-domain reasoning benchmarks.

Challenger iterative 1 Challeng iterative 2 Chall iterative N RLVR & SFT Task Solution
2

Label-Free RL Task Solution

R-Zero (ours) Task Solution

o
SuperGPQA Math Avg MMLU-Pro

Figure 1: (Left): R-Zero employs a co-evolutionary loop between Challenger and Solver. (Right):
R-Zero achieves strong benchmark gains without any pre-existing tasks or human labels.

1 Introduction

Self-evolving Large Language Models (LLMs) represent a promising frontier for advancing lan-
guage intelligence. By autonomously generating, refining, and learning from their own experiences,
these models provide a scalable pathway toward artificial superintelligence [1, 2]. A critical require-
ment for training such self-evolving LLMs is access to large volumes of expertly curated tasks and

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: MATH-AL

labels, which serve as supervision signals for fine-tuning or reinforcement learning with verifiable
rewards (RLVR) [3, 4]. However, relying on human annotators to create these tasks and labels is
not only costly, labor-intensive, and difficult to scale, but also presents a fundamental bottleneck to
advancing Al toward capabilities that could eventually surpass human intelligence [5, 6].

In this paper, we propose R-Zero, a framework for training reasoning LLMs that can self-evolve
from zero external data. In R-Zero, a single base model is initialized with two roles — a Challenger
and a Solver that are independently optimized but co-evolve throughout the RL process. During
co-evolving, the Challenger is rewarded for generating tasks targeted to be at the edge of Solver’s
current abilities, while the Solver is rewarded for solving increasingly challenging tasks posed by
the Challenger. Framework details are provided in Section 2, but briefly, in the Challenger training
phase, the Challenger is trained via Group Relative Policy Optimization (GRPO) [3] to generate
difficult questions. The reward signal is derived from the uncertainty for the frozen Solver, which
is measured by the self-consistency of its multiple generated answers. In the Solver training phase,
the Solver is fine-tuned with GRPO on a filtered set of these challenging questions generated by the
now-frozen Challenger, using the pseudo-labels voted by itself. This entire process repeats, creating
a self-evolving cycle that operates without any human intervention.

Our experiments demonstrate that R-Zero is a model-agnostic framework, consistently and itera-
tively improving the reasoning abilities of different backbone LLMs. For example, Qwen3-4B-Base
model’s average score on math benchmarks increased by a significant +6.49 points after three itera-
tions of self-evolution. Moreover, the reasoning skills learned through our math-focused questions
can generalize to complex general-domain tasks, with models trained using R-Zero showing signifi-
cant improvements on general domain reasoning benchmarks like MMLU-Pro [7].

2 Method

2.1 Overview

We propose R-Zero, a fully automated framework featuring a Challenger and a Solver, both initial-
ized from the same base LLM. The framework operates in an iterative loop. We illustrate the main
framework in Figure 2. First, the Challenger (Qy) is trained with Group Relative Policy Optimiza-
tion (GRPO) to generate synthetic questions that are challenging for the current Solver (Sec. 2.2).
A training dataset of question-answer pairs is then constructed from these synthetic questions using
a filtering strategy and a majority-vote mechanism (Sec. 2.3). Next, the Solver (Sy) is fine-tuned
on this new dataset, also using GRPO (Sec. 2.4). This iterative process allows the Challenger and
Solver to co-evolve, leading to a progressively more capable Solver.

Update by GRPO with Uncertam?y Reward
u y1 1y y1 2.+ Y1, m
majority, orl
{yz 1, Yi2- - - Yi, m

Chullenger Solver
training training
. (RTINS T
ori
Chcllenger Solver —"—fl>
yl 1, Yi,2-

Yim} voting
Update by GRPO
with Filtered Question

Figure 2: An overview of our R-Zero framework, which illustrates the co-evolution of the Challenger
and the Solver. Top: In the Challenger training phase, the Challenger is trained via GRPO to
generate difficult questions. The reward signal is derived from the uncertainty for the frozen Solver.
Bottom: In the Solver training phase, the Solver is fine-tuned with GRPO on a filtered set of these
challenging questions generated by the now-frozen Challenger, using the pseudo-labels voted.

2.2 Challenger Training

The Challenger, @y, is an autoregressive language model trained to generate challenging questions.
We train Qg using the GRPO algorithm detailed in Sec. A. The core of this process lies in designing
a reward function that accurately captures the desired properties of a “good” question. This final

scalar reward, r;, is then used in the GRPO. We focus on generating questions specifically within the
domain of mathematics, as it provides a convenient and self-contained setting for our framework; the
objective nature of mathematical answers allows for the straightforward generation of pseudo-labels
via majority voting, without the need for external verification environments like code executors.

Uncertainty Reward. To guide the Challenger toward producing challenging yet solvable ques-
tions, we first define an uncertainty score. For a generated question =, we query the current Solver
Se for m responses {91, ..., Ym}. The most frequent response is treated as the pseudo-label 7 (),
and we compute the Solver’s empirical accuracy as p(x; Sy) = ~ Z;n:l 1{y; = g(x)}. The uncer-
tainty reward is then defined as: ryncertainty (25 ¢) = 1 — 2 | p(x; S¢) — %‘ This function incentivizes
questions where the Solver is maximally uncertain (accuracy approaches 50%). We provide a theo-
retical motivation for this reward function in Appendix I.

Repetition Penalty. To encourage diversity within a training batch X', we introduce a repetition
penalty. We could use any similarity metric, but in our case, we specifically use the BLEU score for
faster computation, as this calculation must be performed numerous times during the rollout process.
We compute pairwise distances using BLEU score similarity, d;; = 1 — BLEU(x;, x;), and group
questions where d;; < mgrgy into clusters C = {C1,...,Ck}. The penalty for a question z; in

a cluster C}, is proportional to its relative size: ryp(z;) =)\% where B is the batch size and A\

is a scaling factor. In our experiments, we set A = 1. The implementation details are shown in
Appendix E.4.

Format Check Penalty. A critical first step in the reward pipeline is a structural format check
to verify that each generated question is correctly enclosed within <question> and </question>
tags. If the output does not adhere to this required structure, it is immediately assigned a final reward
of 0, and no further reward signals are computed.

2.3 Solver Dataset Construction

After updating the Challenger, we use it to generate a new, curated dataset to train the Solver. This
process acts as a curriculum generator. We first sample a large pool of N candidate questions from
the Challenger’s policy, x; ~ Qa(- | po). For each question, we obtain m answers from the current
Solver, determine the pseudo-label y; via majority vote, and calculate the empirical correctness p;.
A question-answer pair (z;, §;) is added to the training set S only if its correctness falls within an
informative band, |p; — %| < 4. This filtering step discards tasks that are either too easy or too hard.

While the primary goal of this filtering is to discard tasks that are too easy or too hard, it also serves
as an implicit quality control mechanism. Since our pseudo-labels are derived from a majority vote,
a very low empirical correctness p; often indicates that the question itself is ambiguous, ill-posed,
or that the resulting pseudo-label is unreliable. By filtering out these low-consistency items, our
method simultaneously improves the quality and the uncertainty calibration of the training data.

2.4 Solver Training

The Solver, Sy, is then fine-tuned on the curated dataset of challenging problems S. We also use
GRPO for this stage, but with a simpler, verifiable reward signal. For a given question z; € S with
its pseudo-label ¥;, the Solver generates a batch of answers, each assigned a binary reward r;:

. 1, if x; matches with the pseudo-label y;,
7710, otherwise.

This verifiable reward is used to compute the advantage Aj, and the Solver’s policy Sy is sub-
sequently updated by minimizing the GRPO loss Lgrpo(¢). This process enhances the Solver’s
ability to correctly answer the difficult questions generated by its co-evolving Challenger.

Table 1: Comprehensive results on mathematical reasoning benchmarks. We compare each base
model against a R-Zero (#: challenger) baseline (where the Solver is trained on questions from an
untrained Challenger) and our method, R-Zero. The peak performance is highlighted in bold.

Model Name Avg. AMC Minerva MATH GSMS8K Olympiad AIME25 AIME24
Qwen3-4B-Base
Base Model (w/o training) 42.58 45.70 38.24 68.20 87.79 41.04 6.15 10.94
R-Zero (#: challenger) 4436 45.00 45.22 72.80 87.87 41.19 7.29 11.15
R-Zero (our method) 49.07 57.27 52.94 79.60 92.12 44.59 4.27 12.71
OctoThinker-3B
Base Model (w/o training) 26.64 17.19 24.26 55.00 73.69 16.15 0.21 0.00
R-Zero (8 challenger) 27.51 20.19 24.63 54.60 74.98 15.70 0.10 2.40
R-Zero (our method) 29.32 27.03 27.57 54.20 74.98 18.22 3.23 0.00

Table 2: Results on general-domain reasoning benchmarks. The table compares the Base Model, a
R-Zero (% challenger) baseline, and our R-Zero. The peak performance is highlighted in bold.

Model Name Overall Avg. SuperGPQA MMLU-Pro BBEH
Qwen3-4B-Base
Base Model (w/o training) 26.34 20.88 50.58 7.57
R-Zero (8 challenger) 28.52 24.77 54.20 6.59
R-Zero (our method) 31.15 27.55 55.47 10.42
OctoThinker-3B
Base Model (w/o training) 7.47 10.09 10.87 1.46
R-Zero (8 challenger) 10.04 11.19 14.53 4.40
R-Zero (our method) 11.12 12.44 16.71 4.20

3 Experiments

We show the experimental setting in Appendix D. Here are the main results on Qwen3-4B-Base and
OctoThinker-3B. Results for larger models could be found in Appendix J. We also provide some
additional analysis in Appendix B.

3.1 Results in Mathematical Reasoning

The comprehensive results of our experiments are presented in Table 1. The findings confirm that
our proposed framework, R-Zero, is a highly effective, model-agnostic method for enhancing the
performance of language models on mathematical tasks across different architectures and scales.
Our iterative training process consistently and substantially improves upon the performance of the
base models. On the smaller OctoThinker-3B, our method improves the average score from 26.64
to 29.32 (+2.68 points), demonstrating the broad applicability of our self-supervised training loop.

3.2 Results in General Reasoning

Previous work has demonstrated that training language models on reasoning-intensive domains,
such as mathematics, can lead to improvements in general-domain capabilities [8]. A key question,
however, is whether this generalization effect still holds when the training curriculum is not human-
labeled, but entirely self-generated through R-Zero. As shown in Table 2, this transfer of skills is
evident across all tested models. This generalization also extends to the key performance patterns
observed in the mathematical results. This confirms that our method does not merely teach domain-
specific knowledge, but enhances the model’s underlying capabilities in a way that successfully
generalizes across domains.

4 Conclusion and Future Work

In this paper, we introduced R-Zero, a fully autonomous self-evolving framework that overcomes
data dependency by having a Challenger and Solver co-evolve to create a self-generating curricu-
lum. Our experiments demonstrate that R-Zero significantly improves LLM’s reasoning capability
in multiple domains. Future work could further focus on improving efficiency, exploring more ro-
bust labeling techniques, and expanding R-Zero to new domains. Extending this self-evolutionary

paradigm to open-ended generative tasks, such as creative writing or dialogue, where evaluation is
subjective, remains a significant hurdle for future research.

References

[1] Zhengwei Tao, Ting-En Lin, Xiancai Chen, Hangyu Li, Yuchuan Wu, et al. A survey on
self-evolution of large language models. ArXiv preprint, abs/2404.14387, 2024.

[2] Zhen Tan, Dawei Li, Song Wang, Alimohammad Beigi, Bohan Jiang, Amrita Bhattacharjee,
Mansooreh Karami, Jundong Li, Lu Cheng, and Huan Liu. Large language models for data
annotation and synthesis: A survey. In Proc. of EMNLP, 2024.

[3] Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Jun-Mei Song, et al. Deepseekmath:
Pushing the limits of mathematical reasoning in open language models. ArXiv preprint,
abs/2402.03300, 2024.

[4] DeepSeek-Al, Daya Guo, Dejian Yang, Haowei Zhang, Jun-Mei Song, et al. Deepseek-
rl: Incentivizing reasoning capability in llms via reinforcement learning. ArXiv preprint,
abs/2501.12948, 2025.

[5] Yi Su, Dian Yu, Linfeng Song, Juntao Li, Haitao Mi, et al. Crossing the reward bridge: Ex-
panding rl with verifiable rewards across diverse domains. ArXiv preprint, abs/2503.23829,
2025.

[6] Andrew Zhao, Yiran Wu, Yang Yue, Tong Wu, Quentin Xu, et al. Absolute zero: Reinforced
self-play reasoning with zero data. ArXiv preprint, abs/2505.03335, 2025.

[7] Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo,
Weiming Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, Tianle Li, Max Ku, Kai Wang, Alex
Zhuang, Rongqi Fan, Xiang Yue, and Wenhu Chen. Mmlu-pro: A more robust and chal-
lenging multi-task language understanding benchmark. In Amir Globersons, Lester Mackey,
Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang, editors,
Advances in Neural Information Processing Systems 38: Annual Conference on Neural Infor-
mation Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15,
2024, 2024.

[8] Maggie Huan, Yuetai Li, Tuney Zheng, Xiaoyu Xu, Seungone Kim, et al. Does math reasoning
improve general Ilm capabilities? understanding transferability of Ilm reasoning. 2025.

[9] Nathan Lambert, Jacob Daniel Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivi-
son, et al. Tiilu 3: Pushing frontiers in open language model post-training. ArXiv preprint,
abs/2411.15124, 2024.

[10] Pengyi Li, Matvey Skripkin, Alexander Zubrey, Andrey Kuznetsov, and Ivan V. Oseledets.
Confidence is all you need: Few-shot 1l fine-tuning of language models. ArXiv preprint,
abs/2506.06395, 2025.

[11] Mihir Prabhudesai, Lili Chen, Alex Ippoliti, Katerina Fragkiadaki, Hao Liu, et al. Maximizing
confidence alone improves reasoning. ArXiv preprint, abs/2505.22660, 2025.

[12] Kongcheng Zhang, Qi Yao, Shunyu Liu, Yingjie Wang, Baisheng Lai, et al. Consistent
paths lead to truth: Self-rewarding reinforcement learning for 1lm reasoning. ArXiv preprint,
abs/2506.08745, 2025.

[13] Yuxin Zuo, Kaiyan Zhang, Shang Qu, Li Sheng, Xuekai Zhu, et al. Ttrl: Test-time reinforce-
ment learning. ArXiv preprint, abs/2504.16084, 2025.

[14] Qingyang Zhang, Haitao Wu, Changqing Zhang, Peilin Zhao, and Yatao Bian. Right question
is already half the answer: Fully unsupervised 1lm reasoning incentivization. ArXiv preprint,
abs/2504.05812, 2025.

[15] Yujun Zhou, Zhenwen Liang, Haolin Liu, Wenhao Yu, Kishan Panaganti, Linfeng Song, Dian
Yu, Xiangliang Zhang, Haitao Mi, and Dong Yu. Evolving language models without labels:
Majority drives selection, novelty promotes variation. arXiv preprint arXiv:2509.15194, 2025.

[16] Shivam Agarwal, Zimin Zhang, Lifan Yuan, Jiawei Han, and Hao Peng. The unreasonable
effectiveness of entropy minimization in llm reasoning. ArXiv preprint, abs/2505.15134, 2025.

[17] Daixuan Cheng, Shaohan Huang, Xuekai Zhu, Bo Dai, Wayne Xin Zhao, et al. Reasoning with
exploration: An entropy perspective. ArXiv preprint, abs/2506.14758, 2025.

[18] Rulin Shao, Shuyue Stella Li, Rui Xin, Scott Geng, Yiping Wang, et al. Spurious rewards:
Rethinking training signals in rlvr. ArXiv preprint, abs/2506.10947, 2025.

[19] Xinyu Zhu, Mengzhou Xia, Zhepei Wei, Wei-Lin Chen, Danqi Chen, et al. The surprising
effectiveness of negative reinforcement in llm reasoning. ArXiv preprint, abs/2506.01347,
2025.

[20] Sheikh Shafayat, Fahim Tajwar, Ruslan Salakhutdinov, Jeff Schneider, and Andrea Zanette.
Can large reasoning models self-train? ArXiv preprint, abs/2505.21444, 2025.

[21] Xuandong Zhao, Zhewei Kang, Aosong Feng, Sergey Levine, and Dawn Xiaodong Song.
Learning to reason without external rewards. ArXiv preprint, abs/2505.19590, 2025.

[22] Zixiang Chen, Yihe Deng, Huizhuo Yuan, Kaixuan Ji, and Quanquan Gu. Self-play fine-tuning
converts weak language models to strong language models. arXiv preprint arXiv:2401.01335,
2024.

[23] Ruize Zhang, Zelai Xu, Chengdong Ma, Chao Yu, Wei-Wei Tu, Wenhao Tang, Shiyu Huang,
Deheng Ye, Wenbo Ding, Yaodong Yang, et al. A survey on self-play methods in reinforcement
learning. arXiv preprint arXiv:2408.01072, 2024.

[24] Zi Lin, Sheng Shen, Jingbo Shang, Jason Weston, and Yixin Nie. Learning to solve and verify:
A self-play framework for code and test generation. ArXiv preprint, abs/2502.14948, 2025.

[25] Yinjie Wang, Ling Yang, Ye Tian, Ke Shen, and Mengdi Wang. Co-evolving 1lm coder and
unit tester via reinforcement learning. ArXiv preprint, abs/2506.03136, 2025.

[26] Julien Pourcel, Cédric Colas, and Pierre-Yves Oudeyer. Self-improving language models for
evolutionary program synthesis: A case study on arc-agi. 2025.

[27] Hao Jiang, Qi Liu, Rui Li, Yuze Zhao, Yixiao Ma, Shengyu Ye, Junyu Lu, and Yu Su. Verse:
Verification-based self-play for code instructions. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 39, pages 24276-24284, 2025.

[28] Zongxia Li, Xiyang Wu, Guangyao Shi, Yubin Qin, Hongyang Du, Tianyi Zhou, Dinesh
Manocha, and Jordan Lee Boyd-Graber. Videohallu: Evaluating and mitigating multi-modal
hallucinations on synthetic video understanding. ArXiv preprint, abs/2505.01481, 2025.

[29] Yifei Zhou, Sergey Levine, Jason E. Weston, Xian Li, and Sainbayar Sukhbaatar. Self-
challenging language model agents. ArXiv preprint, abs/2506.01716, 2025.

[30] Wenkai Fang, Shunyu Liu, Yang Zhou, Kongcheng Zhang, Tongya Zheng, et al. Serl: Self-
play reinforcement learning for large language models with limited data. ArXiv preprint,
abs/2505.20347, 2025.

[31] Zongxia Li, Wenhao Yu, Chengsong Huang, Rui Liu, Zhenwen Liang, Fuxiao Liu, Jingxi Che,
Dian Yu, Jordan Boyd-Graber, Haitao Mi, et al. Self-rewarding vision-language model via
reasoning decomposition. arXiv preprint arXiv:2508.19652, 2025.

[32] Runpeng Dai, Tong Zheng, Run Yang, and Hongtu Zhu. Rl-re: Cross-domain relationship
extraction with rlvr. ArXiv preprint, abs/2507.04642, 2025.

[33] Yucheng Shi, Wenhao Yu, Zaitang Li, Yonglin Wang, Hongming Zhang, et al. Mobilegui-rl:
Advancing mobile gui agent through reinforcement learning in online environment. 2025.

[34] Bowen Jin, Hansi Zeng, Zhenrui Yue, Dong Wang, Hamed Zamani, and Jiawei Han. Search-
rl: Training llms to reason and leverage search engines with reinforcement learning. ArXiv
preprint, abs/2503.09516, 2025.

[35] Xueguang Ma, Qian Liu, Dongfu Jiang, Ge Zhang, Zejun Ma, et al. General-reasoner: Ad-
vancing llm reasoning across all domains. ArXiv preprint, abs/2505.14652, 2025.

[36] Zongxia Li, Yapei Chang, Yuhang Zhou, Xiyang Wu, Zichao Liang, Yoo Yeon Sung, and
Jordan Lee Boyd-Graber. Semantically-aware rewards for open-ended r1 training in free-form
generation. ArXiv preprint, abs/2506.15068, 2025.

[37] Ruosen Li, Ziming Luo, and Xinya Du. Fg-prm: Fine-grained hallucination detection and
mitigation in language model mathematical reasoning. ArXiv preprint, abs/2410.06304, 2024.

[38] An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, et al. Qwen3 technical
report. ArXiv preprint, abs/2505.09388, 2025.

[39] Zengzhi Wang, Fan Zhou, Xuefeng Li, and Pengfei Liu. Octothinker: Mid-training incentivizes
reinforcement learning scaling. ArXiv preprint, abs/2506.20512, 2025.

[40] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
et al. The llama 3 herd of models. ArXiv preprint, abs/2407.21783, 2024.

[41] Yaowei Zheng, Junting Lu, Shenzhi Wang, Zhangchi Feng, Dongdong Kuang, et al. Easyrl:
An efficient, scalable, multi-modality 1l training framework. 2025.

[42] Jixiao Zhang and Chunsheng Zuo. Grpo-lead: A difficulty-aware reinforcement learn-
ing approach for concise mathematical reasoning in language models. ArXiv preprint,
abs/2504.09696, 2025.

[43] Akhiad Bercovich, Itay Levy, Izik Golan, Mohammad Dabbah, Ran El-Yaniv, et al. Llama-
nemotron: Efficient reasoning models. ArXiv preprint, abs/2505.00949, 2025.

[44] Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski,
Vinay V. Ramasesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, Yuhuai
‘Wu, Behnam Neyshabur, Guy Gur-Ari, and Vedant Misra. Solving quantitative reasoning prob-
lems with language models. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave,
K. Cho, and A. Oh, editors, Advances in Neural Information Processing Systems 35: Annual
Conference on Neural Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA,
USA, November 28 - December 9, 2022, 2022.

[45] Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, et al. Measuring
mathematical problem solving with the math dataset. ArXiv preprint, abs/2103.03874, 2021.

[46] Karl Cobbe, Vineet Kosaraju, Mo Bavarian, Mark Chen, Heewoo Jun, et al. Training verifiers
to solve math word problems. ArXiv preprint, abs/2110.14168, 2021.

[47] Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, et al. Olympiadbench:
A challenging benchmark for promoting agi with olympiad-level bilingual multimodal scien-
tific problems. In Annual Meeting of the Association for Computational Linguistics, 2024.

[48] Yulai Zhao, Haolin Liu, Dian Yu, S. Y. Kung, Haitao Mi, and Dong Yu. One token to fool
Ilm-as-a-judge. volume abs/2507.08794, 2025.

[49] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. In Proc. of ICLR,
2021.

[50] Xinrun Du, Yifan Yao, Kaijing Ma, Bingli Wang, Tianyu Zheng, et al. Supergpqa: Scaling llm
evaluation across 285 graduate disciplines. ArXiv preprint, abs/2502.14739, 2025.

[51] Mehrangiz shoaa kazemi, Bahare Fatemi, Hritik Bansal, John Palowitch, Chrysovalantis Anas-
tasiou, et al. Big-bench extra hard. In Annual Meeting of the Association for Computational
Linguistics, 2025.

[52] Mirac Suzgun, Nathan Scales, Nathanael Schérli, Sebastian Gehrmann, Yi Tay, Hyung Won
Chung, Aakanksha Chowdhery, Quoc Le, Ed Chi, Denny Zhou, and Jason Wei. Challeng-
ing BIG-bench tasks and whether chain-of-thought can solve them. In Anna Rogers, Jordan
Boyd-Graber, and Naoaki Okazaki, editors, Findings of the Association for Computational
Linguistics: ACL 2023, 2023.

[53] Ilia Shumailov, Zakhar Shumaylov, Yiren Zhao, Nicolas Papernot, Ross Anderson, and Yarin
Gal. Ai models collapse when trained on recursively generated data. Nature, 631, 2024.

[54] Elvis Dohmatob, Yunzhen Feng, Pu Yang, Francois Charton, and Julia Kempe. A tale of tails:
Model collapse as a change of scaling laws. In Forty-first International Conference on Machine
Learning, ICML 2024, Vienna, Austria, July 21-27, 2024, 2024.

[55] Yujun Zhou, Jiayi Ye, Zipeng Ling, Yufei Han, Yue Huang, Haomin Zhuang, Zhenwen Liang,
Kehan Guo, Taicheng Guo, Xiangqi Wang, et al. Dissecting logical reasoning in llms: A
fine-grained evaluation and supervision study. arXiv preprint arXiv:2506.04810, 2025.

[56] Mohamed EI Amine Seddik, Suei-Wen Chen, Soufiane Hayou, Pierre Youssef, and Mérouane
Debbah. How bad is training on synthetic data? a statistical analysis of language model
collapse. ArXiv preprint, abs/2404.05090, 2024.

[57] Elvis Dohmatob, Yunzhen Feng, Arjun Subramonian, and Julia Kempe. Strong model collapse.
ArXiv preprint, abs/2410.04840, 2024.

[58] Martin Briesch, Dominik Sobania, and Franz Rothlauf. Large language models suffer
from their own output: An analysis of the self-consuming training loop. ArXiv preprint,
abs/2311.16822, 2023.

[59] Tong Zheng, Lichang Chen, Simeng Han, R Thomas McCoy, and Heng Huang. Learning to
reason via mixture-of-thought for logical reasoning. arXiv preprint arXiv:2505.15817, 2025.

[60] Taiwei Shi, Yiyang Wu, Linxin Song, Tianyi Zhou, and Jieyu Zhao. Efficient reinforcement
finetuning via adaptive curriculum learning. ArXiv preprint, abs/2504.05520, 2025.

[61] Sanghwan Bae, Jiwoo Hong, Min Young Lee, Hanbyul Kim, JeongYeon Nam, et al. Online dif-
ficulty filtering for reasoning oriented reinforcement learning. ArXiv preprint, abs/2504.03380,
2025.

A Preliminaries

Our work builds upon recent advancements in reinforcement learning for fine-tuning large language
models. We briefly review two key methodologies that are relevant to our framework.

A.1 Group Relative Policy Optimization

Group Relative Policy Optimization (GRPO) [3] is a reinforcement learning algorithm for fine-
tuning policy LLMs 7y without a separately learned value function. Its key idea is to normalize
rewards within a group of responses sampled from the same prompt, thereby stabilizing optimiza-
tion.

Setup. Given a query q, the old policy 7y, generates G candidate responses {01, ...,05}. Each
response o; is assigned a scalar reward R(q, 0;). Group-wise z-score normalization is then applied
to obtain an advantage shared across the tokens of the response:

i R(q,0;) - mean({R(q,01),...,R(q,0¢)})
std({R(q,01),...,R(q,06)}) + Enorm

it =
where eporm 1S @ small constant for numerical stability. The same normalized advantage flm is
applied to all tokens of response o;.

7o (0i,4]9,04,<t)

Policy Update. Letrg(o;;) = o (ot <2 The policy is updated with a clipped surrogate
old L0, |04, <t
objective, similar to PPO, combined with a KL-divergence penalty to constrain policy drift:

Larro(0) = ~ & S04 dy Sl min(ro(010) Ase, clip(ro0i0), 1= € 1+ €) Aii) + 8 KLmo(a) || 7o, (a)

Maximizing the negative of this loss encourages the policy to increase the probability of tokens
contributing to responses with positive relative advantages, while clipping prevents overly aggressive
updates. The KL penalty, weighted by (3, further stabilizes training by preventing the new policy
from drifting too far from the old one.

A.2 Reinforcement Learning with Verifiable Rewards

Reinforcement Learning with Verifiable Rewards (RLVR) [9] is a paradigm for fine-tuning models
in domains where response quality can be deterministically verified. RLVR relies on a rule-based
verifier v : X — {0, 1} that assigns a binary reward to each response z;:

() 1, if x; satisfies a task-specific correctness check,
ry = vl\r;) = X
0, otherwise.

This reward structure is especially effective for tasks like math, code generation with clear correct-
ness criteria, and serves as the foundation for the reward mechanism in our Solver training.

B Analysis

In this section, we conduct a series of in-depth analyses to better understand the behavior and effec-
tiveness of our R-Zero framework. To ensure consistency, all analytical experiments presented here
are conducted on the Qwen3-4B-Base model, unless explicitly stated otherwise. Some additional
analyses are shown in Appendix G.

B.1 Ablation Study

-\@" Removing Repetition Penalty and Task Filtering will harm the final performance.

To isolate the contribution of each key component within our R-Zero framework, we conduct a com-
prehensive ablation study on the Qwen3-4B-Base model. We specifically investigate the importance
of two critical modules by disabling them one at a time and observing the impact on performance.
The results are summarized in Table 3.

As shown in the table, removing any core Taple 3: Ablation results on Qwen3-4B-Base. w/o
components leads to a significant degradation iltering: Disables the difficulty-based curricu-
in performance. Removing the Repetition |y filtering. w/o Rep. Penalty: Removes the

P‘*“a“.Y harm§ performance, iI'ldica.ting that repetition penalty from the Challenger’s reward.
generating a diverse set of questions is crucial
for effective Solver training. Method Math AVG ~ General AVG

Finally, disabling the Task Filtering module R-2¢70 49.07 3115
results in a notable performance drop, partic- Ablations

ularly on the general-domain average, which F w/o Rep. Penalty 45.76 28.73
falls by over 6 points. As discussed in Sec- I~ w/o Filtering 47.35 26.69
tion 2.3, this filtering serves a dual purpose: it
calibrates the curriculum’s difficulty and acts as an implicit quality control mechanism by removing
questions with low answer consistency. Without this filter, the Solver is trained on noisy data that
likely includes ambiguous or ill-posed questions, which harms its ability to learn robustly.

B.2 Iteration Scaling

'\@" Model performance eventually converges, with the timing depending on model size.

Previous results demonstrate that R-Zero enhances the Solver’s capabilities. This raises a critical
question about the long-term stability of our self-improvement loop: what are the limits of this
process, and whether the eventual performance degradate? In this section, we conduct an analysis
to investigate these iteration scaling dynamics, aiming to diagnose the underlying cause of this
instability.

As illustrated in Figure 3, our framework ini- —— Qwen3-0.6B-Base Quen3-1.7B-Base —— Quend-48-Base
tially delivers on its promise, with models of

all sizes showing significant performance im- §°*° %Sz
provements in the early stages of co-evolution. g, “* o
Unfortunately, this virtuous cycle does not con- <
tinue indefinitely. After multiple iterations, we Eso . srits m— -
o
EZO 16y/N
9 Base Model Step 15 Step 30 Step 45 Step 60

Figure 3: Math performance across different iter-
ation times and model scales. The star markers in-
dicate the peak performance for each model size.

observe a consistent and concerning trend of
performance degradation across all models. In-
triguingly, we found a direct correlation be-
tween model scale and resilience to this col-
lapse: the larger the model, the later the onset
of performance degradation.

For instance, the smallest 0.6B model reaches its peak performance as early as the first iteration
(Step 15), after which its capabilities begin to decline. In contrast, the largest 4B model sustains its
upward trajectory for three full iterations, only experiencing a sharp drop at Step 60. This pattern
strongly suggests that while larger model capacity can delay the negative effects, it does not pre-
vent them. This eventual collapse points to an inherent instability or limitation within our current
self-improvement framework, highlighting a critical area for future investigation. We present some
additional analysis results for this in Appendix H.

B.3 Synergy with Supervised Data

N . - o .
'@' Using R-zero as a mid-training method boosts the effect of later training on human data.

To analyze the utility of our framework in scenarios where a labeled dataset is available, we measure
the synergy between R-Zero and traditional supervised fine-tuning using labeled datasets '. The
GRPO settings for this experiment were kept identical to our main experiments.

We first establish a supervised baseline by fine-
tuning the base model directly on the labeled data.
For this process, we also employ GRPO.

a

N
©

49.07

We then apply our R-Zero framework, where at the
end of each co-evolutionary iteration, the resulting
checkpoint is also fine-tuned on the same labeled
dataset. The results show that our method provides
significant additional gains. As highlighted in Fig-
ure 4, this represents a gain of +2.35 points over the
human-label only baseline.

IS
ke

S
@

—e— R-Zero Only
R-Zero + Human Labels

Performance (AVG Score)

N
(A

42.58
.Base Model Step 15 Step 30, Step 45
Figure 4: Performance of R-Zero when

combined with supervised fine-tuning. The
dashed line represents the baseline of fine-

This finding confirms that R-Zero is not redundant
with labeled data; instead, it acts as a powerful per-
formance amplifier. The co-evolutionary process en-

tuning the base model on labelled data alone,
showing that our iterative method provides a
better initialization.

ables the model to better leverage the supervised in-
formation and achieve performance levels unattainable by standard fine-tuning alone.

B.4 Evolution of Question Difficulty and Data Accuracy

'\@,' Question difficulty increases progressively with decreasing pseudo-label accuracy.

Table 4: Performance and data accuracy analysis. The highlighted column represents the true accu-
racy of the self-generated pseudo-labels for each question set.

Performance of Evaluated Model (vs. Ground Truth)

Base Model Solver (step 15) Solver (step 30) Solver (step 45) Pseudo-Label Acc.
Dsiep 15 48.0 59.0 57.0 61.0 79.0%
Dstep 30 52.5 53.0 51.5 53.5 69.0%
Dsiep 45 44.0 47.0 45.0 50.5 63.0%

To understand the co-evolutionary dynamic, we analyzed how the Challenger’s generated questions
and their corresponding pseudo-labels change across iterations. We sampled 200 questions from the
Challenger’s policy after each of the first three training iterations, creating three distinct test sets:

"https://huggingface.co/datasets/hiyouga/mathi2k

10

https://huggingface.co/datasets/hiyouga/math12k

Ditep 15> Dstep 30, and Dyeep 45. For this analysis, we assumed the external oracle model, GPT-4o, to
be a perfect annotator, providing the ground truth answers for all generated questions.

The evaluation was conducted as follows: the performance of our internal models was measured
against these GPT-40 ground truth answers. The score reported for GPT-4o itself, however, reflects
the true accuracy of our self-generated pseudo-labels by comparing the pseudo label against the
ground truth from the oracle (GPT-40). The results on the filtered dataset are summarized in Table 4.

This analysis reveals a multi-faceted dynamic. The first finding is that the questions generated by the
Challenger become progressively more difficult. This is directly evidenced by evaluating a fixed
model against the evolving question sets. For instance, the performance of the static Solver (Step
15), when measured against the consistent GPT-40 ground truth, drops from 59.0% on the questions
for the Step 15 training to 47.0% on the questions for the Step 45. This confirms that the Challenger
is successfully increasing the intrinsic difficulty of its curriculum.

The second finding, revealed by the highlighted column, pertains to the true accuracy of the self-
generated dataset. Unfortunately, while the accuracy of the pseudo-labels is initially high at 79.0%,
it systematically drops to 63.0% by the third iteration. This trend indicates that as the system gen-
erates more difficult problems, the Solver’s majority vote becomes a less reliable source for ground
truth. This decline in data quality is a critical trade-off and a potential bottleneck for the framework’s
ultimate performance.

C Related Work

C.1 Label-Free Reinforcement Learning

A significant trend in recent research is Label-Free Reinforcement Learning, which aims to improve
LLM reasoning without human-annotated data. Many such methods use the model’s own outputs
as a reward signal. This includes leveraging sequence-level confidence [10, 11], the consistency of
answers derived from varied reasoning paths [12, 13, 14, 15], minimizing the output entropy [16, 17],
or even random [18] or negative reward [19]. These signals are often used within self-training loops
where models fine-tune on their own most plausible solutions [20, 21]. While these methods all rely
on a pre-existing set of unlabeled problems, R-Zero removes the need for any seed dataset.

C.2 Self-Play in Large Language Models

The paradigm of self-play, where models take on dual roles to create a self-improvement loop [22,
23], has recently been adapted to improve language models without human data. This approach
has been particularly fruitful in verifiable domains like code generation, where a “Coder” agent’s
program is verified by a “Tester” agent’s unit tests [24, 25, 26, 27]. More advanced frameworks push
autonomy further by learning to generate the problems themselves, creating an adaptive curriculum
from a small seed of examples or from scratch [6, 28, 29, 30]. Our work distinguishes itself by
extending this paradigm to general reasoning domains that lack such verifiable environments, like
coding tasks.

C.3 Reinforcement Learning with Verifiable Rewards (RLVR)

Reinforcement Learning with Verifiable Rewards has been widely adopted as a versatile paradigm
for enhancing LLMs across a multitude of tasks [31, 4, 3]. Its effectiveness is demonstrated in
diverse applications such as relation extraction [32], interactive GUI navigation [33] and search-
engine utilization [34]. While early implementations relied on rule-based verifiers, recent work has
begun to explore more sophisticated, model-based verifiers [35, 36, 37].

11

Appendix

D Experiment Setting

D.1 Models and Training Details

We employ the Qwen3-4B-Base [38] and Qwen3-8B-Base models to assess the impact of scale
within a single architectural family. Second, to ensure our approach is effective on a distinct lineage,
we utilize the OctoThinker-3B and OctoThinker-8B models [39].This choice is particularly relevant
as [39] reported that applying RL training directly to Llama models yielded suboptimal results. As
the OctoThinker series is continually trained from the Llama-3.1 models [40], this comprehensive
selection allows us to test our framework across different foundational architectures — Qwen vs.
Llama. We assess our framework on a comprehensive suite of benchmarks, with the evaluation
benchmarks presented in Appendix F.

Our entire framework is implemented based on the EasyR1 codebase [41]. In each iteration of the
R-Zero co-evolutionary loop, we follow a specific set of hyperparameters. The Challenger (Qg) first
generates a candidate pool of NV = 8,000 questions. To construct the training dataset for the Solver,
these questions are filtered based on consistency. For each candidate question, we sample m = 10
answers from the current Solver (S4). A question is retained for the training set only if the number
of answers matching the majority-vote pseudo-label is between 3 and 7, inclusive (6 = 0.25). This
numerical range is consistent with the methodology used in previous research [42, 36, 43]. When
training the Challenger, the uncertainty reward r(x; ¢) is calculated by sampling m = 10 responses
from the Solver. For the intra-batch repetition penalty, we set the clustering distance threshold to
TBLEU — 0.5.

D.2 Evaluation Setting

The evaluation code is adopted from General-Reasoner [35]. To ensure consistency, we reran the
released evaluation code and reported the corresponding results. The reproduced results are well
aligned with General-Reasoner and those in the Qwen-3 technical report [38].

The results presented in all experimental tables are obtained after 45 training steps, while in the
figures we report evaluations performed at checkpoints every 15 steps during solver training. All
results are reported based on the held-out test sets, ensuring a fair comparison across baselines and
reproduced methods. Further implementation details and prompts can be found in Appendix E.

E Experiment Details

E.1 Training Hyperparameter

This section summarizes the most critical algorithmic hyperparameters for the Solver and Chal-
lenger training stages. All experiments were conducted using BFloat16 (BF16) mixed precision and
FlashAttention 2.

E.1.1 Solver Training
* Global Batch Size: 128
* Learning Rate: 1 x 106
» Weight Decay: 1 x 102
+ KL Penalty Coefficient (\xc7): 1 x 1072
* Max Steps: 15
* Number of Rollouts: 5
* Rollout Temperature: 1.0
* Rollout Top-p: 0.99

12

E.1.2 Challenger Training
* Global Batch Size: 128

* Learning Rate: 1 x 106

» Weight Decay: 1 x 102

» KL Penalty Coefficient (\g): 1 x 1072
¢ Max Steps: 5

* Number of Rollouts: 4

* Rollout Temperature: 1.0

* Rollout Top-p: 0.99

E.2 Prompt Templates

This section presents the exact prompt templates used for the solver and challenger models.

Solver Prompt Template

System Message:

Please reason step by step, and put your final answer within \boxed{}.
User Message:

{problem_statement}

Note: {problem_statement} is a placeholder for the actual math problem.

Challenger Prompt Template

System Message:

You are an expert competition-math problem setter. FIRST, in your private scratch-pad, think
step-by-step to design a brand-new, non-trivial problem. The problem could come from
any field of mathematics, including but not limited to algebra, geometry, number theory,
combinatorics, prealgebra, probability, statistics, and calculus. Aim for a difficulty such that
fewer than 30% of advanced high-school students could solve it. Avoid re-using textbook
clichés or famous contest problems.

THEN, without revealing any of your private thoughts, output exactly the following two
blocks:

<question>
{The full problem statement on one or more lines }
</question>

\boxed{final answer}

Do NOT output anything else—no explanations, no extra markup.

User Message:

Generate one new, challenging reasoning question now. Remember to format the output
exactly as instructed.

E.3 GPT-40 Judge Prompt
To programmatically evaluate the correctness of answers on mathematical benchmarks where the

final answer can be complex (e.g., simplified expressions), we use GPT-40 as a judge. The exact
prompt and configuration used for this evaluation are detailed below.

13

Configuration for GPT-40 as Judge

* Model: gpt-4o
e Temperature: 0.1
System Message:
You are a math answer checker.
User Message Template:

Hi, there is an answer: {answer},

and the ground truth answer is: {response},

please check whether the answer is correct or not, and return the **only**
Yes or No.

Note: { answer} is a placeholder for the model-generated solution, and { response} is the
ground-truth answer from the benchmark.

E.4 Repetition Penalty Implementation

To encourage the Challenger to generate a diverse set of questions within each batch, we apply a
repetition penalty, 7. This penalty is designed to disincentivize the model from producing seman-
tically similar questions in the same batch. The implementation is a multi-step process based on
clustering questions by their BLEU score similarity.

1. Pairwise Distance Calculation via BLEU Score First, we compute a pairwise distance matrix
for all questions in a batch. The distance d;; between any two questions, z; and z;, is defined as
one minus their BLEU score:
dij =1- BLEU(QEZ', l‘j)

For this calculation, we specifically use the sentence_bleu function from the NLTK
library (nltk.translate.bleu_score). To ensure numerical stability, especially for
shorter questions with limited n-gram overlap, we employ its first smoothing function,
SmoothingFunction() .methodl. The questions are tokenized for the BLEU calculation by split-
ting on whitespace; no further text normalization, such as lowercasing or punctuation removal, is
performed.

2. Agglomerative Clustering With the pairwise distance matrix computed, we then group similar
questions using agglomerative hierarchical clustering. This step is performed using the Clustering
implementation from the scikit-learn library. The clustering algorithm is configured with the
following key parameters:

* Metric: Set to ’precomputed’, indicating that we provide our custom BLEU-based dis-
tance matrix instead of having the algorithm compute distances.

» Linkage: Set to >average’. This method defines the distance between two clusters as the
average of the distances between all pairs of questions across the two clusters.

3. Final Penalty Calculation Once each question in the batch is assigned to a cluster, the repe-
tition penalty 7, (2;) for a given question x; is determined by the relative size of the cluster Cj; to
which it belongs. The penalty is calculated as:

|Cr|

Trep(xi) = 5

B

Here, |C}| represents the number of questions in cluster C, and B is the total number of questions
in the batch (i.e., the batch size).

F Evaluation Benchmark

We assess our framework on a comprehensive suite of benchmarks. Although the question-generator
prompt for our method is primarily focused on mathematical problem-solving, a key objective of our

14

evaluation is to explore whether the resulting improvements in reasoning ability can generalize to
other domains. Therefore, our evaluation is divided into two main categories.

Mathematical Reasoning. We use seven challenging benchmarks: AMC, Minerva [44], MATH-
500 [45], GSMS8K [46], Olympiad-Bench [47], AIME-2024, and AIME-2025. For these tasks,
where answers can be complex, we employ GPT-40 as a programmatic judge to semantically verify
the correctness of the final answer against the ground truth [48]. For the difficult AMC and AIME
benchmarks, we report the mean@32 metric. For all other math benchmarks, we report accuracy
based on greedy decoding.

General Domain Reasoning. To test for the generalization of reasoning ability, we evaluate on
the following challenging benchmarks:

e MMLU-Pro [7]: An enhanced version of the MMLU [49] benchmark, featuring a more
challenging suite of multi-task questions designed to provide a stricter evaluation of lan-
guage model capabilities.

* SuperGPQA [50]: A large-scale benchmark focused on graduate-level reasoning. It com-
prises questions across 285 distinct disciplines that have been verified as unsearchable on
the web, thereby isolating true reasoning ability from simple knowledge recall.

* BBEH [51]: This benchmark builds upon the foundation of BIG-Bench Hard [52] by incor-
porating a new selection of tasks specifically engineered to be more difficult, thus providing
a more accurate measure of complex reasoning skills.

For this category, we follow the experimental setup, prompts, and evaluation codes from [35], re-
porting Exact Match (EM) accuracy obtained via greedy decoding.

G Parameter Sharing Between Challenger and Solver

'\@" Separating the Challenger and Solver into two models will be better.

Table 5: Comparison of math performance and pseudo-label accuracy between the standard R-Zero

erattons.

d11d TTC—1IN\— 01U C OCTT, arca-para d CWOTRSacto
R-Zero (ours) Single-R-Zero

Iteration Performance Pseudo-label Acc (%) Performance Pseudo-label Acc (%)

Step 15 48.06 71.0 47.31 63.4
Step 30 48.44 56.2 46.95 46.6
Step 45 49.12 48.8 45.57 32.6
Step 60 46.52 422 43.89 33.8

To investigate whether the separation of the Challenger and Solver into two independent models
is a necessary component for the success of R-Zero, we conduct an ablation study using a unified
model with shared parameters. In this configuration (Single-R-Zero), a single model is tasked with
performing both roles, i.e., generating a challenging curriculum and subsequently learning from it.

The results, presented in Table 5, clearly indicate that separating the Challenger and Solver into two
independent models is crucial for both performance and stability. We observe two key findings. First,
our standard two-model R-Zero framework not only achieves a higher peak performance (49.07) but
also sustains improvement for more iterations, with its collapse occurring after the third iteration.
In contrast, the unified Single-R-Zero model’s performance peaks after the very first iteration and
degrades immediately thereafter. Second, the Single-R-Zero model, where the agent must generate
and solve its own problems, produces pseudo-labels of significantly lower accuracy at every stage.
For example, in the first iteration, its pseudo-label accuracy is already substantially lower than the
R-Zero’s (63.4% vs. 71.0%). We hypothesize that this is because having the problem-setter and
solver originate from the same model leads to a form of overconfidence that comes from internal
bias.

15

H Beyond Label Noise: Unpacking the Roots of Instability

The most immediate hypothesis for this performance col- Table 6: Accuracy of self-generated
lapse is the degradation of pseudo-label quality, a po- pseudo-labels (%), labeled by Gemini.
tential failure mode of the self-correction mechanism we Shaded and bolded values indicate the
discussed in Section B.4. As the Challenger generates best checkpoint for each model size.

increasingly difficult problems, it is plausible that the Step Model Size
Solver’s majority vote becomes a less reliable source for

ground truth, resulting in a noisy training signal that could 0.6B 1.7B 4B
ultimately harm performance. To empirically test the Step15 70.6 694 71.0
extent to which this is the primary cause, we sampled Step30 534 552 562
500 questions from a later training iteration to conduct a Step45 50.8 522 48.8
more granular investigation into the relationship between Step 60 44.0 452 422

pseudo-label fidelity and the observed performance drop.

Although the degradation of pseudo-label accuracy is a consistent trend across iterations, our anal-
ysis suggests this is not the primary, nor even the sole, driver of the eventual performance collapse.
Table 6 presents the pseudo-label data quality for each model at the onset of its performance col-
lapse. Intriguingly, there appears to be no universal accuracy threshold that triggers this degradation.
For instance, the 0.6B model begins to decline when data accuracy is still as high as 70.6% (Step
15), whereas the 4B model tolerates an accuracy as low as 48.8% (Step 45) before its performance
drops.

This suggests that the absolute percentage of label noise is not the sole determinant of instability.
Another potential, and perhaps more fundamental, reason is a form of model collapse that can be
introduced when training exclusively on self-synthesized data [2, 53, 54, 55, 56, 57, 58, 59]. A
model can enter a degenerative feedback loop, suffering from a loss of diversity or an amplification
of its own biases, which presents a significant challenge.

I Theoretical Analysis

In this section, we provide a theoretical motivation for our uncertainty reward function, r'uncertainty
1 —2|p(z;Sy) — %|, which is maximized when the Solver’s success probability, p, is 50%. Our
analysis is grounded in recent work that formally establishes that the most efficient training occurs
when a learner is exposed to tasks at the frontier of its capabilities [60, 61].

The core insight from these studies is that the learning potential of the current Solver, with policy Sy,
can be quantified by the KL divergence to an optimal policy S*. This divergence, D1, (S4|[S*),
is lower-bounded by the variance of the Solver’s reward. For the binary reward signal used in our
framework, the success probability is p. This leads to the specific lower bound:
D (Se||S*) = 252

where 3 is the temperature parameter controlling entropy regularization. The right-hand side of
the inequality, which is proportional to the reward variance, is maximized precisely when p = 0.5.
Therefore, by designing the Challenger’s reward to incentivize questions that push the current Solver
towards this point of maximum uncertainty, our framework is theoretically motivated to generate a
maximally efficient curriculum in each iteration of the co-evolutionary process.

J Full Main Results

16

Table 7: Comprehensive results on mathematical reasoning benchmarks. We compare each base
model against a R-Zero (s challenger) baseline (where the Solver is trained on questions from an
untrained Challenger) and our method, R-Zero. The peak performance is highlighted in bold.

Model Name Avg. AMC Minerva MATH GSM8K Olympiad AIME25 AIME24
Qwen3-4B-Base
Base Model (w/o training) 42.58 45.70 38.24 68.20 87.79 41.04 6.15 10.94
R-Zero (#: challenger) 4436 45.00 45.22 72.80 87.87 41.19 7.29 11.15
R-Zero (our method) 49.07 57.27 52.94 79.60 92.12 44.59 4.27 12.71
QOwen3-8B-Base
Base Model (w/o training) 49.18 51.95 50.00 78.00 89.08 44.74 16.67 13.85
R-Zero (8 challenger) 51.87 60.70 57.72 81.60 92.56 46.44 13.44 10.62
R-Zero (our method) 54.69 61.67 60.66 82.00 94.09 48.89 19.17 16.35
OctoThinker-3B
Base Model (w/o training) 26.64 17.19 24.26 55.00 73.69 16.15 0.21 0.00
R-Zero (% challenger) 27.51 20.19 24.63 54.60 74.98 15.70 0.10 2.40
R-Zero (our method) 29.32 27.03 27.57 54.20 74.98 18.22 3.23 0.00
OctoThinker-8B
Base Model (w/o training) 36.41 32.11 4191 65.20 86.96 26.52 1.56 0.62
R-Zero (3 challenger) 36.98 29.30 42.28 66.20 88.10 27.56 1.04 4.38
R-Zero (our method) 38.52 34.03 48.22 68.80 87.19 27.56 0.42 3.44

Table 8: Results on general-domain reasoning benchmarks. The table compares the Base Model, a
R-Zero (% challenger) baseline, and our R-Zero. The peak performance is highlighted in bold.

Model Name Overall Avg. SuperGPQA MMLU-Pro BBEH
Owen3-4B-Base
Base Model (w/o training) 26.34 20.88 50.58 7.57
R-Zero (%: challenger) 28.52 24.77 54.20 6.59
R-Zero (our method) 31.15 27.55 55.47 10.42
Owen3-8B-Base
Base Model (w/o training) 31.98 28.33 58.97 8.63
R-Zero (8 challenger) 31.29 30.12 54.14 9.60
R-Zero (our method) 34.50 31.38 61.53 10.60
OctoThinker-3B
Base Model (w/o training) 7.47 10.09 10.87 1.46
R-Zero (8 challenger) 10.04 11.19 14.53 4.40
R-Zero (our method) 11.12 12.44 16.71 4.20
OctoThinker-8B
Base Model (w/o training) 11.70 13.26 20.21 1.64
R-Zero (8 challenger) 21.30 16.99 41.46 5.46
R-Zero (our method) 23.00 19.82 40.92 8.25

17

	Introduction
	Method
	Overview
	Challenger Training
	Solver Dataset Construction
	Solver Training

	Experiments
	Results in Mathematical Reasoning
	Results in General Reasoning

	Conclusion and Future Work
	Preliminaries
	Group Relative Policy Optimization
	Reinforcement Learning with Verifiable Rewards

	Analysis
	Ablation Study
	Iteration Scaling
	Synergy with Supervised Data
	Evolution of Question Difficulty and Data Accuracy

	Related Work
	Label-Free Reinforcement Learning
	Self-Play in Large Language Models
	Reinforcement Learning with Verifiable Rewards (RLVR)

	Experiment Setting
	Models and Training Details
	Evaluation Setting

	Experiment Details
	Training Hyperparameter
	Solver Training
	Challenger Training

	Prompt Templates
	GPT-4o Judge Prompt
	Repetition Penalty Implementation

	Evaluation Benchmark
	Parameter Sharing Between Challenger and Solver
	Beyond Label Noise: Unpacking the Roots of Instability
	Theoretical Analysis
	Full Main Results

