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ABSTRACT

Text-rich images, where text serves as the central visual element guiding the overall
understanding, are prevalent in real-world applications, such as presentation slides,
scanned documents, and webpage snapshots. Tasks involving multiple text-rich
images are especially challenging, as they require not only understanding the
content of individual images but reasoning about inter-relationships and logical
flows across multiple visual inputs. Despite the importance of these scenarios,
current multimodal large language models (MLLMs) struggle to handle such tasks
due to two key challenges: (1) the scarcity of high-quality instruction tuning
datasets for text-rich multi-image scenarios, and (2) the difficulty in balancing
image resolution with visual feature sequence length. Low-resolution encoding
impairs the recognition of embedded text, while high-resolution encoding quickly
exceeds the model’s maximum sequence length under multi-image settings. To
address these challenges, we propose LEOPARD, a MLLM designed specifically
for handling vision-language tasks involving multiple text-rich images. First,
we curated about one million high-quality multimodal instruction-tuning data,
tailored to text-rich, multi-image scenarios. Second, we developed an adaptive high-
resolution multi-image encoding module to dynamically optimize the allocation of
visual sequence length based on the original aspect ratios and resolutions of the
input images. Experiments across a wide range of benchmarks demonstrate our
model’s superior capabilities in text-rich, multi-image evaluations and competitive
performance in general domain evaluations. We are committed to open-source
models and will release all collected data, code, and checkpoints to the community1.

1 INTRODUCTION

Multimodal large language models (MLLMs) have revolutionized vision-language tasks, driving
advancements in a variety of areas such as image captioning and object detection (Wang et al., 2023b;
Zhang et al., 2024; Zang et al., 2024). These improvements extend to applications involving text-rich
images where text serves as the primary visual element guiding image comprehension, such as visual
document understanding (Mathew et al., 2021) and scene text recognition (Singh et al., 2019b).
Traditional OCR-based pipelines in these text-rich visual scenarios are being replaced by end-to-end
approaches that directly encode intertwined multimodal inputs (Wu et al., 2023b; Zhang et al., 2023;
Tang et al., 2024), leading to improved efficiency and accuracy in handling text-rich images.

Despite these advancements, the majority of existing open-source MLLMs, like LLaVAR (Zhang
et al., 2023) and mPlug-DocOwl-1.5 (Hu et al., 2024a), have primarily focused on optimizing
performance for text-rich single-image tasks. This focus inherently limits their applicability in many
real-world scenarios, where tasks often involve multiple inter-connected images. For instance, multi-
page visual document understanding requires integrating information spread across different pages to
capture the logical flow across the whole document (Tito et al., 2022; Landeghem et al., 2023). To
understand presentation slides, grasping the overarching narrative necessitates understanding multiple
slides with unique but interrelated content (Tanaka et al., 2023). These vision-language tasks on
multiple text-rich images require advanced capabilities that go beyond merely recognizing text and
visuals within a single image; they involve understanding and reasoning about relationships and

1https://anonymous.4open.science/r/Leopard-8E26/.
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Figure 1: Left: A demonstration of a text-rich multi-image task. Models need to reason about the
textual content across multiple images to answer the question correctly. LEOPARD successfully
generates the right answer while baselines fail. Right: Evaluation results of LEOPARD and three
baselines. Our model surpasses its counterparts across text-rich multi-image benchmarks by a large
margin, maintaining comparable performance on single and general evaluations.

logical flows across multiple visual inputs. While some models – such as OpenFlamingo (Awadalla
et al., 2023), VILA (Lin et al., 2023), Idefics2 (Laurençon et al., 2024b) – have made strides toward
supporting multi-image inputs, they mainly focus on scenarios with natural images but fall short in
understanding sequences of text-rich images with interrelated textual and visual information. We plot
the performance of representatives of the aforementioned models in Figure 1. Upon examining their
training data and model architecture, we identified two primary limitations within these models.

First, there is a scarcity of high-quality instruction tuning datasets on text-rich multi-image scenarios.
Existing visual instruction tuning datasets for text-rich images are predominantly based on single-
image inputs (Kafle et al., 2018; Singh et al., 2019b; Masry et al., 2022; Tang et al., 2024), which limits
the model ability to generalize and reason across multiple images. Second, in text-rich multi-image
scenarios, there is a challenge of balancing image resolution and sequence length limitations. Many
general-domain MLLMs adopt the low-resolution settings of pre-trained visual encoders (Lin et al.,
2023; Jiang et al., 2024). However, for text-rich images, such as scientific reports, recognizing text
content becomes difficult at low resolutions. While some approaches overcome this in single-image
settings by splitting the original image to preserve high-resolution details (Liu et al., 2024a; Hu et al.,
2024a), this approach is less effective when applied to multiple images, as it quickly exceeds model’s
maximum sequence length. Moreover, compressing such long-sequence representations into shorter
ones leads to significant information loss, thereby degrading model performance (Awadalla et al.,
2023; Laurençon et al., 2023). Thus, a critical balance must be struck between maintaining sufficient
visual detail and keeping sequence lengths manageable.

In this paper, we introduce a novel multimodal large language model, named LEOPARD2. LEOPARD
is specifically designed to handle complex text-rich, multi-image tasks. To train LEOPARD, we first
curated about one million high-quality multimodal instruction-tuning data, tailored to the text-
rich, multi-image scenarios. This dataset spans three key domains that are commonly encountered
in real-world scenarios: (1) multi-page documents, (2) multi-charts and multi-tables, (3) webpage
trajectories. These scenarios capture the increasing complexity and multimodal nature of modern
digital information. In addition, to enable high-resolution encoding in multi-image inputs, we
equipped LEOPARD with an adaptive high-resolution multi-image encoding module. Specifically,
it dynamically optimizes the allocation of visual sequence length based on the original aspect ratios
and resolutions of the input images. We then apply pixel shuffling to losslessly compress (Chen

2Leopards have remarkable visual adaptations that allow them to track prey both from afar and up close,
making them highly efficient hunters.
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et al., 2024a) long visual feature sequences into shorter ones. This approach allows the model to
accommodate multiple high-resolution images without compromising detail or clarity.

We conducted experiments on 13 vision-language benchmark datasets, evaluating LEOPARD from
multiple perspectives. Consistent improvements were observed when training LEOPARD with two
distinct base model architectures: LLaVA and Idefics2. Our results demonstrate LEOPARD’s superior
performance on 5 text-rich, multi-image benchmarks, outperforming the best open-source MLLM by
an average of +9.61 points. Moreover, LEOPARD remains highly competitive in text-rich single-image
tasks and general-domain vision-language benchmarks, achieving comparable results to state-of-
the-art MLLMs without extensive fine-tuning. Further ablation studies confirm the effectiveness of
our instruction-tuning dataset and the adaptive high-resolution encoding module. These findings
highlight LEOPARD’s strong performance and versatility across various multimodal applications.

2 RELATED WORK

Multimodal Large Language Models (MLLMs). Many approaches have been proposed for building
MLLMs, leveraging different architectural designs. A widely adopted approach is the decoder-only
architecture, exemplified by LLaVA (Liu et al., 2023b), Emu2 (Sun et al., 2023), and Intern-VL
(Chen et al., 2024b). These models typically incorporated a visual encoder to encode images, a
vision-language connector to project visual features into the language feature space, and a language
model that processes both visual and textual information jointly. Another line of work employed
cross-attention architectures where encoded image features are integrated with textual tokens via
cross-attention layers, as seen in Flamingo (Alayrac et al., 2022), OpenFlamingo (Awadalla et al.,
2023) and CogVLM (Wang et al., 2023a). Such a design allows models to retain the benefits of a
fully intact language model but introduces new parameters to manage the visual-textual interplay.

Text-rich MLLMs. Text-rich images are traditionally processed in pipelines (Singh et al., 2019a; Hu
et al., 2020), where an OCR module first recognized text from the image, followed by processing
through a language model. To improve efficiency and avoid error propagation, with the advent of
MLLMs, end-to-end approaches become more popular recently. For instance, LLaVAR (Zhang et al.,
2023) utilized a dataset of 400K instances with OCR-enhanced text to outperform LLaVA on various
text-rich VQA tasks. Subsequent models such as UReader (Ye et al., 2023), TextMonkey (Liu et al.,
2024d), and Mplug-DocOwl-1.5 (Hu et al., 2024a) recognized the importance of high-resolution
encoding for accurate text comprehension, so they adopted strategies that cropped single images
into multiple sub-images to preserve the original resolution during visual encoding. However, these
approaches are primarily trained on single-image data, and struggle to generalize effectively to
multi-image scenarios. Furthermore, the straightforward partitioning technique encounters challenges
with multi-image inputs, as the sequence length rapidly increases with the number of images.

Multi-image MLLMs. Efforts have been made in training MLLMs with multi-image inputs due to the
prevalence of multi-image scenarios in real-world applications. Mantis (Jiang et al., 2024) introduced
a multi-image instruction tuning dataset on a variety of natural image scenarios. Besides, both
VILA (Lin et al., 2023) and Idefics-2 (Laurençon et al., 2024b) incorporated image-text interleaved
data during their pre-training. LLaVA-Next-Interleave (Li et al., 2024c) further extended this by
incorporating videos and multi-view 3D data into the training pipeline. However, these works
primarily target natural images and general visual understanding, leaving a gap in handling text-rich,
multi-image scenarios. Natural images typically follow a different distribution from text-rich images
and often do not demand high-resolution processing. As a result, many existing multi-image MLLMs
struggle to generalize to text-rich scenarios. Our work aims to address this gap by specifically
focusing on multi-image settings where text-rich images are the primary input.

Concurrent Works Released in 08/2024 and 09/2024. Very recently, multi-image training for
MLLMs has attracted intense attention from researchers. Several concurrent efforts have included
multi-image interleaved data to train their models, such as LLaVA-OneVision 08/2024 (Li et al.,
2024b), Idefics3 (08/2024, Laurençon et al., 2024a), NVLM (09/2024, Dai et al., 2024), mPlug-
DocOwl-2 (09/2024, Hu et al., 2024b), Molmo (09/2024, Deitke et al., 2024) and Qwen2-VL
(09/2024, Wang et al., 2024). This trending paradigm highlights the significant practical value of
multi-image MLLMs by enhancing their ability to tackle a wide range of real-world applications.
The incorporation of multi-image instruction tuning data is therefore of paramount importance.

3
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Figure 2: The overall model pipeline. Given ① raw image inputs, ② we first compute the optimal
allocation of sub-image numbers and splitting strategy for all images based on their resolution and
aspect ratio. ③ The images undergo padding, resizing, and splitting operations. ④ Both sub-images
and resized original images are then encoded into a sequence of visual features. These sequences
subsequently undergo a pixel shuffle operation that concatenates every four features. ⑤ The visual
features are projected into the language embedding space via a vision-language connector. Finally,
the large language model then integrates these visual and language embeddings to generate responses.

3 METHOD

LEOPARD follows the typical design of decoder-only vision language models (Liu et al., 2023b;
2024a; Li et al., 2024c), including a visual encoder, a vision language connector, and a language
model (LM), as shown in Figure 2 (④⑤). Specially, the input images are first passed through the
visual encoder, which extracts high-level visual features and captures essential semantic information.
These visual features are then projected into the language representation space via the vision-language
connector. After this transformation, the visual tokens are interleaved with the textual tokens, resulting
in a sequence of interleaved text-visual tokens. This interleaved sequence is then fed into the LM,
which processes these inputs in a causal manner, leveraging the contextual dependencies between
text and visual information to generate coherent outputs that align with both modalities.

3.1 MULTI-IMAGE TEXT-RICH INSTRUCTION TURNING DATASET

To train LEOPARD, we construct a large instruction-tuning dataset named LEOPARD-INSTRUCT,
comprising 925K instances, with 739K specifically designed for text-rich, multi-image scenarios.
While we extensively surveyed existing open-source datasets, we only identified 154K usable text-
rich, multi-image samples, which is far from sufficient for effective instruction tuning, as shown
in prior MLLM studies (Jiang et al., 2024; Laurençon et al., 2024b; Li et al., 2024c). To address
this data scarcity, we developed several data collection pipelines to collect high-quality text-rich,
multi-image data, resulting in additional 585K instances. Each instance consists of a set of images
along with corresponding task instructions and responses. The dataset details are presented in Table 1,
and a detailed breakdown of its composition can be found in Appendix A.1.

Documents and Slides are common sources of multi-image data that primarily contain text and
require cross-page context integration to fully understand the information.

4
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These data is collected in three ways. First, we include 69K public multi-page document and slide
datasets (Tito et al., 2022; Landeghem et al., 2023; Zhu et al., 2022; Tanaka et al., 2023), covering a
variety of document types such as scanned handwriting, printed documents, and digital PDFs. Second,
we adapt two single-page document datasets, DocVQA (Mathew et al., 2021) and ArxivQA (Li et al.,
2024d), for multi-image settings. Following Jiang et al. (2024), we randomly merge 2 to 4 single-page
instances by concatenating their respective images and Q-A pairs. Prompts like “in the second image”
are added to direct the model’s focus to the appropriate image. These merged samples help the model
learn how natural language references align with corresponding image features. Third, we collect raw
slides from Sefid et al. (2021) and SlideShare3, and use GPT-4o to generate Q-A pairs and reasoning
steps. We show the prompt to GPT in Figure 5. Upon manually reviewing 100 instances annotated by
GPT-4o, we found an accuracy rate over 90%, indicating high annotation quality.

Table 1: Data statistics of the LEOP-
ARD-INSTRUCT dataset.

Data Types # Instances

Total Samples 925K
Single-image 186K (20.10%)
Multi-image 739K (79.89%)
*Public 154K (16.65%)
*New (Ours) 585K (63.24%)

Rationales
*Existing 214K (23.14%)
*New (Ours) 250K (27.02%)
*None 461K (49.84%)

Domains
Documents 192K (20.76%)
Slide Decks 16K (1.73%)
Tables 48K (5.19%)
Charts 353K (38.16%)
Webpages 55K (5.95%)
Others 261K (28.22%)

Tables and Charts provide highly organized, structured quan-
titative information, often involving complex data patterns and
relationships, requiring the integration of both visual and textual
elements for accurate interpretation.

To address the lack of instruction tuning data involving
multiple tables or charts, we use the following strategies.
First, we include 21K open-source multi-chart and multi-table
datasets (Zhao et al., 2022; Pal et al., 2023), originally stored
in JSON or DataFrame formats. We programmatically render
these tables as images, converting them into multimodal data.
Details of rendering can be found in Appendix A.3 Second,
We utilize the TableGPT (Li et al., 2024e) dataset and split
each table into multiple sub-tables, then convert them into fig-
ures, thereby creating multi-modal, multi-table instruction data.
Third, we apply the same merging strategy used for combin-
ing single-page documents to synthesize multi-image datasets.
This approach integrates several single-chart datasets, includ-
ing ChartGemma (Masry et al., 2024), ChartQA (Masry et al.,
2022), DVQA (Kafle et al., 2018), and FigureQA (Kahou et al.,
2018). Besides, we generate new multi-chart data from social
reports of the Pew Research Center4 that feature multiple interrelated charts within the articles under
the same topic. We download charts from the website and use GPT-4o to create 20K Q-A pairs that
require multi-chart understanding.

Webpage Snapshots consist of sequential images representing web pages, providing visual context
for user interactions and task flows. Understanding webpage is a critical skill for MLLMs to evolve
into fully autonomous web agents (Deng et al., 2023; He et al., 2024). To collect and standardize
relevant data, we format several web-related multimodal datasets into a Q-A structure as follows:

1. Web action prediction data: We include Mind2Web (Deng et al., 2023) and OmniACT (Kapoor
et al., 2024), where we divide long web snapshots into multiple sub-figures, and plot bounding
boxes based on the coordinates of web elements. Then GPT-4o is used to convert the original
action data into a Q-A format, where the task is to identify the correct element to interact with.

2. Web-based classification data: We incorporate WebScreenshots (Aydos, 2020), WebVision (Li
et al., 2017), and WebUI (Wu et al., 2023a). We utilize the web snapshots in these datasets and
employ GPT-4o to generate Q-A pairs on webpage understanding, including chain-of-thought
reasoning steps. The prompting details are provided in Figure 6.

Augmenting with Rationales. In contrast to single-image tasks, multi-image scenarios typically
require MLLMs to integrate information across multiple images, making cross-image reasoning
difficult to train when only the final answer is provided (Zheng et al., 2023; Hu et al., 2023). To
address this, we employ GPT-4o to generate chain-of-thought (CoT) rationales for inherently multi-
image datasets (excluding those formed by merging single-image data) that lack CoT annotations.
This results in 250K instances with GPT-annotated reasoning, with the prompt detailed in Figure 7.

3https://www.slideshare.net
4https://www.pewresearch.org
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Other Domains. We also include datasets from various other domains such as maps (MapQA,
Chang et al., 2022), infographics (InfographicVQA, Mathew et al., 2022), mathematical diagrams
(MathV360K, Shi et al., 2024), and abstractive diagrams (IconQA, Lu et al., 2021). We also
incorporate mixed-domain datasets for text-rich images, including LLaVAR (Zhang et al., 2023),
Monkey, Li et al., 2024f, and mPlugDocReason (Hu et al., 2024a). We remove duplicate subsets from
these mixed-domain datasets. Among these datasets, 64K samples consist of multi-image data, while
the remaining are single-image samples. To preserve natural image understanding ability, we add
313K samples from ShareGPT4V (Chen et al., 2023), an instruction dataset for natural images.

3.2 ADAPTIVE HIGH-RESOLUTION MULTI-IMAGE ENCODING

Image resolution significantly influences the visual perception and understanding capabilities of
MLLMs, particularly when processing text-rich images. Low-resolution images often cause printed
text to become blurred or unreadable, resulting in misinterpretations, perception errors, and visual
hallucinations. The visual resolution of most existing MLLMs is determined by their pre-trained
visual encoders, which are typically limited to low resolutions such as 224 × 224 or 336 × 336
pixels (Liu et al., 2023a; Lin et al., 2023; Jiang et al., 2024). These low-resolution constraints can
hinder MLLMs to accurately understand textual information embedded within images.

To overcome these limitations, a natural solution is dividing a high-resolution image into multiple
smaller sub-images, each of which is independently processed by the model’s visual encoder (Liu
et al., 2024a; Dong et al., 2024). This partitioning allows for the extraction of more fine-grained
visual details, making it possible to capture small or densely packed textual elements. However, a
major drawback of this approach is that it significantly increases the length of visual feature sequence.
When applied to scenarios involving multiple image inputs, the feature sequences are easily exceeding
the model’s maximum sequence length limit. To address the issue, we follow the image-splitting idea
and propose a novel adaptive high-resolution multi-image encoding strategy as follows.

Image Allocation Computing: To prevent the number of sub-image visual features from exceeding
the LLM’s maximum sequence length, we first set a budget M 5 for the total number of sub-images.
We allocate this budget proportionally to each input image based on their original sizes. For each
image i with dimensions hi × wi, we calculate the initial number of sub-images Si as:

Si =

⌊
hi

v

⌋
×
⌊wi

v

⌋
, (1)

where v is the resolution of visual encoder (e.g., v = 364 pixels). If the total number of patches
satisfies

∑
i Si ≤ M , we proceed with these sub-image counts. Otherwise, we scale down these

counts proportionally using a scaling factor α = M∑
i Si

, resulting in adjusted sub-image counts:

S′
i = ⌊αSi⌋ . (2)

Image Partitioning: For each image, we perform a grid search over possible number of rows r
and columns c (where 1 ≤ r, c ≤ S′

i and r × c ≤ S′
i) to find the optimal cropping configuration

that maximizes the effective resolution within the allocated sub-images (Li et al., 2024a). This
configuration results in the original image being padded and resized to a target resolution of (h′

i =
r × v, w′

i = c× v). We then divide the image into r × c sub-images of size (v × v). Additionally,
the original image is directly resized to (v × v), which provides a global view of the visual content.

Image Encoding: Most vision encoders transform an image into a sequence of visual features
v ∈ RL×d, where L represents the sequence length and d denotes the feature dimension. Typically,
L is in the hundreds, e.g., the SigLIP encoder yields a visual feature sequence in the shape of
L = 676 and d = 1152 for the input image. Given that most LLMs have a sequence length of
only 8K tokens, this implies that without any text input, the model can encode at most 12 images,
which severely limits the image allocation budget. To mitigate this issue, inspired by the pixel
shuffling operation (Chen et al., 2024a; Laurençon et al., 2024), we apply a similar strategy to the
visual features. Specifically, we concatenate n adjacent visual features along the feature dimension,

5M is a hyperparameter, and we provide experiments on varying different M in Figure 3.
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Table 2: A detailed comparison of the model training details between baseline models and LEOPARD,
including image resolution, vision encoder, backbone LLM, number of parameters (Param.), pre-
training (PT.) data size, and instruction tuning (IT.) data size of baselines. AnyRes denotes the
resolution selecting method proposed by Liu et al. (2024a) and Adapt HR. represents the proposed
adaptive high-resolution multi-image encoding strategy.

Models Visual Encoder Resolution Backbone LLM Param. PT. IT.

Otter-9B (Li et al., 2023) CLIP ViT-L 2242 LLaMA-7B 9B 30M 5.1M
Emu2-Chat (Sun et al., 2023) EVA-02-CLIP 4482 LLaMA-33B 37B - 160M
MM1-7B-Chat (McKinzie et al., 2024) CLIP ViT-H 3782 - 7B - 1.5M
VILA1.5-8B (Lin et al., 2023) SigLIP 3842 LLaMA3-8B 8B 50M 1M
mPlug-DocOwl-1.5 (Hu et al., 2024a) CLIP ViT-L 4482 (x9 crops) LLaMA-7B 8B 4M 1M
Idefics2-8B (Laurençon et al., 2024b) SigLIP 9802 Mistral-7B 8B 350M 20M
LLaVA-NeXT-Inter (Li et al., 2024c) SigLIP AnyRes Qwen1.5-7B 7B 1.3M 1.2M
Mantis-LLaVA (Jiang et al., 2024) SigLIP 3842 LLaMA3-8B 8B 0.5M 1M
Mantis-Idefics2 (Jiang et al., 2024) SigLIP 9802 Mistral-7B 8B 350M 1M

LEOPARD-LLaVA (Ours) SigLIP Adapt HR. LLaMA3.1-8B 8B 0.5M 1.2M
LEOPARD-Idefics2 (Ours) SigLIP 9802 Mistral-7B 8B 350M 1.2M

effectively reducing the sequence length by a factor of n. This results in a compressed visual feature
sequence v′ ∈ RL

n×nd. By decreasing the sequence length in this way, we are able to accommodate
more images within the sequence length constraints of the LLM. To incorporate visual features into
the LLM, we first project the encoded visual feature sequences into the textual input embedding
space using a vision-language connector. Since the partitioned images yield feature sequences of
variable length, we introduce special tokens into the textual input to demarcate the image features to
help the model distinguish visual features. Specifically, the sequence for the i-th image is formatted
as: {Image i: <Img> <Visual Feature Sequence> < /Img>}, where <Img> and < /Img> are
special tokens. An illustrative example of this sequence formatting is provided in Figure 2.

4 EXPERIMENT

4.1 IMPLEMENTATION DETAILS

Model Architecture. We train our models on two base architectures: LLaVA (Liu et al., 2023a) and
Idefics2 (Laurençon et al., 2024b). For LEOPARD-LLaVA, we use SigLIP-SO-400M (Zhai et al.,
2023) with 364× 364 image resolutions as the visual encoder since it supports larger resolution than
the commonly used 224× 224 resolution CLIP visual encoder (Radford et al., 2021). Each image
is encoded into a sequence of 26 × 26 = 676 visual features under a patch size of 14. With the
visual feature pixel shuffling strategy, each image is further processed into a sequence of 169 visual
features. We limit the maximum number of images (M ) in each sample to 50, which produces up
to 8, 450 visual features in total. Following Liu et al. (2023a), we adopt a two-layer MLPs as the
visual-language connector. We use LLaMA-3.1 (Meta et al., 2024) as the LM.

For LEOPARD-Idefics2, we follow the architecture of Idefics2-8B which uses SigLIP-SO-400M as the
visual encoder but increases its image resolution to 980× 980 to make the text legible. The features
outputted by the visual encoder are compressed with a feature resampler into 64 tokens per image.
Idefics2-8B adopts the Mistral-7B (Jiang et al., 2023) as the LM.

Training Details. When training LEOPARD-LLaVA, we first train the visual-language connector
using LLaVA’s 558K multimodal pre-training dataset. Subsequently, we fine-tune the model (with
both the connector and the LM unfrozen) using our LEOPARD-INSTRUCT data. As for LEOPARD-
Idefics2, it is pre-trained on a dataset comprised of over 350M multimodal samples. Given the
computational challenges of reproducing such extensive pre-training, and to ensure a fair comparison
with baselines that utilize the pre-trained Idefics2 checkpoint, we directly adopt Idefics2’ visual
feature resampler and fine-tune the model on the LEOPARD-INSTRUCT dataset.

We train both LEOPARD-LLaVA and LEOPARD-Idefics2 on 64 A100-40G GPUs with a global batch
size of 128. We use the AdamW optimizer with β1 = 0.9, β2 = 0.999. Following Jiang et al.
(2024), we use a learning rate of 1 × 10−5 for LEOPARD-LLaVA and 5 × 10−6 for LEOPARD-
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Table 3: Experiment results of baseline models and LEOPARD on 8 benchmarks of text-rich images.
We use abbreviated benchmark names due to space limits. MVQAD: Multi-page DocVQA, MCQA:
MultiChartQA, MH: MultiHiertt, VQAT : TextVQA, VQAD: DocVQA, VWB: VisualWebBench.
Following (Tito et al., 2022), for MVQAD, DUDE, and VQAD, we use average normalized leven-
shtein similarity (ANLS) as the evaluation metric. For others, accuracy (Acc.) is used as the metric,
which measures whether the predicted answer matches exactly with any of the target answers.

Models
Text-Rich Multi-Image Text-Rich Single-Image

MVQAD DUDE SlideVQA MCQA MH Multi Avg. VQAT VQAD VWB Avg.

Otter-9B 0.17 0.15 5.95 1.08 0.14 1.50 23.18 3.53 10.20 12.30
Emu2-Chat 17.58 13.79 0.60 2.40 0.72 7.02 66.60 5.44 18.17 30.07
MM1-7B-Chat - - - - - - 72.80 - - -
VILA-LLaMA3-8B 30.75 19.75 24.72 1.87 3.66 16.15 66.30 30.38 23.37 40.02
mPlug-DocOwl-1.5 35.85 16.94 4.54 0.26 0.86 11.69 68.60 82.20 29.80 60.20
Idefics2-8B 46.67 23.06 25.14 2.59 9.89 21.47 70.40 67.30 23.76 53.82
LLaVA-NeXT-Inter 39.92 24.04 23.46 14.34 3.55 21.06 62.76 75.70 21.36 53.27
Mantis-LLaVA 31.89 17.73 16.81 9.72 3.46 15.92 59.20 39.02 17.88 38.70
Mantis-Idefics2 51.61 27.74 24.02 12.97 5.48 24.36 63.50 54.03 22.47 46.67

LEOPARD-LLaVA 53.90 35.94 23.83 9.68 10.76 26.82 67.70 68.07 24.91 53.56
LEOPARD-Idefics2 66.06 40.74 34.93 18.03 10.09 33.97 80.40 74.79 25.60 60.26

Idefics2 to protect its pretrian knowledge. We use a cosine learning rate scheduler with a linear
learning rate warm-up for the first 3% steps. All model variants are trained 1 epoch under the same
hyperparameters. It takes around 120 GPU days to train LEOPARD under both settings.

4.2 BASELINE MODELS

We compare LEOPARD against a range of existing open-source MLLMs that support multi-image
inputs. The baseline models included in our comparison are Otter-9B (Li et al., 2023), Emu2-Chat-
34B (Sun et al., 2023), MM1-7B-Chat (McKinzie et al., 2024), Mantis (Jiang et al., 2024), VILA (Lin
et al., 2023), Idefics2-8B (Laurençon et al., 2024b), and LLaVA-NeXT-Interleave (Li et al., 2024c).

Table 4: Experimental results on general domain benchmarks. We
abbreviate the Image split of ScienceQA as SQAI .

Models MIRB MiBench MMMU MathVista SQAI Avg.

Otter-9B 20.74 43.72 30.89 22.00 60.44 35.55
Emu2-Chat 36.02 58.93 34.10 30.40 65.69 45.03
MM1-7B-Chat - - 37.00 35.90 72.60 -
VILA-LLaMA3-8B 40.87 53.70 36.90 35.40 79.90 49.35
mPlug-DocOwl-1.5 25.39 40.80 35.44 29.50 64.40 39.11
Idefics2-8B 33.02 46.39 42.90 45.00 89.04 51.27
LLaVA-NeXT-Inter 44.38 74.52 38.44 32.10 72.63 52.41
Mantis-LLaVA 40.76 59.96 40.10 34.40 74.90 50.02
Mantis-Idefics2 41.80 56.80 41.10 40.40 81.30 52.28

LEOPARD-LLaVA 42.00 60.80 43.00 45.50 85.57 55.37
LEOPARD-Idefics2 41.38 61.74 40.11 44.80 90.38 55.68

Models that only support a sin-
gle image input are excluded
from our comparisons, except
for mPlug-DocOwl-1.5 (Hu
et al., 2024a), as it is primarily
trained on visual document data
and demonstrates strong capa-
bilities on text-rich image tasks.
Table 2 demonstrates a detailed
comparison of the model train-
ing details of between baseline
models and our proposed LEOP-
ARD, which highlights their ar-
chitecture, image resolution and
training data differences.

4.3 EVALUATING BENCHMARKS

We evaluated LEOPARD and baseline methods across three categories of vision-language tasks
on (1) single text-rich image evaluation, (2) multiple text-rich images evaluation, and (3) general
reasoning evaluation. Benchmarks for (1) include TextVQA (Singh et al., 2019b), DocVQA (Mathew
et al., 2021), and VisualWebBench (Liu et al., 2024c). Benchmarks for (2) include Multi-page
DocVQA (Tito et al., 2022), DUDE (Landeghem et al., 2023), SlideVQA (Tanaka et al., 2023),
Multihiertt (Zhao et al., 2022), and MultiChartQA (Anonymous, 2024), which cover a diverse
range of typical multi-image tasks, such as document understanding and slide question answering.
Benchmarks for (3) include MMMU (Yue et al., 2024), MathVista (Lu et al., 2024), ScienceQA (Saikh
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Table 5: Ablation studies on LEOPARD-LLaVA from four different perspectives: (1) evaluating
the impact of Adaptive High-Resolution Encoding, (2) pre-training LLaVA by initializing with
checkpoints from either LLaMA-3 or LLaMA-3.1 , and (3) examining the impact of using
different data domains for instruction tuning, including doc , chart , and web .

Ablation Settings
Text-Rich Multi-Image Text-Rich Single General

MVQAD DUDE SlidesVQA Multi Avg. TextVQA DocVQA MMMU MathVista

(⋆) Our Best Setting (as in Table 3): LLaMA-3.1 + Adaptive + 1 1 1
LEOPARD-LLaVA 53.90 35.94 23.83 37.89 67.70 68.07 43.00 45.50

(1) Effect of Adaptive High-Resolution Encoding: LLaMA-3.1 + 1 1 1
- w/o Adaptive 40.44 26.16 20.93 29.17(8.7↓) 60.18 44.69 41.00 42.40

(2) Effect of Backbone LLMs: LLaMA-3 + Adaptive + 1 1 1
- with LLaMA-3 .1 48.66 32.64 25.75 35.68(2.2↓) 67.08 54.92 41.22 42.10

(3) Effect of Data Domains: LLaMA-3.1 + Adaptive
- with chart web 43.79 29.50 23.10 32.13(5.7↓) 66.78 56.60 40.67 44.80
- with doc web 54.33 35.65 18.73 36.23(1.7↓) 66.86 50.78 41.89 39.60
- with doc chart 54.62 35.70 20.79 37.02(0.9↓) 67.40 67.82 41.78 44.00

et al., 2022), MIRB (Zhao et al., 2024) and MiBench (Liu et al., 2024b), which evaluate MLLMs
from different perspectives, including world knowledge, mathematics, and scientific reasoning etc.

4.4 MAIN EXPERIMENTAL RESULTS

Question 1: How does LEOPARD compare to state-of-the-art MLLMs on vision-language tasks?

LEOPARD achieves outstanding performance on text-rich, multi-image benchmarks, as shown
in Table 3. Notably, both LEOPARD-LLaVA and LEOPARD-Idefics2 significantly outperform all
baselines. LEOPARD-Idefics2 becomes the strongest open-source MLLM in this area, achieving an
average improvement of 9.61 points over the previous best performance.

In single-image text-rich scenarios, LEOPARD outperforms several recent strong models, including
VILA and LLaVA-NeXT. LEOPARD even achieves slightly higher average scores than the state-of-
the-art mPlug model, despite mPlug being trained on 4M single-image data while LEOPARD is tuned
on <200K. This demonstrates that training on multi-image data from LEOPARD-INSTRUCT also
benefits model performance on single-image tasks.

In addition, we evaluate LEOPARD on general-domain benchmarks which contain both multi-image
and single-image instances. As shown in Table 4, LEOPARD outperforms other open-source MLLMs
on these benchmarks. Remarkably, LEOPARD surpasses Mantis, its counterpart multi-image model
trained on the same foundational architecture and a comparable volume of data. This performance
demonstrates the high quality and diversity of the LEOPARD-INSTRUCT dataset, which effectively
preserves our model’s general image understanding capabilities.

Question 2: Is the one-million text-rich multi-image dataset effective for instruction tuning?

Mantis-Idefics2 is trained on a combination of natural multi-image data and text-rich single-image
data. However, LEOPARD-Idefics2 outperforms Mantis-Idefics2 by 12.8 points on text-rich multi-
image benchmarks. This disparity indicates that developing strong multi-image text-rich capabilities
through cross-domain transfer, such as with Mantis data, presents significant challenges. This finding
underscores the importance of optimizing LEOPARD using high-quality, diverse, and well-curated
multi-image text-rich datasets that are specifically tailored for complex multi-image scenarios.

Furthermore, LEOPARD-Idefics2 surpasses its base model, Idefics2, by 6.4 points across three single-
image text-rich benchmarks, though Idefics2 is trained on over 20M instruction data that includes
text-rich tasks like DocVQA and TextVQA. This highlights that the LEOPARD-INSTRUCT provides
unique advantages to MLLMs that are not adequately addressed by existing datasets.

Question 3: Does Adaptive high-resolution multi-image encoding improve MLLM performance?

To assess the effectiveness of the proposed adaptive high-resolution multi-image encoding, we
compared LEOPARD with a variant that excludes this feature (i.e., w/o Adaptive in Table 5). We
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Figure 3: Impact of the sub-image budget M on the resulting model across four benchmarks. w/o
means original images are not partitioned into sub-images.

notice a significant performance decline across all text-rich benchmarks, particularly on document-
related benchmarks like DocVQA (-23.4), Multi-page DocVQA (-13.5), and DUDE (-9.8). This
observation supports our hypothesis that high-resolution image encoding is especially beneficial for
text-rich images, particularly those with dense text content such as document pages.

4.5 MORE ANALYSIS

Question 4: How does data from different domains contribute to instruction tuning?

LEOPARD-INSTRUCT mainly cover three main domains, i.e., documents & slides ( doc ), tables
& charts ( chart ), and websites ( web ). To assess the impact of data from different domains,
we conduct ablation studies on three variants of LEOPARD, with the results presented in Table 5
Removing any part of the training data results in performance degradation. The most significant
drop occurs when we exclude document data while removing web data leads to a slight decrease.
However, the mixed-domain datasets, such as LLaVAR and mPlugDocReason, also contain data
in these domains which are challenging to isolate and ablate. This may contribute to the relatively
preserved performance even after the ablation of certain data sources.

Question 5: What is the influence of different image budgets in adaptive multi-image encoding?

In our adaptive multi-image encoding module, we define a budget M for the maximum number
of sub-images that the model can process. To evaluate the impact of such image partitioning, we
train LEOPARD using different values of M : 25, 50, 75, as well as a baseline setting where no
image partitioning is applied and the number of sub-images equals the number of original images.
According to the results plotted in Figure 3, model performance peaks or plateaus when M is set
around 50. Thus, we adopt 50 as the default value for training LEOPARD. These results show that
increasing image numbers does not consistently improve performance, as input sequences can become
excessively long and even exceed the model’s sequence length limit.

Question 6: How does the backbone language model affect the performance?

To ensure a fair comparison with multi-image competitor models, Mantis-LLaVA and VILA1.5,
we also evaluate a variant of LEOPARD using LLaMA-3 instead of LLaMA-3.1 , aligning its
backbone language model architecture with these two baselines. According to Table 5, this sub-
stitution results in only a slight drop in average performance on text-rich multi-image tasks (2.2↓).
Nevertheless, comparing with results in Table 3, LEOPARD-LLaMA-3 still substantially outperforms
both baselines in all tasks, such as Multi-page DocVQA (+16.8 over Mantis and +17.9 over VILA)
and DUDE (+14.9 over Mantis and +12.9 over VILA). These results indicate that LEOPARD’s superior
performance is not simply a result of the upgraded backbone large language models.

5 CONCLUSION

In this paper, we introduce LEOPARD, a novel MLLM specifically designed for text-rich, multi-image
tasks. LEOPARD is equipped with two key innovations: (1) LEOPARD-INSTRUCT, a large-scale
instruction-tuning dataset that encompasses a wide range of text-rich, multi-image instructions, and (2)
an adaptive image encoding module capable of processing multiple high-resolution images efficiently.
Our experimental results across diverse benchmarks highlight LEOPARD’s superior performance
compared to existing open-source MLLMs, particularly in text-rich multi-image scenarios. Further
analysis and ablation studies underscore the effectiveness of both the collected dataset and adaptive
encoding strategy, solidifying LEOPARD’s contribution to multimodal research.
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Borchmann, Mickaël Coustaty, Sien Moens, Michal Pietruszka, Bertrand Anckaert, Tomasz
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A APPENDIX

A.1 LEOPARD-INSTRUCT

To train LEOPARD, we created a large instruction-tuning dataset, LEOPARD-INSTRUCT, with 925K
instances, including 739K designed for text-rich, multi-image scenarios. Despite surveying existing
datasets, we found only 154K suitable text-rich, multi-image samples – insufficient for effective
instruction tuning, which is far from sufficient for effective instruction tuning, as shown in prior
MLLM studies (Jiang et al., 2024; Laurençon et al., 2024b; Li et al., 2024c). To overcome this
limitation, we developed several data collection pipelines to collect high-quality text-rich, multi-image
data, resulting in additional 585K instances.

Table 6 provides a detailed breakdown of the composition of the LEOPARD-INSTRUCT dataset. This
table includes the name, domain, and sample size of sub-datasets. Additionally, it specifies how we
construct multi-image samples, the number of images per sample, and the presence of rationales.

Table 6: Details of the constructed LEOPARD-INSTRUCT dataset. Images denotes the image number
of one sample in each dataset.

Dataset Domain Multi-image Images Rationales #Samples (K)
ArxivQA (Li et al., 2024d) Doc Reformed 1-3 Existing 81
DUDE (Landeghem et al., 2023) Doc Public 1-50 Augmented 23
MP-DocVQA (Tito et al., 2022) Doc Public 1-20 Augmented 36
DocVQA (Mathew et al., 2021) Doc No 1 None 39
TAT-DQA (Zhu et al., 2022) Doc Reformed 2-5 Augmented 13
SlidesGeneration (Sefid et al., 2021) Slides Repurposed 1-20 Augmented 3
SlidesVQA (Tanaka et al., 2023) Slides Public 20 Augmented 10
Slideshare Slides Collected 2-8 Augmented 3
Multihiertt (Zhao et al., 2022) Table Public 3-7 Existing/Augmented 15
MultiTabQA (Pal et al., 2023) Table Public 1-2 Augmented 6
TableGPT (Li et al., 2024e) Table Split 2 Existing 4
TabMWP (Lu et al., 2023) Table No 1 Existing 23
ChartGemma (Masry et al., 2024) Chart Reformed 1-4 Existing 65
DVQA (Kafle et al., 2018) Chart Reformed 1-3 None 200
FigureQA (Kahou et al., 2018) Chart Reformed 1-2 None 36
ChartQA (Masry et al., 2022) Chart Reformed 2 Augmented 32
Pew MultiChart Chart Collected 2 Augmented 20
Mind2Web (Deng et al., 2023) Web Split 1-5 None 7
WebsiteScreenshots (Aydos, 2020) Web No 1 Augmented 2
Omniact (Kapoor et al., 2024) Web No 1 None 1
RICO (Hsiao et al., 2024) Web Reformed 1-4 None 25
WebVision (Li et al., 2017) Web No 1 Existing 1
WebUI (Wu et al., 2023a) Web No 1 None 19
LLaVAR (Zhang et al., 2023) Mix No 1 Existing 15
MathV360k (Shi et al., 2024) Mix No 1 None 38
Monkey (Li et al., 2024f) Mix Reformed 1-3 None 92
MPlugDocReason (Hu et al., 2024a) Mix No 1 Existing 25
IconQA (Lu et al., 2021) Other Public 1-6 Augmented 64
InfographicVQA (Mathew et al., 2022) Other No 1 Augmented 23
MapQA (Chang et al., 2022) Other Reformed 1-2 None 4

Total - - - - 925

We draw a chart to illustrate the data composition of LEOPARD-INSTRUCT dataset 4.
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Figure 4: An illustration of the proportion of sub-datasets and domains in the proposed dataset.

A.2 PROMPTS

We specify the prompt used during the data construction process as follows:

You are given a set of images from a slides.  Please generate 10 meaningful and distinct questions about the content 
of the slides.

You are supposed to generate the questions, the answers, and detailed explanations for the answers.
The questions should be clear, concise, and straightforward. The answers should be a few words or phrases.

You should ask questions about the details of the slides, including the tilte, the authors, and the figures and tables on 
the slides.

The output format should be in JSON format, with the following structure:
 [{"Question_0":"...","Answer_0":"...","Rationale_0":"..."},
{"Question_1":"...","Answer_1":"...","Rationale_1":"..."}, ...]

Slides Q-A Generation Prompt

Figure 5: The prompt used for generating Q-A pairs with rationales for slide decks data.
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You are given a screenshot of a website. Please generate 10 meaningful and distinct questions about the screenshot. 
You should pay attention to the textual content, the layout, and the elements on the web screenshot.
 
You are supposed to generate the questions, the answers, and detailed explanations for the answers. The questions 
should be clear, concise, and straightforward. The answers should be a few words or phrases. 

You should ask questions about the webpage description, the elements on the webpage, and the uses of buttons on 
the webpage.

The output format should be in JSON format, with the following structure:
[{"Question_0":"...","Answer_0":"...","Rationale_0":"..."},
{"Question_1":"...","Answer_1":"...","Rationale_1":"..."}, ...]

Webpage Q-A Generation Prompt

Figure 6: The prompt used for generating Q-A pairs with rationales for webpage data.

You are an expert in multi-page visual questions.
Based on the following question and answer, please generate a rationale that derives the answer. 
### Question: {question}
### Answer: {answer}
### Rationale: 

Rationale Augmentation Prompt

Figure 7: We use this prompt for the generation of chain-of-thought rationales given original question,
answer, and images.

A.3 DETAILS OF TABLE RENDERING

To convert the textual table dataset into a multimodal dataset, the JSON or DataFrame format
data is transformed into tabular images using Python. We utilize three Python packages, i.e.,
dataframe image6, pandas7, and matplotlib8 with various styling to enhance the diversity of the
rendered images. To ensure the clarity and legibility of the plotted images, the original data is filtered
by excluding any tables that contain more than 20 rows. This threshold was set to maintain the
recognizability of the resulting images.

A.4 QUALITATIVE RESULTS

We show two examples to give an illustrative demonstration of the model’s performance. As can
be seen from Figure 8, LEOPARD can not only capture detailed data in multiple tables precisely
but also perform cross-table calculations, therefore it can answer the complex question correctly.
Another example is demonstrated in Figure 9. LEOPARD can accurately perceive the prominent
information under a high-resolution four-page document, demonstration effective text-rich abilities
under multi-image scenarios.

6https://github.com/dexplo/dataframe_image.
7https://pandas.pydata.org/.
8https://matplotlib.org/.
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LEOPARD: To find the average value of Fixed maturities, available-for-sale ("AFS"), at fair value and 
Balance, beginning of period in 2013, we need to follow these steps:

1. Identify the values from the images:
   - Fixed maturities, available-for-sale ("AFS"), at fair value for Amount in 2013: $62,357 (from the fourth 
image).
   - Balance, beginning of period in 2013: $325 (from the first image).

2. Add these two values together:
   [62,357 + 325 = 62,682]

3. Divide the sum by 2 to find the average:
   [\frac{62,682}{2} = 31,341]

Thus, the average value of Fixed maturities, available-for-sale ("AFS"), at fair value and Balance, begin-
ning of period in 2013 is $31,341.

Answer: 31341.0.

Image 1

Question: What is the average value of Fixed maturities, available-for-sale ("AFS"), at fair value for 
Amount and Balance, beginning of period in 2013 ?

Image 2 Image 3

Image 4

Figure 8: An example of multi-table reasoning of LEOPARD.
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Question: Who is the author of the book Design And Engineering Of Production Systems?

LEOPARD: The author of the book 'Design and Engineering of Production Systems' is listed on the 
first page under the title 'Professors' Examination Problems and Solutions'. The name 'Farhad Azadi-
an' is mentioned as the author. The answer is Farhad Azadian

Multi-Page Document

Figure 9: An example of multi-page document question answering of LEOPARD.
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