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Abstract

Sharpness-aware minimization (SAM) improves generalization of various deep
learning tasks. Motivated by popular architectures such as LoRA, we explore the
implicit regularization of SAM for scale-invariant problems involving two groups of
variables. Instead of focusing on commonly used sharpness, this work introduces
a concept termed balancedness, defined as the difference between the squared
norm of two variables. This allows us to depict richer global behaviors of SAM. In
particular, our theoretical and empirical findings reveal that i) SAM promotes bal-
ancedness; and ii) the regularization on balancedness is data-responsive – outliers
have stronger impact. The latter coincides with empirical observations that SAM
outperforms SGD in the presence of outliers. Leveraging the implicit regularization,
we develop a resource-efficient SAM variant, balancedness-aware regularization
(BAR), tailored for scale-invariant problems such as finetuning language models
with LoRA. BAR saves 95% computational overhead of SAM, with enhanced test
performance across various tasks on RoBERTa, GPT2, and OPT-1.3B.

1 Introduction

Sharpness-aware minimization (SAM) is emerging as an appealing optimizer, because it enhances
generalization performance on various downstream tasks across vision and language applications
(Foret et al., 2021; Chen et al., 2022; Bahri et al., 2022). The success of SAM is typically explained
using its implicit regularization (IR) toward a flat solution (Wen et al., 2023a).

However, existing results only characterize sharpness/flatness near local minima (Wen et al., 2023a).
Little is known about early convergence, despite its crucial role in SAM’s implicit regularization
(Agarwala and Dauphin, 2023). In addition, theoretical understanding of SAM highly hinges upon
the existence of positive eigenvalues of Hessians (Wen et al., 2023a), leaving gaps in nonconvex
scenarios where the Hessian can be negative definite. The limitations above lead to our first question
(Q1): can we broaden the scope of implicit regularization to depict global behaviors in SAM?

Moreover, scenarios where SAM popularizes often involve certain form of data anomalies, such as
outliers and large data variance. SAM has provable generalization benefits on sparse coding problems
in the small signal-to-noise ratio (SNR) regime (Chen et al., 2023). Remarkable performance of SAM
is also observed under distributional shifts, e.g., domain adaptation (Wang et al., 2023), meta-learning
(Abbas et al., 2022), and transfer learning in language models (Bahri et al., 2022; Sherborne et al.,
2023). Evidences above motivate our second question (Q2): can implicit regularization of SAM
reflect its enhanced performance under data anomalies?

This work answers both Q1 and Q2 within a class of scale-invariant problems. The focus on scale-
invariance is motivated by its prominence in deep learning architectures. Consider variables x ∈ Rd1
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Figure 1: Implicit regularization of SAM on balancedness. The losses for NOP and OP are E[‖xy>−
(A + αN)‖2] and E[‖x>y− (a+ αn)‖2], respectively. Here, A is the ground truth matrix, N is the
Gaussian noise, and α controls the SNR. Left of (a) and (b): |‖xt‖2 − ‖yt‖2| vs. iteration. Right of
(a) and (b): |‖gxt

‖2 − ‖gyt
‖2| vs. iteration, where (gxt

,gyt
) denotes stochastic gradients.

and y ∈ Rd2 , both in high-dimensional space. The problems of interest can be categorized into
non-overparametrization (NOP) and overparametrization (OP), based on whether the dimension of
variables (d1 + d2) is greater than dimension of dom f ,

NOP: min
x,y

fn(xy>) = Eξ∼D
[
fξn(xy>)

]
, (1a)

OP: min
x,y

fo(x
>y) = Eξ∼D

[
fξo (x>y)

]
. (1b)

Here, d1 = d2 is assumed for OP, and D denotes the training data. For both cases, the losses are
nonconvex in (x,y). Scale-invariance refers to that (αx,y/α) share the same objective value ∀α 6= 0.
It naturally calls for implicit regularization from optimization algorithms to determine the value of
α. We focus on two-variable problems in the main text for simplicity and generalize the results to
multi-layer cases in the appendix. Problems (1a) and (1b) are inspired by widely-adopted modules in
deep learning, where low rank adapters (LoRA) for finetuning language models is NOP, and softmax
in attention falls in OP framework (Hu et al., 2022; Vaswani et al., 2017).

This work studies SAM’s implicit regularization on balancedness, defined as Bt = 1
2

(
‖xt‖2−‖yt‖2

)
.

Balancedness is a useful alternative to sharpness for (1) because: i) it enables us to go beyond local
minima and describe the behavior over SAM’s entire trajectory; ii) analyses and assumptions can
be significantly simplified when working with Bt; and, iii) it enables a data-driven perspective for
understanding SAM. Building on balancedness, we answer our major questions.

For Q1, we prove that even with imbalanced initialization, SAM drives |Bt| → 0 for OP, while
ensuring a small |Bt| in NOP. In contrast, we also prove that balancedness of SGD is unchanged
over iterations. This clear distinction between SAM and SGD is illustrated in Fig. 1. Thanks to the
adoption of balancedness, our results on implicit regularization have no requirement on the batchsize
compared to (Wen et al., 2023a) and can be extended to explain m-sharpness in (Foret et al., 2021).

Regarding Q2, we present analytical and empirical evidences that data anomalies (e.g., samples
with large noise) have stronger impact on balancedness for both NOP and OP. Fig. 1 showcases an
example where SAM is applied on the same problem with different SNRs. Smaller SNR (i.e., larger
α) promotes balancedness faster. Being more balanced with noisy data also aligns well with previous
studies (Chen et al., 2023; Wang et al., 2023), which show that SAM performs better than SGD under
data anomalies. This data-driven behavior of SAM is well depicted through balancedness.

Our theoretical understanding on balancedness also cultivates practical tools. In particular, we
explicify the implicit regularization of SAM as a data-driven regularizer. When applied on top of,
e.g., SGD, it enables a computationally efficient variant of SAM, balancedness-aware regularization
(BAR), suited for scale-invariant problems such as finetuning language models with LoRA (Hu
et al., 2022). BAR eliminates the need to compute the second gradient in SAM, thereby significantly
reducing overhead in large-scale settings. BAR improves the test performance of LoRA on three
representative downstream tasks on RoBERTa, GPT2, and OPT, while saving 95% computational
overhead of SAM. Moreover, this is the first efficient SAM approach derived from SAM’s implicit
regularization. In a nutshell, our contribution can be summarized as:

2



v Theories. Balancedness is introduced as a new metric for implicit regularization in SAM.
Compared to sharpness, balancedness enables us to depict richer behaviors – SAM favors balanced
solutions for both NOP and OP, and data anomalies have stronger regularization on balancedness.

v Practice. Implicit regularization of SAM is made explicit for practical merits. The resulting
approach, balancedness-aware regularization (BAR), improves accuracy for finetuning language
models with LoRA, while significantly saving computational overhead of SAM.

Notation. Bold lowercase (capital) letters denote column vectors (matrices); ‖ · ‖ stands for `2
(Frobenius) norm of a vector (matrix), and (·)> refers to transpose.

1.1 Related Work

Related topics are streamlined here, with comprehensive discussions deferred to Apdx. A.2.

Scale-invariance in deep learning. Scale-invariant modules are prevalent in modern neural networks,
such as LoRA, ReLU networks, and softmax in attention. However, scale-invariant problems are
not yet fully understood, especially from a theoretical perspective. Neyshabur et al. (2018) develop
scale-invariant PAC-Bayesian bounds for ReLU networks. A scale-invariant SGD is developed in
(Neyshabur et al., 2015), and this approach becomes more practical recently in (Gonon et al., 2024).
Linear neural networks entail scale-invariance and overparametrization simultaneously, and IR of
(S)GD on quadratic loss is established in (Arora et al., 2018; Du et al., 2018; Gidel et al., 2019).
IR of GD for softmax attention in transformers is studied in (Sheen et al., 2024) assuming linearly
separable data. It is pointed out in (Dinh et al., 2017) that sharpness is sensitive to scaling, while our
results indicate that when taking the training trajectory into account, SAM excludes extreme scaling.

Mechanism behind SAM. To theoretically explain the success of SAM, Bartlett et al. (2023) analyze
sharpness on quadratic losses. Wen et al. (2023a) focus on sharpness of SAM near the solution
manifold on smooth loss functions, requiring batchsize to be 1 in the stochastic case. Andriushchenko
and Flammarion (2022) consider sparsity of SAM on (overparametrized) diagonal linear networks on
a regression problem. Chen et al. (2023) study the benign overfitting of SAM on a two-layer ReLU
network. In general, existing studies on SAM’s implicit regularization focus more on sharpness
and do not fully capture scale-invariance. In comparison, our results i) are Hessian-free and hence
sharpness-free; ii) have no constraint on batchsize; and iii) hold for both NOP and OP.

SAM variants. Approaches in (Kim et al., 2022; Kwon et al., 2021) modify SAM for efficiency under
coordinate-wise ill-scaling, while our results suggest that SAM favors balancedness between layers.
Computationally efficient SAM variants are developed through reusing or sparsifying gradients
(Liu et al., 2022; Mi et al., 2022); stochastic perturbation (Du et al., 2022a); switching to SGD
(Jiang et al., 2023); and connecting with distillation (Du et al., 2022b). Our BAR can be viewed as
resource-efficient SAM applied specifically for scale-invariant problems such as LoRA. Different
from existing works, BAR is the first to take inspiration from the implicit regularization of SAM.

2 Preliminaries

This section briefly reviews SAM and then compares sharpness with balancedness. For a smoother
presentation, our main numerical benchmark, LoRA (Hu et al., 2022), is revisited in Sec. 5.

2.1 Recap of SAM

Algorithm 1 SAM (Foret et al., 2021)
1: Initialize: w0, ρ, T, η
2: for t = 0, . . . , T − 1 do
3: Sample ξ to get a minibatchMt

4: Define stochastic gradient onMt as∇ht(·)
5: Find εt = ρ∇ht(wt)/‖∇ht(wt)‖
6: Update via wt+1 = wt − η∇ht(wt + εt)
7: end for

Sharpness-aware minimization (SAM) is de-
signed originally to seek for solutions in flat
basins. The idea is formalized by enforcing
small loss around the entire neighborhood in
parameter space, i.e., minw max‖ε‖≤ρ h(w+
ε), where ρ is the radius of considered neigh-
borhood, and h(w) := Eξ[hξ(w)]. Practical
implementation of SAM is summarized un-
der Alg. 1. It is proved in (Wen et al., 2023a)
that ‖∇ht(w)‖ 6= 0 (in line 5) holds for any ρ under most initialization. Based on this result and
similar to (Dai et al., 2023), we assume that SAM iterates are well-defined.
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Limitation of sharpness. Coming naturally with SAM is the so-termed sharpness, given by S(w) :=
max‖ε‖≤ρ h(w + ε) − h(w). When ‖∇h(w)‖ → 0, S(w) can be approximated using (scaled)
largest eigenvalue of Hessian (Zhuang et al., 2022). This approximation is widely exploited in
literature to study the implicit regularization of SAM. Consequently, most results only hold locally
– behaviors near ‖∇h(w)‖ → 0 are studied. In addition, sharpness (the largest eigenvalue) is not
always informative for scale-invariant problems (1). Consider h(x, y) = xy for example. The
sharpness is 1 for any (x, y) – these points are not distinguishable in terms of sharpness.

2.2 Prelude on Balancedness

Balancedness Bt := 1
2

(
‖xt‖2 − ‖yt‖2

)
turns out to be an intriguing alternative to sharpness on the

scale-invariant problem (1). Being a global metric, balancedness is capable of describing the entire
trajectory of an algorithm, regardless of proximity to critical points or definiteness of Hessian.

How does Bt evolve in different algorithms? To set a comparing benchmark of SAM, we first borrow
results from previous works on SGD. Following implicit regularization literature such as (Arora et al.,
2018, 2019b; Wen et al., 2023a), we consider SGD with infinitesimally small learning rate η → 0 for
the NOP problem (1a)

xt+1 = xt − ηgxt
, yt+1 = yt − ηgyt

. (2)

Theorem 1 ((Arora et al., 2018, 2019a; Ji and Telgarsky, 2019; Ahn et al., 2023)). When applying
SGD on the NOP (1a), the limiting flow with η → 0 satisfies ‖xt‖2 − ‖yt‖2 = ‖x0‖2 − ‖y0‖2 for
all t > 0. In other words, dBt

dt = 0 holds.

Theorem 1 shows that Bt ≡ B0 given η → 0. A graphical illustration can be found in Fig. 1 (a).
Another interesting observation is that given the same initialization, Bt is fixed for SGD regardless of
training datasets. This suggests that SGD is less adaptive to data. A similar result of Theorem 1 can
be established for SGD on OP. The full statement is deferred to Apdx. C.1; see also Fig. 1 (b).

Merits of being balance. Because B0 is preserved, SGD is sensitive to initialization. For example,
(x0,y0) and (2x0, 0.5y0) can result in extremely different trajectories, although the same objective
value is shared at initialization. Most of existing works initialize B0 ≈ 0 to promote optimization
benefits, because the variance of stochastic gradient is small and the local curvature is harmonized
around a balanced solution. Take the stochastic gradient of NOP on minibatchM for example

gx =
1

|M|

[ ∑
ξ∈M

∇fξn(xy>)
]
y, gy =

1

|M|

[ ∑
ξ∈M

∇fξn(xy>)
]>

x. (3)

Assuming bounded variance E[‖ 1
|M|

∑
ξ∈M∇fξn(xy>)−∇fn(xy>)‖2] ≤ σ2, it can be seen that

the variance of [gx,gy] is bounded by σ2(‖x‖2+‖y‖2). In other words, among {(x,y)|xy> = W},
gradient variance is minimized if ‖x‖ = ‖y‖, i.e., being balance. Moreover, block smoothness
parameters Lx

n and Ly
n

1 also hint upon the difficulties for optimization, where large values typically
correspond to slow convergence (Bottou et al., 2018; Nesterov, 2004). With the help of Assumption 1
(in the next subsection), it can be seen that Lx

n = Ln‖y‖2 and Ly
n = Ln‖x‖2. In other words, a large

|Bt| implies difficulty for optimizing one variable than the other. For these reasons, balancedness is
well-appreciated in domains such as matrix factorization/sensing – a special case of (1a) (Tu et al.,
2016; Bartlett et al., 2018; Du et al., 2018; Ge et al., 2017). It is also observed that balanced neural
networks are easier to optimize relative to unbalanced ones (Neyshabur et al., 2015).

2.3 Assumptions and Prerequisites

To gain theoretical insights of scale-invariant problems in (1), we assume that the loss has Lipschitz
continuous gradient on dom f following common nonconvex optimization and SAM analyses (Bottou
et al., 2018; Andriushchenko and Flammarion, 2022; Wen et al., 2023a).

Assumption 1. Let W ∈ Rd1×d2 , and w ∈ R. For each ξ, fξn(W) and fξo (w) in (1) have Ln, and
Lo Lipschitz continuous gradient, respectively.

1Definition of Lx
n: for a fixed y, ‖gx1 − gx2‖ ≤ Lx

n‖x1 − x2‖.

4



Scale-invariant problems are challenging to solve even on simple problems in Fig. 1. Even GD can
diverge on some manually crafted initialization (De Sa et al., 2015; Arora et al., 2019a). With proper
hyperparameters this rarely happens in practice; hence, we focus on scenarios where SGD and SAM
do not diverge. This assumption is weaker than the global convergence needed in (Andriushchenko
and Flammarion, 2022), and is similar to the assumption on existence (Wen et al., 2023a).

3 SAM for Non-Overparametrized Problems

This section tackles the implicit regularization of SAM on NOP (1a). Motivated by practical scenarios
such as LoRA, we focus on cases initialized with large |B0|.
When ambiguity is absent, the subscript in fn and Ln is ignored in this section for convenience.
Applying Alg. 1 on NOP, the update of SAM can be written as

x̃t = xt + ρutgxt
, ỹt = yt + ρutgyt

(4a)

gx̃t
= ∇ft(x̃tỹ>t )ỹt, gỹt

=
[
∇ft(x̃tỹ>t )

]>
x̃t (4b)

xt+1 = xt − ηgx̃t , yt+1 = yt − ηgỹt (4c)

where ρ > 0 is the radius of SAM perturbation; ut := 1/
√
‖gxt
‖2 + ‖gyt

‖2; and ft, ∇ft denote
the loss, stochastic gradient on minibatchMt, respectively.
Theorem 2. (Dynamics of SAM.) Suppose that Assumption 1 holds. Consider SAM for NOP in (4)
with a sufficiently small ρ. Let Bt := 1

2

(
‖xt‖2 − ‖yt‖2

)
. For some |At| = O(ρ2L) and η → 0, the

limiting flow of SAM guarantees that

dBt
dt

= ρ
‖gxt
‖2 − ‖gyt

‖2√
‖gxt
‖2 + ‖gyt

‖2
+At. (5)

Moreover, the change on Bt depends on the difference of stochastic gradients on xt and yt, i.e.,

ρ
∣∣‖gxt‖ − ‖gyt‖

∣∣−O(ρ2L) ≤
∣∣dBt
dt

∣∣ ≤ ρ√∣∣‖gxt‖2 − ‖gyt‖2
∣∣+O(ρ2L). (6)

Unlike SGD for which dBt

dt = 0, Theorem 2 states that the balancedness for SAM is driven by gradient
difference ‖gxt

‖2−‖gyt
‖2. To gain some intuition, if we estimate ‖gxt

‖2−‖gyt
‖2 ∝ ‖yt‖2−‖xt‖2

based on (3) and ignore At, it can be seen that dBt

dt ∝ −ρBt. This indicates the contraction on |Bt|.
A graphical illustration on decreasing |Bt|, and its relation with gradient difference can be found in
Figs. 1 (a) and 2 (a). Moreover, this implicit regularization on balancedness is global as it holds for
all t regardless of whether (xt,yt) is close to local optima. Thanks to adopting balancedness as the
metric, Theorem 2 also poses no requirement on the batchsize.

SAM promotes balancedness. As discussed in Section 2.2, unbalancedness is burdensome for
optimization. SAM overcomes this by implicitly favoring relatively balanced solutions.
Corollary 1. (Informal.) Under some regularity conditions, there exists B̄ρt ≥ 0 such that whenever
|Bt| > B̄ρt , the magnitude of Bt shrinks, where B̄ρt can be found in (21) at appendix.

Corollary 1 shows that SAM promotes balancedness until |Bt| reaches lower bounds B̄ρt . Because B̄ρt
depends on SAM’s trajectory, we plot 1

T

∫ T
0
B̄ρt dt using dotted lines for better visualization in Fig. 2

(a). It can be seen that our calculation on B̄ρt almost matches the balancedness of SAM after sufficient
convergence. Being balance also reveals that the benefit of SAM can come from optimization, which
is a perspective typically ignored in literature.

Noisy data have stronger impact on balancedness. Although our discussions extend to more
general problems, for simplicity we consider the example in Fig. 2 (a), i.e., E[‖xy> − (A+αN)‖2],
where A is ground truth; N is data noise; and α determines SNR. For this problem, noisy data
directly lead to noisy gradients. It can be seen in Fig. 2 (a) that smaller SNR coincides with faster
decreasing of |Bt|. To explain such a data-responsive behavior in implicit regularization, Theorem
2 states that balancedness changes largely when the difference of ‖gyt‖ and ‖gxt‖ is large. Since
E[‖gyt

‖2−‖gxt
‖2] ∝ α2 if assuming elements of N to be iid unit Gaussian variables, it thus implies

that a small SNR (large α) offers large regularization on balancedness.
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Figure 2: Implicit regularization of SAM on NOP E[‖xy> − (A + αN)‖2], where α controls SNR.
(a) the threshold of balancedness B̄ρt in Corollary 1; (b) implicit vs. explicit regularization.

Extension to LoRA (multi-layer two-variable NOP). For LoRA, the objective is to minimize
D blocks of variables simultaneously, i.e., minEξ[fξ({xly>l }Dl=1)]. It is established in Theorem
5 in appendix that SAM cultivates balancedness in a layer-wise fashion, i.e., the magnitude of
Bt,l := 1

2

(
‖xt,l‖2 − ‖yt,l‖2

)
cannot be large for each l. However, the |dBt,l/dt| can be O(

√
D)

times smaller than Theorem 2 in the worst case because of the additional variables.

Validation of IR on modern architectures. Going beyond the infinitesimally small step size, we
adopt η = 0.1 on modern language models to validate our theoretical findings. We consider finetuning
a RoBERTa-large with LoRA for few-shot learning tasks. More details can be found later in Section
6.1. Balancedness of SAM and SGD on different layers in various datasets are plotted in Fig. 3. SAM
has a clear trend of promoting balancedness, aligning well with our theoretical predictions.

4 SAM for Overparametrized Problems

Next, we focus on SAM’s implicit regularization on OP (1b). Overparametrization enables SAM to
have stronger regularization on balancedness. Subscripts in fo and Lo are omitted for convenience.
SAM’s per iteration update for OP can be summarized as

x̃t = xt + ρutyt, ỹt = yt + ρutxt (7a)

gx̃t = f ′t(x̃
>
t ỹt)ỹt, gỹt = f ′t(x̃

>
t ỹt)x̃t (7b)

xt+1 = xt − ηgx̃t , yt+1 = yt − ηgỹt (7c)

where ut := sgn(f ′t(x
>
t yt))/

√
‖xt‖2 + ‖yt‖2; ft and f ′t denote the loss, stochastic gradient on

minibatchMt, respectively. Different from NOP, SAM has stronger regularization on balancedness,
where |Bt| decreases whenever the norm of stochastic gradient is large. To see this, it is convenient to
define Ct := |‖xt‖ − ‖yt‖|. Note that Ct ≤

√
2|Bt|.

Theorem 3. Consider η → 0 for (7). The limiting flow of SAM on OP ensures a decreasing magnitude
of Bt whenever |f ′t(x>t yt)| · Ct > O(ρL|Bt|). Moreover, the speed of decrease can be lower- and
upper- bounded as

ρ|f ′t(x>t yt)| · Ct −O(ρ2L|Bt|) ≤
∣∣dBt
dt

∣∣ ≤ ρ|f ′t(x>t yt)|√2|Bt|+O(ρ2L|Bt|).

Given ρ → 0 and sufficiently noisy data, Theorem 3 implies that |Bt| → 0. Moreover, Theorem
3 also states that the regularization power on balancedness is related to both gradient norm and
balancedness itself. The elbow-shaped curve of |Bt| in Fig. 1 (b) demonstrates that the regularization
power is reducing, as both gradient norm and balancedness shrink over time.

Noisy data have stronger impact on balancedness. As shown in Fig. 1 (b), balancedness is
promoted faster on problems with lower SNR. This data-responsive behavior can be already seen
from Theorem 3, because |dBt/dt| is directly related with |f ′t(x>t yt)|, and E[|f ′t(x>t yt)|] is clearly
larger when data are more noisy. In other words, SAM exploits noisy data for possible optimization
merits from balancedness (see discussions in Sec. 2.2). Overall, the implicit regularization on
balancedness aligns well with the empirical observations in presence of data anomalies (Wang et al.,
2023; Sherborne et al., 2023), where SAM outperforms SGD by a large margin.
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Figure 3: Implicit regularization of SAM on LoRA. We consider few shot learning with LoRA on a
RoBERTa-large. For datasets RTE, SST-5, and MNLI, 1st, 12th and 24th query layers’ 2|Bt,l| are
plotted, respectively. The layers are chosen to represent early, middle, and final stages of RoBERTa.
The averaged B̄ρt,l in Corollary 1 is 0.37, 0.21, and 0.29, respectively.

Extension to m-sharpness. m-sharpness is a variant of SAM suitable for distributed training. It is
observed to empirically improve SAM’s performance (Foret et al., 2021). m-sharpness evenly divides
minibatchMt into m disjoint subsets, i.e., {ft,j}mj=1, and perform SAM update independently on
each subset; see (38) in appendix. It turns out that m-sharpness can also be explained using balanced-
ness. With formal proofs in Apdx. C.3, the IR of m-sharpness amounts to substitute |f ′t(x>t yt)|
in Theorem 3 with 1

m

∑m
j=1 |f ′t,j(x>t yt)|. This means that the regularization on balancedness from

m-sharpness is more profound than vanilla SAM, because 1
m

∑m
j=1 |f ′t,j(x>t yt)| ≥ |f ′t(x>t yt)|.

Finally, we connect balancedness with sharpness on local minima of OP.
Lemma 1. Let W∗ = {(x,y)|x>y = w, f ′(w) = 0, f ′′(w) > 0} be non-empty. For the OP
problem (1b), minimizing sharpness withinW∗ is equivalent to finding B = 0 inW∗.

This link showcases that by studying balancedness we can also obtain the implicit regularization on
sharpness for free. A concurrent work also links balancedness with sharpness (the largest eigenvalue)
for some one-hidden layer neural networks (Singh and Hofmann, 2024). Compared with (Wen
et al., 2023a), this is achieved with less assumptions and simplified analyses. More importantly,
balancedness enables us to cope with arbitrary batchsize, to explain SAM’s stronger regularization
with noisy data, and to extend results to m-sharpness.

5 Implicit Regularization Made Explicit

Next, insights from our theoretical understanding of SAM are leveraged to build practical tools.
We adopt LoRA (Hu et al., 2022) as our major numerical benchmark for scale-invariant problems
given its prevalence in practice. More diverse examples on both OP and NOP can be found in Apdx.
A.3. Compared to full parameter-tuning, LoRA is more economical in terms of memory not only
for finetuning, but also for serving multiple downstream tasks. LoRA and its variants are actively
developed and well welcomed by the community; see e.g., HuggingFace’s PEFT codebase.2

5.1 Overview of LoRA

Given a pretrained model with frozen weight Wl ∈ Rd1×d2 on a particular layer l, the objective of
LoRA is to find low rank matrices Xl ∈ Rd1×r, and Yl ∈ Rd2×r with r � min{d1, d2} such that
the loss is minimized for a downstream task, i.e.,

min
{Xl,Yl}l

L
(
{Wl + XlY

>
l }l
)
. (8)

LoRA enjoys parameter efficiency for finetuning thanks to the low-rank matrices Xl and Yl. For
instance, it only requires 0.8M trainable parameters to finetune a 355M-parameter RoBERTa-large
(Hu et al., 2022). The outer product of Xl and Yl induces scale-invariance, and the number of
variables renders it NOP. The downside of LoRA, on the other hand, is the drop on test performance
due to the parsimony on trainable parameters. Unbalancedness is also unavoidable for LoRA, due

2https://github.com/huggingface/peft
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Algorithm 2 nBAR
1: Initialize: learning rate {ηt}, regularization

coefficient {αt}
2: for t = 0, . . . , T − 1 do
3: Get stochastic gradient gxt

and gyt

4: if ‖gxt‖ ≥ ‖gyt‖ then
5: xt ← (1 + αtηt)xt
6: yt ← (1− αtηt)yt
7: else
8: xt ← (1− αtηt)xt
9: yt ← (1 + αtηt)yt

10: end if
11: Optimizer update (via Adam or SGD)
12: end for

Algorithm 3 oBAR
1: Initialize: learning rate {ηt}, regularization

coefficient {αt}
2: for t = 0, . . . , T − 1 do
3: Get stochastic gradient gxt

and gyt

4: if ‖xt‖ ≥ ‖yt‖ then
5: xt ← (1− αtηt)xt
6: yt ← (1 + αtηt)yt
7: else
8: xt ← (1 + αtηt)xt
9: yt ← (1− αtηt)yt

10: end if
11: Optimizer update (via Adam or SGD)
12: end for

to the need of initializing at Xl ∼ N (0, σ2),Yl = 0; see an example of RoBERTa-large in Fig. 3.
The unbalancedness leads to instability of LoRA when finetuning RoBERTa on datasets SST-2 and
MNLI; see more details in Apdx. D.4.

Integrating SAM with LoRA is a case with mutual benefits – LoRA reduces the additional memory
requirement of SAM, while SAM not only overcomes the distributional shift in finetuning (Zhou
et al., 2022), but also mitigates the possible inefficiency associated with LoRA’s unbalancedness.

5.2 Balancedness-Aware Regularization (BAR)

However, directly applying SAM variants on LoRA exhibits two concerns: i) SAM doubles computa-
tional cost due to the need of two gradients; and ii) additional efforts are required to integrate SAM
with gradient accumulation and low-precision training (HuggingFace), which are common techniques
for memory and runtime efficiency in large-scale finetuning. Note that concern i) is annoying given
the size of language models, especially in setups involving model parallelism.

Our balancedness-aware regularization (BAR) is a highly efficient approach to address both concerns,
and it fixes the accuracy drop of LoRA relative to full-parameter finetuning. BAR is also the first
efficient SAM variant derived from implicit regularization. The key observation for our algorithm
design is that SAM’s implicit regularization on balancedness can be achieved with an explicit
regularizer αt|x>x − y>y|. This regularizer originates from matrix sensing; see e.g., (Tu et al.,
2016; Ge et al., 2017). For OP, choosing αt := O(|f ′(x>t yt)|/

√
‖xt‖2 + ‖yt‖2) recovers SAM’s

dynamic on Bt up to an error of O(ρ2); cf. Lemma 2 in appendix. By ignoring this error, it can be
seen that Bt decreases when ‖xt‖ ≥ ‖yt‖. Following this dynamic, we regulate balancedness based
on whether ‖xt‖ ≥ ‖yt‖. The resultant approach is termed as overparamterized BAR (oBAR) to
reflect its source in OP.

On the other hand, because LoRA is NOP inherently, we take inspiration from Theorem 2 – dropping
the termAt and mimicking dynamics of SAM. In particular, we regulate the objective with αt(x>x−
y>y) if ‖gxt

‖2 < ‖gyt
‖2; otherwise αt(y>y − x>x). The resultant approach is termed as nBAR.

A graphical illustration can be found in Fig. 2 (b). It can be observed that nBAR shares similar
performance as SAM on NOP. Both nBAR and oBAR can be implemented in the same manner as
weight decay, and their detailed steps are summarized in Algs. 2 and 3, respectively.

Another benefit of BAR, in additional to the lightweight computation, is that it can be applied
individually on each LoRA layer. As previously discussed (cf. Theorem 5), the number of layers
has a negative impact on balancedness. By overcoming this “curse of multi-layer”, BAR can induce
better test performance over SAM.

Schedule of αt. In both nBAR and oBAR, one can employ a decreasing scheduler for αt for
algorithmic flexibility. This is motivated by the fact that for both NOP and OP problems, the implicit
regularization of SAM is less powerful after sufficient balancedness or near optimal. Commonly
adopted cosine and linear schedules work smoothly.
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Table 1: Few shot learning on RoBERTa (355M). † denotes results reported by (Malladi et al., 2023)

RoBERTa SST-2 SST-5 SNLI MNLI RTE TREC avg (↑)

LoRA 91.1±0.8 52.3±2.9 84.3±0.3 78.1±1.3 77.5±2.3 96.6±1.0 80.0
LoRA-SAM 92.2±0.4 54.2±2.0 85.5±0.7 78.7±1.0 80.6±4.3 96.7±0.2 81.3

LoRA-oBAR 91.5±0.9 54.5±2.7 84.9±0.5 78.3±2.2 79.7±2.0 96.7±0.5 80.9
LoRA-nBAR 91.4±0.5 55.0±2.0 84.9±1.4 78.1±0.2 81.0±1.0 96.7±1.0 81.2

Zero-Shot† 79.0 35.5 50.2 48.8 51.4 32.0 49.5

Table 2: Runtime of BAR (normalized to LoRA, 1x) on OPT-1.3B. SAM relies on FP32 for stability.
LoRA and BAR adopt FP16 training since this is the default choice for large models. nBAR and
oBAR share similar runtime, hence reported together.

runtime (↓) SST-2 CB RTE COPA ReCoRD SQuAD

LoRA-SAM 4.43x 3.34x 4.10x 3.28x 4.35x 3.54x
LoRA-BAR 1.05x 1.03x 1.04x 1.05x 1.04x 1.03x

6 Numerical Experiments

To demonstrate the effectiveness of BAR, numerical experiments are conducted on various deep
learning tasks using language models (LMs). Bold and underlined numbers are used to highlight the
best and second best performance, respectively. More experimental details can be found in Apdx. D.
Code is available at https://github.com/BingcongLi/BAR.

6.1 Few-shot Learning with RoBERTa-large and OPT-1.3B

The first task to consider is few-shot learning with LoRA (Malladi et al., 2023), where the goal is to
finetune a language model with a small training set. We follow the settings in (Malladi et al., 2023),
and choose the backbones as RoBERTa-large, a masked LM with 355M parameters, and OPT-1.3B,
an autoregressive LM (Liu et al., 2019; Zhang et al., 2022).

Results of the proposed oBAR and nBAR on RoBERTa-large are summarized in Table 1. As indicated
by the zero-shot performance, the distributional shift between finetuning and pretraining datasets is
obvious. This is a natural setting suitable for SAM and BAR. The averaged test accuracy is improved
by 0.9 and 1.2 via oBAR and nBAR, respectively. The performance of nBAR is close to SAM.
Moreover, BAR saves 74% additional runtime of SAM; see more details in Table 7 in the appendix.

The proposed nBAR and oBAR perform even better when scaling up to OPT-1.3B. BAR reduces the
overhead of SAM by more than 95% because of its compatibility with FP16 training; see Table 2.
Note that applying FP16 directly with SAM leads to underflow; see more in Apdx. D. This signifies
the flexibility of BAR over SAM when scaling to large problems, as FP16 is the default choice for
LMs. Prefix tuning (Li and Liang, 2021) is also included as a benchmark for comparisons on test
performance. We report F1 score for SQuAD and accuracy for other datasets in Table 3. The averaged
improvement over LoRA is 0.9 and 1.6 from oBAR and nBAR, respectively, both outperforming
SAM. We conjecture that the performance gap between SAM and BAR comes from their different
effectiveness in regularizing balancedness. Balancedness of a particular layer is decreasing slower
in SAM due to multiple layers, as shown in Theorem 5, while BAR promotes balancedness faster
as it can be applied individually on each LoRA layer. Comparing the absolute improvement for
RoBERTa-large (355M) and OPT-1.3B, it is conjectured that BAR has more potential for larger
models, and the verification is left for future due to hardware constraints.

6.2 Finetuning with RoBERTa-large

Having demonstrated the power of BAR in few-shot learning, we then apply it to finetune RoBERTa-
large with LoRA. The results can be found in Table 4. It can be observed that nBAR and oBAR
improve the performance of LoRA and prefix tuning (Li and Liang, 2021) on most of tested datasets.
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Table 3: Performance of BAR for few shot learning using OPT-1.3B.
OPT-1.3B SST-2 CB RTE COPA ReCoRD SQuAD avg (↑)

Prefix 92.9±1.0 71.6±3.0 65.2±2.6 73.0±1.0 69.7±1.0 82.1±1.4 75.8
LoRA 93.1±0.2 72.6±3.7 69.1±4.8 78.0±0.0 70.8±1.0 81.9±1.8 77.6

LoRA-SAM 93.5±0.5 74.3±1.0 70.6±2.7 78.0±0.0 70.9±1.2 83.0±0.7 78.4
LoRA-oBAR 93.6±0.6 75.6±4.5 70.4±4.8 78.0±0.0 70.9±0.8 82.5±0.5 78.5
LoRA-nBAR 93.7±0.7 79.8±4.4 70.5±2.4 78.0±0.0 71.0±1.0 82.3±1.8 79.2

Zero-Shot 53.6 39.3 53.1 75.0 70.2 27.2 53.1

Table 4: Finetuning RoBERTa (355M) with BAR. Results marked with † are taken from (Hu et al.,
2022), and those with ∗ refer to AdapterP in (Hu et al., 2022).

RoBERTa # para STS-B RTE MRPC CoLA QQP avg (↑)

FT† 355M 92.4 86.6 90.9 68.0 90.2 85.6

Adapter∗ 0.8M 91.9±0.4 80.1±2.9 89.7±1.2 67.8±2.5 91.7±0.2 84.2
LoRA 0.8M 92.4±0.1 88.2±0.6 89.6±0.5 64.8±1.4 91.4±0.1 85.3

LoRA-oBAR 0.8M 92.6±0.1 88.7±0.2 90.3±0.9 65.1±1.0 91.6±0.1 85.7
LoRA-nBAR 0.8M 92.6±0.2 89.2±1.3 90.3±0.4 65.6±1.2 91.6±0.1 85.9

Table 5: Finetuning GPT2 (345M) with BAR on WebNLG. Results of prefix tuning and full-parameter
finetuning are obtained from (Hu et al., 2022).

GPT2 FT∗ Prefix∗ LoRA LoRA-oBAR LoRA-nBAR

# param 354M 0.35M 0.35M 0.35M 0.35M
BLEU (↑) 46.5 55.1 54.99±0.24 55.15±0.19 55.20±0.16

On average, oBAR leads to a gain of 0.4, and nBAR raises the test performance by 0.6. BAR thereby
fills the gap of test performance between LoRA (0.8M) and full-parameter (355M) finetuning.

6.3 Text Generation on GPT2-medium

Lastly, we consider BAR on a text-generation problem using GPT2-medium, a model with 345M
parameters. Results on WebNLG (Gardent et al., 2017) are reported in Table 5. It can be seen that
oBAR matches the performance of prefix tuning, while nBAR achieves the best BLEU score.

7 Discussions

This work provides theoretical and empirical evidence on the implicit regularization of SAM for
both scale-invariant NOP and OP problems. Balancedness, as an alternative to commonly adopted
sharpness, is employed as the metric to capture global and data-responsive behaviors of SAM. We find
that i) SAM promotes variables to have (relatively) balanced norms; and ii) noisy data have stronger
impact on balancedness. Lastly, we explicify the implicit regularization as a data-driven regularizer to
foster the design of a computationally efficient SAM variant, termed BAR. The effectiveness of BAR
is demonstrated using various tasks on RoBERTa-large, GPT2 and OPT. BAR saves 95% overhead of
SAM and enhances the accuracy of LoRA to the level of full-parameter finetuning.

Limitation and Future directions. Our approach, BAR, is best applied on scale-invariant modules in
neural networks. Finetuning language models with LoRA, as a popular option in practice, is a setting
naturally suitable for our approach. However, our approach does not apply for linear models, e.g.,
logistic regression. Regarding future directions, an interesting one is whether SAM has other forms of
implicit regularization beyond balancedness and sharpness. The exploration of other scale-invariant
architectures beyond LoRA, e.g., the softmax function in attention, is also deferred to future work.
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“Implicit Regularization of Sharpness-Aware Minimization

for Scale-Invariant Problems”

A Missing Details

A.1 Broad Impact

The theories and approaches are applicable across various scenarios. The proposed algorithmic tool
simplifies finetuning language models, improves performance of downstream tasks, and consumes
less resource compared to SAM. For tasks such as sentiment classification, our approach facilitates
real world systems such as recommendation by improving accuracy. However, caution is advised
when the downstream tasks of language models involve generation. For these tasks, users should
thoroughly review generated content and consider to implement gating methods to ensure safety and
trustworthiness.

A.2 More on Related Work

Sharpness and generalization. Sharpness is observed to relate with generalization of SGD in deep
learning (Keskar et al., 2016). It is found that sharpness varies with the ratio between learning rate and
batchsize in SGD (Jastrzębski et al., 2017). Large scale experiments also indicate sharpness-based
measures align with generalization in practical scenarios (Jiang et al., 2020; Chen et al., 2022).
Theoretical understandings on generalization error using sharpness-related metrics can be found in
e.g., (Dziugaite and Roy, 2017; Neyshabur et al., 2017; Wang and Mao, 2022). There is a large body
of literature exploring sharpness for improved generalization. Entropy SGD leverages local entropy in
search of a flat valley (Chaudhari et al., 2017). A similar approach as SAM is also developed in (Wu
et al., 2020) while putting more emphases on adversarial robustness. Stochastic weight averaging is
proposed for finding flatter minima in (Izmailov et al., 2018). It is shown later in (Wen et al., 2023b)
that the interplay between sharpness and generalization subtly depends on data distributions and
model architectures, and there are unveiled reasons beyond sharpness for the benefit of SAM.

SAM variants. Although SAM is successful in various deep learning tasks, it can be improved
further by leveraging local geometry in a fine-grained manner. For example, results in (Zhao et al.,
2022; Barrett and Dherin, 2021) link SAM with gradient norm penalization. Zhuang et al. (2022)
optimize sharpness gap and training loss jointly. A more accurate manner to solve inner maximization
in SAM is developed in (Li and Giannakis, 2023). SAM and its variants are also widely applied to
domain generalization problems; see e.g., (Zhang et al., 2023b; Wang et al., 2023).

Other perspectives for SAM. The convergence of SAM is comprehensively studied in (Si and Yun,
2023). Agarwala and Dauphin (2023) focus on the edge-of-stability-like behavior of unnormalized
SAM on quadratic problems. Dai et al. (2023) argue that the normalization in SAM, i.e., line 5 of Alg.
1, is critical. Sharpness measure is generalized to any functions of Hessian in (Tahmasebi et al., 2024).
However, even the generalized sharpness cannot provide implicit regularization for simple functions
such as h(x, y) = xy, because the Hessian is the same for all (x, y). In addition, when Hessian is
negative definite, some of the generalized sharpness measures (e.g., determinate of Hessian) may not
be necessarily meaningful.

Implicit regularization. The regularization effect can come from optimization algorithms rather than
directly from the regularizer in objective functions. This type of the behavior is termed as implicit
regularization or implicit bias of the optimizer. The implicit regularization of (S)GD is studied from
multiple perspectives, such as margin (Ji and Telgarsky, 2019; Lyu and Li, 2020), kernel (Arora et al.,
2019c), and Hessian (Li et al., 2022; Arora et al., 2022). Initialization can also determine the implicit
regularization (Woodworth et al., 2020). Most of these works explore the overparametrization regime.

LoRA and parameter-efficient finetuning. LoRA (Hu et al., 2022), our major numerical benchmark,
is an instance of parameter-efficient finetuning (PEFT) approaches. PEFT reduces the resource
requirement for large language models on various downstream tasks, at the cost of possible accuracy
drops on test performance. The latter, together with the transfer learning setup jointly motivate the
adoption of SAM. Other commonly adopted PEFT methods include, e.g., adapters (Houlsby et al.,
2019) and prefix tuning (Li and Liang, 2021). There are also various efforts to further improve

16



LoRA via adaptivity (Zhang et al., 2023a), chaining (Xia et al., 2024), aggressive parameter saving
(Kopiczko et al., 2024), low-bit training (Dettmers et al., 2023), and modifications for long-sequences
(Chen et al., 2024). Most of these efforts are orthogonal to BAR proposed in this work.

A.3 Additional Applications of Scale-Invariant Problems in Deep Learning

Attention in transformers. Attention is one of the backbones of modern neural networks (Vaswani
et al., 2017). Given the input D, attention can be written as

min
Q,K,V

softmax
(

1

α
DQK>D>

)
DV (9)

where {Q,K,V} are query, key, and value matrices to be optimized. This is a scale-invariant
problem because scaling {Q,K} does not modify the objective function. Considering the number of
variables, the optimization of {Q,K} is considered as OP.

Two-layer linear neural networks. This problem is a simplified version of two-layer ReLU neural
nets, and its objective can be defined as

f(W1,W2) =
1

2
E(a,b)

[
‖W1W2a− b‖2

]
. (10)

This is usually adopted as an example for overparametrization, and can be extended to deeper linear
neural networks; see e.g., (Arora et al., 2019a). Moreover, it is known that the optimization for such
problem is quite challenging, and GD can fail to converge if W1 and W2 are not initialized with
balancedness (Arora et al., 2019a). An extension of (10) is two-layer ReLU networks, which are
widely adopted in theoretical frameworks to understand the behavior of neural networks. ReLU
networks are scale-invariant, but only when the scaling factor is positive.

Other examples. For ResNets, two-variable scale-invariant submodules also include affine Batch-
Norm and the subsequent convolutional layer. For transformers, scale-invariant submodules besides
attention include LayerNorm and its subsequent linear layer.

A.4 SAM Pays More Attention to Difficult Examples

Testing example for NOP. The problem presented below is adopted in Fig. 1 (a) and Fig. 2 for
visualization of SAM’s behavior on NOP. We consider a special case of problem (1a), where the goal
is to fit (rank-1) matrices by minimizing

fn(x,y) = Eξ
[
‖xy> − (A + αNξ)‖2

]
(11)

where A ∈ R3×3 := diag[0.5, 0, 0] and Nξ ∈ R3×3 denote the ground truth and Gaussian noise,
respectively; and α controls the SNR. Here we choose Nξ := diag[1.0, 0.8, 0.5]Uξ , where entries of
Uξ are unit Gaussian random variables.

In our simulation of Fig. 1 (a), we set the step size to be η = 10−4 and the total number of iterations
as T = 105 for both SGD and SAM. Parameter ρ is chosen as 0.1 for SAM. For both algorithms,
initialization is x0 = [0.2,−0.1, 0.3]> and y0 = −3x0. Note that we choose a small step size to
mimic the settings of our theorems.

Testing example for OP. The problem presented below is adopted in Fig. 1 (b) for visualization of
SAM on OP. A special case of problem (1b) is considered with objective function

fo(x,y) = Eξ
[
‖x>y − (a+ αnξ)‖2

]
(12)

where a ∈ R and nξ ∈ R denote the ground truth and Gaussian noise, respectively. We choose
a = 0.5 and nξ as a unit Gaussian random variable. Here, α controls the SNR of this problem.

In our simulation of Fig. 1 (b), we set η = 10−4 and T = 105 for both SGD and SAM. Parameter ρ
is set as 0.2 for SAM. For both algorithms, initialization is x0 = [0.2,−0.1, 0.3]> and y0 = −3x0.

A.5 Scale-Invariance in OP

Scale-invariance also bothers OP in the same fashion as it burdens NOP. For completeness, the
scale-invariance of OP can be verified by

fo(x
>y) = fo

(
(αx)>(

1

α
y)
)
,∀α 6= 0. (13)
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An optimizer has to determine α for OP despite it does not influence objective value. Hence, scaling
is redundant for OP.

Similar to NOP, the (stochastic) gradient of OP is not scale-invariant. In particular, given a minibatch
of dataM, the stochastic gradient for OP (1b) can be written as

gx =
1

|M|

[ ∑
ξ∈M

(fξo )′(x>y)
]
y, gy =

1

|M|

[ ∑
ξ∈M

(fξo )′(x>y)
]
x. (14)

Consequently, being balance also brings optimization benefits for OP as discussed previously in
Section 2.2 .

A.6 BAR in Detail
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Figure 4: The value of f(x, y). Once
SGD reaches the dotted line, i.e., the
hard constraint |x| = |y|, it can only
converge to a saddle point (0, 0).

BAR is inspired jointly from the balancedness-promoting
regularizer |‖xt‖2 − ‖yt‖2| and the dynamics of SAM on
both NOP and OP. The implementation of BAR is similar
as weight decay in AdamW (Loshchilov and Hutter, 2019).

Here we use nBAR as an example. If ignoringAt in Theo-
rem 2, it can be seen that Bt for NOP decreases whenever
‖gxt‖ < ‖gyt‖. In other words, the balancedness of SAM
is driven by the difference between the gradient norms at
xt and yt. nBAR mimics this and triggers balancedness
when stochastic gradients gxt and gyt are not balanced;
see Alg. 2.

Finally, we illustrate more on the reasons for employing
regularization in OP rather than posing ‖xt‖ = ‖yt‖ as
a hard constraint or initializing in a balanced manner, i.e.,
‖x0‖ = ‖y0‖. First, it is quite clear that ‖x‖ = ‖y‖
is a nonconvex set and how to project on such a set is
still debatable. Second, the ‘symmetry’ associated with
the scale-invariant problems does not always favor this
constraint. For the purpose of graphical illustration, we consider a 2-dimensional example f(x, y) =
30000(xy − 0.005)2. It is quite clear that the objective is symmetric regarding the line x = −y,
which satisfies |x| = |y|; see Fig. 4. However, it is not hard to see that SGD can never leave x = −y
once it reaches this line via a hard constraint or initialized on this line. In other words, directly adding
‖x‖ = ‖y‖ as a constraint can trap the algorithm at saddle points. This symmetric pattern is even
more complicated in high dimension, i.e., symmetry over multiple lines or hyperplanes. Hence, one
should be extremely careful about this hard constraint, and regularization is a safer and more practical
choice.

B Missing Proofs for NOP

B.1 Proof of Theorem 1

Proof. For notational convenience, we let Gt := ∇ft(xty>t ). Then, we have that

d‖xt‖2

dt
= 2x>t

dxt
dt

= −2x>t gxt
= −2x>t Gtyt.

Similarly, we have that

d‖yt‖2

dt
= 2y>t

dyt
dt

= −2y>t gyt
= −2y>t G

>
t xt.

Combining these two inequalities, we arrive at

d‖xt‖2

dt
− d‖yt‖2

dt
= 0.

The proof is thus completed.
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B.2 Extension to Stochastic Normalized Gradient Descent (SNGD)

Next, we extend Theorem 1 to SNGD, whose updates can be written as

xt+1 = xt − η
gxt√

‖gxt
‖2 + ‖gyt

‖2
, yt+1 = yt − η

gyt√
‖gxt
‖2 + ‖gyt

‖2
. (15)

Theorem 4. When applying SNGD (15) on NOP problem (1a), the limiting flow with η → 0
guarantees that ‖xt‖2 − ‖yt‖2 = ‖x0‖2 − ‖y0‖2 for all t > 0. In other words, dBt

dt = 0 holds.

Proof. For notational convenience, we let Gt := ∇ft(xty>t ). Then, we have that

d‖xt‖2

dt
= 2x>t

dxt
dt

= −2
x>t gxt√

‖gxt
‖2 + ‖gyt

‖2
= −2

x>t Gtyt√
‖gxt
‖2 + ‖gyt

‖2
.

Similarly, we have that

d‖yt‖2

dt
= 2y>t

dyt
dt

= −2
y>t gyt√

‖gxt
‖2 + ‖gyt

‖2
= −2

y>t G
>
t xt√

‖gxt
‖2 + ‖gyt

‖2
.

Combining these two inequalities, we arrive at

d‖xt‖2

dt
− d‖yt‖2

dt
= 0.

The proof is thus completed.

B.3 Proof of Theorem 2

Proof. Denote Gt = ∇ft(xty>t ) and G̃t = ∇ft(x̃tỹ>t ) for notational convenience. Following
SAM updates in (4) and setting η → 0, we have that

dxt
dt

= −G̃t(yt + ρutG
>
t xt),

dyt
dt

= −G̃>t (xt + ρutGtyt).

This gives that

1

2

d
(
‖xt‖2 − ‖yt‖2

)
dt

= ρut

[
y>t G̃

>
t Gtyt − x>t G̃tG

>
t xt

]
(16a)

= ρut

[
‖gxt
‖2 − ‖gyt

‖2
]

+ ρut

[
y>t (G̃t −Gt)

>gxt
− x>t (G̃t −Gt)gyt

]
︸ ︷︷ ︸

:=At

.

(16b)

The second term in (16b) isAt in Theorem 2. Next, we give upper bound on |At|. Using Assumption
1, we have that

‖G̃t −Gt‖ ≤ L‖x̃tỹ>t − xty
>
t ‖

= L‖ρut(xtg>yt
+ gxt

y>t ) + ρ2u2tgxt
g>yt
‖

(a)

≤ Lρ
‖xtg>yt

+ gxty
>
t ‖√

‖gxt
‖2 + ‖gyt

‖2
+ Lρ2

‖gxtg
>
yt
‖

‖gxt
‖2 + ‖gyt

‖2

(b)

≤ Lρ(‖xt‖+ ‖yt‖) +
Lρ2

2
= O(Lρ)

where (a) uses the definition of ut; (b) follows from ‖ab>‖ = ‖a‖‖b‖ and the finite convergence
assumption. To bound At, we also have

ρut
∣∣y>t (G̃t −Gt)

>gxt

∣∣ = ρ
|y>t (G̃t −Gt)

>gxt
|√

‖gxt
‖2 + ‖gyt

‖2
≤ ρ |y

>
t (G̃t −Gt)

>gxt
|

‖gxt
‖

≤ ρ‖G̃t −Gt‖‖yt‖ = O(Lρ2) (17)

where the last line also uses the finite convergence. We can bound ρut|x>t (G̃t −Gt)gyt | = O(ρ2L)
in a similar manner. Combining (17) with (16b) gives the bound on |At| = O(ρ2L) .
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B.4 Proof of Corollary 1

Here, we prove the formal version of Corollary 1.
Corollary 2. Suppose that ‖gxt‖ > 0 and ‖gyt‖ > 0 and ρ→ 0, then there exists B̄t such that the
magnitude of Bt shrinks whenever |Bt| > B̄t.

Proof. Without loss of generality, we suppose that Bt > 0, i.e., ‖xt‖ > ‖yt‖ > 0. Let x̄t and ȳt be
the scaled version of xt and yt such that ‖x̄t‖ = ‖ȳt‖ and x̄tȳ

>
t = xty

>
t are satisfied. This suggests

that xt = αtx̄t and yt = ȳt/αt, where αt =
√
‖xt‖/‖yt‖. Next, we show that whenever Bt is large

enough, we have that

dBt
dt

= ρ
‖gxt
‖2 − ‖gyt

‖2√
‖gxt
‖2 + ‖gyt

‖2
+O(ρ2L) < 0. (18)

Since ρ→ 0, we only need to show that for some small ε = O(ρL) ≥ 0,

‖gxt
‖2 − ‖gyt

‖2√
‖gxt
‖2 + ‖gyt

‖2
< −ε. (19)

By the definition of gxt
,gyt

and x̄t, ȳt, we have that (19) can be rewritten as

α2
t ‖G>t x̄t‖2 − ‖Gtȳt‖2/α2

t√
α2
t ‖G>t x̄t‖2 + ‖Gtȳt‖2/α2

t

> ε. (20)

Note that the function h(z) := (az − b/z)/
√
az + b/z is monotonically increasing in z when

a, b > 0 and z > 0 as h′(z) = (a2z + 6ab/z + b2/z3)/(2(az + b/z)3/2) > 0. This implies that
h(z) > 0 when z >

√
b/a, and thus the condition in (20) can be satisfied for ε = O(ρL)→ 0 when

α2
t > ᾱ2, where ᾱ2 := ‖Gtȳt‖/‖G>t x̄t‖. This condition on αt is equivalent to

Bt =
1

2

(
‖xt‖2 − ‖yt‖2

)
=

1

2

(
‖αtx̄t‖2 − ‖ȳt/αt‖2

)
>

1

2

(
‖ᾱx̄t‖2 − ‖ȳt/ᾱ‖2

)
.

Combining everything together, we have that dBt

dt < 0 if

Bt > B̄t :=
1

2

(
‖ᾱx̄t‖2 − ‖ȳt/ᾱ‖2

)
. (21)

The proof is thus completed. We also note that in the case of ρ > 0, the same condition as (21) can
be derived by obtaining the inverse function of h(z) evaluated at ε = O(ρL), and the corresponding
ᾱρ and B̄ρt can be defined similarly.

B.5 Extension to LoRA (layer-wise NOP problem)

Let l ∈ {1, 2, . . . , D} be the layer index. Denote ft as the loss function on minibatch Mt. To
simplify the notation, we also let Gt,l := ∇xt,ly>

t,l
ft({xt,l,yt,l}l), G̃t,l := ∇x̃t,lỹ>

t,l
ft({x̃t,l, ỹt,l}l),

and ut := 1/
√∑D

l=1

(
‖gxt,l

‖2 + ‖gyt,l
‖2
)
. The update of SAM for layer l can be written as

x̃t,l = xt,l + ρutGt,lyt,l, ỹt,l = yt,l + ρutG
>
t,lxt,l (22a)

gx̃t,l
= G̃t,lỹt,l, gỹt,l

= G̃>t,lx̃t,l (22b)

xt+1,l = xt,l − ηgx̃t,l
, yt+1,l = yt,l − ηgỹt,l

. (22c)

Refined assumption for LoRA. Direct translating Assumption 1 to our multi-layer setting gives

‖∇ft({xly>l }l)−∇ft({alb>l }l)‖2 ≤ L2
D∑
l=1

‖xly>l − alb
>
l ‖2. (23)
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However, the above assumption is loose, and our proof only needs block-wise smoothness, i.e.,

‖∇lft(xly>l )−∇lft(alb>l )‖2 ≤ L̂2‖xly>l − alb
>
l ‖2,∀l (24)

where ∇l refers to the gradient on xly
>
l . It can be seen that

√
DL̂ ≥ L, but one can assume that√

DL̂ ≈ L for intuitive understandings.

Theorem 5. Suppose that block smoothness assumption in (24) holds. Consider the limiting flow
of SAM in (22) with η → 0 and a sufficiently small ρ. Let Bt,l := 1

2

(
‖xt,l‖2 − ‖yt,l‖2

)
and

Bt =
∑D
l=1 Bt,l. For some |At| = O(ρ2L̂), SAM guarantees that

dBt
dt

= ρ

∑D
l=1 ‖gxt,l

‖2 −
∑D
l=1 ‖gyt,l

‖2√∑D
l=1 ‖gxt,l

‖2 +
∑D
l=1 ‖gyt,l

‖2
+At. (25)

Furthermore, for per layer balancedness it satisfies that for some |At,l| = O(ρ2L̂).

dBt,l
dt

= ρ
‖gxt,l

‖2 − ‖gyt,l
‖2√∑D

l=1 ‖gxt,l
‖2 +

∑D
l=1 ‖gyt,l

‖2
+At,i. (26)

Understanding Theorem 5. At,i andAt are at the same order because of the possible unbalancedness
among gradient norms for different layers. Comparing per layer balancedness Bt,l with Theorem
2, it can be roughly estimate that the regularization power is O(

√
D) times smaller in Bt,l. This

estimation comes from L̂ ≈ L/
√
D, and the first term is also O(

√
D) smaller than the same term in

Theorem 2. In other words, the regularization on balancedness can be reduced by O(
√
D) times in

LoRA in the worst case, and the worst case comes from gradient unbalancedness among layers.

Proof. Following (22) and setting η → 0, we have that

dxt,l
dt

= −G̃t,l(yt,l + ρutG
>
t,lxt,l),

dyt,l
dt

= −G̃>t,l(xt,l + ρutGt,lyt,l).

This gives that

dBt,l
dt

= ρut

[
y>t,lG̃

>
t,lGt,lyt,l − x>t,lG̃t,lG

>
t,lxt,l

]
(27a)

= ρut

[
‖gxt,l

‖2 − ‖gyt,l
‖2
]

+ ρut

[
y>t,l(G̃t,l −Gt,l)

>gxt,l
− x>t,l(G̃t,l −Gt,l)gyt,l

]
︸ ︷︷ ︸

:=At,l

.

(27b)

Proof for (25). Let At :=
∑
lAt,l. To start with, we have that

‖G̃t,l −Gt,l‖ ≤ L̂‖x̃t,lỹ>t,l − xt,ly
>
t,l‖

= L̂‖ρut(xt,lg>yt,l
+ gxt,l

y>t,l) + ρ2u2tgxt,l
g>yt,l
‖
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Next, based on finite convergence assumption, we have that

ρut

D∑
l=1

∣∣y>t,l(G̃t,l −Gt,l)
>gxt,l

∣∣ (28)

≤
D∑
l=1

O
(
ρut‖G̃t,l −Gt,l‖ · ‖gxt,l

‖
)

(a)

≤
D∑
l=1

O
(
ρ2u2t L̂‖xt,lg>yt,l

+ gxt,l
y>t,l‖ · ‖gxt,l

‖
)

(b)

≤
D∑
l=1

O
(
ρ2u2t L̂(‖gyt,l

‖+ ‖gxt,l
‖) · ‖gxt,l

‖
)

= ρ2L̂ · O
( ∑D

l=1 ‖gxt,l
‖2∑D

l=1(‖gxt,l
‖2 + ‖gyt,l

‖2)
+

∑D
l=1 ‖gxt,l

‖‖gyt,l
‖∑D

l=1(‖gxt,l
‖2 + ‖gyt,l

‖2)

)
= O(ρ2L̂)

where in (a) we use the fact that ρ is chosen small; (b) uses finite convergence assumption and
‖ab>‖ = ‖a‖‖b‖. Using similar arguments, we can bound At = O(ρ2L̂).

Proof for (26). Next, we give upper bound on |At,l|. Using similar argument as (28), we have that

ρut
∣∣y>t,l(G̃t,l −Gt,l)

>gxt,l

∣∣ (29)

≤ O
(
ρ2u2t L̂(‖gyt,l

‖+ ‖gxt,l
‖) · ‖gxt,l

‖
)

= ρ2L̂ · O
( ‖gxt,l

‖2∑D
l=1(‖gxt,l

‖2 + ‖gyt,l
‖2)

+
‖gxt,l

‖‖gyt,l
‖∑D

l=1(‖gxt,l
‖2 + ‖gyt,l

‖2)

)
. (30)

Using (29), we have that

|At,l| ≤ ρ2L̂ · O
( ‖gxt,l

‖2 + ‖gyt,l
‖2∑D

l=1(‖gxt,l
‖2 + ‖gyt,l

‖2)
+

‖gxt,l
‖‖gyt,l

‖∑D
l=1(‖gxt,l

‖2 + ‖gyt,l
‖2)

)
= O(ρ2L̂).

The proof is is thus completed.

C Missing Proofs for OP

C.1 Unbalancedness of SGD in OP

Theorem 6. Applied SGD or SNGD on problem (1b), both of them ensure that ‖xt‖2 − ‖yt‖2 =
‖x0‖2 − ‖y0‖2 for all t > 0. In other words, Bt keeps unchanged.

Proof. We consider SGD and NSGD separately.

SGD. It is straightforward to see that
d‖xt‖2

dt
= −2f ′t(x

>
t yt)x

>
t yt =

d‖yt‖2

dt
.

This completes the proof of SGD.

NSGD. The gradient update of NSGD is
dxt
dt

= − gxt√
‖gxt‖2 + ‖gyt‖2

,
dyt
dt

= − gyt√
‖gxt‖2 + ‖gyt‖2

. (31)

Then we have that for NSGD,
d‖xt‖2

dt
= −2f ′t(x

>
t yt)

x>t yt√
‖gxt
‖2 + ‖gyt

‖2
=

d‖yt‖2

dt
.

This gives the result for SNGD.
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C.2 Proof of Theorem 3

To prove this theorem, we first focus on the dynamic of SAM.
Lemma 2. Suppose that Assumption 1 holds. Consider the limiting flow of SAM in (7) with η → 0.
Let Bt := 1

2

(
‖xt‖2 − ‖yt‖2

)
and ρ be small. Then, for some |At| = O(ρ2L|Bt|), SAM guarantees

dBt
dt

= −2ρ
|f ′t(x>t yt)|√
‖xt‖2 + ‖yt‖2

Bt +At. (32)

Proof. For notational convenience, we write f ′t := f ′t(x
>
t yt) and f̃ ′t := f ′t(x̃

>
t ỹt). Using similar

arguments as Theorem 2, we have that

1

2

d
dt

(
‖xt‖2 − ‖yt‖2

)
= −ρutf̃ ′t ·

(
‖xt‖2 − ‖yt‖2

)
(33)

= −ρ sgn(f ′t)f̃
′
t√

‖xt‖2 + ‖yt‖2
·
(
‖xt‖2 − ‖yt‖2

)
= −ρ |f ′t |√

‖xt‖2 + ‖yt‖2
·
(
‖xt‖2 − ‖yt‖2

)
+ ρ

sgn(f ′t)(f
′
t − f̃ ′t)√

‖xt‖2 + ‖yt‖2
·
(
‖xt‖2 − ‖yt‖2

)
︸ ︷︷ ︸

:=At

.

Next we bound |At|. To start with, we have that∣∣x̃>t ỹt − x>t yt
∣∣ =

∣∣ρ2u2tx>t yt + ρut‖xt‖2 + ρut‖yt‖2
∣∣ (34)

≤ ρ2 |x>t yt|
‖xt‖2 + ‖yt‖2

+ ρ
√
‖xt‖2 + ‖yt‖2

≤ ρ2

2
+ ρ
√
‖xt‖2 + ‖yt‖2.

Using Assumption 1 and (34), we arrive at

|f ′t − f̃ ′t | ≤ L
∣∣x̃>t ỹt − x>t yt

∣∣ = O(ρL
√
‖xt‖2 + ‖yt‖2). (35)

Hence, we arrive at

|At| ≤ ρ|f ′t − f̃ ′t |
∣∣∣∣ ‖xt‖2 − ‖yt‖2√
‖xt‖2 + ‖yt‖2

∣∣∣∣ = O(ρ2L|Bt|).

The proof is thus completed.

Next, the proof of Theorem 3 is provided.

Proof. Lemma 2 has already indicated the concentration of Bt towards 0, if the magnitude of the first
term is larger than |At|. To see this, notice that we can lower bound 2|Bt|/

√
‖xt‖2 + ‖yt‖2 by∣∣∣∣ ‖xt‖2 − ‖yt‖2√

‖xt‖2 + ‖yt‖2

∣∣∣∣ =

∣∣∣∣ (‖xt‖+ ‖yt‖)(‖xt‖ − ‖yt‖)√∣∣‖xt‖2 + ‖yt‖2
∣∣

∣∣∣∣ ≥ ∣∣‖xt‖ − ‖yt‖∣∣ = Ct. (36)

Hence, long as ρ|f ′t(x>t yt)| · Ct > O(ρ2L|Bt|), we have the first term dominating the dynamic of
SAM, leading to contraction of Bt. This completes the proof to the first part.

Next we prove the second part, which is the lower- and upper- bound on Bt. The lower bound can be
seen from (36). For the upper bound, we have∣∣∣∣ ‖xt‖2 − ‖yt‖2√

‖xt‖2 + ‖yt‖2

∣∣∣∣ ≤ ∣∣∣∣ ‖xt‖2 − ‖yt‖2√
|‖xt‖2 − ‖yt‖2|

∣∣∣∣ =
√

2|Bt|. (37)

Plugging (37) into (33) finishes the proof.
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C.3 m-sharpness for OP

m-sharpness is a variant of SAM that is empirically observed to improve generalization, and it is
especially useful for distributed training on multiple GPUs (Foret et al., 2021). However, the reason
behind the improved performance is not fully understood. (Andriushchenko and Flammarion, 2022)
show that m-sharpness is more sparse-promoting for diagonal linear neural networks minimized via
a quadratic loss. However, diagonal linear networks are not scale-invariant.

For consistent notation with (7), we use ft(·) to denote the loss function on minibatch Mt. In
m-sharpness, the minibatchMt is divided into m disjoint subsets. Without loss of generality, we
also assume that the minibatch is evenly divided. We denote the loss function on each subset as
ft,i, i ∈ {1, 2, . . . ,m}. Note that we have 1

m

∑m
i=1 ft,i = ft. With these definitions, the update of

m-sharpness can be written as

x̃t,i = xt + ρut,iyt, ỹt,i = yt + ρut,ixt (38a)

gix̃t,i
= f ′t,i(x̃

>
t,iỹt,i)ỹt,i, giỹt,i

= f ′t,i(x̃
>
t,iỹt,i)x̃t,i (38b)

xt+1 = xt − η
1

m

m∑
i=1

gix̃t,i
, yt+1 = yt − η

1

m

m∑
i=1

giỹt,i
. (38c)

where ut,i := sgn(f ′t,i(x
>
t yt))/

√
‖xt‖2 + ‖yt‖2. Comparing with the SAM update for OP in (7),

the difference is that perturbed gradient is calculated on each ft,i. Next, we analyze the dynamic of
SAM with m-sharpness.

Lemma 3. Suppose that Assumption 1 holds. Consider the limiting flow of SAM in (38) with η → 0.
Let Bt := 1

2

(
‖xt‖2 − ‖yt‖2

)
and ρ be small. Then, for some |At| = O(ρ2L), SAM guarantees that

dBt
dt

= −2
ρ

m

∑m
i=1 |f ′t,i(x>t yt)|√
‖xt‖2 + ‖yt‖2

Bt +At. (39)

Proof. For notational convenience, we write f ′t,i := f ′t,i(x
>
t yt) and f̃ ′t,i := f ′t,i(x̃

>
t,iỹt,i). Then, we

have that

1

2

d
dt

(
‖xt‖2 − ‖yt‖2

)
= − ρ

m

m∑
i=1

ut,if̃
′
t,i ·

(
‖xt‖2 − ‖yt‖2

)
(40)

= − ρ

m

m∑
i=1

sgn(f ′t,i)f̃
′
t,i√

‖xt‖2 + ‖yt‖2
·
(
‖xt‖2 − ‖yt‖2

)
= − ρ

m

∑m
i=1 |f ′t,i|√

‖xt‖2 + ‖yt‖2
·
(
‖xt‖2 − ‖yt‖2

)
+
ρ

m

m∑
i=1

sgn(f ′t,i)(f
′
t,i − f̃ ′t,i)√

‖xt‖2 + ‖yt‖2
·
(
‖xt‖2 − ‖yt‖2

)
︸ ︷︷ ︸

:=At,i

.

Next, using (34) and Assumption 1, we have

|f ′t,i − f̃ ′t,i| ≤ L
∣∣x̃>t,iỹt,i − x>t yt

∣∣ = O(ρL
√
‖xt‖2 + ‖yt‖2).

Hence, we can bound |At,i| as

|At,i| ≤ |f ′t,i − f̃ ′t,i|
∣∣∣∣ ‖xt‖2 − ‖yt‖2√
‖xt‖2 + ‖yt‖2

∣∣∣∣ = O(ρL|Bt|).

The proof is thus completed by plugging |At,i| into (40).
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C.4 Extension to Layer-wise OP

We start with the notation. Let l ∈ {1, 2, . . . , D} be the layer index. Denote ft as the loss on
minibatch Mt. Let f ′t,l := ∇lft({x>t,lyt,l}l), i.e., the l-th entry of gradient (w.r.t. the variable

x>t,lyt,l), f̃
′
t,l := ∇lft({x̃>t,lỹt,l}l), and ut := 1/

√∑D
l=1 |f ′t,l|2

[
‖xt,l‖2 + ‖yt,l‖2

]
. The update of

SAM for layer l can be written as

x̃t,l = xt,l + ρutf
′
t,lyt,l, ỹt,l = yt,l + ρutf

′
t,lxt,l, (41a)

gx̃t,l
= f̃ ′t,lỹt,l, gỹt,l

= f̃ ′t,lx̃t,l (41b)

xt+1,l = xt,l − ηgx̃t,l
, yt+1,l = yt,l − ηgỹt,l

. (41c)

Refined assumption for LoRA. Our proof only needs block-wise smoothness, i.e.,

|∇lft(x>l yl)−∇lft(a>l bl)|2 ≤ L̂2|x>l yl − a>l bl|2, ∀l, (42)

where ∇l refers to the gradient on x>l yl. It can be seen that
√
DL̂ ≥ L, but one can assume that√

DL̂ ≈ L for more clear intuition.
Theorem 7. Suppose that block smoothness assumption in (42) holds. Consider the limiting flow
of SAM in (41) with η → 0 and a sufficiently small ρ. Let Bt,l := 1

2

(
‖xt,l‖2 − ‖yt,l‖2

)
and

Bmax
t = maxl |Bt,l|. For some |At| = O(ρ2L̂Bmax

t ), SAM guarantees that

dBt
dt

= −ρ
∑D
l=1 |f ′t,l|2

(
‖xt,l‖2 − ‖yt,l‖2

)√∑D
l=1 |f ′t,l|2

[
‖xt,l‖2 + ‖yt,l‖2

] +At. (43)

Furthermore, for some |At,l| = O(ρ2L̂|Bt,l|), per layer balancedness satisfies that

dBt,l
dt

= −ρ
|f ′t,l|2

(
‖xt,l‖2 − ‖yt,l‖2

)√∑D
l=1 |f ′t,l|2

[
‖xt,l‖2 + ‖yt,l‖2

] +At,i. (44)

Proof. Using a similar derivation as before, we have that
1

2

d
dt

(
‖xt,l‖2 − ‖yt,l‖2

)
= −ρut|f ′t,l|2 ·

(
‖xt,l‖2 − ‖yt,l‖2

)
+ ρutf

′
t,l(f

′
t,l − f̃ ′t,l) ·

(
‖xt,l‖2 − ‖yt,l‖2

)︸ ︷︷ ︸
:=At,l

Next, based on (42), we have that

|f ′t,l − f̃ ′t,l| ≤ L̂
∣∣x̃>t,lỹt,l − x>t,lyt,l

∣∣ ≤ ρL̂ut|f ′t,l|(‖xt,l‖2 + ‖yt,l‖2
)

+ ρ2L̂u2t |f ′t,l|2|x>t,lyt,l|.
Combining these two equations, and applying similar argument as Theorem 5, it is not difficult to
arrive at |At,i| = O(ρ2L̂|Bt,l|) and |At| = O(ρ2L̂Bmax

t ).

C.5 Proof of Lemma 1

Proof. WithinW∗, the Hessian on (x,y) can be calculated as f ′′(x>y)[y>,x>]>[y>,x>]. The
largest eigenvalue is f ′′(w)

(
‖x‖2 + ‖y‖2). By the AM-GM inequality, it can be seen that the largest

eigenvalue is minimized when ‖x‖ = ‖y‖, whose balancedness is 0.

D Missing Experimental Details

We mainly focus on finetuning LMs with LoRA. This setting naturally includes distributional shift
– the finetuning dataset does not usually have the same distribution as the pretraining dataset as
validated through zero-shot performance. All experiments are performed on a server with AMD
EPYC 7742 CPUs and NVIDIA GeForce RTX 3090 GPUs each with 24GiB memory. All numerical
results from Section 6 report test performance (e.g., accuracy, F1 scores, or BLEU scores) and the
standard deviation across multiple runs.
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D.1 Details on Datasets

Our evaluations are carried out on commonly-used datasets in the literature.

GLUE benchmark. GLUE is designed to provide a general-purpose evaluation of language under-
standing (Wang et al., 2019b). Those adopted in our work include MNLI (inference, (Williams et al.,
2018)), SST-2 (sentiment analysis, (Socher et al., 2013)), MRPC (paraphrase detection, (Dolan and
Brockett, 2005)), CoLA (linguistic acceptability (Warstadt et al., 2019)), QNLI (inference (Rajpurkar
et al., 2018)), QQP3 (question-answering), RTE4 (inference), and STS-B (textual similarity (Cer
et al., 2017)). These datasets are released under different permissive licenses.

SuperGLUE benchmark. SuperGLUE (Wang et al., 2019a) is another commonly adopted bench-
mark for language understanding and is more challenging compared with GLUE. The considered
datasets include CB (inference, (De Marneffe et al., 2019)), ReCoRD (multiple-choice question
answering (Zhang et al., 2018)), COPA (question answering (Roemmele et al., 2011)). These datasets
are released under different permissive licenses.

WebNLG Challenge. This dataset is commonly used for data-to-text evaluation (Gardent et al.,
2017). It has 22K examples in total with 14 distinct categories. Among them, 9 are seen during
training, and the unseen training data are used to test the generalization performance. The dataset is
released under license CC BY-NC-SA 4.0.

Additional datasets. We also use SQuAD (question answering (Rajpurkar et al., 2016)) in our
experiments, which is released under license CC BY-SA 4.0. Other datasets include TREC (topic
classification (Voorhees and Tice, 2000)) and SNLI (inference (Bowman et al., 2015)). Both of them
are licensed under CC BY-SA 4.0.

D.2 Details on Language Models

We summarize the adopted language models in our evaluation. All model checkpoints are obtained
from HuggingFace.

RoBERTa-large. This is a 355M parameter model. The model checkpoint5 is released under the
MIT license.

OPT-1.3B. The model checkpoint6 is released under a non-commercial license. 7

GPT2-medium. This is a 345M parameter model. Its checkpoint8 is under MIT License.

D.3 Few-shot Learning with RoBERTa and OPT

Experiments on RoBERTa-large. We follow the k-shot learning setup in (Malladi et al., 2023)
and focus on classification tasks. The training set contains k = 512 samples per class while the test
set has 1000 samples. We also employ prompts for finetuning; where the adopted prompts are the
same as those in (Malladi et al., 2023, Table 13). AdamW is adopted as the base optimizer, and
hyperparameters are tuned from those in Table 6. Our experiments are averaged over 3 random trials.
The estimated runtime is about 5 minutes per dataset.

The per-iteration runtime on the SST-5 dataset of BAR, SAM, and the baseline optimizer are compared
in Table 7. It can be seen that SAM is much more slower than the baseline approach, and BAR
reduces 74% additional runtime of SAM, while achieving comparable accuracy. We believe that this
runtime saving can be even larger with additional engineering efforts such as kernel fusion, which we
leave for future work. This validates the computational efficiency of BAR.

3https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs
4https://paperswithcode.com/dataset/rte
5https://huggingface.co/FacebookAI/roberta-large
6https://huggingface.co/facebook/opt-1.3b
7https://github.com/facebookresearch/metaseq/blob/main/projects/OPT/MODEL_LICENSE.

md
8https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-medium-pytorch_model.

bin
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Table 6: Hyperparameters used for few-shot learning with RoBERTa-large.

Hyper-parameters Values

LoRA r (rank) 8
LoRA α 16

# iterations 1000
batchsize 16

learning rate 1×10−4, 3×10−4, 5×10−4

ρ for SAM 0.05, 0.1, 0.2
µ0 for BAR 0.5, 1.0, 2.0

scheduler for BAR linear, cosine

Table 7: Per-iteration runtime for finetuning RoBERTa-large on SST5.

SST5 baseline SAM BAR

time (s) 0.105 0.265 0.146

Experiments on OPT. For OPT-1.3B, we consider tasks from the SuperGLUE benchmark covering
classification and multiple-choice. We also consider generation tasks on SQuAD. Following (Malladi
et al., 2023), we randomly sample 1000 data for training and the other 1000 for testing. AdamW
is adopted as base optimizer. The hyperparameters adopted are searched over values in Table 8.
Estimated runtime is less than or around 10 minutes, depending on the dataset.

If we directly apply FP16 training with SAM, underflow can happen if one does not take care of the
gradient scaling on the two gradients calculated per iteration. This means that SAM is not flexible
enough to be integrated with the codebase for large scale training, as FP16 is the default choice for
finetuning LMs. We employ FP32 to bypass the issue with SAM. Consequently, the training speed is
significantly slowed down; see a summary in Table 9. It further demonstrates the effectiveness of
BAR for large scale-training.

Overall, the results for few-shot learning indicate that given limited data, BAR can effectively improve
generalization using significantly reduced computational resources relative to SAM.

Table 8: Hyperparameters used for few-shot learning with OPT-1.3B.

Hyper-parameters Values

LoRA r (rank) 8
LoRA α 16

# iterations 1000
batchsize 2, 4, 8

learning rate 1×10−5, 1×10−4, 5×10−4

ρ for SAM 0.05, 0.1, 0.2
µ0 for BAR 0.2, 0.5, 1.0, 2.0

scheduler for BAR linear, cosine

D.4 Finetuning with RoBERTa-large

Our implementation is inspired from (Hu et al., 2022)9, which is under MIT License. The hyper-
parameters are chosen the same as provided in its GitHub Repo. AdamW is adopted as the base
optimizer. However, we employ single GPU rather than multiple ones and use gradient accumulation
rather than parallelism due to memory constraint. We also note that there could be failure cases for
LoRA using certain seed, e.g., SST-2 with seed 1 and MNLI with seed 2. These cases are ignored
when comparing. We consider the GLUE benchmark and report the mismatched accuracy for MNLI,
Matthew’s correlation for CoLA, Pearson correlation for STS-B, and accuracy for other datasets.
Larger values indicate better results for all datasets. For LoRA, we employ r = 8 and α = 16.

9https://github.com/microsoft/LoRA/tree/main
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Table 9: Per-iteration runtime for finetuning OPT-1.3B on RTE.

RTE baseline SAM BAR

precision FP16 FP32 FP16
time (s) 0.1671 0.708 0.1731

Table 10: Experiments on finetuning RoBERTa (355M). Results marked with † are taken from (Hu
et al., 2022), and those with ∗ refer to AdapterP in (Hu et al., 2022).

RoBERTa # para SST2 STS-B RTE QQP QNLI MRPC MNLI CoLA avg

FT† 355M 96.4 92.4 86.6 92.2 94.7 90.9 90.2 68.0 88.9

Adapter∗ 0.8M 96.6 91.9 80.1 91.7 94.8 89.7 - 67.8 -
LoRA 0.8M 95.8 92.4 88.2 91.4 94.7 89.6 90.6 64.8 88.4

LoRA-oBAR 0.8M 96.0 92.6 88.7 91.6 94.8 90.3 90.6 65.1 88.7
LoRA-nBAR 0.8M 96.0 92.6 89.2 91.6 94.7 90.3 90.8 65.6 88.9

Experiments are conducted over three random trials for all datasets, with the exception of QQP, for
which only two trials are performed due to its large size. The results of final test performance can be
found in Table 10. Estimated runtime varies for different datasets from 2 to 15 hours, except for QQP
which takes 3 days on our device.

For the hyperparameters of oBAR and nBAR, µ0 is typically chosen from {0.2, 0.5, 1.0}; however,
for QQP, a value of 0.05 is used. The scheduler is chosen from linear and constant. We also observe
that for datasets such as COLA and RTE, setting weight decay as 0 works best for BAR.

D.5 GPT2 medium on WebNLG Challenge

AdamW is adopted as base optimizer. The hyperparameters can be found in Table 11. Our results are
obtained from three random trials. Each trial takes roughly 8 hours on our hardware.

Table 11: Hyperparameters used for GPT2.

Hyper-parameters Values

LoRA r (rank) 4
LoRA α 32
# epochs 5
batchsize 8

learning rate 2×10−4

label Smooth 0.1
µ0 for BAR 0.1, 0.15, 0.2, 0.25, 0.3

scheduler for BAR linear, constant

beam size 10
length penalty 0.8
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Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitation is discussed in Section 7.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: All assumptions are stated along with theorems. The proofs are listed in
appendix. All theories and equations are properly referenced.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The details on proposed algorithms can be found in Section 5 and Appendix
A.6. Experimental details on setups, datasets, architectures, and hyperparameters can be
found in Section 6 and Appendix D. Code can be found in our github repo.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The code is open-sourced on github. The code gathers details for reproducing
our experiments. For example, the exact environment is listed in environment.yml.
Instructions on preparation (e.g., data, packages, etc) and commands to use are stated in
ReadMe.md.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Experimental details can be found in Section 6 and Appendix D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Mean and standard deviation are obtained by three random trials for most of
experiments. See details in Appendix D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Hardware for our experiments is detailed in Appendix D. Estimated runtime is
also provided in Appendix D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: NeurIPS Code of Ethics is followed.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Broader impacts can be found in Appendix A.1. It is put in appendix due to
space limitation.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper does not release new data or models.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The datasets and model checkpoints used in this work are widely adopted ones
in the field. Their licenses are listed in Appendix D.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Our code is released under MIT license, unless model checkpoints and datasets
are under more restrictive licenses; see more in supplementary materials.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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