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Abstract001

Mathematical reasoning through Chain-of-002
Thought (CoT) has emerged as a powerful ca-003
pability of Large Language Models (LLMs),004
which can be further enhanced through Test-005
Time Scaling (TTS) methods like Beam Search006
and DVTS. However, these methods, despite007
improving accuracy by allocating more com-008
putational resources during inference, often009
suffer from path homogenization and ineffi-010
cient use of intermediate results. To address011
these limitations, we propose Stepwise Reason-012
ing Checkpoint Analysis (SRCA), a framework013
that introduces checkpoints between reasoning014
steps. It incorporates two key strategies: (1)015
Answer-Clustered Search, which groups rea-016
soning paths by their intermediate checkpoint017
answers to maintain diversity while ensuring018
quality, and (2) Checkpoint Candidate Aug-019
mentation, which leverages all intermediate an-020
swers for final decision-making. Our approach021
effectively reduces path homogenization and022
creates a fault-tolerant mechanism by utilizing023
high-quality intermediate results. Experimen-024
tal results show that SRCA improves reasoning025
accuracy compared to existing TTS methods026
across various mathematical datasets.027

1 Introduction028

Large Language Models (LLMs) have demon-029

strated mathematical reasoning capabilities through030

Chain-of-Thought (CoT) (Wei et al., 2022). Re-031

cent studies indicate that Test Time Scaling (TTS),032

which expands test-time computing resources to033

allocate more reasoning budget through methods034

such as Beam Search (Snell et al., 2024) and Di-035

verse Verifier Tree Search (DVTS) (Beeching et al.,036

2024), can significantly improve accuracy in math-037

ematical reasoning tasks (Ji et al., 2025; Zhao et al.,038

2024; Chen et al., 2025a). These methods allow039

LLMs to sample multiple candidates at each rea-040

soning step and score them using a process reward041

model (PRM) (Xi et al., 2024; Wu et al., 2024a;042

Wang et al., 2024b; Zhang et al., 2025a). Accord- 043

ing to their strategies, they select high-scoring steps 044

to continue reasoning, thus overcoming the limita- 045

tions of single-path reasoning. 046

However, current methods face two key chal- 047

lenges in practice. First, maintaining diversity in 048

the sampled reasoning paths is both crucial and 049

arduous (Misaki et al., 2025; Li et al., 2023). Even 050

though the model generates multiple candidate 051

paths, the chosen ones usually follow similar rea- 052

soning directions. This happens because the reward 053

mechanism favors local optimal solutions, caus- 054

ing the search process to converge too early and 055

fail to explore diverse reasoning patterns (Hooper 056

et al., 2025; Zeng et al., 2025). Second, exist- 057

ing methods underutilize intermediate reasoning 058

results: many intermediate branches are discarded 059

during the search, and only a few complete paths 060

are used in the final decision, leading to a waste 061

of computational resources (Wang et al., 2024c; 062

Zhang et al., 2025b). 063

To address these issues, we propose Stepwise 064

Reasoning Checkpoint Analysis (SRCA). We in- 065

troduce reasoning checkpoints as a foundational 066

technique and propose a searching method and a 067

decision-enhancement strategy based on it. We 068

inject "checkpoints" after each reasoning step. 069

Specifically, once a step is completed, we temporar- 070

ily interrupt the reasoning process and append the 071

prompt "So the answer is" to the current reason- 072

ing steps, compelling the model to generate an 073

intermediate prediction rather than continuing its 074

reasoning process, as illustrated in the upper right 075

corner of Figure 1. Using the intermediate answers 076

collected at these checkpoints, we further propose 077

an Answer-Clustered Search strategy. We group 078

multiple reasoning steps sampled at the current 079

checkpoint according to their detected answers, and 080

retain high-quality reasoning steps from each group 081

for further extension. This approach allows us to 082

maintain multiple potential reasoning paths leading 083
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to different answers, thus increasing the diversity of084

reasoning processes and mitigating the issue of path085

homogenization. Additionally, we introduce the086

Checkpoint Candidate Augmentation strategy.087

By collecting all intermediate answers generated at088

checkpoints, we expand the pool of candidate rea-089

soning paths, allowing these intermediate results to090

participate in the final decision-making process. In091

this way, we fully utilize all high-quality interme-092

diate results generated during reasoning, creating093

a fault-tolerant mechanism. Even if subsequent094

reasoning deviates, the retained high-quality inter-095

mediate predictions may still lead to the correct096

answer.097

The contributions of this work can be summa-098

rized as follows:099

• We introduce the concept of reasoning check-100

points, providing a new methodology for an-101

alyzing and improving LLM reasoning pro-102

cesses during test time.103

• Based on this concept, we develop SRCA,104

a framework that effectively addresses both105

path diversity and computational efficiency106

challenges.107

• We conduct extensive experiments that108

demonstrate the superiority of our approach109

and provide valuable insights for future re-110

search in Test-Time Scaling.111

2 Related Works112

As enthusiasm for scaling pre-training computation113

wanes, Test-Time Scaling (TTS) has emerged as a114

key research focus (Wang et al., 2024a; Wu et al.,115

2024b; Chen et al., 2025a). TTS allocates addi-116

tional computation during inference to improve per-117

formance, significantly enhancing LLMs’ problem-118

solving capabilities across specialized and general119

tasks. Some TTS approaches use training to en-120

courage LLMs to generate more extensive outputs121

for deeper reasoning (Guan et al., 2025; Xi et al.,122

2024). These methods create synthetic data, includ-123

ing long chain-of-thought (Chen et al., 2025b; Xi-124

ang et al., 2025) and reflection-based examples (Bi125

et al., 2025; Zhang et al., 2024; Yu et al., 2024), to126

fine-tune LLMs, shifting their behavior from rapid127

responses to more deliberate reasoning.128

Another category is training-free tree search,129

which forms the primary focus of this work (Luo130

et al., 2024; Wan et al., 2024; Guan et al.,131

2024). These methods dynamically guide the132

LLM’s reasoning process using external verifiers133

or PRMs (Jiang et al., 2024; Uesato et al., 2022; 134

Setlur et al., 2024). Snell et al. (2024) introduced 135

Beam Search to explore the reasoning space, where 136

PRM evaluates each reasoning step and maintains 137

a fixed number of promising paths based on the 138

beam width. Building upon this foundation, sub- 139

sequent research (Beeching et al., 2024) proposed 140

Diverse Verifier Tree Search (DVTS), which offers 141

a notable improvement (Liu et al., 2025). Instead 142

of maintaining a single search beam, DVTS oper- 143

ates multiple search trees simultaneously, selecting 144

and expanding the most promising reasoning path 145

within each tree. Tree search algorithms, however, 146

face two crucial challenges: the diversity problem 147

and the utilization problem. 148

The diversity problem arises when PRMs in- 149

advertently suppress the LLM’s sampling diver- 150

sity (Chen et al., 2025b; Zheng et al., 2024). This 151

occurs because only high-scoring paths are re- 152

tained, and these paths often share similar problem- 153

solving approaches. This issue is further exacer- 154

bated by the inherent biases in the imperfect PRMs 155

or verifier (He et al., 2025; Zheng et al., 2024). 156

The utilization problem arises because tree search 157

algorithms explore numerous paths, but typically 158

only one contributes to the final result. This leads 159

to many branches and intermediate processes be- 160

ing discarded, with utilization efficiency decreas- 161

ing as search scale increases. The challenge is 162

to efficiently integrate generated reasoning over- 163

head (Wang et al., 2024c; Zhang et al., 2025b; Sui 164

et al., 2025). This issue has evolved into the "over- 165

thinking problem," where LLMs waste resources 166

on simple problems, potentially leading to perfor- 167

mance degradation through error accumulation (Li 168

et al., 2024; Wu et al., 2025; Huang et al., 2025; 169

Gan et al., 2025; Aggarwal and Welleck, 2025). 170

To address these dual challenges, we propose 171

two novel strategies. First, the Answer Cluster 172

Search algorithm is designed to enhance the diver- 173

sity of tree search processes. Second, we introduce 174

the Check Point Augmentation strategy to preserve 175

high-quality intermediate reasoning processes for 176

reuse in final answer decision-making, thereby ad- 177

dressing the low utilization problem inherent in 178

tree search methodologies. 179

3 Methodology 180

In this section, we introduce three key techniques, 181

Checkpoint Injection, which serves as the atomic 182

operation in SRCA, Answer-Clustered Search 183
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Figure 1: Overview of SRCA. Top-right: The checkpoint operation, which serves as the atomic operation in SRCA.
Left: Illustration of ACS strategy at step i, where N = 6 and M = 2. Retrieved reasoning steps are clustered into
three groups based on their checkpoint answers (indicated by different shades), with the highest-scoring nodes
selected from clusters with answers 6 and 4 for subsequent reasoning. Bottom-right: CCA strategy, where paths 3
and 4 represent high-quality intermediate reasoning steps collected by CCA.

(ACS), and Checkpoint Candidate Augmentation184

(CCA), to improve LLM’s reasoning path search-185

ing.186

3.1 Checkpoint Injection187

We introduce a dynamic intervention mechanism188

to analyze the model’s reasoning trajectory through189

checkpoint injection. As shown in the upper top-190

right part of Figure 1, the core procedure begins191

by monitoring the model’s output stream for pre-192

defined step delimiter tokens (e.g., "### Step"),193

which indicate the completion of a logical reason-194

ing unit. Upon detecting such tokens, we inject a195

checkpoint to temporarily suspend autoregressive196

generation. At each checkpoint position, a fixed197

prompt template xckpt = "So, the answer is " is198

inserted to force the model to generate an interme-199

diate prediction based solely on the accumulated200

context up to that step. The model’s immediate re-201

sponse to xckpt is recorded as a checkpoint answer202

at at step t, after which the LLM rolls back the203

generation state to the original checkpoint position.204

This rollback operation ensures the elimination of205

checkpoint influence from the ongoing reasoning206

process while preserving the model’s KV cache207

for continued generation (Wang et al., 2025). The208

checkpoint answers subsequently serve as crucial209

criteria for path similarity assessment and grouping210

in the ACS strategy, while also being collected by211

the CCA method to enrich the final answer candi- 212

date pool. 213

3.2 Answer-Clustered Search 214

Similar to Beam Search (Snell et al., 2024), The 215

Answer-Clustered Search (ACS) evaluates and re- 216

tains a select few of the multiple reasoning steps 217

sampled by the LLM for further reasoning. It 218

enhances reasoning diversity through stepwise 219

answer-guided clustering. In the following part, 220

we will detail the four key steps of ACS using the 221

running case shown on the left side of Figure 1. 222

1. Sampling. At each reasoning step t, we first 223

determine the branching factor: for the initial step 224

(t = 1), the LLM samples N candidate reasoning 225

paths; for subsequent steps, each of the M surviv- 226

ing beams generates N/M sub-paths, maintaining 227

a total budget of N paths. This set of paths is de- 228

fined as {p(j)t }Nj=1. Figure 1 illustrates the case 229

where N = 6 and M = 2. 230

2. Clustering. All N paths undergo Checkpoint 231

Injection at step t, yielding checkpoint answers 232

{a(j)t }Nj=1. These paths are clustered into groups 233

G = {C1, C2, ..., Ck} where Ci = {j|a(j)t = ac}, 234

forming answer-homogeneous clusters. The group- 235

ing results are marked with shading in Figure 1. 236

3. Scoring. A PRM assigns scores sj to each 237

path p
(j)
t , with cluster Ci’s aggregate score com- 238

puted as Si =
∑

j∈Ci
sj . This approach is similar 239
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Algorithm 1: Answer-Clustered Search
Input: Sampling budget N , beam width M ,

candidate set {p(j)t }Nj=1

Output: Selected paths set P
// Checkpoint Injection & Scoring
for j ← 1 to N do

a
(j)
t ← SRCA(p

(j)
t );

s
(j)
t ← PRM(p

(j)
t );

end
// Clustering& Sorting
G = {C1, ..., Ck} where Ci = {j|a(j)

t = ai};
for Ci ∈ G do

Si ←
∑

j∈Ci
sj ;

end
G← {Ci : Si ≥ Si+1}ki=1;
// Round-robin Selection
P ← ∅;
while |P| < M do

for Ci ∈ G do
j∗ ← argmaxj∈Ci

sj ;
P ← P ∪ {p(j

∗)};
Ci ← Ci \ {p(j

∗)};
if |P| = M then

break;
end

end
end

to a stepwise Weighted Best-of-N implementation.240

4. Selection. Clusters are sorted by Si in de-241

scending order, while paths within each cluster are242

ranked by sj . Then we sequentially select top-243

ranked paths across clusters via round-robin sam-244

pling: starting from the highest cluster, we pick245

the top path from each cluster, cycling back when246

reaching the last cluster until M paths are selected.247

This resource-aware branching prioritizes high-248

quality clusters while maintaining inter-cluster di-249

versity. The cyclic selection mechanism prevents250

dominance by single-answer clusters and enables251

early identification of divergent reasoning trajecto-252

ries. We provide a more rigorous process in Algo-253

rithm 1.254

3.3 Checkpoint Candidate Augmentation255

The proposed Checkpoint Candidate Augmenta-256

tion (CCA) aims to maximize the use of reasoning257

resources and enhance the diversity of candidate an-258

swers by integrating the checkpoint answers from259

intermediate reasoning steps. Traditional Beam260

Search methods retain only a fixed number, i.e., M,261

of complete reasoning paths as the final candidate262

set, which leads to the discard of many unfinished263

intermediate branches. To address this issue, our264

method continuously collects intermediate answers265

generated at all checkpoints during the ACS and266

reconstructs the corresponding truncated reasoning 267

paths into valid candidate paths. Specifically, for 268

each intermediate answer a(j)t produced at a check- 269

point, we concatenate it with the current reasoning 270

path p
(j)
t to form a candidate path with a complete 271

logical chain: 272

p̂
(j)
t = p

(j)
t ⊕ xckpt ⊕ a

(j)
t (1) 273

where ⊕ represents string concatenation. 274

All candidate paths, including the original com- 275

plete paths and the newly added intermediate paths, 276

are uniformly scored by the PRM, and the path 277

with the highest score is selected as the model out- 278

put. This method offers two main advantages: first, 279

by incorporating prediction results from the inter- 280

mediate inference process into the candidate set, it 281

significantly improves the utilization of computa- 282

tional resources already spent; second, by retaining 283

intermediate answers at various stages, it estab- 284

lishes an effective fault tolerance mechanism. Even 285

if the LLM makes mistakes in subsequent steps, it 286

may still arrive at the correct answer through the 287

retained high-quality intermediate predictions. On 288

the other hand, CCA can effectively mitigate is- 289

sues such as overthinking, increasingly erroneous 290

reasoning, and repetitive outputs in LLMs. 291

4 Experiments 292

We conducted comparative experiments on four 293

mathematical reasoning datasets and against four 294

Test-Time Scaling baselines. 295

4.1 Settings 296

In the experiments, we used four datasets: GSM8K, 297

MATH500, AIME, and OlympiadBench. Two 298

different-sized LLMs were tested in total, specifi- 299

cally Llama-3.2-1B-Instruct (MetaAI, 2024) and 300

Qwen3-0.6B (Yang et al., 2025). For the PRM, 301

we adopted the model fine-tuned by DeepSeek, 302

Llama3.1-8B-PRM-Deepseek-Data (Xiong et al., 303

2024) and Skywork-o1-Open-PRM-Qwen-2.5-7B re- 304

leased by Skywork (o1 Team, 2024). 305

We compared our method against several 306

TTS algorithms, including Greedy Search, Self- 307

Consistency (Wang et al., 2023), Best-of-N 308

(BoN) (Brown et al., 2024), Weighted BoN (Brown 309

et al., 2024), Beam Search (Snell et al., 2024), and 310

Diverse Verifier Tree Search (DVTS) (Beeching 311

et al., 2024). Among these methods, Beam Search 312

maintains N paths and selects M highest-scoring 313

ones for expansion, with each generating N/M 314
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Models & TTS GSM8K MATH500 AIME OlympiadBench
Independent Sampling

Llama-3.1-70B-Instruct (Grattafiori et al., 2024) 95.10 65.00 36.66 27.70
Llama-3.2-1B-Instruct (MetaAI, 2024) 43.75 24.40 3.22 4.59

w. Self-Consistency (Wang et al., 2023) 57.70 39.80 8.57 11.70
TTS Llama-3.2-1B-Instruct w. Llama3.1-8B-PRM-Deepseek-Data

BoN (Brown et al., 2024) 80.36 46.20 11.04 13.48
Weighted BoN (Brown et al., 2024) 65.50 46.40 10.50 13.63
Beam Search (Snell et al., 2024) 84.84 52.00 19.07 18.07
DVTS (Beeching et al., 2024) 83.47 52.60 20.68 19.40
SRCA (Ours) 85.60 53.40 24.97 20.74

TTS Llama-3.2-1B-Instruct w. Skywork-o1-Open-PRM-Qwen-2.5-7B
BoN (Brown et al., 2024) 80.74 55.20 25.08 18.22
Weighted BoN (Brown et al., 2024) 76.72 52.60 28.08 18.67
Beam Search (Snell et al., 2024) 84.99 63.20 26.82 23.89
DVTS (Beeching et al., 2024) 84.00 64.80 29.03 25.82
SRCA (Ours) 85.97 65.20 39.71 27.75

Table 1: Comparison of TTS results. The upper section shows the greedy search results for 1B and 70B models, and
we additionally report the self-consistency performance of the 1B model with N = 128. The lower section shows
results from the 1B model combined with various TTS methods and two PRMs, also with N = 128. Numbers
indicate accuracy (%). Best overall performance on each dataset is marked in bold, while best performance within
each group is underlined.

sub-paths. DVTS extends this by initializing M315

subtrees and sampling N/M paths per step within316

each subtree, enhancing path diversity through sub-317

tree isolation. Other baseline methods are standard318

approaches in the field; their detailed descriptions319

can be found in Appendix A.320

For all the sampling-based methods, set temper-321

ature = 0.8 and top_p = 0.9. We use N = 16 and322

N = 64 for sampling times to assess the effect of323

sampling scale on reasoning performance. For the324

methods involving path selection, such as Beam325

Search, DVTS, and SRCA, the beam width M is326

fixedly set to 4, that is, the 4 candidate paths with327

the highest scores are retained at each reasoning328

step for subsequent expansion.329

Since the PRM can collect the step-level scores330

of the complete reasoning path to form a score se-331

quence, there are various ways to determine the332

final score of the path, such as taking the sum, ac-333

cumulation, minimum value of the sequence scores,334

and the score of the last step. In this experiment, the335

score of the last step in the path is used as the path336

score. The effects of these configurations on exper-337

imental results are discussed in Appendix B.2.338

4.2 Results339

4.2.1 Scaling with SRCA: Small Models Can340

Outperform Larger Ones341

Table 1 shows the performance of Llama-3.2-1B-342

Instruct with various TTS methods on four math-343

ematical datasets (N = 128, M = 4). We also344

include results from Llama-3.1-70B-Instruct for345

comparison. 346

SRCA consistently outperforms other TTS meth- 347

ods across all datasets, regardless of the PRM used. 348

With DeepSeek PRM, SRCA achieves approxi- 349

mately 10% absolute improvement over the BoN 350

baseline. The improvement is particularly notable 351

on AIME, where SRCA shows a 43% relative per- 352

formance gain over DVTS. Remarkably, when us- 353

ing Skywork PRM, our 1B model with SRCA out- 354

performs the 70B model on MATH500, AIME, and 355

OlympiadBench, only falling behind on the sim- 356

pler GSM8K dataset. This demonstrates SRCA’s 357

effectiveness in enabling smaller models to com- 358

pete with larger ones. On the other hand, The 359

choice of PRM also impacts performance, with 360

Skywork PRM generally yielding better results 361

than DeepSeek PRM across all TTS methods. This 362

suggests that future advances in PRM development 363

could lead to further performance improvements in 364

TTS methods. More results of SRCA on Qwen3- 365

0.6B are presented in Appendix B.3. 366

4.2.2 Expanding Sampling Times: SRCA Has 367

Higher Efficiency. 368

We test various TTS methods with sampling times 369

N = 16, 32, 64, and 128. The results are shown in 370

Figure 2. SRCA demonstrates superior efficiency 371

by requiring fewer samples to achieve compara- 372

ble accuracy. With DeepSeek PRM on MATH500, 373

SRCA achieves 51.2% accuracy at N = 16, out- 374

performing DVTS’s 49.8% at N = 64. This advan- 375

tage is more pronounced on AIME, where SRCA’s 376

accuracy at N = 16 exceeds all TTS methods’ 377
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70B 70B
70B

70B

Figure 2: Performance trends of TTS methods with DeepSeek PRM (top row) and Skywork PRM (bottom row) and
as the sampling number N increases from 16 to 128. In the bottom row, we additionally mark the performance of
the 70B model with a green line for comparison.

Figure 3: Pass@K trends of the 1B model with different TTS methods and DeepSeek PRM as the sampling number
increases from 16 to 128. Note that for Pass@K calculation, Self-Consistency, BoN, and Weighted BoN degrade to
Independent Sampling.

performance at N = 128. Using Skywork PRM378

further amplifies this gap: SRCA reaches 32.48%379

at N = 16, while the best baseline (DVTS) only380

achieves 29.03% at N = 128. Performance im-381

provements show diminishing returns as N in-382

creases, with N = 16 → 32 gains being larger383

than N = 64 → 128. This pattern holds across384

different PRMs, suggesting convergence to an up-385

per bound. Further analysis regarding the computa-386

tional overhead and efficiency of SRCA is provided387

in Appendix B.1.388

5 Analysis389

5.1 Pass Rate Test: SRCA Improves Answer390

Discovery391

The ability to sample at least one correct reasoning392

path is crucial for policy models, as it determines393

the effectiveness of PRM guidance. If a policy394

model does not sample any correct paths, even a395

perfect PRM cannot select the correct one. We396

conducted Pass@k tests on 4 datasets comparing397

different TTS methods, including SRCA without398

CCA to understand each component’s contribution.399

Results are shown in Figure 3. SRCA demon-400

strates superior pass rates across datasets. Ablation 401

studies show that CCA contributes approximately 402

10% improvement through answer pool expansion, 403

while ACS alone still outperforms DVTS and Beam 404

Search by 3% on average. Independent sampling 405

achieves higher Pass@k on simpler datasets due to 406

its unconstrained randomness generating more di- 407

verse solutions. However, for challenging datasets 408

like AIME, this approach performs poorly as ran- 409

dom exploration is ineffective when precise reason- 410

ing is required. On the other hand, the TTS method 411

produces a candidate set of better quality, resulting 412

in a higher pass rate. 413

5.2 Early Stopping: Efficient Computing with 414

No Performance Loss. 415

Recent research shows that LLMs often suffer from 416

overthinking, conducting unnecessary analysis that 417

wastes computational resources and can even lead 418

to incorrect answers (Li et al., 2024; Wu et al., 419

2025; Sui et al., 2025). We implement early stop- 420

ping in SRCA by introducing a threshold τ : rea- 421

soning stops when a checkpoint answer’s score 422

exceeds τ . We tested various τ values (0.5-1.0), 423
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43%

19%
30%

15%

Figure 4: The average accuracy and search depth of SRCA with early stopping strategies under different values of
tau. The left y-axis represents the search depth, while the right y-axis represents the accuracy (%). The dashed line
in the figure annotates the reduction rate of tree depth, i.e., the number of reasoning steps, when tau = 0.95. The
pentagon represents the best performance.

11.63% 19.35%

20.25% 25.04%

Figure 5: Ablation study results on four datasets, grouped by different values of N . For the bars corresponding to
methods incorporating CCA, the Checkpoint Answer Rate (CAR) is additionally marked with slashes shading. The
average CAR for each dataset is indicated in the top-left corner of each subplot.

measuring both accuracy and average reasoning424

steps, with τ = 1 (no early stopping) as baseline.425

Results are shown in Figure 4. This experiment426

uses Skywork PRM with N = 16 samples.427

Low thresholds like 0.5 hurt performance, caus-428

ing a 14% accuracy drop on MATH500. While this429

reduces reasoning steps, the performance trade-off430

is unacceptable. Higher thresholds require more431

steps but yield better accuracy, as expected. At432

τ = 0.95, early stopping reduces reasoning steps433

by 27% across datasets while only losing 0.58% ac-434

curacy. Notably, it sometimes improves accuracy:435

both MATH500 and OlympiadBench show better436

results at τ = 0.95 than without early stopping.437

This confirms that overthinking can harm perfor-438

mance, due to either model reasoning limitations or439

PRM imperfections (Zheng et al., 2024; He et al.,440

2025). Early stopping is particularly effective for441

simpler tasks: GSM8K shows a 43% reduction in442

reasoning steps at τ = 0.95, compared to 19% for443

the more challenging AIME problems. 444

5.3 Ablation Study 445

SRCA combines ACS for diverse path searching 446

and CCA for expanding the answer candidate pool. 447

We conducted ablation studies by: (1) testing ACS 448

alone without CCA, and (2) combining CCA with 449

baseline methods (Beam Search and DVTS). Re- 450

sults are shown in Figure 1. We also track the 451

Checkpoint Answer Rate (CAR) - the percentage 452

of final answers selected from checkpoint, which 453

is marked with slashes on the bar chart. 454

After removing the CCA strategy, SRCA de- 455

grades to ACS strategy, resulting in a notable per- 456

formance decline. However, on relatively simple 457

datasets like GSM8K and MATH500, increasing 458

the sampling size (e.g., to N = 128) minimizes 459

this performance gap to less than 1%. Notably, 460

ACS consistently outperforms both Beam Search 461

and DVTS baselines across most configurations, 462
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Reasoning
Step
Score

Checkpoint Answer
Final
Score

Question: What is the smallest positive perfect cube that can be written as the 
sum of three consecutive integers?

- - -

Answer: 
## Step 1: Let's denote the first of the three consecutive integers as n. We know 
that the next two consecutive integers are n+1 and n+2. 

0.8774 $\boxed{9}$
0.0313

## Step 2: The sum of these three consecutive integers is n + (n+1) + (n+2). This 
simplifies to 3n + 3. 

0.8676 $\boxed{3n + 3}$ 0.0459

## Step 3: We are looking for the smallest positive perfect cube that can be 
expressed in this form. Let's rewrite the expression 3n + 3 as 3(n + 1). 

0.8359
$\boxed{{3(1)^3 + 3(2)^3 = 3(1 + 
2^3) = 3(1 + 8) = 3(9) = 27}$

0.6762

## Step 4: A perfect cube is the cube of an integer. So, we need to find the 
smallest value of n for which 3(n + 1) is a perfect cube. 

0.7822 $\boxed{27}$ 0.6837

## Step 5: To find the smallest perfect cube, we can start by checking small 
values of n. Let's start with n = 1: 3(1 + 1) = 3(2) = 6, which is not a perfect cube. 

0.6674 $\boxed{27}$ 0.7192

## Step 6: Now, let's try n = 2: 3(2 + 1) = 3(3) = 9, which is a perfect cube (3^2). 0.3876 $\boxed{9}$ 0.0054

## Step 7: Since we found a perfect cube in the first step, we don't need to check 
further values of n. 

0.0764 $\boxed{9}$ 0.1356

The final answer is: $\boxed{9}$ - - 0.0212

Table 2: A real running case of SRCA during reasoning. The first column shows the question and the model’s
reasoning process. The Step Score represents PRM’s evaluation of the current step, while the Final Score indicates
the PRM score when using the current step and its checkpoint answer as the reasoning endpoint.

demonstrating its robust effectiveness.463

The integration of CCA with baseline methods464

yields substantial improvements in accuracy (3-465

4%). Analysis shows that 19.07% of final answers466

originate from CCA’s expanded candidate pool, un-467

derscoring its important contribution to solution468

generation. The impact varies by problem diffi-469

culty: CAR is 11.63% for GSM8K but rises to470

25.04% for OlympiadBench, indicating that CCA’s471

influence is more pronounced in solving complex472

problems.473

5.4 Case Study474

Table 2 shows a real running case of SRCA during475

reasoning. Since the complete search tree is too476

large, we only showcase how SRCA uses Check-477

point Answers to backup correct answers from in-478

correct branches. The model’s reasoning process479

can be explained manually in three phases:480

• Early Stage (Steps 1-2): During initial rea-481

soning, the model produces either incorrect482

answers or incomplete expressions instead of483

proper numerical values, indicating insuffi-484

cient reasoning depth.485

• Answer Formation Stage (Steps 3-5): Starting486

from Step 3, the model attempts brief reason-487

ing in the answer box and first obtains the488

correct answer 27. Although reasoning in the489

answer box is not ideal behavior, the model490

successfully reaches the correct answer this491

way. This correct answer is maintained until492

Step 5. 493

• Error Stage (Step 6): A critical reasoning error 494

occurs when the model incorrectly identifies 495

9 as a perfect cube instead of a perfect square. 496

This error leads to an incorrect checkpoint 497

answer that affects the reasoning until the end. 498

When all checkpoint answers are evaluated as 499

reasoning endpoints by PRM, Step 5 receives the 500

highest score of 0.7192, exceeding the natural end- 501

ing’s score of 0.0212. If no other branch has a score 502

higher than 0.7192, this score will be selected as 503

the final answer, effectively correcting the wrong 504

answer from the natural reasoning endpoint to the 505

correct one. 506

6 Conclusion 507

In this paper, we introduced SRCA, a novel frame- 508

work that enhances LLM reasoning by introduc- 509

ing checkpoints between reasoning steps. Our 510

Answer-Clustered Search strategy effectively main- 511

tains path diversity while ensuring reasoning qual- 512

ity, and the Checkpoint Candidate Augmentation 513

approach efficiently utilizes intermediate predic- 514

tions for final decision-making. Experimental re- 515

sults demonstrate that SRCA outperforms base- 516

line methods like Beam Search and DVTS across 517

various mathematical reasoning datasets. The suc- 518

cess of SRCA suggests that leveraging intermediate 519

checkpoints is a promising direction for improving 520

LLM reasoning capabilities. 521
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7 Limitations522

SRCA faces two main limitations. First, while523

it requires checkpoints between reasoning steps,524

defining precise step boundaries is challenging. Al-525

though Llama-series models exhibit relatively clear526

step demarcations with characteristic delimiters,527

others, particularly the emerging "slow thinking"528

models, often generate outputs without distinct529

structural patterns and sometimes in a more con-530

versational style. Second, the reasoning steps aug-531

mented by the CCA strategy are often incomplete.532

While models can still generate correct answers533

based on these partial reasoning paths, this incom-534

pleteness reduces the interpretability of the reason-535

ing process. Compared to naturally completed rea-536

soning chains, these occasionally truncated paths537

represent a shortcoming in terms of explanation538

quality and transparency.539
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A Experiment Settings812

A.1 Datasets813

The following are the four datasets used in the814

experiment:815

• GSM8K (Cobbe et al., 2021) is an evaluation816

set consisting of 8,500 high-quality primary817

school mathematics problems. It is mainly818

used to assess the language comprehension819

and mathematical reasoning abilities of mod-820

els in basic mathematical problems.821

• MATH500 (Lightman et al., 2024) is a subset822

of the MATH dataset (Hendrycks et al., 2021)823

containing 500 questions. It covers seven824

mathematical domains and five difficulty lev-825

els. It is designed to test the performance826

of LLMs in solving advanced mathematical827

problems.828

• AIME1 offers a rich collection of challeng-829

ing problems from the American Invitational830

Mathematics Examination and contains 933831

high-difficulty mathematical problems.832

• OlympiadBench is an Olympiad-level bilin-833

gual multimodal scientific benchmark (He834

et al., 2024). In this experiment, only the sub-835

set of English mathematical problems without836

images was tested, with a total of 674 ques-837

tions.838

A.2 Baselines839

• Greedy Search: A decoding method based840

on the principle of local optimality. It always841

selects the token with the highest current prob-842

ability as the output.843

• Self-Consistency (Wang et al., 2023): LLMs844

generates N independent reasoning paths. Fi-845

nally, the most frequently occurring output is846

counted as the answer.847

• Best-of-N (BoN) (Brown et al., 2024): Sim-848

ilar to self-consistency, the LLM generates849

N independent reasoning paths. According850

to the scores given by the reward model, the851

path with the highest score is selected as the852

answer.853

• Weighted BoN (Brown et al., 2024): It is a854

combination of Self-Consistency and BoN.855

The reward model scores the N independent856

reasoning paths generated by the LLM. Then,857

the paths are clustered according to the an-858

swers, and the sum of the path scores within859

1www.kaggle.com/datasets/aime-problem-set-1983-2024

each cluster is taken as the answer’s score. 860

The answer with the highest score is selected. 861

• Beam Search (Snell et al., 2024): N reasoning 862

paths are maintained at each reasoning step. 863

According to the scores given by the PRM 864

for the current paths, M paths are selected to 865

continue the reasoning and expand downward. 866

Each selected path can expand into N/M sub- 867

paths. 868

• Diverse Verifier Tree Search (DVTS) (Beech- 869

ing et al., 2024): DVTS is an extension of 870

the beam search. It first initializes M sub- 871

trees. Each subtree samples N/M paths at 872

every step. Those paths are then scored by the 873

PRM. The path with the highest score within 874

the subtree is selected for further reasoning. 875

It is similar to Beam Search, as in each step, 876

M paths are selected from N paths for fur- 877

ther reasoning. Due to the scope limitation 878

of the subtrees, it prevents some locally opti- 879

mal branches from early elimination, thereby 880

enhancing the path diversity. 881

B Supplementary Experimental Results 882

B.1 Computational Cost Analysis in FLOPs 883

Table 3 compares the computational cost in FLOPs 884

for processing a single query across different mod- 885

els. We assume an input length of 256 tokens (pre- 886

fill) and an output length of 4096 tokens (decode). 887

The policy model generates tokens sequentially 888

in an auto-regressive manner, requiring multiple 889

forward passes, while the PRM requires only one 890

forward pass for scoring. 891

The results demonstrate that SRCA with N = 892

128, combining a 1B policy model and an 8B 893

PRM, requires only 43.01% of the computational 894

cost compared to the 70B model for processing a 895

single sample. Considering the experimental re- 896

sults reported in Table 1, the 1B model enhanced 897

with SRCA achieves higher accuracy than the 70B 898

model, indicating that our approach not only re- 899

duces computational overhead but also yields supe- 900

rior performance. 901

B.2 Evaluation of Scoring Methods and 902

Selection Strategies 903

We analyzed how different scoring methods for 904

reasoning paths and answer selection strategies af- 905

fect the accuracy of TTS methods. We employ 906

Llama3.1-8B-PRM-Deepseek-Data as the PRM in 907

this experiment. The PRM assigns scores to each 908

reasoning step, generating a sequence of scores for 909

12



Model Type N FLOPs
Llama-3.2-1B-Instruct Auto Regressive 128 1.31× 1018

Llama3.1-8B-PRM-Deepseek-Data Reward 128 9.03× 1015

Llama-3.1-70B-Instruc Auto Regressive 1 3.04× 1018

Table 3: Computational Cost Analysis (in FLOPs) for Different Model Configurations during Inference.

each path. We examined two primary methods for910

computing the final path score:911

• Last: Using the final step’s score as the path912

score, where PRM functions similarly to an913

Outcome Reward Model (ORM).914

• Mean: Taking the average of the score se-915

quence to reflect the overall reliability of the916

reasoning process.917

Furthermore, BoN and Weighted BoN can be918

combined with other tree search algorithms as an-919

swer selection strategies. Specifically, after the920

tree search algorithm generates multiple candidate921

paths:922

• BoN: Selects the path with the highest score923

• Weighted BoN: First clusters answers, then924

selects the answer with the highest sum of925

path scores within its cluster926

The experimental results (Table 4) demonstrate927

that the Last scoring method consistently outper-928

forms Mean, while BoN generally yields better re-929

sults than Weighted BoN. This pattern holds across930

all four datasets and three TTS methods.931

Notably, the superiority of Last over Mean sug-932

gests that some correct reasoning paths have high933

final scores but lower average scores. This indi-934

cates that even when reaching the correct answer,935

the intermediate reasoning steps may not be en-936

tirely accurate. Developing TTS methods that en-937

sure both process and outcome accuracy remains a938

future research direction.939

The choice between BoN and Weighted BoN re-940

flects a balance between policy model and reward941

model decision-making. BoN relies primarily on942

PRM’s judgment by selecting the highest-scoring943

path, while Weighted BoN considers the sampling944

frequency of the policy model through score aggre-945

gation. In our experiments, using a 1B parameter946

policy model and an 8B parameter PRM, the PRM-947

dominated BoN strategy achieved superior results,948

likely due to the PRM’s stronger discriminative949

ability.950

B.3 Experiments on Qwen3-0.6B 951

To validate the generalizability of SRCA, we 952

conducted additional experiments on Qwen3- 953

0.6B (Yang et al., 2025), following the same set- 954

tings as our main experiments. We set the sam- 955

pling number N to 16 to expedite the experimental 956

process. The experimental results are presented 957

in Table 5. Experimental results indicate that 958

SRCA maintains superior performance compared 959

to other TTS approaches. The observed trends 960

align with the findings from our primary experi- 961

ments, thereby confirming the general applicability 962

of SRCA across different LLMs. 963
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Selection N Method GSM8k MATH500 AIME Olympiad Avg. GSM8k MATH500 AIME Olympiad Avg.
Last Mean

BoN

16

Beam 0.7505 0.4660 0.1404 0.1422 0.3748 0.7475 0.4600 0.1200 0.1247 0.3631
DVTS 0.7452 0.4700 0.1489 0.1585 0.3807 0.7331 0.4620 0.1307 0.1525 0.3696
SRCA 0.8054 0.5120 0.2133 0.1822 0.4282 0.7869 0.4940 0.1747 0.1718 0.4069
Avg. 0.7670 0.4827 0.1675 0.1610 0.3946 0.7558 0.4720 0.1418 0.1497 0.3798

32

Beam 0.8278 0.4740 0.1425 0.1644 0.4022 0.8043 0.4780 0.1457 0.1377 0.3914
DVTS 0.8210 0.4920 0.1714 0.1659 0.4126 0.8241 0.5020 0.1758 0.1629 0.4162
SRCA 0.8340 0.5140 0.2304 0.1793 0.4394 0.8317 0.5120 0.1908 0.1793 0.4285
Avg. 0.8276 0.4933 0.1814 0.1699 0.4181 0.8200 0.4973 0.1708 0.1600 0.4120

64

Beam 0.8302 0.4800 0.1833 0.1719 0.4164 0.8392 0.4960 0.1758 0.1659 0.4192
DVTS 0.8347 0.4980 0.1951 0.1822 0.4275 0.8484 0.5140 0.1907 0.1733 0.4316
SRCA 0.8514 0.5160 0.2337 0.1881 0.4473 0.8491 0.5160 0.2144 0.1837 0.4408
Avg. 0.8388 0.4980 0.2040 0.1807 0.4304 0.8456 0.5087 0.1936 0.1743 0.4305

128

Beam 0.8484 0.5200 0.1907 0.1807 0.4350 0.8340 0.5160 0.1832 0.1807 0.4285
DVTS 0.8347 0.5260 0.2068 0.1940 0.4404 0.8499 0.5180 0.1843 0.1866 0.4347
SRCA 0.8560 0.5340 0.2497 0.2074 0.4618 0.8514 0.5240 0.2197 0.1896 0.4462
Avg. 0.8464 0.5267 0.2157 0.1940 0.4457 0.8451 0.5193 0.1957 0.1856 0.4365

Weighted
BoN

16

Beam 0.7369 0.4600 0.1200 0.1303 0.3618 0.7194 0.4460 0.1189 0.1229 0.3518
DVTS 0.7422 0.4760 0.1446 0.1526 0.3789 0.7111 0.4620 0.1125 0.1496 0.3588
SRCA 0.7597 0.4800 0.1714 0.1688 0.3950 0.7187 0.4680 0.1393 0.1674 0.3734
Avg. 0.7463 0.4720 0.1453 0.1506 0.3785 0.7164 0.4587 0.1236 0.1466 0.3613

32

Beam 0.7740 0.4760 0.1446 0.1659 0.3901 0.7520 0.4480 0.1404 0.1348 0.3688
DVTS 0.7877 0.4780 0.1661 0.1718 0.4009 0.7491 0.4680 0.1425 0.1644 0.3810
SRCA 0.7937 0.4900 0.1822 0.1778 0.4109 0.7832 0.4700 0.1704 0.1762 0.4000
Avg. 0.7851 0.4813 0.1643 0.1718 0.4007 0.7614 0.4620 0.1511 0.1585 0.3833

64

Beam 0.8036 0.4780 0.1886 0.1733 0.4109 0.7771 0.4860 0.1939 0.1615 0.4046
DVTS 0.7915 0.4860 0.1897 0.1825 0.4124 0.7839 0.4900 0.1961 0.1719 0.4105
SRCA 0.8173 0.5060 0.2068 0.1854 0.4289 0.7945 0.4940 0.2208 0.1778 0.4218
Avg. 0.8041 0.4900 0.1950 0.1804 0.4174 0.7852 0.4900 0.2036 0.1704 0.4123

128

Beam 0.8014 0.5000 0.1907 0.1854 0.4194 0.7574 0.4820 0.1951 0.1911 0.4064
DVTS 0.8195 0.5020 0.2079 0.1899 0.4298 0.7680 0.4920 0.1994 0.1940 0.4134
SRCA 0.8173 0.5100 0.2262 0.1943 0.4370 0.7786 0.5120 0.2444 0.2030 0.4345
Avg. 0.8127 0.5040 0.2083 0.1899 0.4287 0.7680 0.4953 0.2130 0.1960 0.4181

Table 4: Performance comparison of TTS methods with different scoring methods (Last/Mean) and selection
strategies (BoN/Weighted BoN) on four benchmark datasets. Numbers indicate accuracy. Higher scores indicate
better performance. Red cells denote group averages for each N value.

Models & TTS GSM8K MATH500 AIME Olympiad
Greedy Search 42.61% 34.40% 3.54% 13.63%
Self-Consistency 52.62% 47.00% 4.07% 20.59%
BoN 68.69% 51.20% 6.54% 23.56%
Weighted BoN 63.91% 53.60% 7.29% 23.41%
Beam Search 72.10% 54.00% 16.4% 25.07%
DVTS 74.91% 55.80% 17.36% 25.67%
SRCA 79.45% 56.60% 21.33% 27.89%

Table 5: Comparative results of TTS with Qwen3-0.6B.
Numerical values indicate accuracy rates, with bold
figures denoting the best performance. Experimental
parameters: N=16, utilizing DeepSeek PRM.
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