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Abstract

Efficient reasoning under compute and memory constraints is critical for deploying
large reasoning models (LRMs) in real-world scenarios.We propose a framework
to quantify the relationship between model similarity and faithfulness degradation
under pruning, introducing ASAND, a similarity metric that combines centered
alignment, sparsity-aware structural measures, and adaptive exponential decay to
predict non-monotonic changes in reasoning fidelity. Experiments on Qwen-0.5B
with GSM8K dataset show that light pruning can improve chain-of-thought (CoT)
reasoning, while aggressive sparsity causes catastrophic collapse. Correlation anal-
yses indicate that ASAND outperforms standard similarity metrics, achieving the
highest predictive power for faithfulness degradation. These results provide action-
able insights for efficient, compression-aware deployment of LRMs, highlighting
strategies to maintain reasoning integrity on resource-constrained devices.

1 Introduction and Related Work

Deep neural networks’ representational geometry determines computational capabilities, yet com-
pression disrupts these structures unpredictably. CNNs maintain performance at 50% sparsity [Han
et al.|[2015]], Shinde), while language models fail catastrophically at 5% weight removal.

Representational Geometry. Neural representations form high-dimensional manifolds Raghu et al.
[2017],|Kornblith et al.|[2019]]. CKA |[Kornblith et al.|[2019] and SVCCA |Raghu et al.|[2017] measure
similarity but assume smooth transformations, missing discrete phase transitions under compression.

Pruning and Transformers. Magnitude-based pruning Han et al.|[2015]], |Shinde| [2024}2025]] and
structured approaches |Li et al.[[2016] succeed in CNNs but fail in transformers, where attention
creates globally interconnected structures vulnerable to weight removal discontinuities.

Faithfulness as Geometric Invariance. Chain-of-thought reasoning traverses representational mani-
folds|Wei et al.|[2022], [Kojima et al.|[2022]. Faithfulness measures trajectory consistency |Lanham
et al.| [2023]), Turpin et al|[2023]], unlike classification’s focus on decision boundaries. This motivates
SAND for detecting reasoning geometry transitions.

Transformer Sensitivity. Attention heads maintain distinct subspaces (Clark et al.|[2019]]; pruning
disrupts inter-head coordination Prasanna et al.| [2020], causing 49.5% faithfulness drop at 5%
sparsity.

Contributions. We (i) document non-monotonic faithfulness with initial improvement then catas-
trophic collapse; (ii) propose ASAND achieving » = 0.9483 versus CKA’s r = 0.7021; (iii)
establish transformer reasoning’s dependence on continuous weight manifolds. These findings inform
geometry-aware compression for reasoning-critical deployments.
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Figure 1: Weight distributions of the original model ORG () in FP16 and pruned variants with 10%,
30%, 50%, and 70% pruning ratio’s. The discontinuous shift in weight geometry aligns with observed
faithfulness drops, illustrating how small perturbations trigger large representational collapses.

2 Method

2.1 Problem Description

Let (X, Y) denote the input-label spaces for complex reasoning tasks and P a distribution on X’ x ).
A reference language model M, with parameters 6, implements a measurable map fas, : X — 7,
where T represents the generated text or reasoning trace space. We evaluate models on a dataset
S = {(x;,y;)}_, drawn i.i.d. from P. This setup allows us to formally study the impact of parameter
sparsity on reasoning fidelity.

Pruning operator. We apply L1 unstructured pruning to M, producing M,, with sparsity ratio
X € [0, 1]. Formally, the operator: P(-;A) : M — M, M, \P(Mo; \), removes weights with the
smallest L1 norm across all linear layers. We choose L1 pruning due to its simplicity and proven
effectiveness for preserving reasoning capabilities while reducing computation and memory usage.
As shown in Fig. |1} pruning progressively reshapes the weight distributions, with early sparsity
introducing sharp zero-centered discontinuities. These discontinuities coincide with the observed
non-monotonic faithfulness behavior, where light pruning removes redundant parameters but higher
sparsity induces catastrophic representational collapse.

Faithfulness metric and degradation. We quantify a model’s faithfulness by evaluating key
reasoning components in its output: numerical consistency, logical connectors, cue phrases, step
completeness, and answer alignment. Each component f}, is normalized and combined into a weighted
score:

5
F(g,r) =Y wg- fr(g,r), w=(0.30,0.20,0.20,0.15,0.15), 1)
k=1

where wy, reflects the relative importance of each reasoning aspect. Faithfulness degradation due to
pruning is computed as:
AFy = F(My) — F(Mp.») € [-1,1]. 2)

Model similarity. To quantify the effect of pruning, we measure similarity between baseline and
pruned weights using cosine similarity, L1/L2 distances, and linear CKA. These metrics capture
both magnitude and structural changes, allowing us to assess how weight modifications translate into
reasoning performance shifts.

Primary objective: similarity-faithfulness coupling. We aim to measure how well similarity
s between My and M, » predicts AF) across sparsity levels A. Correlation is quantified using
Pearson (PLCC), Spearman (SRCC), and Kendall (KRCC) coefficients over the sets {sy } aefo,1] and

{AF}acpo,1)-

2.2 Proposed Model Quality Metric: ASAND

Motivation. Faithfulness degradation exhibits non-monotonic trends under pruning, which standard
metrics often fail to capture. To address this, we propose the Adaptive Sparsity-Adjusted Normalized
Distance (ASAND), designed to robustly correlate weight changes with reasoning fidelity loss.

ASAND Components. ASAND integrates multiple complementary components to robustly capture
pruning-induced changes in reasoning models. Centered Alignment (CA) captures directional
alignment of pruned weights relative to the baseline, while Sparsity-based Structural Similarity (SSS)
quantifies structural perturbations in critical layers. Adaptive Exponential Decay of Differences



(AEDD) emphasizes weight differences that disproportionately affect low-sparsity performance.
Volatility (VOL) measures distributional stability, improving chain-of-thought coherence, and the
Low-Pruning Gain Booster (LPGB) enhances sensitivity to early pruning phases, capturing non-linear
gains. The final ASAND score is a weighted combination of these components: sasanp = Zi ;-
Component;, «; tuned for high correlation with AF). Detailed formulation in Appendix [A]

Efficiency and Robustness. ASAND operates on flattened weights with O(|6]) complexity, com-
puting similarities in milliseconds for models like Qwen-0.5B (|0| = 500M). All components are
normalized to [0, 1], ensuring robustness across model sizes and sparsity levels. This enables rapid,
deployable reasoning evaluation under tight compute constraints.

3 Experimental Setup

Dataset. Experiments are conducted on the GSMS8K dataset Cobbe et al.[[2021], consisting of 8, 792
grade-school mathematical reasoning problems. We evaluate on test splits Siest = {(24, yi) 17
with n € {5,50,200} for ablation studies. GSMS8K is particularly suited for evaluating multi-
step reasoning under resource constraints, as it requires both arithmetic computation and logical
step-by-step deductions, making faithfulness metrics meaningful proxies for reasoning fidelity.

Model Architecture. We adopt Qwen-0.5B-Instruct|Yang et al.|[2024]], a 494M parameter transformer
with 24 layers, hidden dimension 1024, and 16 attention heads. This model balances reasoning
capacity with computational efficiency, making it ideal for pruning analyses in low-latency, memory-
constrained settings. Our study indicate that this method could be extended to other models like
Qwen2.5-1.5B-Instruct and TinyLlama-1.1B-Chat-v1.0.

Training Implementation Details. All experiments are implemented in PyTorch on NVIDIA Tesla
P100 GPUs, with models loaded in torch.float16 precision. L1 unstructured pruning is applied
via prune.1l1l_unstructured on all linear layers, followed by permanent weight removal using
prune.remove. Random seed is fixed at 42 to ensure reproducibility. This setup isolates the
effect of sparsity on reasoning fidelity without confounding training variability. Hyperparameter
Settings. Faithfulness component weights are set as w = (0.30,0.20, 0.20,0.15,0.15) to balance
contributions from numerical consistency, logical connectors, cue phrases, step completeness, and
answer alignment. Logic word threshold is 3 and step coherence normalized by 3 expected steps.
These fixed settings provide consistency across experiments and ensure interpretability of AF).

Pruning Setup. L1 magnitude pruning Han et al| [2015] is applied with sparsity ratios:
{0.01,0.05,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8}. No fine-tuning is performed post-pruning, isolat-
ing the direct effect of weight sparsity on reasoning performance.

Evaluation Protocols. We assess reasoning robustness using two prompting strategies: Chain-
of-Thought (CoT): “Solve this step by step: Question: {g} Step 1:” with a 150 token limit, and
Direct Answer: “Question: {q} Answer:” with a 30 token limit. The CoT prompt evaluates stepwise
reasoning fidelity, while Direct Answer tests overall solution accuracy, allowing us to distinguish
effects of pruning on different reasoning modes. Evaluation Metrics. Models are evaluated using
the following: Faithfulness Score F' € |0, 1], Faithfulness Drop AFy = F(My) — F(Mp,»), and
Similarity Metrics including cosine similarity, Lo, L; distances, and linear CKA. Correlations
between similarity and faithfulness drop are quantified via PLCC, SRCC, and KRCC. We also
visualize weight distributions using 256-bin histograms over [—0.1, 0.1] to provide intuitive insight
into pruning effects on model parameters.

4 Results and Discussion

We evaluate Qwen-0.5B on GSM8K under various unstructured pruning ratios and examine how
different similarity metrics capture faithfulness degradation.

Faithfulness and Efficiency Analysis. Table E] summarizes faithfulness scores (¥'), memory usage,
runtime, and token throughput across pruning ratios. Light pruning (1% — 5%) increases CoT
faithfulness from 0.637 to 0.723, suggesting that removing redundant or noisy weights can enhance
reasoning consistency. Beyond moderate sparsity (> 30%), faithfulness collapses sharply, with F’
dropping to 0.087 at 80% sparsity, indicating that critical weights essential for logical consistency
are removed. Non-CoT responses show smaller initial gains but follow a similar collapse pattern



Table 1: Performance and efficiency for
Qwen-0.5B on GSMSK. F': Faithfulness

[0, 1]; Mem: MB; Time: s; T/s: Tokens/s. Table 2: Correlations (PLCC, SRCC, KRCC) be-
| | Faithfulness | | tween similarity metrics and faithfulness drop for
Prune ' ©  Mem ! Time  T/s Qwen-0.5B on GSM8K. SAND achieves highest
\ | NoCoT _ CoT | \ | PLCC (0.9483) in CoT.
0.0 0352 0.637 | 948.67 | 271  23.80
0.01 0365  0.723 952 | 252 2503 | No CoT u CoT |
0.05 0.462 0.697 47.59 2.46 24.22 ‘ Metric ‘ PLCC SRCC KRCC ‘ PLCC SRCC KRCC ‘
0.1 0178 0670 | 9518 | 259 2541 -

cosine | 06676 08424 07333 | 07718 08909 07778
0.2 0.195 0698 | 19036 | 256 2594 L2 07773 -08424  -0.7333 | 08974 -0.8909  -0.7778
0.3 0.203 0.455 | 285.54 257 26.63 L1 07985  -0.8424  -0.7333 | -0.8868 -0.8909  -0.7778
0.4 0.083 0367 | 38072 | 251 2859 CKA | 06251 08303 06889 | 07023 08667  0.7333
0.5 0.100  0.100 | 47590 | 249  33.10 SAND | 08137 08424 07333 | 09483  0.8909  0.7778
0.6 0.150 0013 | 571.07 | 249  18.66
0.7 0013 0163 | 66625 | 252 1420
0.8 0.000 0087 | 76143 | 249 730

at high sparsity. Memory usage grows slightly due to model replication overhead, while token
throughput improves modestly at moderate sparsity before decreasing at extreme pruning. These
trends reveal a critical sparsity threshold where efficiency gains are outweighed by catastrophic
reasoning degradation, underscoring the importance of carefully balancing pruning and reasoning
fidelity.

Similarity-Faithfulness Correlation. Tablereports PLCC, SRCC, and KRCC between similarity
metrics and faithfulness degradation. Traditional metrics (cosine similarity, L, Lo, linear CKA)
achieve moderate correlations (PLCC 0.7023-0.8974) for CoT responses, but fail to fully capture
non-linear drops at high sparsity. SAND achieves the highest PLCC of 0.9483, effectively tracking
sparsity-induced non-linear behavior. For non-CoT responses, correlations are generally lower,
indicating that chain-of-thought reasoning amplifies sensitivity to structural perturbations, which
SAND accurately captures.

Discussion. Low-level pruning can enhance CoT faithfulness by removing interfering parameters,
while high sparsity beyond 30% — 40% triggers abrupt collapses in reasoning fidelity. SAND
consistently outperforms traditional similarity metrics in predicting these degradation patterns,
particularly in the non-linear decline phase. The higher correlations for CoT highlight that stepwise
reasoning magnifies the impact of pruning, emphasizing the utility of adaptive similarity metrics in
evaluating model robustness under efficiency constraints.

Limitations. This study focuses on unstructured L1 pruning; structured pruning or quantization may
exhibit different patterns. Observations are based on GSM8K and Qwen-0.5B; results may vary
with larger models or alternative reasoning datasets. Memory and runtime metrics reflect specific
sparse weight handling implementations and may not reflect ideal hardware efficiency. Despite these
constraints, the analysis provides actionable insights for designing and evaluating metrics that reliably
predict reasoning degradation under model compression.

5 Conclusion

We investigated the impact of unstructured pruning on the faithfulness of Qwen-0.5B, revealing a
non-monotonic behavior where light pruning can enhance chain-of-thought reasoning, while high
sparsity leads to catastrophic collapse. Standard weight similarity metrics capture only part of the
degradation, whereas adaptive, sparsity-aware measures such as ASAND achieve strong correlation
with output fidelity by incorporating structural sensitivity and magnitude-aware weighting. These re-
sults emphasize the importance of designing similarity metrics that account for sparsity and structural
perturbations to guide safe compression, particularly for reasoning tasks under efficiency constraints.
Future work will extend this analysis to structured pruning, quantization, and larger models, with
the goal of generalizing these insights to deployable, resource-constrained reasoning systems and
informing adaptive pruning strategies that maintain both efficiency and logical consistency.



A Model similarity.

Let ©(M) = {0; }‘j@:‘1 denote flattened parameters from linear layers. For baseline M, and pruned
M, x, define weight vectors wq, w,, € RI?l. Standard similarity measures include:

<W05 W;v>
Seos(Mo, My \) = i) (3
. g [woll2llwpll2
dL2 (M07Mp7)\) = HWO - WPHQa (4)
dr, (Mo, Mp,x) = |[wo — wp 1. ®)
Linear CKA. With centered weight matrices Wy = Wy — Wy and Wp =W, — Wp:
HSIC(Wo, W,
CKA(Mo, My, (Wo, 1) : ©)

) = —— —
\/HSIC(WO, Wo) - HSIC(W,,, W,,)

where HSIC(X,Y) = tr( XY T)2,

B Detailed ASAND Formulation

ASAND computes a similarity score sasanp (Mo, Mp x, A) as a weighted combination of five com-
ponents operating on flattened weight vectors wo, w,, € RI9I,
1. Centered Alignment Captures representation similarity after centering, inspired by simplified

CKA:
<W0 — V_Vo, Wp — V_Vp>

Scent € [07 ]-] (N

s (W0, W) = g alwp = Wl

2. Jaccard Sparsity Similarity Measures structural similarity via non-zero weight proportions:

Inz(wo) — nz(wp)| [{wi : Jwi > 107}

W]

, nz(w)=

®)

Sjacc(WO’wp) =1- maX(nZ(WO)7nZ(WP))

3. Adaptive Exponential Decay Distance (AEDD) Models non-linear degradation with a sparsity-
dependent scale:

4. Volatility Similarity Quantifies stability of weight distributions:
Svol (W0, Wp) = €xp (—UWDU_UW"'> ,  Ow = std(w). (10)
w0
5. Low-Pruning Gain Booster Rewards small pruning improvements at low sparsity:
oo ) = {0.1 : (1 - %) ifA < 0Land [lwo — wyllo < 01 woll
otherwise

ASAND Score The final ASAND similarity is a weighted combination of all components:
SASAND (W0, Wp, A) = wp- [dAEDD‘Sjacc‘Scem] Wy Syol T Wy - [dAEDD it A > 0.3else 1] +wg-g, (12)

with weights wy, = 0.4, w, = 0.25, w; = 0.2, and wy = 0.15.
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