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Abstract

In NLP, text language models based on words
or subwords are known to outperform their
character-based counterparts. Yet, in the speech
community, the standard input of spoken LMs
are 20ms or 40ms-long discrete units (shorter
than a phoneme). Taking inspiration from word-
based LM, we introduce a Generative Spoken
Language Model (GSLM) based on word-size
continuous-valued audio embeddings that can
generate diverse and expressive language out-
put. This is obtained by replacing lookup ta-
ble for lexical types with a Lexical Embedding
function, the cross entropy loss by a contrastive
loss, and multinomial sampling by k-NN sam-
pling. The resulting model is the first genera-
tive language model based on word-size con-
tinuous embeddings. Its performance is on par
with discrete unit GSLMs regarding generation
quality as measured by automatic metrics and
subjective human judgements. Moreover, it is
five times more memory efficient thanks to its
large 200ms units. In addition, the embeddings
before and after the Lexical Embedder are pho-
netically and semantically interpretable. 1

1 Introduction

Recent work has opened up the possibility of learn-
ing generative language models directly from the
raw audio signals, without using either text or
Automatic Speech Recognition (ASR) (Lakhotia
et al., 2021; Kharitonov et al., 2021b; Nguyen et al.,
2022b; Borsos et al., 2022). The basic idea of these
model is to rely on traditional text-based language
models (LM), but replace the text input with some
other discrete tokens directly learned from audio in
an unsupervised fashion. The advantage of learn-
ing units from speech instead of relying on ASR is
that this procedure can capture non-verbal vocal-
izations (like laughter) or intonation and rhythm,
which are typically not transcribed, resulting in
more expressive generations (Kreuk et al., 2021;

1Audio examples are available at our website.

Kharitonov et al., 2021b). In addition, ASR may
not be available in many languages that have in-
sufficient textual resources and can make errors,
which may then perturb the learning of the LM.

The problem of using self-discovered units, how-
ever, is that these units are typically very small,
in fact, usually smaller than phonemes (Lakho-
tia et al., 2021; Borsos et al., 2022). We think
that increasing the size of the units will favourably
impact the semantic capabilities of a downstream
spoken LM. This intuition comes from the NLP
literature. Among others, Graves (2013); Mikolov
et al. (2011); Bojanowski et al. (2015); Nguyen
et al. (2022a) have shown a performance gap be-
tween character-based LM and word-based LM.
The main reason is that at the level of characters,
it is difficult for a text LM to extract long-range
syntactic and semantic relationships. This is one of
the reasons why recent state-of-the-art text-based
LM (Radford et al., 2019) typically use a tokenizer
representing word or subword units (Byte Pair En-
coding (Gage, 1994), WordPiece (Wu et al., 2016),
Unigram (Kudo, 2018)). Another advantage of
large units is to save GPU memory at training time
that enables to use both larger batches and longer
sequences.

In speech, building the equivalent of a text-based
tokenizer is hampered by two difficulties. First, the
boundary problem is that contrary to text in most
orthographic systems, speech does not have spaces
and punctuation to delimit between word units.
Finding word boundaries from raw audio is itself a
difficult challenge (Dunbar et al., 2022a). Second,
the clustering problem, is that even if boundaries
were available, the clustering of speech fragments
is challenging because the same word may surface
in a variety of forms depending on speaker, accent,
speech rate, etc. This problem may be even more
difficult to solve than the first one (Dunbar et al.,
2022a) because of the highly skewed distribution
of word frequencies (Algayres et al., 2022b). Here,

https://anonymous3193.github.io/tGSLM-examples/


we investigate the possibility of building a continu-
ous tokenizer that sidesteps these two problems by
using tokens that have neither perfect boundaries
nor require a clustering step. In Appendix B, we
explain in more detail why we wish to avoid the
clustering of speech fragments and what methods
have been applied to tackle this problem so far.

Having a continuous tokenizer instead of a dis-
crete one results in drastic changes from the point
of view of the downstream LM. With a discrete
tokenizer, one can define a finite list of tokens over
which the LM can learn a lookup embedding ta-
ble at the input of the model and use a softmax
layer at the output of the model. The softmax is
used in training mode to compute the loss func-
tion through a cross-entropy with the target token
and at inference time to sample sentences. With
continuous representations, the list of tokens is un-
bounded, making these computations intractable.
We tackle this problem with a Lexical Embedder,
a semi-learnable function that maps continuous to-
kens to a practically infinite list of embeddings.

The key question addressed in this paper is
whether it is possible to generate speech using
large (word-size) continuous units instead of short
discrete ones. Our major technical contribution
is to replace the three standard elements of a
text-based LM (lookup table, cross-entropy loss
function, multinomial sampling) with elements
adapted to a virtually infinite list of continuous
embeddings. We show that with these changes, it
is possible to generate speech of the same quality
as discrete unit models. This is interesting because
our units are 200ms long which amounts to a
5-time memory reduction compared to regular
discrete units (Lakhotia et al., 2021; Borsos et al.,
2022), opening up the possibility to train spoken
LMs on longer speech sequences. In addition,
our model builds interpretable representations
thanks to the Lexical Embedder which learns a
mapping between an acoustic space, with phonetic
properties, to a lexical space, with semantic and
syntactic properties. We call the resulting model
tGSLM (token-based GSLM).

2 Related work

Unsupervised speech representations like CPC,
Wav2vec2.0 and HuBERT (van den Oord et al.,
2018; Baevski et al., 2020; Hsu et al., 2021) are
fixed-size representations (10 to 20ms long) that

outperform traditional features, like mel-filterbanks
and MFCCs, in many applications (Yang et al.,
2021). In parallel to these works, there is a grow-
ing literature on variable-length acoustic encoding
called speech sequence embeddings (SSE) (Peng
et al., 2020; Algayres et al., 2022a; Jacobs et al.,
2021; Kamper, 2018; Settle and Livescu, 2016).
SSE models take a sequence of speech of any
length and return a fixed-size vector. These models
encode speech by maximizing phonetic informa-
tion while minimizing speaker identity and record-
ing conditions. SSEs are used for spoken term
discovery (Thual et al., 2018), speech segmenta-
tion into phones or words (Kamper, 2022; Algayres
et al., 2022b) but also as input to a BERT model
(Algayres et al., 2022b) for spoken language mod-
elling.

Speech generation is often performed with
a neural vocoder conditioned on mel-filterbanks
(van den Oord et al., 2016; Kumar et al., 2019;
Kong et al., 2020; Prenger et al., 2018). In a
text-to-speech pipeline, the mel-filterbanks are ob-
tained with another neural network, which is condi-
tioned on text (Ping et al., 2017; Shen et al., 2018).
In the next step, the mel-filterbanks are decoded
into natural-sounding speech by a neural vocoder
(van den Oord et al., 2016; Kumar et al., 2019;
Kong et al., 2020; Prenger et al., 2018). For the
Zerospeech Challenge 2019, Dunbar et al. (2019)
proposed to remove text and replace it with un-
supervised discrete units. This challenge has fu-
eled a large body of works on learning low bi-
trate speech representations for speech compres-
sion, voice conversion and spoken language mod-
elling (Chen and Hain, 2020; Liu et al., 2019; Feng
et al., 2019; Baevski et al., 2019; Tjandra et al.,
2019; Kharitonov et al., 2021b; Lakhotia et al.,
2021; Nguyen et al., 2020). For evaluation, the
Zero-Resource challenge used bitrate and human
evaluation.

Spoken Language Model are neural networks
trained to predict missing parts of a spoken sen-
tence with predictive or contrastive losses. GSLM
(Lakhotia et al., 2021) is the first spoken LM
able to generate expressive and consistent spo-
ken sentences in a pure textless fashion. It uses
a causal transformer LM trained with NLL loss
on sequences of discrete units obtained with a k-
means clustering (with k=100) of HuBERT frames.
Once trained, GSLM can generate a sequence of
discrete units by multinomial sampling that is de-



Figure 1: Speech is encoded into Wav2vec2.0 frames
and segmented into chunks. These latter are converted
into acoustic tokens with an SSE model and turned into
lexical tokens by applying the function LexEmb. Finally,
lexical tokens are fed to a causal transformer LM which
attempts to predict the first, second, and third following
tokens using parallel output heads. The acoustic tokens
are pre-extracted before training the learnable modules
(LexEmb, the transformer and the final fully connected
layers) with the NCE loss. The negative samples are
chosen randomly from other utterances of the same
speaker.

coded into speech with a separate vocoder. Specif-
ically, the sampled HuBERT units are mapped to
mel-filterbanks with Tacotron2.0 and decoded into
speech with WaveGlow (Prenger et al., 2018), a
neural vocoder. Lakhotia et al. (2021) also pro-
vides a way to evaluate their spoken LM using an
ASR to transcribe their spoken generations and an
external LM to compute the perplexity of the re-
sulting transcriptions. In addition, the Zerospeech
Challenge 2021 (Nguyen et al., 2020) designed a
set of zero-shot metrics to probe what spoken LMs
learn. A recent paper (Borsos et al., 2022), audi-
oLM, came to our attention, which we did not have
the time to include in our experiments. AudioLM
works similarly to GSLM yet with the ability to
generate speech that preserves the identity of the
speaker. In another line of work, Algayres et al.
(2022b) trained a BERT model with a contrastive
loss function on sentences represented as a series
of SSEs. They showed the resulting BERT is able
to model semantics and syntax. This work suggests
that discrete tokenizers and the NLL loss are not
necessary to tackle language modelling on speech.
We take inspiration on their work to design our
approach.

3 Approach

3.1 tGSLM: training

The general structure of tGSLM is presented in
Figure 1. It is composed of an encoder which seg-
ments the input speech into sequences of possibly
varying size, and computes a fixed-sized Speech
Sequence Embedding (SSE), which we call acous-
tic tokens (Section 3.1.1). These tokens are turned
into lexical tokens through a learnable Lexical Em-
bedder (Section 3.1.2), and fed into a causal Lan-
guage Model that has been modified to deal with
continuous inputs (Section 3.1.3).

3.1.1 Acoustic tokens
In Figure 1, a speech sequence, S, is turned into n
acoustic tokens, (a0, ..., an), after applying speech
segmentation and an SSE model.

Speech segmentation consists in finding word
boundaries in a speech sentence (Algayres et al.,
2022b; Kamper, 2022; Kreuk et al., 2020). In this
work, we rely on a naive method by placing a
boundary every 200 ms, regardless of the content
of the speech signal. In the Appendix A.1, we show
that this method leads to better results than recent,
more complex speech segmentation systems.

The acoustic tokens (ai)i≤n are built by first en-
coding the speech sentence S into a series of n′

frames (fi)i≤n′ with the 8th layer of Wav2vec2.0
Base from Baevski et al. (2020). For any two
boundaries (k, l), ai = SSE([fk, ..., fl]) where
SSE is a self-supervised system from Algayres
et al. (2022a) trained with contrastive learning.
This model has state-of-the-art performances on
phonetic representation of pre-segmented words
as measured by the Mean-Average-Precision met-
ric. The acoustic tokens are extracted in a prepro-
cessing step and stored before the training of the
subsequent LM.

3.1.2 Lexical tokens
In a text-based transformer LM, there is often an
embedding lookup table before the transformer,
that has the size of the vocabulary and that maps
discrete word tokens to lexical tokens (Vaswani
et al., 2017). These lexical tokens, also known as
word embeddings (Mikolov et al., 2013), learn dur-
ing training semantic and syntactic properties that
have been studied extensively in the NLP litera-
ture. In our case, the situation is different. First,
instead of discrete word tokens, our LM takes as
input continuous acoustic tokens which latent vo-



cabulary size is unknown. Second, the mapping
between acoustic and lexical space cannot be lin-
ear, as two speech segments may sound the same,
i.e. be close in the acoustic space, while being
semantically/syntactically different, i.e. far in the
lexical space. This highly non-linear function be-
tween acoustic and lexical space is learned by our
lexical embedder: LexEmb = L ◦ q function. L is
a stack of non-linear fully connected layers learned
jointly with the LM. q is an information bottleneck
quantization function that we had to introduce to
minimize the presence of low-level non-linguistic
acoustic information. For a speech sequence S
composed of n acoustic tokens (ai)i≤n, we note the
sequence of lexical tokens (li)i≤n such as ∀i ≤ n,
li = LexEmb(ai).

To understand why we need q, we have to go
back to the LexEmb function input: the acous-
tic tokens. The acoustic tokens are derived from
Wav2vec2.0, which is a transformer architecture
whose attention mechanism covers the whole sen-
tence. Each wav2vec2 frame, therefore, con-
tains potential information about relative positions
(through the transformer’s positional embeddings),
adjacent acoustic materials (through self-attention)
or global properties like speaker. What we’ve found
in preliminary experiments is that this information
may leak into the acoustic tokens and be ampli-
fied by the prediction or contrastive loss of the
downstream causal LM. Fortunately, it turns out
that this information has low variance and can be
partially removed by slightly degrading the qual-
ity of the acoustic tokens. The degradation of the
acoustic tokens is the role of the function q. q is
composed of a PCA reduction and a quantization
step that we call d-k-means, which stands for per-
dimension k-means. Specifically, given a speech
database that has been segmented and encoded into
N acoustic tokens, (ai)i≤N , we reduce their dimen-
sions to d with a PCA. Then, we train d different
k-means, one for each dimension of the PCA. In
other words, for each j ≤ d, we train a k-means
on (PCA(ai)[j])i≤N . We chose the number of
centroids per k-means to be proportional to the ex-
plained variance of each of the PCA dimensions.
Once the k-means are trained, each dimension of
each acoustic token is mapped to its cluster id. Fi-
nally, the cluster ids are turned into one-hot vectors
and concatenated into one vector (see Appendix
A.2 for more detailed explanations). d-k-means
is inspired from multi-stage vector quantizer (VQ)

(Vasuki and Vanathi, 2006) where several VQ code-
books are learned in parallel as in Baevski et al.
(2020); Zeghidour et al. (2021). The PCA and
the d-k-means are trained over the whole training
set as a preprocessing step, before the transformer
LM. We ablate the use of q in Appendix A.2 and
show that it is necessary for the LM to generate
sentences2.

3.1.3 Causal language model

The LM is a standard causal transformer with two
modifications: the loss function and the prediction
heads. First, in a standard LM, the number of possi-
ble types is fixed beforehand and remains tractable
even for a very large corpus (10k to 100k). Here,
because the number of different lexical tokens is
virtually infinite, we cannot use a standard softmax
and cross-entropy loss. We first tried a simple L2
reconstruction loss with an additional decoder but
it did not work for us in practice. Instead, we use
a contrastive loss: the Noice Contrastive Estima-
tion (NCE) loss (Gutmann and Hyvärinen, 2010).
This loss works by maximizing the similarity be-
tween a pair of positive samples while minimizing
the similarity between the positive samples and
various negative samples. However, even though
the SSE model from Algayres et al. (2022a) has
learned to be speaker invariant, there is still a lot of
speaker-related information encoded into the acous-
tic tokens. This is a problem already encountered in
Algayres et al. (2022a); van den Oord et al. (2018)
that is dealt with by sampling the negative tokens
from the same speaker as the positive tokens.

Second, in a standard LM, the output head typ-
ically predicts the next word. However, in the
case of speech, the boundary between individual
phonemes is blurred by coarticulation. It is there-
fore easy to predict the next word by just attending
to very local acoustic information at the end of the
last word (something impossible to do with char-
acters which are sequentially disentangled). We,
therefore, introduce three prediction heads (three
linear fully connected layers: h1,h2,h3) which do
not only predict the first next token, but also the
second and third as they cannot be co-articulated
with the last token encoded by the LM. These pre-
diction layers are trained jointly with the LM. We

2Due to this quantization step, the resulting vectors (PCA+
d-k-means) could in principle be mapped to a finite dictionary
of tokens, but, in practice, there is little or no collision and the
number of classes remains identical to the number of tokens,
i.e., way too high to apply a softmax.



Figure 2: Our sampling procedure. Given a list of au-
dio files unseen during training, N random speech seg-
ments are stored in their acoustic and lexical forms:
(ai, li)i≤N . In addition, a lexical space is created by
indexing (li)i≤N into a k-NN graph. Given a speech
prompt, segmented and encoded into (a0, ..., at), we
do a forward pass in tGSLM and search for the near-
est neighbors of h1 output in the lexical space. lt+1

is sampled and its corresponding at+1 is appended
to (a0, ..., at). When a final aT token is sampled,
(a0, ..., aT ) is decoded into HuBERT units and speech
is generated with Tacotron2.

justify the choice of three prediction heads with a
grid-search available in Appendix Table 5.

3.2 tGSLM: generation

Once tGSLM training is done, we use it to generate
spoken sentences. We do that in two steps: we
generate a sequence of acoustic tokens (Section
3.2.1) and then decode this sequence into speech
(Section 3.2.2).

3.2.1 Sampling
To generate a spoken sentence, we take inspiration
of the popular top-k sampling method used in NLP
to generate text sentences. This method requires
sampling series of word tokens by sampling among
the most probable word types. In our case, we
do not have access to types so we are going to
sample among the most probable lexical tokens.
Our sampling method is summarized in Figure 2.
We start by collecting a few dozen hours of speech
that have not been seen during tGSLM training.
The utterances are segmented and encoded into
N speech segments and stored in their acoustic
and lexical forms: (ai, li)i≤N . Using the FAISS
library (Johnson et al., 2017), we index (li)i≤N

into a k-NN graph called the lexical space. Given
a prompt of t acoustic tokens (a0, ..., at), we do
a forward pass into tGSLM. Then, we compute
the cosine similarity of h1 output and its k closest

neighbours in the lexical space. We apply a softmax
on the vector of cosine similarities and treat it as
a multinomial distribution to sample one element:
lt+1. The softmax function contains a temperature
parameter that controls the range of the sampling
area. The acoustic tokens at+1 that correspond lt+1

is retrieved from the stored database and appended
to (a0, ..., at). Once the desired length is reached,
the sequence of acoustic tokens is decoded into a
spoken sentence as explained in the next section.

3.2.2 Speech generation

Lakhotia et al. (2021); Kharitonov et al. (2022)
trained a Tacotron2.0 decoder (Shen et al., 2018)
to map deduplicated HuBERT units into mel fil-
terbanks. Then, speech is generated from the
mel filterbanks by a WaveGlow vocoder (Prenger
et al., 2018). In order to make use of this pre-
trained Tacotron2.0 decoder, we trained an encoder-
decoder transformer model to map series of acous-
tic tokens to series of HuBERT units. During train-
ing, the encoder computes an attention over a series
of acoustic tokens while the decoder predicts Hu-
BERT units auto-regressively. At inference, given a
series of acoustic tokens, a corresponding sequence
of HuBERT units is obtained by taking the argmax
of the decoder softmax function. Finally, the Hu-
BERT units are given as input to the pre-trained
Tacotron2.0 to be decoded into spoken utterances.

4 Evaluation and datasets

4.1 Datasets and settings

LJ Speech (LJ), LibriSpeech (LS), Libri-light 6k
clean (LL6k-clean) are three corpora of studio
recordings of read English of respectively 24, 1k
and 6k hours (Ito and Johnson, 2017; Panayotov
et al., 2015; Rivière and Dupoux, 2021). These
corpora are used to train the different parts of the
pipeline. The training details and specific model
architectures can be found in Appendix Section
A.3.

4.2 Generation metrics

Perplexity (PPX) is a text-based metrics used by
Lakhotia et al. (2021) to evaluate the overall qual-
ity of generated spoken sentences. The authors
propose to transcribe the spoken generations with
an external ASR system and to compute the mean
perplexity score over batches of transcribed speech



with an external transformer LM3. The spoken gen-
eration process is guided by a temperature parame-
ter that controls how diverse generated sentences
are. The diversity of a batch of sentences can be
computed as in Lakhotia et al. (2021) with the
VERT score that is an average of self-BLEU (Zhu
et al., 2018) and auto-BLEU (Lakhotia et al., 2021)
scores. Typically, low temperatures produce high
diversity and low perplexity, whereas high temper-
atures produce low diversity and high perplexity.

Finally, the perplexity of spoken generation is
a metric that presents a high variance, therefore,
as a compromise between acceptable generation
time and low variance, we compute perplexity over
batches of 100 generated utterances whose tran-
scriptions are each exactly 30 words (around 10
seconds of audio).

Subjective judgements are computed with the
meaningful Mean Opinion Scores (MMOS) in
which human raters were asked to evaluate how
natural (considering both grammar and meaning)
a given spoken generation is. For both subjective
tests, raters evaluate the samples on a scale of 1-
5 with an increment of 1. We follow the method
from Lakhotia et al. (2021) where they evaluated
100 samples from each of the evaluated methods
while enforcing at least 15 raters for each sam-
ple. The CrowdMOS package (Ribeiro et al., 2011)
was used with the recommended recipes for detect-
ing and discarding inaccurate scores. As for the
perplexity measures, the sentences are generated
without conditioning on a prompt.

4.3 Zero-shot metrics
sWUGGY and sBLIMP are zero-shot tasks
to evaluate spoken language models introduced
in the Zerospeech Challenge 2021 (Nguyen et al.,
2020):. These metrics are inspired by psycholin-
guistics and are used for interpreting what spo-
ken LM learns. sWUGGY is a list of pairs of
word/non-word synthesized with the Google TTS
API and filtered for the words that are in the Lib-
riSpeech training set. sBLIMP is a list of pairs
of syntactically correct/incorrect synthesized sen-
tences. Both sWUGGY and sBLIMP require
the spoken LM to attribute a higher probability to

3ASR transcripts are obtained with a pretrained
large Wav2Vec 2.0 model, trained on LibriSpeech-960h
combined with a standard KenLM 4-gram LM. The
external LM used for perplexity is trained on the En-
glish NewsCrawl dataset and accessible at https:
//github.com/facebookresearch/fairseq/
tree/main/examples/language_model

the correct element in each pair. Probabilities are
computed by applying the spoken LM training loss
directly on the test items.
ABXsem and ABXPOS are additional zero-
shot tasks introduced in Algayres et al. (2022b) to
evaluate the semantic encoding and Part-Of-Speech
(POS) tagging, this time not based on probabilities
but on distances between embeddings. An ABX
task is a list of triplets A,B and X where A and B
belong to the same category and X is a distractor.
The task is to encode the triplet with a distance d
and show that d(A,B) < d(A,X). In this case,
A,B, and X are spoken words given in the context
of a sentence. For ABXsem, A and B are close
semantically, and X is random. For ABXPOS A
and B share the same POS tag, and X has different
POS tags.
Normalised Edit Distance (NED) introduced in
Versteegh et al. (2016) is a term discovery task that
consists in finding clusters or pairs of speech seg-
ments from unsegmented audio that have the same
phonetic transcription. For each discovered pair,
the NED is computed as the edit distance normal-
ized by the length of the longest item in the pair.
As for ABX tasks, the NED is also based on the
distance between embeddings. To compute a NED
score, we take inspiration of the procedure intro-
duced in Thual et al. (2018). Given a segmentation
of the LibriSpeech dev-clean subset, all speech seg-
ments are embedded into fixed-size vectors. With
a k-NN, we search for the pairs of closest embed-
dings and sort them by cosine similarity. Starting
from the higher similarities, we retrieve as much
pair as necessary to cover the whole dev-clean set.
With the phoneme-level transcription of the dev-
clean set, all pairs can be transcribed into series
of phonemes. The final NED score is obtained by
averaging the NED over all pairs of transcriptions.
NED and ABX tasks both rely on embeddings that
can be extracted at any level of a multi-layer neural
model.

5 Results

5.1 Generation performances

5.1.1 Perplexity and diversity
Figure 3 provides a comparison of the original dis-
crete unit-based GSLM with two versions of our
continuous unit model: 200ms-tGSLM, trained on
speech segmented every 200ms and gold-tGSLM,
trained on speech segmented on the true word
boundaries. GSLM and 200ms-tGSLM are trained

https://github.com/facebookresearch/fairseq/tree/main/examples/language_model
https://github.com/facebookresearch/fairseq/tree/main/examples/language_model
https://github.com/facebookresearch/fairseq/tree/main/examples/language_model


Zero-shot metrics↑ Generation PPX↓ Generation MMOS↑
sWUGGY SBLIMP ABXsem ABXPOS LS-VERT LJ-VERT LS-VERT LJ-VERT

GSLM 70.36 56.31 55.85 59.03 503.25+-12.3 387.45+-11.2 3.76 +- 0.035 3.78 +- 0.023
200ms-tGSLM 68.53 55.31 55.89 60.3 532.87+-10.1 356.24+-15.7 4.09 +- 0.016 4.04 +- 0.020
gold-tGSLM 86.37 -† 65.6 75.59 361.84+-20.1* 255.32+-14.2* n/a n/a
character-gold n/a n/a n/a n/a 180.2 142.6 4.12 +- 0.016 4.11 +- 0.023

Table 1: Results on zero-shots and generation tasks for 200ms-tGSLM and GSLM, trained on LL6k-clean, and
gold-tGSLM, trained on LibriSpeech. ABX is computed on tGSLM lexical tokens and on GSLM 9th layer. The
last line is a topline that is composed of true sentences from both LibriSpeech and LJ. *: those scores are obtained
without using a speech decoder. † time-aligned word boundaries for sBLIMP are not available
.

Figure 3: PPX and VERT scores for GSLM, 200ms-
tGSLM and gold-tGSLM. Each dot is obtained by gener-
ating sentences with a fixed temperature parameter. The
curves are 3rd-degree polynomial interpolations of the
dots. The green dashed lines are the oracle PPX/VERT
obtained on the LibriSpeech and LJ corpus.

on LL6k-clean4 while the topline, gold-tGSLM, is
trained only on LibriSpeech corpus5. The dots
in Figure 3 represent batches of generated sen-
tences conditioned on different temperatures. Color
curves are the 3rd-degree polynomial interpola-
tion of the dots. In green dashed lines appear two
VERT anchor points LJ-VERT(=0.113) and LS-
VERT(=0.189). These points are the mean VERT
scores obtained on batches of sentences from, re-
spectively LJ and LibriSpeech datasets. The inter-
section of the dashed lines and the curves gives the
scores PPX@LS-VERT and PPX@LJ-VERT that
are reported in Table 16.

4Training 200ms-tGSLM on Libri-light 60k (Kahn et al.,
2019), a larger but noisier corpus, slightly undermined the
performance.

5word boundaries cannot be computed for LL6k-clean
because sentence-level speech and text alignments are missing

6For a given spoken LM, its PPX@LS-VERT score is the
perplexity score obtained by that spoken LM when condi-
tioned on a temperature that makes it generate spoken sen-

Regarding the perplexity scores from Table 1,
compared to GSLM, 200ms-tGSLM is slightly bet-
ter at LJ-VERT and slightly worse at LS-VERT.
The measure of perplexities being very noisy, these
scores show that both models have similar perfor-
mances. Some examples of transcribed spoken
generations are available in Appendix Tables 8,9
and 10.

The topline gold-tGSLM produces much lower
perplexities than GSLM and 200ms-tGSLM. Yet,
we have experienced a problem with the speech de-
coder (described in Section 3.2.2) of gold-tGSLM.
The scores of our topline are obtained by retriev-
ing the exact transcriptions of the sampled SSEs
instead of decoding them with the speech decoder.
We had to do this because our speech decoder
makes a lot of decoding mistakes when it tries to
decode SSEs of variable-size speech fragments. It
seems to generate fully intelligible speech only
when it is trained to decode SSEs of same-size
speech chunks, as is the case for 200ms-tGSLM.
We think this happened because, for a lack of time
and resources, we chose a poor decoding strategy
(decoder from SSEs to HuBERT frames and Hu-
BERT frames to speech). In our future works, we
will focus on training a model to decode the SSEs
directly into speech, using, for instance, recent dif-
fusion models or a Hi-Fi Gan (Polyak et al., 2021;
Huang et al., 2022). As a consequence of the poor
performances of our speech decoder, we have not
been able to leverage recent progress in speech
segmentation into words (Algayres et al., 2022b;
Kamper, 2022; Peng and Harwath, 2023) that pro-
vide word boundaries more aligned with real words
than our 200ms chunks. In Appendix A.1 are the re-
sults of our attempts at using speech segmentation
systems.

tences with a VERT equal to the VERT of the LibriSpeech.



5.1.2 Subjective judgements
As for perplexity, we report in Table 1, the MMOS
for batches of spoken generations that have a diver-
sity score equal to the VERT of either LibriSpeech
(MMOS@LS-VERT) or LJ (MMOS@LJ-VERT).
In addition to 200ms-tGSLM and GSLM we
evaluate a topline called character-gold that are
speech utterances obtained with Text-To-Speech
(Tacotron2.0 from Shen et al. (2017)) taking in
input the transcriptions of LJ and LibriSpeech
utterances. From Table 1, for the high-temperature
regime that leads to diversity scores in the range
of LJ and Librispeech, 200ms-tGSLM is slightly
better than GSLM and gets close scores with
the topline. MMOS scores are not available for
gold-tGSLM has the speech decoder did not work
properly. Nonetheless, our table of results does not
show the performances of tGSLM in a much lower
temperature regime. When conditioned on very
low temperature, GSLM can generate very simple
and intelligible sentences, whereas 200ms-tGSLM
start to produce gibberish. Therefore, both models
have their strengths and weaknesses.

5.2 Zero-shot performances

To complete our analysis, we provide in Table 1,
performances on the zero-shot tasks scores that
are comparable for GSLM and 200ms-tGSLM.
GSLM has a little advantage on sWUGGY and
sBLIMP and an 200ms-tGSLM a slight advan-
tage on ABXsem and ABXPOS . The topline gold-
tGSLM, once again gets much stronger results.
ABX scores are obtained, for GSLM at the 9th
layer of the transformer and for tGSLM with the
lexical tokens.

5.3 Interpretability

In order to analyze what is learned by LexEmb we
measure the ABX and NED of lexical tokens and
acoustic tokens. In Table 2, the ABX scores show
that the acoustic tokens are at chance level on se-
mantic and syntactic encoding. After the LexEmb
function, the lexical tokens lose a bit of their pho-
netic encoding (NED increases) but gain the ability
to represent semantics and syntax. However, the
NED is not at chance level, meaning that a bit of
acoustic information has leaked into the lexical
tokens. To visualize the difference between acous-
tic and lexical spaces, we provide t-SNE maps in
Appendix Section A.4.

models tokens NED ↓ ABXsem ↑ ABXPOS ↑
200ms-tGSLM acoustic 34.51 50.14 49.87

lexical 47.98 55.08 60.24
gold-tGSLM acoustic 16.15 50.20 50.12

lexical 22.70 65.60 75.59

Table 2: NED and ABX scores on acoustic and lex-
ical tokens for 200ms-tGSLM and gold-tGSLM both
trained on LibriSpeech. ABX and NED are computed
on tGSLM lexical tokens

5.4 Memory consumption
GSLM model (Lakhotia et al., 2021) and 200ms-
tGSLM use the same transformer LM but with dif-
ferent types of inputs. Compared to the 200ms-long
units of our model, GSLM is trained on discrete
units that are 40ms long on average (when con-
tiguous duplicates are removed). Therefore, we
expected our model to be more memory efficient
than GSLM7 which can be observed by the maxi-
mal batch size that both models can handle. Indeed,
on the one hand, we managed to train GSLM with
34 60-seconds-long sentences on a 32G V100 GPU
without OOM error. On the other hand, 200ms-
tGSLM can fit as many as 162 sentences, which
shows almost a 5-time reduction (≈ 4.76) of mem-
ory use.

Training spoken LMs on long sequences of audio
will become necessary in order to learn long-term
semantic relations. The usage of very short acoustic
units can become a bottleneck which our method
helps to alleviate. To complete our analysis, we
provide in Appendix A.5 a theoretical analysis of
memory reduction.

6 Conclusion

We introduced a generative spoken LM based on
continuous word-sized acoustic tokens. Our model
is able to generate speech with the same level of
diversity and accuracy as a model based on discrete
units. This shows that building a lexicon of types
is not necessary for spoken language modelling,
which is encouraging considering the difficulty of
clustering large segments of speech without de-
grading the representation (see Appendix B). In
addition, this performance was obtained with seg-
ments that were not very well aligned with word
boundaries (200ms segments). The good result
obtained with gold word boundaries indicates that
there is room for improvement by using segments

7The acoustic tokens that are the input of 200ms-tGSLM
are extracted in a preprocessing step. They do not impact
memory usage at training time.



better aligned with word boundaries and of course a
better speech decoder. Further work is also needed
to better limit the leakage of low-level acoustic in-
formation into the LM through continuous units,
which our analysis has shown is detrimental to
the performance of the generative model (see also
Nguyen et al. (2022c)). Finally, the fact that the
units are about 5 times larger than standard GSLM
units aligns with the NLP literature that is in favour
of word-based LMs. It opens the possibility to fit
larger spans of audio in GPUs and capture long-
distance relationships.

7 Limitations

Our method has some limitations that range from
GPU consumption, potential overfitting on the En-
glish language and sub-optimal decoding method.
First, tGSLM is trained on 32 Nvidia V100-32Go
GPUs for 30 hours. Due to the several modules
at work in tGSLM (SSE model, LexEmb func-
tion, transformer decoder and seq2seq decoder),
a large grid-search on hyper-parameters has been
necessary which makes this work quite resource-
consuming. Secondly, during the grid-search we
chose hyper-parameters to optimize the semantic
and syntactic ABX scores on English. By doing
so, we might have overfitted the English language
and made tGSLM specifically good at generat-
ing English speech. Further analysis is required
to see if our method generalizes well to syntacti-
cally and morphologically different languages, like
French or Mandarin. Finally, our decoding method
is based on a seq2seq transformer that produces
HuBERT frames which are decoded into speech
with a combination of Tacotron2.0 and WaveGlow.
We chose that method as this later speech synthe-
siser comes pre-trained in the textlesslib Python
library (Kharitonov et al., 2022). Yet, recent work
on textless speech synthesis Kreuk et al. (2021);
Kharitonov et al. (2021a) skip the spectrogram pre-
diction of Tacotron2.0 and directly train a Hifi-
Gan model to generate speech from HuBERT units.
This latter model shows close to human-level per-
formances. We leave the use of Hifi-Gan instead of
Tacotron2.0 for future works on tGSLM.

8 Ethical statement

tGSLM is a LM that learns to generate speech sen-
tences by predicting its training data. Therefore,
tGSLM inherits from ethical concerns associated
with text-based LM, speech encoders and speech

synthesizers. It is of paramount importance to safe-
guard against these issues.

First, generative text-based LMs are known to
repeat stereotypes and biases that belong to the
training corpus which can cause a series of harms
Chowdhery et al. (2022); Bender et al. (2021). One
way to mitigate this is to apply post-processing on
generated sentences to detect harmful content. Yet,
from what we have heard, tGSLM still struggles
to generate sentences that fully make sense, so we
do not think that post-processing is required at the
moment.

Second, if tGSLM is used to continue a speech
prompt, the continuation might be inconsistent for
accents of underrepresented groups in the training
data. Indeed, speech systems are known to encode
poorly accents and dialects out of the training dis-
tribution (Riviere et al., 2021).

Finally, tGSLM continuations will not preserve
any regional accentuation from the prompt, as our
model only generates speech in the voice of the
single speaker of the LJ dataset.
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A Supplementary materials

A.1 Speech segmentation

To study the impact of speech segmentation on
tGSLM, we trained this model on LibriSpeech with
two extra segmentation methods: SylSeg (Räsä-
nen et al., 2018), and DP-Parse (Algayres et al.,
2022b)8. Sylseg segments speech into syllable-like
units, using damped oscillators that exploit rhyth-
mic cues of syllabic structure in speech. DP-Parse
(Algayres et al., 2022b) segments speech into word-
like units with state-of-the-art performances. This
model adapts a non-parametric Bayesian model
for text segmentation (Goldwater et al., 2009)

8We did not train these models on LL6k-clean because
DP-Parse is hard to scale to large datasets.

to speech. Table 3 shows generation and zero-
shot scores. Overall, regarding speech genera-
tion, 200ms-tGSLM outperforms sylseg-tGSLM,
dpparse-tGSLM and also GSLM. For zero-shot
tasks, once again, all models score similarly. ABX
scores are again obtained for GSLM with embed-
dings extracted from the 9th layer of the trans-
former and for tGSLM from the lexical tokens.

Even though true word boundaries strongly ben-
efit tGSLM, using unsupervised speech segmenta-
tion methods did not prove beneficial. We think this
is due to the low performances of state-of-the-art
speech segmentation systems. These latter are only
marginally better than random segmentations and
lag largely behind text segmentation performances
(Dunbar et al., 2022b; Algayres et al., 2022b). This
result suggests that progress is needed in unsuper-
vised speech segmentation to be able to combine
segmented units into intelligible speech. After all,
the best segmentation method that we works for us
is the 200ms method. We have also experimented
with other durations as 120ms,280ms and 360ms.
We chose to go on with 200ms based on a com-
promise between maximal duration and maximal
zero-shot task performances. These scores can be
found in Appendix Table 4.

A.2 Discussion on q

A.2.1 Mathematical details on q

Let us now derive q computation. Given a train-
ing corpus, that is segmented and encoded into
a collection of acoustic tokens (ai)i≤N . A PCA
is trained on (ai)i≤N and the d first dimensions
are kept, let us write (a′i)i≤N the resulting vec-
tors and (v0, ..., vd′) the explained variance of
each PCA dimensions. Then, we train d sepa-
rate k-means on each dimension of the PCA. The
number of cluster per k-means is computed as
(
⌈
K v0

v0

⌉
, , ...,

⌈
K

vd′
v0

⌉
). The values of d and K

were set to maximize the scores at the zero-shot
tasks. Once the k-means are trained, the centroids
are stored in d dictionaries (k0, ..., kd). For any
i ≤ N , we compute q(ai) by assigning ∀j ≤ d,
q(ai)[j] to its closest centroids in kj . Finally, clus-
ter ids are turned into one-hot vectors and concate-
nated into a single vector. The following operations
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WUGGY↑ SBLIMP↑ ABXsem ↑ ABXPOS ↑ PPX@LS-VERT↓ PPX@LJ-VERT↓
GSLM 65.85 54.35 55.18 61.61 664.23 497.65
sylseg-tGSLM 64.39 53.21 54.64 60.01 634.34 505.87
dpparse-tGSLM 65.54 53.82 55.6 58.65 634.34 505.87
200ms-tGSLM 63.15 53.34 55.08 60.24 610.32 490.32

Table 3: Results on zero-shot and generation tasks for GSLM and for tGSLM on three different speech segmentation
methods. Models are all trained on LibriSpeech. ABX is computed on tGSLM lexical tokens and on GSLM 9th
layer

models sWUGGY ↑ sBLIMP ↑ ABXsem ↑ ABXPOS ↑ average ↑
120ms-tGSLM 61.55 51.86 54.74 60.12 57.32
200ms-tGSLM 63.15 53.34 55.08 60.24 57.95
280ms-tGSLM 61.89 51.64 52.8 56.28 55.65
360ms-tGSLM 60.18 51.29 52.18 55.45 54.75

Table 4: Zero-shot tasks computed on tGSLM trained on LibriSpeech for different unit durations

sum up the process.

∀i ≤ n, q(ai)←



argmax
j≤K

(ai[0]− k0[j])

argmax
j≤

⌈
K

v1
v0

⌉(ai[1]− k1[j])

...
argmax
j≤

⌈
K

vd
v0

⌉(ai[d]− kd[j])



q(ai)←


onehot(q(ai[0]))
onehot(q(ai[1]))

...
onehot(q(ai[d]))


q(ai)← concatenate(q(ai[0]), ..., q(ai[d]))

A.2.2 Ablation on q

The function q introduced in Section 3.1.2, com-
posed of a PCA and our d-k-means method, is
ablated in Table 6. In all configurations, the embed-
dings right after the LexEmb function are used to
compute the ABX and NED scores. On the one
hand, q degrades the phonetic information in the
lexical tokens (NED increases) and makes train-
ing harder (validation loss increases). On the other
hand, q maximizes semantic and syntactic informa-
tion (ABX increases) as well as generation quality
(PPX decreases). A null value in Table 6 means
that the model is not able to produce intelligible
sentences with this setup. First, these experiments
show the necessity of q for the 200ms-tGSLM to
generate spoken sentences. Second, the combi-
nation of these results reveals that q prevents the
model from converging quickly to a bad local min-
imum that hinders generalization.

It follows our intuition from Section 3.1.2: there
seems to be a low-variance signal encoded in the

acoustic tokens that interfere with the semantic
and syntactic modelling. In our opinion, this sig-
nal gives away both local information, direct right
and left context due to coarticulation, and global
sentence-level information (relative token position
and speaker identity).

A.2.3 On using MFCCs instead of Wav2vec2.0

One may say that if q is used to mitigate the down-
sides of the attention mechanism of Wav2vec2.0,
why not use more local features like MFCC or Mel-
filterbanks? We argue that even though these latter
features are still good for supervised tasks as ASR
Radford et al. (2022), they are substantially out-
performed by recent self-supervised speech mod-
els (Wav2vec2.0, CPC, HuBERT,...) at the tasks
of zero-shot word discrimination (Algayres et al.,
2022a; Van Staden and Kamper, 2020) and key-
word spotting (Yang et al., 2021). To prove our
point, we compare the performances of MFCCs
compare to Wav2vec2.0 at the task of discrimi-
nating acoustic tokens. As a reminder, the acous-
tic tokens that we used in our model, are the
output of an SSE model from Algayres et al.
(2022a), pre-trained to embed variable-length se-
quences of Wav2vec2.0 frames into fixed-size vec-
tors. The same kind of SSE model but pre-trained
on MFCC frames is also provided by Algayres et al.
(2022a). Let us segment the LibriSpeech corpus
every 200ms and embed the speech segments with
both SSE models so that we get two collections
of acoustic tokens: (amfcc

i )i≤N and (aw2v2
i )i≤N .

Let us also apply the q function on Wav2vec2.0
acoustic tokens so that we get: (q(aw2v2

i ))i≤N . To
measure performances, we use our NED metric
on the three collections of embeddings. From the



Figure 4: t-SNE representations of acoustic (left side) and lexical (right side) tokens. After training gold-tGSLM, all
speech segments corresponding to word tokens in the LibriSpeech dev-clean subset are indexed into their acoustic
or lexical form. By probing an acoustic or lexical token (appearing in red), we can have a look at their acoustic and
lexical nearest neighbours. The neighbours that appear in green are those deemed as semantically related to the
probe.



models sWUGGY ↑ sBLIMP ↑ ABXsem ↑ ABXPOS ↑ average ↑
next word 61.57 52.08 51.48 53.84 54.75
next two words 63.02 53.48 54.79 58.01 57.35
next three words 63.15 53.34 55.08 60.24 57.95
next four words 62.25 53.1 54.43 58.81 57.14

Table 5: Zero-shot tasks for 200ms-tGSLM trained on LibriSpeech to predict the next one, two, three, or four words

PCA d-k-means Valid loss↓ NED↓ ABXsem ↑ ABXPOS ↑ PPX@LS-VERT↓ PPX@LJ-VERT↓
200ms-tGSLM 2.51 35.21 53.87 58.40 null null
200ms-tGSLM 4.33 41.50 54.16 57.99 840.65 null
200ms-tGSLM 6.21 44.32 55.08 60.24 610.32 490.32
gold-tGSLM 3.99 17.21 55.13 63.54 608.24 475.65
gold-tGSLM 6.20 21.87 58.59 67.71 432.78 384.57
gold-tGSLM 7.15 22.70 65.60 75.59 361.84 255.32

Table 6: Results on zero-shot and generation tasks for ablations of the PCA and d-k-means components of the
LexEmb function. Models are trained on LibriSpeech. ABX and NED are computed on tGSLM lexical tokens.
null means that no intelligible speech can be generated in this setting.

results Table 7, we see that Wav2vec2.0 leads to
much better acoustic tokens than MFCCs. More-
over, even when q is applied on Wav2vec2.0 acous-
tic tokens, the NED score of (q(aw2v2

i ))i≤N is
still much lower than on (amfcc

i )i≤N . This latter
has a NED score of 65%, which means that two
neighbouring MFCC acoustic tokens have on av-
erage less than half of their phonemes in common.
For that reason, why we excluded MFCC from our
experiments on speech generation.

acoustic tokens NED ↓
(amfcc

i )i≤N 65.56
(aw2v2

i )i≤N 31.81
(q(aw2v2

i ))i≤N 36.71

Table 7: NED scores of 200ms-long acoustic tokens
built on MFCC: (amfcc

i )i≤N , on Wav2vec2.0 frames:
(aw2v2

i )i≤N , and finally on Wav2vec2.0 frames when q
is applied: (q(aw2v2

i ))i≤N

.

A.3 Hyperparameters
Wav2vec2.0 and SSE are trained on the Lib-
riSpeech corpus respectively by Baevski et al.
(2020) and Algayres et al. (2022a). Wav2vec2.0
Base is a stack of 7 convolution layers and 12 trans-
former layers. The SSE is composed of a one GLU
convolution layer (kernel size: 4, number of chan-
nels: 512, stride: 1), a transformer layer (attention
heads: 4, size of attention matrices: 512 neurons,
and FFN: 2048 neurons) and a final max-pooling
layer along the time axis.

LexEmb is composed of two functions L ◦ q. L
is a stack of five three-layers blocks each formed
by a 1024-neurons fully connected layer, a layer

norm and a ReLU activation. q is of a PCA and
a collection of k-means that are trained on LL6k-
clean. The PCA has d = 24 dimensions and the
number of centroids for the first k-means is K =
10.

Transformer is identical to the one used in
the original GSLM paper (Lakhotia et al., 2021).
It contains 12 transformer layers with 16 heads,
1024-neuron attention matrices, and 4096-neurons
FFN. On top of the transformer, the three paral-
lel h1,h2,h3 functions are 1024-neurons fully con-
nected layers. L,h1,h2,h3 and the transformer are
trained on 32 GPUs, for 200k iterations on either
the LibriSpeech or LL6k-clean. Each batch is com-
posed of 64 audio sentences that are composed of
64 tokens. The learning rate is set at 5−4 with a
warm-up of 5000 updates and polynomial decay.
We use Adam optimizer with a weight decay of 0.1.
A dropout of 0.1 is applied during training. The
loss function is the NCE loss with a temperature of
0.1 and 500 negative samples.

Sampling is performed in a FAISS k-NN (John-
son et al., 2017) that contains all the lexical tokens
segmented in the dev-clean and test-clean from the
LibriSpeech (roughly 10 hours of speech). The
number of nearest neighbours from which the next
token is sampled is set to 1000.

Speech generation model is an encoder and a
decoder that shares the same architecture: 4 trans-
former layers with 8 heads, 512-neurons attention
matrices, and 3072-neurons FFN. It is trained on 32
GPUs, for 30k iterations on the LibriSpeech. Each
batch is composed of four audio sentences that are
at maximum 20 seconds long. The learning rate
is set at 5−5 with a warm-up of 103 updates and



polynomial decay. We use a dropout probability
of 0.1 and Adam optimizer with a weight decay of
0.1. The Tacotron2.0 from Lakhotia et al. (2021);
Kharitonov et al. (2022) was trained on LJ.

A.4 Probing acoustic and lexical spaces
Figure 4 is a visualization of the acoustic and lexi-
cal representation learned by gold-tGSLM which
echo a work on speech word embeddings from
Chung and Glass (2018). All speech segments
corresponding to real words in the LibriSpeech
dev-clean set are indexed in k-NN graphs on their
acoustic or lexical form. Each embedding is la-
belled with its true transcription. By searching for
the nearest neighbors of a centre word (in red in
the figure), we highlight in green the neighbours
that we judged semantically related to the centre
word. Figure 4 shows that an acoustic token has
usually no semantically related neighbour other
than ones with the same transcription. By contrast,
lexical tokens have semantic and syntactic proper-
ties: ’London’ is close to other cities and countries,
’blue’ is close to colour names, beautiful is close
to other positive adjectives, and ’chair’ is close to
’desk’ and ’table’. Nonetheless, it appears acoustic
information has leaked from the acoustic tokens
into the lexical tokens. For instance, the lexical
neighbours of ’blue’ are colours or shades that start
with a ’b’ and ’chest’ appears in the neighbourhood
of ’chair’.

A.5 Estimation of memory consumption
To estimate the memory consumption of a trans-
former LM with L = 16 layers, a single atten-
tion head, a batch size of 1, and an embedding
size d = 1024 , let us write x ∈ IRn×d a sen-
tence of n tokens represented with embeddings
of size d . Using the formula expressed in Kor-
thikanti et al. (2022), the number of activations
to store in memory during backpropagation is ap-
proximately (buffers and negligible values being
omitted) ϕ(L, n, d) = Lnd(34+5n

d ). In the LL6k-
clean corpus, sentences are 60s-long on average
with make n = 1500 for GSLM and n = 300
for 200ms-tGSLM. 200ms-tGSLM should expect a
memory reduction by a factor of ϕ(16,1500,1024)

ϕ(16,300,1024) ≈
5.83 compared to GSLM. In practice, we observe
a lower memory reduction (≈ 4.76) which can
be explained by the additional parameters that
are present in 200ms-tGSLM and not in GSLM,
namely the LexEmb function and three prediction
heads.

A.6 Inference time complexity
Taking the calculation of a forward cost from Pan
et al. (2021), for a sequence length of size n, and a
transformer of L = 16 layers and dimension d =
1024, a forward pass costs (12nd+2nd) ∗L. This
would be the cost of a forward pass in the GSLM
model, but our tGSLM costs a little bit more with
its LexEmb function and its sampling procedure. A
forward through our LexEmb function costs 5nd2

(5 linear layers) and the sampling procedure costs
d ∗ 100.000 (we usually take 100k items for the
k-NN search). Therefore, tGSLM cost (12nd +
2nd)L + 5nd + d ∗ 100000. For a sequence of 1
second (therefore n = 5 for tGSLM and n = 25
for GSLM), by replacing those values in the former
calculation, we find that a forward in tGSLM cost
1.1e6 which is 5 times less costly than a forward in
GSLM that would cost 5.2e6. Therefore, even at
inference time, our tGSLM should be much faster
than GSLM to run.



200ms-tGSLM examples
Generation at LJ-VERT
What is it ask her mother i want to see you said mrs tumbled i want to tell you what you you said mr
cockry you are no more chance than you know.
We have no desire to prevent to the astonishment of that person from the government who is not so far
for receiving any property or relation to the world.
Her father in her son were under growth her father was just like a treasure man who was a devil and
hazards beyond his words she was a very clearly.
We also see that it will be obliged to invite us to applyge them to observe such a thing is a base we
must not set down that the
And although he was not equally successful to him he sought the pririate regularly observed his friends
invent to him and presented him their own secret he had did
Because they were rested and although they could not expect to be obliged to regarded as a men of a
gold and power they were not really unbusy
You see he is if i miss thing i think he is dead it said mrs carpenter rather smallly for anything if he is a
total let she said
He remembered that great city which he tried to entertain in its pointedof view but he was very pleasant
to him and could not bring whom away besides this
Having required a measure for a month before their distance of sixty years he appeared to be affected
by any conditions of one state and have in no battle
Now the king’s brothers came to him and brought him up and said i’ll poor woman i woke it of you
anything but i am brother and borrows my
Generation at LS-VERT
He turned his hands on the sale exposition and gave him to acy of old meal which wealth had never
bore be a foreseenly large.
While waiting to him he wished that he would wait for himself into his mother’s house and held light
he was that that she might be able to look.
And perhaps i have nothing to say about what would you want to know i did i don’t know i suppose
you want to know what could call the
That’s all i can’t do insaid woman looking out of the croad toward him while i don’t know such any
end enging his hand you seem to see your
And having been described as the great activity of that which he was attempting all that if he now remar
it for his purpose was intended with principles as
It was the time had been prepared for for that such was the place that when he was saing to his land
she’d made up all though blood that he
It was just as willing to oppose the person who had been told of his chion he was now about to go to
bank in the family to a
Having been in a moment’ officially desirable to acquaint him with his reference with the glorious
presence of his master’s cabinet he did not return to a subject of
Yes i was said he but was a general service she began i could not file forhard seek i want to take my as
andt understand the chance of
But afterwards they had gone to top what waking into the stone doors the weathering tight their
habitation and the north were histor carryance and mr carb’s face and

Table 8: Example generations of 200ms-tGSLM trained on LL6k-clean. These generations are selected from batches
of sentences that have a VERT equal 0.113 (LS-VERT) or 0.189 (LJ-VERT).



gold-tGSLM examples
Generation at LJ-VERT
But you have been wanting to teach me all her life in the world of her own healthy health and she has
her fathers abilities an your pride.
The old woman or that he would have learned all her life amongst the gods and teaching them in their
father’s studies and having been up the days.
It goes on until i know what i am doing while i am going away from my camp in the neighbourhood to
morrow we you from the whole on my.
An elegant geographical character would you think it a deed or an excellent thing to do with the hold in
the future won’t you pick up a bit of an
The evening of the twenty fifth of november eighteen united eight he returned to his royal house an the
hold of the hospital an the next evening he you
Guiding them in some ordinary way or buying them into cold or buying them with a copal spoon which
should be thrown out of the souls of the bulkhead
Secies and germany each of them had undergone more than three thousand roubles and hour to saved a
bit of jewelry from s odin share and the hardness and
Of the kavin and when to the door where she stood a few minutes later to reach the bottom of the
harboured near the labyrinth where she reached her
It says the king listening the light of his bushy fingers an holding his pipe in his arms do not bother me
any more about it you know more than
The investigation and on his returned to her fathers room he set down his gun at a hundred yards and
the middle of the hall to learn the hut
Generation at LS-VERT
I can tell her that only one of my friends and loves do you think i would read her about this uttered it
all the wicked said missus williams
She reached her big house and stood by the dora in turning to the king he said to her you will not
marion me any more have you hear
To his voices and his broken heart screen with delight to henry smokeless who had entered into his
dining room to limp him a mystic playful of his faintest
I shall not go without thee said heat pausing to her part a of good direction and fixing her ices upon her
eyes with a distant cheeks to her.
Than time of missus esplanade visit her own house and china herself alone of theirlocal service and the
frere settlements where built for thousand of the happiest teachers
Father and mother were all seated at boston waiting for the empty school at ostrog at nine o’clock a the
knight of july evening a ninth jeanne annie eighteen
Minutes later he heard a bill calling against the young man who had denounce him his face became a
melancholy shake in his astonishment what is it said george
A poor boy in has a good power for somebody’s harm to be at heaven what could you to givewhat this
seemed to him a hard proposition
Paper it was needless to be summoned to it by the princess and the girl became very much surprise and
said about recovering the bicycle with her finger to
To touch it he s a gentle young ma’am and does not see any other foreign of mortality unconnected
with her father who is afraid of his flesh to

Table 9: Example generations of gold-tGSLM, trained on LibriSpeech. These generations are selected from two
batches of sentences that have a VERT equal 0.113 (LS-VERT) or 0.189 (LJ-VERT).



GSLM examples
Generation at LJ-VERT
They did time in the desert two or three hundred years afterward among them the castle was not my
father and they were found in palestine by fire and they
Another excellent is descended a breath let the corp of a prisoner and a blow was begun the bell rang
the gunsprang from the captain’s paul and dropped into the
And then the passing future would have been too much but to waittill the end of the week and after a
little time she had gone down to the palace
But he passed along entirely untouched and was still together so frightened in the morning he went to
look out for some place with a barian laine and then he
The brast of the bravest of the entire youth and of many of the slaves of the counillllors or of every fine
breed and of the princess of france has
He had not in the least delicate way of helping her but had helld her into a pretty soft and a passionate
graceful manner he told her every day because
But that man did not fight in the second place no ne did pay the attention to poverty it is not tpossible
to suspect that the man of the previous
But all the people had come to see me and had not seen me again and they felt as if i were again coming
to see me and so little
And people stared at him for a moment as if they were dead but he had not told them of his destiny that
he would do so and they had
And a cow calling up his pipe said that no sign of the procession was ever heard and that no punishment
was made or judgment was made nor any other
Generation at LS-VERT
His proposals that being so poing doubful i should very much regard and alia in boa’s addition to cloak
the great morning had given me a plague off waivering she
Someone to found a brown line and dance spent a moment over the vessel all saw the fair young chinese
yard and dry he would waved dances in bubbles from
All cathics that are not due to f co notion or naturalist that is intentionble but if there is a personality of
faith in them who was intentupon for seeing
The reef made the partets at the corner of a platform with them rose and ground on the floor of the
lobby and of chapter fourteen two thousand se of
As if sudden impulse were convinced of their usual impulses and a strong exercise upon them or rather
in their progress to bring their education to the reduction of manly
And rushing off from the cold winds in the west in the silence of the rock the cherry wavering soft
quietness of people makes breath so cheap in a course
He had been burden with visitor and had petched his old preserance for death and mary the intamminable
enterprising scenes caused by constantiis this trumpetts und drrawn courage and he
Great worked done an artificial lines of bounding is below the had an arm as it were it lookedfted itself
and everything was so exquisite that the site was hard
To jew knew that they had been driven a doctor adreadful mattering to you the young girl whom eyed
by a relatives ever since daily matters while a week before
Evenings in a ball volume whose close ways were rotted in whther cuts that fiddler devilalonsome his
wife soldiers were harassing a women with deafferenren american last grading under fair

Table 10: Example generations of GSLM, trained on LL6k. These generations are selected from two batches of
sentences that have a VERT equal 0.113 (LS-VERT) or 0.189 (LJ-VERT).



WUGGY↑ SBLIMP↑

GSLM 70.36 56.31
200ms-tGSLM 68.53 55.31
BC-30k 71.32 55.08
BC-2k 69.00 54.44

Table 11: sWUGGY and sBLiMP GSLM and 200ms-
tGSLM and the large units

B Clustering SSEs

B.1 The problem of clustering large units

In the introduction, we argued that the clustering
of a large collection of word-size speech fragments
is a daunting challenge. The first difficulty is the
very large number of word types in a corpus. For
instance, there are ≈4.5k word types in the 10-
hour-long Buckeye corpus (Pitt et al., 2005), and
≈90k in the 960-hour-long LibriSpeech (Panayotov
et al., 2015). Most clustering algorithms (k-means,
hierarchical-k-means, Spectral, Chinese Whisper
(Biemann, 2006), Dirichlet Process-means (Kulis
and Jordan, 2011), Brown (Brown et al., 1992)),
require in input either this unknown number of
clusters or a threshold parameter that controls the
number of clusters9. By misestimating the num-
ber of clusters, we introduce errors that can mis-
lead the downstream LM. The second problem is
the highly skewed distribution of the frequency of
word types. This phenomenon, known as Zipf’s
Law (Zipf, 1949), states that, in text, there is a
linear relation between the log-rank of word types
and their log-frequencies. In practice, it means that,
in a text, most word tokens are hapaxes (i.e. they
have a word type that appears only once), and a
small proportion of word types account for most
tokens. Therefore, even if the number of word
types could be correctly estimated, a clustering
algorithm would have to produce many singleton
clusters, which is a hard task for clustering models,
especially for k-means that tend to create equal-size
clusters (Wu, 2012). For those reasons, a cluster-
ing algorithm is likely to produce non-recoverable
errors that will negatively impact the downstream
spoken LM.

9Some unsupervised methods to find the number of clusters
exist, like the ’elbow methods’ in k-means, but these methods
are quite noisy and hard to apply when the number of classes
is that large.

B.2 Attempt at clustering SSEs
Here are some attempts and results at the task of
clustering speech fragments. First, we retrieved
the gold-standard word segmentation of the
LibriSpeech corpus and embedded all word tokens
with the SSE model from Algayres et al. (2022a).
Then, we clustered with k-means and hierarchical-
k-means all the SSEs in the LibriSpeech into K
classes. To simplify, we set K to the true number
of word types. Finally, we trained a transformer
LM to predict the next discrete clusters. We
observed that the training loss decreased but not
the validation loss. The reason for this failure was
simple: most of the clusters found by k-means or
hierarchical-k-means that were in the validation set
were not present in the training set. These results
show that those baseline clustering algorithms are
not suited to the task of spoken language modelling.

Regarding more elaborate clustering methods,
Elkahky et al. (2023) has used a combination
of HuBERT units, smoothing technics, Byte-
Pair-Encoding (BPE) and Brown clustering (BC)
(Brown et al., 1992) with either 30k clusters or 2k
clusters. The result is a discretisation of speech
with word-size units. We have proved in Elkahky
et al. (2023) that these units can be used to train
a HuBERT model and improves its downstream
ASR performances. Here, we discretised the Libri-
Light 6k clean (Rivière and Dupoux, 2021) with
these large units using either 30k and 2k clusters
and gave them in input to a transformer LM trained
to predict the next discrete units. We report in Ta-
ble 11 sWUGGY and sBLIMP scores of GSLM,
200ms-tGSLM and the large units (called BC-30k
and BC-2k). The scores show that these units per-
form equally well to GSLM and 200ms-tGSLM.
These results show that even the most elaborate
methods of clustering do not bring better results
than our method to adapt spoken LM to continuous
inputs.


