
Neural Harmonics: Bridging Spectral Embedding and
Matrix Completion in Self-Supervised Learning

Marina Munkhoeva†‡ Ivan Oseledets §

Abstract

Self-supervised methods received tremendous attention thanks to their seemingly
heuristic approach to learning representations that respect the semantics of the
data without any apparent supervision in the form of labels. A growing body
of literature is already being published in an attempt to build a coherent and
theoretically grounded understanding of the workings of a zoo of losses used in
modern self-supervised representation learning methods. In this paper, we attempt
to provide an understanding from the perspective of a Laplace operator and connect
the inductive bias stemming from the augmentation process to a low-rank matrix
completion problem. To this end, we leverage the results from low-rank matrix
completion to provide theoretical analysis on the convergence of modern SSL
methods and a key property that affects their downstream performance.

1 Introduction

Self-supervised methods have garnered significant interest due to their heuristic approach to learning
representations that capture the semantic information of data without requiring explicit supervision in
the form of labels. Contrastive learning based methods among the former would use the repulsion
among arbitrary pair of points in the batch, while non-contrastive would rely on the consistency
among different views of the same image. While self-supervised representation learning becomes
more ubiquitous in the wild, especially in the important domain such as medical imaging [16], the
theoretical grounding of these methods would potentially help avoid the pitfalls in applications.
Unsurprisingly, researchers are already trying to build theoretically sound understanding of modern
self-supervised representation learning methods.

The overall goal of this work is to understand self-supervised representation learning through the lens
of nonlinear dimensionality reduction methods (e.g. Laplacian Eigenmaps [3]) and low-rank matrix
completion problem [28]. To this end, we take on a Laplace operator perspective on learning the
optimal representations in the manifold assumption. We then derive a trace maximization formulation
to learn eigenfunctions of the Laplace operator of the underlying data manifold. We adopt the heat
kernel based embedding map that in theory under certain conditions is an almost isometric embedding
of the low-dimensional manifold into the Euclidean space. As a result, we discuss how existing
several SSL methods (e.g. SIMCLR [9], BARLOWTWINS [1], VICREG [2]) can be comprehended
under this view.

It is important to note that our current understanding of the topic lacks one crucial aspect. Traditional
spectral methods commonly operate with complete kernel matrices, whereas our approach deals with
incomplete and potentially noisy ones. The only available similarity information among examples
is derived from the data augmentation process, which generates a positive pair. Meanwhile the
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remaining examples in the batch are either seen as negative ones (contrastive) or are not considered
at all (non-contrastive).
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Figure 1: Illustrative graph of the
theoretical fraction p∗ of the observed
entries required for matrix completion
to succeed with high probability. As
training proceeds, unmaterialized kernel
matrix size n increases and p∗, which is
roughly ∼ logn/n, decreases. Eventually,
the actual (constant) fraction p of
observed entries under self-supervised
learning augmentation protocol intersects
the theoretical bound.

A pertinent and often overlooked question emerges: how
can self-supervised learning methods effectively leverage
such limited signals to converge towards meaningful
representations? In response, we shed light on this
matter by establishing a connection between SSL and a
matrix completion problem. We demonstrate that these
optimization problems are Lagrangian dual of each other,
implying that optimizing the SSL objective simultaneously
entails reconstructing the kernel matrix. We can summarize
the contributions of this paper as follows:

• We propose an eigen-problem objective for spectral
embeddings from graphs induced by augmentations and
use it to interpret modern SSL methods.

• We show that SSL methods do Laplacian-based nonlinear
dimensionality reduction and low-rank matrix completion
simultaneously. We leverage theory behind matrix
completion problem to provide insights on the success of
SSL methods and their use in practice.

• While the number of observed entries required by theory
decreases with epochs, we find that the actual number is a
constant and the former eventually intersects the latter.

• We find a possible explanation for disparity in downstream
performance of the backbone and projection outputs.

2 Background

This work relies on the manifold hypothesis, a hypothesis that many naturally occurring
high-dimensional data lie along a low-dimensional latent manifold inside the high-dimensional
space. Since we can only observe a sample from the manifold in the ambient space, neither the true
manifold nor its metric are available to us. Although we never explicitly work with Laplace-Beltrami
operator, we still give a brief definition below to provide some grounding for the reasoning later.

Laplace operator LetM be a Riemannian manifold and g be the Riemannian metric onM. For
any smooth function u onM, the gradient ∇u is a vector field onM. Let ν be the Riemannian
volume onM, dν =

√
det g dx1...dxD. By the divergence theorem, for any smooth functions u

and v (plus smooth and compact support assumptions)
∫
M u div∇v dν = −

∫
M〈∇u,∇v〉dν, where

〈·, ·〉 = g(·, ·). The operator ∆ = div∇ is called the Laplace-Beltrami operator of the Riemannian
manifoldM.

In practice, we usually work with finite samples, and Laplace operator is typically approximated with
graphs or meshes. While the latter are typically used in computational mathematics, the former find a
widespread use in machine learning. Below is a brief overview of the relevant graph notions, for a
detailed exposition please see [36].

Graph Laplacian and Spectral Embedding Given a graph Γ = (V,E) with |V | = n vertices and
a set of edges eij = (vi, vj) that form a weighted adjacency matrix Aij = wij with non-negative
weight wij ≥ 0, whenever there is eij ∈ E, otherwise 0. With a degree matrix D = diag(A1), the
graph Laplacian is given by L = D−A, the corresponding random walk Laplacian is a normalization
Lrw = I−D−1A. All graph Laplacians admit an eigenvalue decomposition, i.e. L = UΛU>,
where U ∈ Rn×n contains eigenvectors in columns and a diagonal matrix Λ ∈ Rn×n has eigenvalues
on the diagonal. Note that there is a trivial eigenpair (0,1). [5, 4] show that the eigenvectors of the
graph Laplacian of a point-cloud dataset converge to the eigenfunctions of the Laplace-Beltrami
operator under uniform sampling assumption.
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Whenever one has an affinity matrix, a positive semidefinite pairwise similarity relations among
points, the classical way to obtain embeddings for the points is to perform spectral embedding. A
typical algorithm would include constructing a graph based on the affinity matrix, computing k first
eigenvectors of its Laplacian and setting the embeddings to be the rows of the matrix U ∈ Rn×k that
contains the eigenvectors as columns.

Matrix completion Let M ∈ Rn×n is partially observed matrix with rank r. Under Bernoulli
model, each entry Mij is observed independently of all others with probability p. Let Ω be the set of
observed indices. The matrix completion problem aims to recover M from m = |Ω| observations.
The standard way to solve this problem is via nuclear norm minimization:

min
X∈Rn×n

‖X‖∗ subject to Xij = Mij for (i, j) ∈ Ω, (1)

where ‖X‖∗ is the nuclear norm of X, i.e. the sum of its singular values. A large body of work [8,
28, 27, 10] has succeeded in providing and enhancing of the conditions that guarantee the optimal
solution X∗ to be both unique and equal to M with high probability.

Notation Any matrix X ∈ Rn1×n2 has a singular value decomposition (SVD) X = UΣV>,
where the columns of the matrix U ∈ Rn1×n1 are left singular vectors, the singular values
σ1 ≥ σ2 ≥ · · · ≥ σmin(n1,n2) lie on the diagonal of a diagonal matrix Σ ∈ Rn1×n2 , and right singular
vectors are the columns of V ∈ Rn2×n2 . ||X||F , ||X|| = σ1, ||X||∗ =

∑
i σi denote Frobenius,

spectral and nuclear norms of X, respectively. ||x||p denotes p-th vector norm.

3 SSL and Spectral Embedding

In this section, we will provide a construction that covers most of the self-supervised learning
methods and gives SSL a novel interpretation. First, we formalize the setup from the perspective of
the manifold hypothesis. Then, we make some modelling choices to yield an SSL formulation as
a trace maximization problem, a form of eigenvalue problem. Finally, we describe how three well
known representatives SSL methods fall under this formulation.

Let X ∈ Rn×d′ be a set of n points in Rd′ sampled from a low-dimensional data manifold observed
in a d′-dimensional ambient Euclidean space. However, data is rarely given in the space where each
dimension is meaningful, in other words d′ � d∗, where d∗ is unknown true dimensionality of the
manifold. The goal of nonlinear dimensionality reduction is to find a useful embedding map into
d-dimensional Euclidean space with d� d′. Two of the classical approaches, namely Eigenmaps [3]
and Diffusion maps [11], use eigenfunctions of the graph Laplacian, an approximation of the Laplace
operator associated with the data manifold. Both can be loosely described as a variant of map

Φ(x) = [ φ1(x) φ2(x) . . . φd(x) ], (2)

where φk is k-th eigenfunction of the negative Laplace operator on the underlying manifold.

This type of map bears a direct connection to theoretical question how to find an embedding of
certain types of manifolds into Euclidean spaces, studied in differential geometry. For instance, [6]
construct embedding for a given smooth manifold by using its heat kernel. This approach has been
subsequently enhanced through the application of a truncated heat kernel expansion. Furthering
this trajectory, [26] explore whether and when such embedding is close to being isometric, which is
desirable as isometric embedding preserves distances.

Motivated by the heat kernel embedding literature, we provide a general construction for
self-supervised methods in what follows. The heat kernel on a manifold can be represented as
an expansion H(p, q, t) =

∑∞
k=0 e

−λktφk(p)φk(q), where p and q are some points on the manifold,
t > 0 and φk are normalized eigenfunctions of the Laplace operator, i.e. −∆φk = λkφk and
|φk|2 = 1. However, working with finite data, we can only operate with a graph approximation of the
manifold, and will make use of the heat kernel construction for graphs. The latter is given by a matrix
exponential Ht = e−tL, alternatively represented through an expansion Ht =

∑n
i=0 e

−λktφkφ
T
k ,

where L is a graph Laplacian and (λk, φk) is k-th eigenpair of L.

Consider Laplacian EigenMaps method, it first constructs a graph and weighs the edges
with a heat kernel of the Euclidean space which takes the form of a Gaussian kernel
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hE(x,y, t) = exp(−||x− y||22/t) whenever the distance is less then some hyperparameter, i.e.
||x− y||2 < ε, or y is among k nearest neighbours of x. Next, the method proceeds with finding the
eigenvectors of the graph Laplacian constructed from the thus weighted adjacency matrix W.

Contrarily, the proposed construction acknowledges the cardinality and complexity typically
associated with the modern day datasets, where it is challenging to select the cutoff distance or
the number of neighbours, and impractical to compute all pairwise distances. Our ideal graph
has edges reflecting the semantic similarity between points; e.g. there is an edge whenever the
pair of points belong to the same class. The drawback is that this matrix is unknown. This is
where augmentation comes into play as it provides a peek into only a fraction of the entries in the
unmaterialized heat kernel matrix. Consequently, we claim that SSL implicitly solves a low-rank
matrix completion problem by instantiating some of the pairwise similarity entries in Ht via the
augmentation process. However, prior to this, we need to demonstrate the generality of the perspective
we have formulated. To accomplish this, we articulate a trace maximization problem.

3.1 Trace Minimization

To start, we construct an unmaterialized heat kernel matrix in accordance with the standard
self-supervised learning protocol for augmentations. Given a dataset with N points, one training
epoch generates a views of each point. Typically, a = 2 and training runs for nepochs number of
epochs. The whole training generates exactly nepochs × a views per original instance. As a result the
total number of processed examples is n = N × a× nepochs, thereby we have that Ht ∈ Rn×n.

As a rule, SSL utilises architectures with a heavy inductive bias, e.g. ResNet [19] / Vision
Transformers [14] for image data. Thus, we may safely assume that the same instance views
are close in the embedding space and are connected. This results in a block diagonal adjacency matrix
W, where i-th block of ones accounts for all the views of i-th image among N original images. The
fraction of observed entries equal to p = N × (nepochs × a)2/n2 = 1/N , a constant fraction for a
given dataset.

Note that in the ideal scenario, we would know the cluster/class affiliation for each point and would
have connected same-class views with edges. However, in reality, we only know instance affiliation
of each view. Let us denote the ideal scenario heat kernel matrix as Ht and its partially observed
counterpart used in reality — Ĥt.

To obtain the heat kernel matrix, we use the normalized random walk Laplacian Lrw, for which
the heat kernel matrix is as before: Ht = exp(−tLrw) =

∑n
k=0 exp(−λkt)uku>k , where uk

is k-th eigenvector and λk a corresponding eigenvalue of Lrw. To obtain spectral embeddings
from an ideal Ht, one would then proceed with solving a trace minimization form of eigenvalue
problem in (3), where the optimal solution is exactly the eigenvectors of Lrw, i.e. Z∗ = U.

max
Z

Tr(Z>HtZ)

s.t. Z>Z = I,
(3)

max
θ

Tr(Z>θ ĤtZθ)

s.t. Z>θ Zθ = Id, Z
>
θ 1 = 0,

(4)

However, for lack of a better alternative we resort to the incomplete Ĥt and need to learn a
parameterized mapFθ(X) = Zθ in (4). Apart from the specified eigenfunction pairwise orthogonality
constraint, the resulting loss is comprised of implicit constraints on the trivial eigenfunction (identity)
and function norm. But before we treat (3) with incomplete Ht as matrix completion problem, we
show that this formulation can be seen as a generalization for a number of existing self-supervised
learning methods. Specifically, several modelling choices differentiate the resultant methods.

3.2 Self-Supervised Methods Learn Eigenfunctions of the Laplace Operator

SIMCLR Consider the following contrastive loss, variants of which are widely adopted in
self-supervised learning methods: LCL =

∑
i,j∈+pairs

lij + lji, where

lij = log
eκ〈zi,zj〉∑

k 6=i
eκ〈zi,zk〉

= κ〈zi, zj〉 − log
∑
k 6=i

eκ〈zi,zk〉, (5)
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with zi = fθ(xi) is an embedding of input xi given by function f parameterized by a neural network
with learnable parameters θ, which produces unit-norm embeddings, i.e. ||zi||2 = 1. One iteration of
SIMCLR takes a batch of N data points and creates 2N views, augmenting each sample to obtain
a positive pair (zi, zj), while treating all the other samples and their augmentations as contrastive
samples zk.

Let us include k = i in the sum in denominator of (5) for a moment. A goal of SIMCLR is to obtain
optimal representations Z ∈ R2N×d such that for each positive pair (i, j), their representations will
be aligned as much as possible 〈zi, zj〉 → 1. Let Aij = exp(κ[ZZ>]ij) and D = diag(A1), then
we can rewrite (5) as

lij = logAij − log

2N∑
k=1

Aik = logAij − logDii = log
Aij

Dii
= log[D−1A]ij (6)

where we are interested in the right hand side log[D−1A]ij . Let us note that [D−1A]ij from (6)
is a normalized adjacency of a graph G = (V,E), where node set V is the set of views. Since
representations live on a unit (d− 1)-sphere, we have a choice of naturally arising distributions
(von Mises-Fisher, spherical normal, etc) to instantiate the weighting function µ(xi,xj). The model
choice of SIMCLR is to instantiate the weighting function with the density of the von Mises-Fisher
distribution with κ > 0 (without the partition function):

Aij = exp(κz>i zj), (7)
where Aij equals eκ, with a typical value κ = 2, whenever i, j is a positive pair, and e0 = 1
otherwise. Note that log(D−1A) = D−1A− I + o((D−1A)2) ≈ −Lrw, thus in loose terms the
objective in (5) maybe be seen as a minimization of a trace of a negative of the graph Laplacian by
learning z’s that shape A.

Decoupled Contrastive Learning [38] can be seen as reweighting the adjacency matrix by setting
Aij = w(zi, zj), where w(zi, zj) is a reweighting function to emphasize hard examples.

For non-contrastive methods (BARLOWTWINS, VICREG, etc) SSL methods (where no negative
examples are used, e.g. BARLOWTWINS, SIMSIAM), the respective losses could also be interpreted
as learning a diffusion map. The key distinction with contrastive methods expresses itself in setting
Aij = 0 for view pairs (i, j) that do not have shared original, thus eliminating any signal from a
possibly negative pair.

BARLOWTWINS method normalizes the columns of representation matrices Za,Zb ∈ RN×d,
which is the same as the function norm constraint in (4). The overall objective is as follows:

J =
∑
ii

(Z>a Zb − I)2
ii + α

∑
i 6=j

(Z>a Zb − I)2
ij , (8)

and simultaneously aims at three things: (i) enforce the closeness of the rows, i.e. positive pair
embeddings, (ii) restrict the norm of the columns, i.e. the eigenfunctions, (iii) orthogonalize columns,
again the eigenfunctions. The kernel matrix choice in BARLOWTWINS is a simple bi-diagonal
adjacency matrix Aij = 1 as long as (i, j) is a positive pair, and 0 otherwise.

VICREG objective is a weighted sum of variance, covariance and invariance terms:

Jvar =

d∑
k=1

max(0, 1−
√

[Z>Z]kk), Jcov =
∑
k 6=l

[Z>Z]2kl, Jinv =
∑
ij

Aij‖Zi − Zj‖2,

a similar formulation to the previous method, however, the choice for the adjacency matrix here
is little bit different. Individual terms of this loss have separate coefficients. The choice of these
hyperparameters defines the implicit adjacency matrix entries, controls the maximum function norm
allowed and the trade-off between orthogonality and the trace terms in (4).

4 SSL and Low-Rank Matrix Completion

In this section, we use low-rank matrix completion theory to show that the limited information from
augmentations might be quite enough under certain conditions. First, we establish the connection
between our self-supervised learning objective (4) and the low-rank matrix completion problem. We
then draw practical insights from the existing convergence theory for matrix completion problem.
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4.1 Low-Rank Matrix Completion Dual

We argue that the objective in (3) with a substitute incomplete kernel matrix Ĥt implicitly contains
an objective for the low-rank matrix completion problem. To show this, we first introduce the
general form of the nuclear norm minimization problem with affine subspace constraint in (9).

min
X

‖X‖∗

subject to A(X) = b,
(9)

max
q

b>q

subject to ‖A∗(q)‖ ≤ 1,
(10)

The subspace is given by linear equations A(X) = b and linear operator A : Rn×n → Rp can be a
random sampling operator. The dual for the nuclear norm | · |∗ is the operator norm | · |. The problem
in (9) has been initially introduced as a heuristic method for seeking minimum rank solutions to linear
matrix equations, but has later been shown to have theoretical guarantees under certain conditions on
the linear operator A [28, 27, 32, 17]. The Lagrangian dual of (9) is given by (10), where operator
A∗ : Rp → Rn×n is the adjoint of A.

We write down an instance of (9) in (11) below to better reflect the specifics of our setting. Since the
true underlying heat kernel matrix Ht is observed only partially with known entries indicated
by a collection of index pairs Ω induced by augmentation process, we can form a sampling
symmetric matrix W: Wij = 1 if (i, j) ∈ Ω, and 0 otherwise, indicating observed entries. Now,
the incomplete kernel matrix can be written down explicitly as Ĥ = W�H, where � denotes
Hadamard (element-wise) product. The constraint in (9) instantiates as A(X) = vec(W�X).

min
X∈S+

‖X‖∗

subject to vec(W�X) = vec(Ĥ)
(11)

max
Z∈Rn×d

TrZ>ĤZ

subject to Z>Z = I
(12)

We proceed by showing that maximisation of the trace formulation in (12) embraces reconstruction
of the incomplete underlying kernel matrix with entries known to us only from the augmentation
process and specified by the matrix W.
Proposition 4.1. The trace maximization problem given in (12) is a Lagrangian dual of low-rank
matrix completion problem in (11).

Proof. First, we show that (12) is an instance of (10). Let linear operator A(X) : Rn×n → Rn2

be a
sampling vectorization of vec(W�X). By trace of a matrix product, we can rewrite the objective as
Tr[Z>ĤZ] = Tr[ĤZZ>] = (vecĤ)>vec(ZZ>) = b>q.

The adjoint operator A∗(q) = mat(DWq) acts a sampling matricization, i.e. it samples and maps q
back to Rn×n: A∗(q) = W�ZZ>, and the constraint of the dual (10) becomes ‖W�ZZ>‖ ≤ 1.
As Z admits singular value decomposition Z = UΣV>, the constraint in (12) Z>Z = I implies
σi(Z) = 1 for all i.

To establish equivalence of the constraints in (10) and (12), i.e. ‖W�ZZ>‖ = σ1(W�ZZ>) ≤ 1
given W and σ1(Z) = 1, we can use a result for singular values of Hadamard product [], specifically,
for k = 1, 2, . . . , n:

∑k
i=1 σi(A�B) ≤

∑k
i=1 min(ci(A), ri(A))σi(B), where ci(A) and ri(A)

are column and row lengths of A, and σ1 ≥ σ2 ≥ · · · ≥ σn. Let A = W and B = ZZ>, then
ri = ci =

√
K, yielding σ1(W�ZZ>) ≤

√
K, where K = nepochs × a is a constant, consequently,

it can be accounted for by rescaling W and not affecting the maximization. Finally, since (11) is an
instance of (9), we can conclude that (12) is dual to (11).

This result allows us to make use of theoretical guarantees obtained in matrix completion in what
follows.

4.2 Convergence

Incoherence Standard incoherence [7, 23, 20, 17, 27] is the key notion in the analysis of matrix
completion problem. Intuitively, incoherence characterises the ability to extract information from a
small random subsample of columns in the matrix. More formally, it is defined as an extent to which
the singular vectors are aligned with the standard basis.
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Definition 4.2. Given matrix M ∈ Rn1×n2 with rank r and SVD M = UΣV>, M is said to satisfy
the standard incoherence condition with coherence parameter µ if

max
1≤i≤n1

‖U>ei‖2 ≤
√
µr

n1
, max

1≤j≤n2

‖V>ej‖2 ≤
√
µr

n2
, (13)

where ei is the i-th standard basis vector of a respective dimension.

Since the matrix we aim to recover is symmetric, n1 = n2 = n and its left, right singular and eigen-
vectors are identical. The coherence parameter µ = n

r max
i
‖Uei‖22 range from 1 (incoherent) to

n
r (coherent).

To the best of our knowledge, optimal sample complexity bounds for matrix recovery via nuclear
norm minimisation were obtained in [10]. Specifically, given M satisfies standard incoherence
condition (13) with parameter µ, if uniform sampling probability p∗ ≥ c0µr log2(n)/n for some c0 > 0,
then M is the unique solution to (1) with high probability.

Matrix recovery is easy when it is highly incoherent — when information is spread more uniformly
among its columns/rows, loosing a random subset of its entries is not as big of a deal as when
information is concentrated in certain important columns/rows. On the other hand, high incoherence
intuitively makes matrices harder when used as feature matrices in downstream tasks. This might
explain why typical SSL methods rely on the output of backbone network (representations) rather
than the output of projection head (embeddings).

It is easy to see that downstream performance depends on the alignment of the target matrix Y with
the left eigenvectors of the feature matrix X. The target matrixY in downstream classification task is
typically a very simple binary matrix, and can be shown to have low incoherence. However, whenever
X is obtained as the projection head output of a network learned via self-supervised learning method
with a spectral embedding type objective, the incoherence of X is inherently tied to the incoherence
of the kernel matrix. The latter needs to have high incoherence to be recoverable. Consequently, we
put forward the following proposition and find its empirical support in Section 5.2.
Proposition 4.3. Projection head outputs (embeddings) yield lower performance on the downstream
task due to their high incoherence. The complexity of the projection head correlates with coherence
of the backbone output (representations).

Only a fraction of total entries in Ht is required for matrix recovery with high probability. We
can further narrow down the bound on p∗ if we consider structured matrix completion problem in
the form of some side information which has a direct connection to self-supervised setup. Let the
column/row space of M lie in some known r′-dimensional subspace of Rn spanned by the columns
of Ū, n > r′ ≥ r. Then the nuclear norm minimization problem transforms into:

min
X

‖X‖∗ subject to (ŪXŪ>)ij = Mij , (i, j) ∈ Ω. (14)

In practice, we use neural network parameterisation to learn the heat kernel map, this choice
inadvertently restricts the reconstructed kernel to be aligned with the column space of the network
outputs, bringing the inductive bias of the architecture into picture.

The optimal sampling complexity bound for (14) extends as p∗ & µµ̄rr̄ log(µ̄r̄) logn/n2, where µ̄ and
r̄ are the coherence and the rank of Ū, respectively. Suppose we wanted to recover some binary
adjacency matrix A, such that Aij = 1 if i, j belong to the same cluster, 0 otherwise. Because A
can be rearranged to be block-diagonal with r blocks, its coherence µ(A) = n/rnmin, and exact
reconstruction is possible provided

p∗ & µ̄r̄ log(µ̄r̄) logn/nnmin, (15)

where nmin is the minimal cluster size. Heat kernel matrix constructed from such A will have its
eigenspectrum closely resembling that of A, albeit smooth, yet still having same pattern in eigengaps.
So we may safely adopt this bound for Ht. For balanced class datasets nmin = n/c, and we can
immediately see that the number of required observations m = p∗n2 = cµ̄r̄ log(µ̄r̄) log n grows
linearly with the number of classes c in the dataset.

For illustrative purposes we plot the theoretical bound p∗ on the fraction of the observed entries for
a successful matrix completion from (15) in Figure 1 along with the actual fraction p of observed
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Table 1: Performance comparison for the trace maximization formulation (RQMIN) and VICREG.
Mean and standard deviation for validation set accuracy across 5-10 runs for CIFAR-10, CIFAR-100
and ImageNet-100.

CIFAR-10 CIFAR-100 ImageNet-100

top-1 top-5 top-1 top-5 top-1 top-5

VICREG 91.15 ± 0.16 99.64 ± 0.05 67.57 ± 0.20 89.90 ± 0.13 78.89 ± 0.38 93.94 ± 0.17

RQMIN 91.19 ± 0.13 99.67 ± 0.04 68.12 ± 0.26 90.12 ± 0.11 78.98 ± 0.33 94.45 ± 0.23

entries under self-supervised learning augmentation protocol to demonstrate that the latter intercepts
the former given enough training epochs. To be specific, we set the size of the training dataset
N = 50k (CIFAR-10 size), the cluster size (number of same class examples) nmin = 5000 (c = 10),
the number of views a = 2, the number of epochs nepochs range from 1 to 1000, and r = 512
(embedding size), assume µ = 20 (which seems to be a fair estimate in light of the experiments in
Section 5) and c0 = 5, a constant used to control the probability of exact matrix recovery.

Based on this bound, we highlight the following factors that play important role in the success of any
SSL method with spectral embedding type objective. The choice of the similarity function affects
the incoherence parameter in the bound. The number of samples per class (alternatively the minimal
cluster size nmin) should also be high enough for p∗ to decrease rapidly. Finally, though potentially in
contrast to the empirical observations (higher d on ImageNet yields higher downstream performance),
the rank r, effectively the dimension of embedding d, should not be too large.

5 Experiments

First, we verify that the performance of the proposed formulation in (4) and the corresponding
loss function, denoted RQMIN , is at least on par with the state-of-the-art methods. We then study
the effect of the complexity of the projection head on the incoherence and its connection with the
downstream performance of the backbone against projection head outputs.

Here we report the training hyperparameters for all of the experiments. As VICReg is extremely
sensitive to the choice of hyperparameters (e.g. increasing learning rate with increased batch size
negatively affects training – learning diverges), we adopt the same hyperparameters for training
RQMIN for a fair comparison. We follow the standard VICReg protocol adopted and finetuned
for CIFAR-10/100 and ImageNet-100 in the library for self-supervised learning methods for visual
representation learning solo-learn [12].

We train ResNet-18 backbone architecture with 3-layer MLP projection head (respective hidden
dimensions: 2048-2048-2048). The batch size is 256 for CIFAR datasets and 512 for ImageNet-100.
For pretraining, the learning rate schedule is linear warm-up for 10 epochs and cosine annealing, the
optimizer is LARS with learning rate 0.3. For linear probe training, SGD with step learning rate
schedule with steps at 60 and 80 epochs. The number of pre-training epochs is 1000 for CIFAR and
400 for ImageNet-100, downstream training – 100 epochs.

5.1 Comparable performance

To demonstrate that our trace maximization objective is on par with existing SSL methods, we test
our objective in (4) on a standard ResNet-18 backbone neural network with 3-layer MLP projection
head and obtain comparable results on CIFAR-10, CIFAR-100, and ImageNet-100 to state-of-art
methods. As most of the latter yield almost identical performance given enough hyperparameter
tuning, we pick VICREG as a representative to compare against. Following the standard protocol
with 1000 and 400 pre-training epochs for both CIFAR datasets and for ImageNet-100, respectively,
linear probe for downstream evaluation is trained for 100 epochs. We do not tune hyperparameters
and use default values. Mean and standard deviation for downstream accuracy across 5-10 trials with
different seed values are reported in Table 1.
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Figure 2: (left) Coherence of the backbone outputs (representations) grows with the increasing number of
layers in the projection head. (right) Downstream accuracy versus incoherence. Green marks show downstream
performance and incoherence of embeddings, blue marks – representations. Embeddings and representations of
the same type of model are almost always separable in these coordinates: embeddings exhibit lower performance
and lower coherence (small µ) while representations perform better and have higher coherence (large µ).

5.2 Incoherence effect on downstream performance

To test whether incoherence could explain the performance disparity between the outputs of
the backbone, termed representations, and the projection head, known as embeddings, we train
several models with various configurations of projection heads against SSL objectives on the
ImageNet-100 dataset and calculate incoherences of representations and embeddings along with
respective downstream accuracies. The performance of the representations and embeddings of the
pre-trained model is evaluated in a downstream classification task, while incoherence µ for both
candidates is estimated on the training set.

Since the dimensionality of representations and embeddings differ, i.e. 512 for backbone output and
2048 for projection head output, we need to pick the rank to compute µ accordingly. The common
way to pick rank in the numerical methods is through tolerance, i.e. thresholding based on the values
of the normalized singular values, i.e. σ′i = σi/

∑
j σj . Otherwise, one could use the notion of

effective rank [30], given by re(A) = exp(H(σ)), where the entropy H(σ) = −
∑
i σi log(σi)

with vector of singular values σ. Overall, we compute coherence as the following expression:

µ(A) =
n

re(A)
max

1≤i≤dree
‖U>Aei‖22.

Incoherence and projection head complexity. To estimate coherence of representations in Figure 2
(left), we embed the training set of ImageNet-100 to get representations matrix A ∈ R125952×512

and compute incoherence µ(A) using effective rank re(A). We embed the training set using three
distinct pre-trained models for each of the projection head configurations characterized by the number
of layers l, l ∈ {1, 2, 3, 4}, and average the values across ten embedding runs. The resulting mean
and standard deviation plot suggests that incoherence (low µ) is higher for more shallow projection
heads and decreases (µ grows) as the number of layers in the head increase, a result we anticipated.

Embeddings and representations disparity. Figure 2 (right) plots distinct models representations
and embeddings in the Accuracy-Coherence plane. It encodes different type of loss with a shape:
diamonds for VICREG and squares for RQMIN. While blue colour signifies the position of each
model’s representations, the green colour reflects the corresponding embeddings. Both objectives
demonstrate a separation of the embedding (low coherence, low accuracy) and representation (high
coherence, high accuracy) points, which is more distinctive in the case of RQMIN (squares).

The resulting plots support our hypothesis in Proposition 4.3 that incoherence indeed plays a crucial
role in explaining the use of the backbone outputs. For successful matrix completion, high incoherence
of the partially observed affinity matrix is essential. However, for the downstream performance of the
representations, the opposite is preferred. The projection head functions as a disentangling buffer,
enabling the representations to maintain low incoherence. Conversely, the embeddings inherit the
incoherence of the affinity matrix.

While incoherence seems to be an attractive candidate for unsupervised embedding evaluation metric
in scenarios with little to no test data, one should use caution as the coherence value µ does not reflect
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the amount of relevant information stored in the matrix of embeddings due to normalization with
reference to its rank. This idea has been explored in [35] on embeddings of supervised models.

6 Related Work

Recent success of self-supervised methods [9, 15, 2, 38, 39], especially in the domain of computer
vision received great amount of attention since the learned representations ended up respecting the
semantics of the data. There has been a great interest in trying to understand the inner workings of
the seemingly heuristic objectives since.

While there are many lenses one may take up to study the problem [21, 37, 22, 34, 33, 18], a
particularly related to this work concurrent body of literature has adopted the view of the kernel
or laplacian-based spectral representation learning [13, 1], which we also share in this work. We
highlight our main difference to the results provided in these very recent papers. [1] does a brilliant
job connecting and characterizing modern SSL methods into classical existing counterparts. However,
it does not answer an important question whether an incomplete a priori knowledge about the data
manifold stemming from augmentations can provide a good approximation to essentially nonlinear
dimensionality reduction methods such as LLE [29], MDS [24], and kernel PCA [31].

We not only show SSL methods to have an objective function similar to the objectives of classical
spectral decomposition methods, e.g. LaplacianEigenmaps [3], but also try to address the problem of
incomplete and noisy measurements that we get as an inductive bias during the augmentation process.
We hope that this perspective via the low-matrix completion problem will yield further theoretical
results on the success of self-supervised learning and practical benefits when applying these methods
in the wild, e.g. in domains such as medical imaging [16] and hard sciences [25].

7 Conclusion and Future Work

In this work, we make an attempt to bridge modern self-supervised methods with classical
Laplacian-based dimensionality reduction methods and low-rank matrix completion in hopes to
provide theoretical insights on the recent successes of SSL methods.

We show that these methods are not only doing Laplacian-based nonlinear reduction but are able to
approximate and recover the truncated version of the underlying Laplace operator given only noisy
and incomplete information from augmentation protocol by adopting low-rank matrix completion
extensive literature and results. However, when working with datasets with potentially large number
of classes, it might be a good idea to consider whether the size of the sample is large enough so that
the minimal cluster size allows the full data matrix to be considered low-rank, otherwise the SSL
methods would possibly fail to converge.

We also spot a direct influence of the inductive bias in the parameterization of the learned map on
the column space of the recovered matrix. We also hypothesize that the disparity in downstream
performance between backbone and projection head outputs can be explained by the high incoherence
if the latter which is tied to the incoherence of the kernel one is recovering during training. The kernel
should have high incoherence to be recoverable.

One of the possible avenues for future work stems from the notion of incoherence. We see it in
exploring incoherence property of different types of the similarity or weighting functions one may
use to instantiate the adjacency matrix with.

We hope that this work paves the way for a deeper study of the connection between self-supervised
methods and classical problems such as matrix completion to yield better practical and theoretical
understanding of various applications of SSL in different domains, not only computer vision.
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