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Abstract. Accurate segmentation of abdominal organs is crucial for the
diagnosis and treatment of diseases. Thanks to the development of deep
learning, the performance of CT abdominal organ segmentation has been
qualitatively improved. However, due to the lack of labeled data for MR,
it is challenging to utilize the existing CT data to achieve model adap-
tation on MR modality. Unsupervised domain adaptation has shown the
potential to alleviate this challenge by learning from labeled source do-
main images as well as a large number of unlabeled target images. In this
work, we first generate diverse fake MR data through a style translation
network to assist in segmentation model training. Next, we follow a self-
training strategy to utilize the segmentation network after training with
mixed style images, and apply strategies such as pseudo-label filtering
and elastic registration to generate accurate pseudo-labels for the MR
data. Finally, we adopt a two-stage framework to localize the region of
interest and then perform fine segmentation on it, which further improves
the performance and efficiency of segmentation. Experiments on the val-
idation set of FLARE 2024 demonstrate that our method achieves ex-
cellent segmentation performance as well as fast and low-resource model
inference. The average DSC and NSD scores are 79.42% and 86.46%,
respectively, the average inference time is 2.81 s, and the maximum
GPU memory is 4135 MB on validation set. The code is available at
https://github.com/TJUQiangChen /FLARE24-task3.

Keywords: Abdominal organs segmentation - Unsupervised domain adap-

tion - Style translation - Self-training.

1 Introduction

Abdominal organs are primary sites for several prevalent cancers, with colorectal
and pancreatic cancers ranking as the second and third leading causes of cancer-
related deaths worldwide. As such, accurately segmenting abdominal organs is
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vital for effective cancer diagnosis, treatment planning, and prognosis assess-
ment. In recent years, deep convolutional neural networks have made significant
strides in 3D medical image segmentation. Notably, the FLARE competitions
from 2021 to 2023 provided extensive CT datasets along with some manually
annotated results for both supervised and semi-supervised segmentation. This
initiative has led to numerous outstanding contributions in the fields of CT ab-
dominal organ segmentation [4,13]. However, despite these advancements, the
segmentation of abdominal organs in MRI scans remains relatively underex-
plored. This gap primarily arises from the severe scarcity of labeled data for
abdominal MRI within the research community; for instance, the training set in
the MICCAT AMOS challenge only contains 40 labeled MRI scans [5]. There-
fore, exploring how to utilize richly labeled CT image data to improve MR image
segmentation becomes an important and challenging task.

Unsupervised domain adaptation (UDA) is a popular solution that aims to
learn a given task model using annotated source and unlabeled target domains so
that it performs well in the target domain to which the test dataset belongs. This
approach enhances the adaptability of the model for real-world clinical applica-
tions and has become a focal point in medical image analysis research [14,17,11].
Cross-modality UDA, particularly between CT and MR images, presents unique
challenges due to significant differences in data distribution. Most existing meth-
ods focus on image alignment, aiming to achieve cross-domain appearance con-
version. For instance, Chartisias et al. [2] employed CycleGAN to generate target
domain MR images from source domain CT images, subsequently training a sep-
arate segmentation network on these pseudo MR images. Cai et al. [1] enhanced
CycleGAN with a shape consistency loss to better constrain the output of gen-
erator. Tomar et al. [12] utilized a learnable self-attention module to capture
spatial semantic information and applied attention regularization loss to encour-
age orthogonality in attention maps, facilitating the transformation of distinct
anatomical structures. However, these methods often face several limitations: (1)
they usually generate an output of the average style of the target domain based
on the source domain image. This reduces the diversity of the generated fake MR,
styles. (2) Due to the low contrast of MR images, the generated fake MR images
often fail to capture semantic details of small structures, such as the gallbladder,
esophagus, and adrenal glands, significantly impacting multi-class segmentation
performance. (3) These approaches often overlook the intrinsic 3D information in
medical images and instead utilize a 2D network, thereby missing out on crucial
deep semantic information. Overall, these methods are suitable for tasks with
less segmentation difficulty. In contrast, for multi-target multi-modality segmen-
tation tasks with more difficult segmentation, the above problems degrade the
overall performance of the target domain.

To address these challenges, we propose an unsupervised 3D cross-modality
domain adaptation framework that integrates style translation and self-training,
leveraging the large and diverse abdominal organ segmentation dataset provided
by FLARE 2024. First, we realize the style transformation between CT and MR
for one-to-many mappings by training a disentangle learning-based style trans-
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lation network, which enhances the diversity of generated MR styles. Then, to
fully utilize the MR unlabeled data, we combine the self-training strategy [18]
with a segmentation network based on the joint training of fake MR and real CT
to generate pseudo labels for the MR data. We then conduct an in-depth analysis
of the MR dataset and implement strategies such as pseudo label filtering, itera-
tive optimization, and elastic registration to effectively enhance the accuracy of
the pseudo labels. Finally, to further improve efficiency of the model, we employ
a two-stage framework [7] that initially localizes the region of interest followed
by detailed fine segmentation. This approach leads to enhanced segmentation
performance and allows for fast, resource-efficient model inference.
Our main contributions are as follows:

— We present a 3D UDA framework that combines style translation and self-
training, which can effectively improve MR segmentation accuracy.

— We generate diverse fake MR images to facilitate segmentation network train-
ing based on style and semantic disentanglement and reconstruction.

— We apply the strategies of pseudo-label filtering, iterative optimization, and
elastic registration to effectively improve the accuracy of pseudo-labels.

— We implement a two-stage framework that first localizes the region of interest
and then performs fine segmentation, demonstrating strong performance and
fast, low-resource inference on the FLARE 2024 validation set.

2 Method

We propose a cross-modality unsupervised adaptive abdominal organ segmenta-
tion method based on style translation and self-training, as shown in Fig 1. This
method consists of three main steps: (1) training an image-to-image style trans-
lation network. To enhance the ability of model to adapt to the MR modality
by simultaneously learning the style distributions of both CT and MR, we first
perform semantic and style disentanglement by training Generative Adversarial
Networks (GANs), followed by reorganizing the semantic features of CT with
the style features of multi-modality MR to achieve CT-to-MR style translation.
(2) Training the segmentation network using fake MR images and real CT im-
ages to generate pseudo-labels for the real MR images. We follow a self-training
strategy to generate pseudo-labels for real MR images using a segmentation net-
work based on fake MR trained with real CT. To increase the accuracy of these
pseudo-labels, we employ techniques such as pseudo-label filtering, iterative op-
timization, and elastic alignment. (3) Utilizing both labeled and pseudo-labeled
data to jointly train the segmentation network in the two-stage framework. In-
spired by the third-place solution from FLARE 2022 [7], we adopt a two-stage
framework in the third step, first based on a coarse segmentation model aiming
at obtaining the rough location of the target organ from the whole MR volume.
The fine segmentation model realizes the precise segmentation of the abdominal
organs based on the ROI cropping of the coarse segmentation results. The above
methods are described in detail in the following subsections.
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Fig. 1. Overview of our proposed cross-modality unsupervised domain adaptation ab-
dominal organ segmentation method based on style translation and self-training.

2.1 Preprocessing
For the style translation network, we use the following preprocessing procedure:

— CT and MR were spatially normalized to a [4,1,1] spacing, where the ratio
of the through-plane and in-plane resolution is around 4.

— All volumes are populated so that they have the same 512 x 512 pixel size
in the XY plane.

— Applying min-max normalization to rescale the intensity to the range [—1, 1].

— Dividing the 3D volumes into 2D slices.

For the segmentation network, we use the following preprocessing procedure:

— Image reorientation to the target direction.

— In the LLD-MMRI dataset [3], the C+Delay sequence with the best pseudo-
labeling effect was used as a baseline to apply elastic alignment to images of
other modalities of the same patient.

— For the Big SegNet, we resample images to uniform sizes [96, 256, 256].

— For the two-stage SegNet, We use small-scale images as the input to improve
efficiency. Coarse input: [64, 64, 64]; Fine input: [96, 192, 192].

— We applied a z-score normalization based on the mean and standard devia-
tion of the intensity values in the input volume.

2.2 Style Translation

To enable the model to learn both CT and MR style distributions for better
adaptation to the target domain, we train a style translation network based
on DARNet [16], as shown in Fig. 1(a). In our implementation, CT and multi-
modality MR images are input into the style translation network. Following the
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design of DARNet, the encoder decomposes each input image into content and
style representations, reconstructing the image from the content features. The
network is trained using pixel-level adversarial training to facilitate cross-domain
image-to-image translation, while also incorporating content-level adversarial
training to ensure effective content feature alignment with the shared content
encoder, thus preserving semantic information. More details can be found in [16].
After training, we extract content from each CT image and random sample styles
from MR dataset, allowing the CT dataset to reflect the style distribution of the
MR dataset. To evaluate the effect of image alignment, we conduct visualization
experiments on the CT-to-MR translation data across different modalities.

Figure 2 illustrates the conversion of CT images to MR images with various
modality styles. As shown, the generated Fake MR images exhibit style similar-
ities to the target MR modality styles, demonstrating both the plausibility and
diversity of the generated image styles. Moreover, the Fake MR images maintain
semantic structural consistency with the original CT images, and the internal
organ sizes are identical, indicating that the style translation network success-
fully preserves crucial semantic structure information. Consequently, this style
translation approach allows us to create a Fake MR dataset that corresponds
to the CT dataset, which can be used to support the training of subsequent
segmentation networks.

InPhase

DWI
| i

Source CT Target MR Fake MR Source CT Target MR Fake MR

Fig. 2. CT-to-MR style translation visualization.

2.3 Pseudo Labeling

Generation To fully leverage the unlabeled MR data, it is crucial to generate
accurate pseudo labels. We achieve this by using the Fake MR dataset and
Real CT dataset, produced via style translation, for the model training of Big
SegNet. The backbone network of Big SegNet is a segmentation network that
combines convolutional layers with the Swin Transformer-PHTrans [7], which
adopts a high-performance configuration with large model parameters and high
computational capacity. After that, we can generate pseudo-labels for the Real
MR dataset based on the trained Big SegNet.
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However, for some special MR sequences, e.g., DWI, T2WI, they are poorly
pseudo labeled, as shown in Figure 3. By examining the provided MR datasets,
we observed that the LLD-MMRI dataset [8] comprises images of various se-
quence taken from the same patient, whereas the AMOS dataset contains multi
sequences data from different patients. To leverage the unique characteristics of
the LLD-MMRI dataset, we use the C+Delay sequence, in which the pseudo
labeling has a high accuracy, as a benchmark for the registration of the images
of other sequences. This makes it possible to reuse the pseudo labeling of the
C+Delay sequence to other sequences. For the AMOS dataset, we not regis-
ter and directly generate pseudo labels for its data. This approach significantly
enhances the overall quality of pseudo labels in the LLD-MMRI dataset. The
details of the registration are described in the next subsection.

(a) DWI (b) T2WI (¢) C+Delay

Fig. 3. A comparison of Big SegNet pseudo label generation across different sequences
for the same patient. The first row showing the original images and the second row
displaying the images with the pseudo labels.

Elastic Registration To register the 8 sequences for each patient in the LLD-
MMRI dataset [8], we used the C+Delay sequence as a reference standard. We
registered the remaining 7 sequences to this reference to ensure spatial alignment
and achieve a uniform image size. The registration process was executed using
the elastic registration function from the ANTsPy Python package. As shown in
Figure 4, the registered InPhase sequence image aligns with the reference image
in terms of spatial dimensions, allowing it to successfully reuse the pseudo-labels
from the reference image.

It is important to note that some pseudo labels of the registered images and
C+Delay sequence do not achieve full spatial alignment. As shown in Figure 5(a),
the yellow box indicates the area of the image that should be the background,
while the corresponding pseudo-label still has a value.Therefore, we apply a
post-processing to the generated pseudo labels, setting the pixel values of these
erroneous pseudo-labels to background values, as depicted in Fig. 5(b).
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Fig. 4. Comparison images before and after registration. (a) Reference sequence
C+Delay; (b) Image of the InPhase sequence to be aligned; (¢) The image after regis-
tration; (d) The registered image and reused pseudo label (e) The reference image and
its corresponding pseudo label. (The orange dashed line is the reference line, itk-snap
visualizes the size of the image for reference only.)

(a) Error label (b) Postprocessed label

Fig. 5. (a) Without post-processing, the pseudo-labels incorrectly assign values to the
background regions. (b) After post-processing, the wrong labels are corrected.

Filtering To further improve the accuracy of pseudo labeling, we perform fil-
tering on all generated pseudo-labels to prevent those with significant errors
from being used in training. Leveraging the prior knowledge that organ volumes
should be roughly similar in different adults, we filter out pseudo labels with
organ volumes that are excessively large or small, as shown in Figure 6.

Specifically, we begin by calculating the average volume V,;,/ for each organ
category using the labeled CT dataset, where o = {1, ..., 13} represents the total
of 13 categories to be segmented. Next, we compute the average volume V7 for
each category based on the pseudo label. By comparing V7 with the reference

volumes V,,,, we can determine the reasonableness of the pseudo labels. The
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process can be calculated as follows,

13
U= ]V, 1 <Vy <V2,*hl (1)
o=1
where I(+) is the indicator function, and ! and h define the range of acceptable
pseudo label volumes. When U equals 1, it indicates that the physical volume
of the pseudo label for all abdominal organs in a case falls within the specified
range, allowing the pseudo-label to be used in subsequent training. Conversely,
the pseudo-label is discarded. In our experiment, [ was set to 0.2 and h to 1.8.

(a) Gallbladder Pseudo Label (b) Spleen Pseudo Label (c) Psuedo Label
Without Generation Generates Miss Generates Good

Fig. 6. The (a) and (b) pseudo labels were excluded by the filtering algorithm, while
the pseudo label (c) was retained. (a) The arrow indicates the gallbladder pseudo label,
which was incorrectly labeled as the stomach. (b) The arrow highlights a missing spleen
pseudo label. (c) Demonstrates a well-generated pseudo label.

Refine Pseudo Label In addition, we iteratively optimize the generated pseudo
labels to gradually enhance their quality. We first use the initially generated
pseudo labels for the training of Real MR dataset and Real CT dataset. With
the improved model resulting from this training, we then regenerate and filter
the pseudo-labels to realize the iteration of pseudo labels.

2.4 Two-Stage Segmentation

Segmentation Model Our segmentation model (SegNet) adopts the same
model structure as [7]. The model adopts a U-shaped encoder-decoder design,
which is mainly composed of convolution modules and parallel hybrid mod-
ules. Among them, the parallel hybrid module comprises Transformer and CNN,
which can model the hierarchical representation of local and global features.
The symmetric decoder corresponding to the encoder is also built based on pure
convolution and parallel hybrid modules. It fuses the semantic information of
the encoder through skip connections and addition operations. The structure is
simple and variable, and the number of Swin Transformer blocks and convolu-
tion blocks can be adjusted according to the medical image segmentation task.
Please refer to [7] and the experimental details section for more details.
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Training Inspired by the third-place solution of FLARE 2022 [7], we use a two-
stage segmentation framework to enhance computational efficiency. The back-
bone network of the two-stage model is consistent with Big SegNet, but it has
been designed with a reduced number of parameters. We introduced labeled CT
and pseudo labeled MR together into the two-stage segmentation framework for
training, as shown in Figure 7. Initially, a coarse segmentation model is trained,
which aims to obtain the coarse location of the target organ from the whole data
volume, i.e., to achieve the separation of foreground and background, and is a
simple binary classification problem. Subsequently, the data is clipped based on
the ROI obtained from the coarse segmentation, and input into Small SegNet for
precise abdominal organ segmentation. It is important to note that the coarse
and fine models do not share any network parameters.

Inference During the inference stage, we initially input the MR image into
the coarse segmentation model to extract the foreground. Next, we implement
test-time augmentation (TTA) along the anatomical axes (sagittal, coronal, and
axial). This involves flipping the test image along these axes and feeding both
the flipped and original test images into the fine segmentation model. We then
average the predictions from both images to improve overall performance.

i i h
: | i
: ' i
H | 1
Resize | [ Coame |_| H H Fine
' Small SegNet | ! Crop+| Small SegNet
' ! Resize !
i i i
i i i
i h
i i
. i

Labeled data Fine Segmentation
+Pseudolabeled data ~ — T m = =TT m e mmmm e e e oo e oo

Fig. 7. Two-stage segmentation framework.

2.5 Post-processing

Post-processing based on connected components is commonly used in medical
image segmentation. We eliminated false predictions in organ segmentation by
retaining only the connected component with the largest prediction for each
organ and removing all other components.

3 Experiments

3.1 Dataset and evaluation measures

The training dataset is curated from AMOS [5], LLD-MMRI [3], and past FLARE
Challenges [9,10]. The training set includes 2050 abdomen CT scans and over
4000 MRI scans. For the CT dataset, we used the provided CT pseudo-labels
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generated based on the FLARE 2022 winning algorithm [1]as training data. The
validation and testing sets include 110 MRI scans from AMOS and 300 MRI
scans of unknown source, respectively, which cover various MRI sequences, such
as T1, T2, DWI, and so on.

The evaluation metrics encompass two accuracy measures—Dice Similarity
Coefficient (DSC) and Normalized Surface Dice (NSD)—alongside two efficiency
measures—running time and area under the GPU memory-time curve. These
metrics collectively contribute to the ranking computation. Furthermore, the
running time and GPU memory consumption are considered within tolerances
of 15 seconds and 4 GB, respectively.

3.2 Implementation details

Data augmentation To alleviate the over-fitting of limited training data, we
employed online data argumentation, including random rotation, scaling, adding
white Gaussian noise, Gaussian blurring, adjusting rightness and contrast, sim-
ulation of low resolution, Gamma transformation, and elastic deformation.

Training procedure We use two different configurations of segmentation net-
works for pseudo-label generation and two-stage segmentation, respectively. To
achieve high accuracy pseudo-label generation, Big SegNet uses a high perfor-
mance configuration with large model parameters and high computational effort.
We follow the hyper-parameter settings of [7], where the base number of channel
C is 36 in Big SegNet, and the number of multi-head self-attentive heads used in
different encoder stages is [3,6,12,24]. However, Small SegNet was configured as
a lightweight architecture with faster training time and inference time, where the
base number of channels is 16 and the number of multi-head self-attentive heads
is [4,4,4,4]. The other model hyperparameter settings and the training scheme
for the two-stage segmentation are shown in Table 1.

Environments and requirements The development environments and re-
quirements are presented in Table 2.

4 Results and discussion

4.1 Quantitative results on validation set

Table 3 shows the final quantitative results on the public validation set. Our
method achieves a mean DSC of 79.42% and a NSD of 86.46% on the FLARE
2024 public validation dataset.

! https://github.com/sksq96 /pytorch-summary
2 https://github.com/facebookresearch /fvcore
3 https://github.com/lfwa/carbontracker
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Table 1. Training protocols for the Big SegNet and two-stage samll SegNet.

Model Big SegNet / Small SegNet(coarse) / Small SegNet(fine)
Network initialization "He" normal initialization

Batch size 1

Patch size 96%x256x256 / 64x64%x64 / 96x192x192
Total epochs 300

Optimizer AdamW

Initial learning rate (Ir) Se-4

Lr decay schedule Cosline Annealing LR

Training time 24 / 2 / 16 hours

Loss function Cross entropy + Dice

Number of model parameters 6.6M / 4.2M / 4.2M '

Number of flops 1037.77 / 18.60 / 251.19 G

COszeq 10.8251 / 0.0973 / 1.8783 Kg °

Table 2. Development environments and requirements.

System Ubuntu 20.04.6 LTS

CPU Intel(R) Xeon(R) Platinum 8153 CPU @ 2.00GHz
RAM 192GB

GPU (number and type) NVIDIA Tesla V100 32G

CUDA version 11.3

Programming language Python 3.7.13
Deep learning framework torch 1.12, torchvision 0.13.0
Specific dependencies antspy, einops,fastremap,etc.

To illustrate the rationality of the design of the modules, we conducted sev-
eral experiments. Initially, we trained Big SegNet using labeled CT data to
establish baseline 1, which achieved a DSC of only 39.02% on the MR vali-
dation set, highlighting difficulty of the task. We then included the generated
Fake MR dataset to create baseline 2, which improved the DSC to 73.83%.
This result demonstrates the effectiveness of style translation, as it significantly
enhances cross-domain adaptation by enabling the model to learn the MR style
distribution. Next, by using Real MR and Real CT data with iteratively opti-
mized pseudo labels, we developed baseline 3, further increasing performance
to 78.41%. This improvement shows that our strategies for pseudo label gener-
ation, filtering, and optimization effectively enhance label quality, aiding model
training. Additionally, we experimented with Small SegNet, which has fewer pa-
rameters, to create baseline 4. This approach sped up inference but slightly
reduced performance to a DSC of 77.63%. Finally, we verified the effectiveness
of the two-stage segmentation framework by training Samll SegNet after the
ROI of the abdominal organs, obtaining a baseline 5 with a DSC of 79.19%
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Table 3. Quantitative evaluation results.

Target Validation
DSC(%) NSD(%)

Liver 94.99 £+ 2.00 95.48 + 4.23
Right kidney 95.06 + 2.28 94.08 + 4.30
Spleen 94.95 4+ 3.96 96.17 + 5.95
Pancreas 77.90 £ 10.55 90.48 £ 9.37
Aorta 90.28 + 8.82 94.07 + 9.57
Inferior vena cava 84.32 + 7.88 87.00 + 9.41
Right adrenal gland 58.45 £ 14.18 75.97 £ 16.48
Left adrenal gland 61.40 £ 17.77 75.13 £ 21.70
Gallbladder 73.53 £+ 25.50 67.42 + 26.23
Esophagus 65.66 = 12.66 83.16 £ 15.56
Stomach 79.62 £+ 15.61 83.48 + 17.14
Duodenum 61.06 + 12.85 85.7 £ 11.55
Left kidney 95.18 £+ 2.51 95.82 + 3.76
Average 79.42 £+ 13.72 86.46 + 8.84

and faster inference. Incorporating TTA during the inference stage, we further
boosted the final Ours DSC to 79.42%.

Table 4. Ablation Study On The Public Validation

Baseline ID Model Training Data Using Two-Stage |TTA |DSC(%)
CT(real) MR (real) MR(fake) |Pseudo Label

baseline 1 | Big SegNet v 39.02

baseline 2 | Big SegNet v v 73.83

baseline 3 | Big SegNet v v v 78.41

baseline 4 |Small SegNet v v v 77.63

baseline 5 |Small SegNet v v v v 79.19
Ours Small SegNet v v v v v 79.42

In addition, we verify the effectiveness of iterative optimization of pseudo
labels, as shown in Table 5. The improvement of labeled iterative optimization
gradually decreases, while the iterative optimization is time-consuming. There-
fore, we finally use pseudo label V2 for training.

4.2 Qualitative results on validation set

We visualize the segmentation results of the validation set. According to the
organizer’s request, we show better examples in rows 1-2 and worse examples in
rows 3-4. Representative samples in rows 1-2 of Figure 8(f) demonstrate our ap-
proach’s effectiveness in capturing organ details. Thanks to the successful style
translation and pseudo-labeling strategy, our method produces segmentation re-
sults closest to the ground truth compared to other baselines. As for the poorly
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Table 5. The Results of Iterative Optimization Psuedo Label. Evaluation Metric:
DSC(%)

Model Psuedo Label V1|Psuedo Label V2
Big SegNet 78.35 78.41
Small SetNet 77.36 77.63

segmented lines 3-4, we analyze that it is due to the unclear boundaries of the
MR image, while the example shown in line 4 is an image where the complete
abdominal region is not intercepted, and this particular case is also one of the
main reasons for the performance degradation. Additionally, the segmentation
results improve progressively from left to right across each column. For instance,
in the second row, the model initially detects only the entire left liver region
(red). With the inclusion of pseudo-MR data and the pseudo-labeling strategy,
the segmentation in columns (d) and (e) gradually improves, capturing addi-
tional organs like the pancreas (yellow), spleen (dark blue), and left kidney (dark
green). However, the model was unable to segment some detailed organs, such
as the gallbladder (brown), due to not applying the clipping ROI region in the
two-stage segmentation. These visualization results indicate that our baseline
can progressively enhance segmentation performance, and both the model and
the strategy employed significantly contribute to this improvement.

Case #amos_0571 (slice #35) Dice:0.3562 Dice:0.8399 Dice:0.8456 Dice:0.8556

Dice:0.7843 Dice:0.8561

Dice:0.3675 Dice:0.6062 Dice:0.6244

(a) Image (b) Ground Truth (c) Baseline 1 (d) Baseline 2 (e) Baseline 3 (f) Ours

Fig. 8. Visualization of segmentation results of abdominal organs.
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4.3 Segmentation efficiency results on validation set

The average running time in the validation set is 2.81 s per case in the inference
phase, the average used GPU memory is 1919 MB and the max used GPU
memory is 4135 MB. The area under the GPU memory-time curve is 584060.
Table 6 lists the segmentation efficiency of some typical cases in running time
including docker initialization time.

Table 6. Quantitative evaluation of segmentation efficiency in terms of the running
time and GPU memory consumption. Total GPU denotes the area under the GPU
Memory-Time curve. Evaluation GPU platform: NVIDIA Tesla V100 (32G).

Case ID Image Size  Running Time (s) Max GPU (MB) Total GPU (MB)

amos_ 0540 (192, 192, 100) 10.61 2859.12 10260.33
amos_ 7324 (256, 256, 80) 10.69 3087.12 10409.21
amos_ 0507 (320, 290, 72) 11.08 3009.12 10867.00
amos_ 7236 (400, 400, 115) 11.42 3009.12 11468.00
amos_ 7799 (432, 432, 40) 11.43 3087.12 11344.03
amos_ 0557 (512, 152, 512) 14.10 2787.12 15283.26
amos_ 0546 (576, 468, 72) 12.33 3009.12 12808.84
amos_ 8082 (1024, 1024, 82) 18.03 3009.12 20945.54

4.4 Results on final testing set

We submitted the docker of our solution, which was evaluated by the challenge
official on the test set, and the results are shown in tables 7 .

Table 7. The DSC, NSD, Running Time, and the area under the GPU memory-time
curve on the test set from the official evaluation.

DSC mean(%) DSC median(%) NSD mean(%)  NSD median(%)
69.1 + 16.6 73.6 71.3 + 19.8 76.9
Time mean(s) Time median(s) GPU mean(MB) GPU median(MB)

8.6 + 0.4 8.5 477009.5 £ 26369.7 468786.2

4.5 Limitation and future work

The proposed method has several limitations. These limitations include: 1) In
terms of model backbone, some of the latest research advancements should try,
such as SDSeg [6]. 2) Since CT to MR style translation employs a 2D network,
distortions may occur when applied to 3D data. 3) The pseudo label selection
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process did not undergo extensive exploration, and the current method for filter-
ing pseudo labels is rather rudimentary. 4) We plan to use TensorRT or TVM [3]
to further accelerate inference and reduce GPU memory. In future work, efforts
will be made to address these limitations to enhance model performance.

5 Conclusion

In this work, we developed a 3D unsupervised domain adaptation framework
that integrates style translation and self-training to enhance MR segmentation
accuracy. Using style translation, we generated a variety of fake MR target im-
ages to aid in training the segmentation network. We then incorporated a self-
training strategy, alongside techniques such as pseudo-label filtering, iterative
optimization, and elastic registration, to improve pseudo-label accuracy. Lastly,
we implemented a two-stage framework for localizing regions of interest and
conducting fine segmentation. This approach achieved strong segmentation per-
formance and efficient inference on the FLARE 2024 validation set. In the future,
we plan to optimize our style translation and self-training strategies to further
enhance cross-domain segmentation performance and ensure fast, low-resource
inference.

Acknowledgements Our implementation for participation in the FLARE 2024
challenge has neither used any pre-trained models nor additional datasets other
than those provided by the organizers. The proposed solution is fully automatic
without any manual intervention. We thank all data owners for making the CT
scans publicly available and CodaLab [15] for hosting the challenge platform.

Disclosure of Interests

The authors declare no competing interests.

References

1. Cai, J., Zhang, Z., Cui, L., Zheng, Y., Yang, L.: Towards cross-modal organ trans-
lation and segmentation: A cycle-and shape-consistent generative adversarial net-
work. Medical image analysis 52, 174-184 (2019) 2

2. Chartsias, A., Joyce, T., Dharmakumar, R., Tsaftaris, S.A.: Adversarial image syn-
thesis for unpaired multi-modal cardiac data. In: Simulation and Synthesis in Med-
ical Imaging: Second International Workshop, SASHIMI 2017, Held in Conjunction
with MICCAT 2017, Québec City, QC, Canada, September 10, 2017, Proceedings
2. pp. 3-13. Springer (2017) 2

3. Chen, T., Moreau, T., Jiang, Z., Zheng, L., Yan, E., Shen, H., Cowan, M., Wang, L.,
Hu, Y., Ceze, L., et al.: {TVM}: An automated {End-to-End} optimizing compiler
for deep learning. In: 13th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 18). pp. 578-594 (2018) 15



16

10.

11.

12.

13.

14.

15.

16.

17.

Jiaxi Li et al.

Huang, Z., Wang, H., Ye, J., Niu, J., Tu, C., Yang, Y., Du, S., Deng, Z., Gu, L.,
He, J.: Revisiting nnu-net for iterative pseudo labeling and efficient sliding win-
dow inference. In: MICCAI Challenge on Fast and Low-Resource Semi-supervised
Abdominal Organ Segmentation. pp. 178-189. Springer (2022) 2, 10

Ji, Y., Bai, H., GE, C., Yang, J., Zhu, Y., Zhang, R., Li, Z., Zhanng, L., Ma,
W., Wan, X., Luo, P.: Amos: A large-scale abdominal multi-organ benchmark for
versatile medical image segmentation. Advances in Neural Information Processing
Systems 35, 36722-36732 (2022) 2, 9

. Lin, T., Chen, Z., Yan, Z., Yu, W., Zheng, F.: Stable diffusion segmentation for

biomedical images with single-step reverse process (2024), https://arxiv.org/
abs/2406.18361 14

Liu, W., Xu, W., Yan, S., Wang, L., Li, H., Yang, H.: Combining self-training
and hybrid architecture for semi-supervised abdominal organ segmentation. In:
MICCAI challenge on fast and low-resource semi-supervised abdominal organ seg-
mentation, pp. 281-292. Springer (2022) 3, 5, 8, 9, 10, 18

Lou, M., Ying, H., Liu, X., Zhou, H.Y., Zhang, Y., Yu, Y.: Sdr-former: A siamese
dual-resolution transformer for liver lesion classification using 3d multi-phase imag-
ing. arXiv preprint arXiv:2402.17246 (2024) 4, 6, 9

Ma, J., Zhang, Y., Gu, S., Ge, C., Ma, S., Young, A., Zhu, C., Meng, K., Yang, X.,
Huang, Z., Zhang, F., Liu, W., Pan, Y., Huang, S., Wang, J., Sun, M., Xu, W., Jia,
D., Choi, J.W., Alves, N., de Wilde, B., Koehler, G., Wu, Y., Wiesenfarth, M., Zhu,
Q., Dong, G., He, J., the FLARE Challenge Consortium, Wang, B.: Unleashing
the strengths of unlabeled data in pan-cancer abdominal organ quantification: the
flare22 challenge. Lancet Digital Health (2024) 9

Ma, J., Zhang, Y., Gu, S., Ge, C., Wang, E., Zhou, Q., Huang, Z., Lyu, P., He, J.,
Wang, B.: Automatic organ and pan-cancer segmentation in abdomen ct: the flare
2023 challenge. arXiv preprint arXiv:2408.12534 (2024) 9

Shin, H., Kim, H., Kim, S., Jun, Y., Eo, T., Hwang, D.: Sdc-uda: volumetric
unsupervised domain adaptation framework for slice-direction continuous cross-
modality medical image segmentation. In: Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition. pp. 7412-7421 (2023) 2
Tomar, D., Lortkipanidze, M., Vray, G., Bozorgtabar, B., Thiran, J.P.: Self-
attentive spatial adaptive normalization for cross-modality domain adaptation.
IEEE transactions on medical imaging 40(10), 2926-2938 (2021) 2

Wu, Y., Wang, E., Shao, Z.: Fast abdomen organ and tumor segmentation with
nn-unet. In: MICCAI Challenge on Fast and Low-Resource Semi-supervised Ab-
dominal Organ Segmentation, pp. 1-14. Springer (2023) 2

Xie, X., Niu, J., Liu, X., Chen, Z., Tang, S., Yu, S.: A survey on incorporating
domain knowledge into deep learning for medical image analysis. Medical Image
Analysis 69, 101985 (2021) 2

Xu, Z., Escalera, S., Pavao, A., Richard, M., Tu, W.W., Yao, Q., Zhao, H., Guyon,
I.: Codabench: Flexible, easy-to-use, and reproducible meta-benchmark platform.
Patterns 3(7), 100543 (2022) 15

Yao, K., Su, Z., Huang, K., Yang, X., Sun, J., Hussain, A., Coenen, F.: A novel
3d unsupervised domain adaptation framework for cross-modality medical image
segmentation. IEEE Journal of Biomedical and Health Informatics 26(10), 4976—
4986 (2022) 4, 5

Zhao, Z., Zhou, F., Xu, K., Zeng, Z., Guan, C., Zhou, S.K.: Le-uda: Label-efficient
unsupervised domain adaptation for medical image segmentation. IEEE Transac-
tions on Medical Imaging 42(3), 633-646 (2022) 2


https://arxiv.org/abs/2406.18361
https://arxiv.org/abs/2406.18361

Combining Style Translation and Self-Training for Segmentation 17

18. Zhu, Y., Zhang, Z., Wu, C., Zhang, Z., He, T., Zhang, H., Manmatha, R., Li,
M., Smola, A.: Improving semantic segmentation via efficient self-training. IEEE
transactions on pattern analysis and machine intelligence 46(3), 1589-1602 (2021)
3



18 Jiaxi Li et al.

6 Response to reviewers

Thank you for allowing us to review and resubmit our manuscript, with the
opportunity to address the comments of the reviewers. We are uploading (a) our
point-by-point response to the comments (below) (response to reviewers) and
(b) a clean updated manuscript with updated points.

Reviewer#1, Concern#1: In Table 1, the values in the "Number of model
parameters" cell for Small SegNet (coarse) and (fine) are missing.

Author response: We have added the missing model parameters in Table 1.

Reviewer#1, Concern##2: In the section "2.3 Pseudo Labelling", "Labelling"
is used, while the more common and correct term in this context is "Labeling".

Author response: We have corrected the misspelling of “labeling”.

Reviewer#1, Concern#3: Please rephrase the caption of Fig. 5 and make it
clear.

Author response: We have changed the title of Figure 5 to: (a) Without post-
processing, the pseudo-labels incorrectly assign values to the background regions.
(b) After post-processing, the wrong labels are corrected.

Reviewer#2, Concern#1: It would be better if the code was released.

Author response: We have made the code link public in the abstract section:
https://github.com/TJUQiangChen/FLARE24-task3

Reviewer#3, Concern+#1: However, there are some minor weaknesses in the
paper. There are invalid superscripts in Table 1.

Author response: We have modified the footnote in Table 1 so that it can be
linked normally.

Reviewer#4, Concern#1: Registration plays a crucial role in generating
pseudo labels; what are the quantitative impacts of this process?

Author response: Registration plays an important role in the method. After
experimental verification, we used unregistered data (directly using the pseudo
labels generated by the model) to train Big SegNet and obtained an average
DSC of 74.04%, while using the registered data for training, we obtained an
average DSC of 78.41%. This proves that through registration between different
modalities, pseudo labels generated in a better modality can be used on data in a
modality with poor pseudo labels, making full use of multi-modal data training,
thereby improving the segmentation results.

Reviewer#4, Concern#2: The architecture of the large and small SegNet
models requires a more detailed description.

Author response: The structure of SegNet is consistent with the reference
paper [7]. We provide a more detailed structural description of large and small
SegNet models in the Two-Stage Segmentation section.


https://github.com/TJUQiangChen/FLARE24-task3

Combining Style Translation and Self-Training for Segmentation 19

Reviewer#4, Concern#3: What specific settings were used for the MR dataset?

Author response: We do not have any special settings for the MR dataset.
We use multiple preprocessing steps, which are described in Section 2.1 of the

paper.
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Table 8. Checklist Table. Please fill out this checklist table in the answer column.

Requirements Answer
A meaningful title Yes
The number of authors (<6) 5
Author affiliations and ORCID Yes
Corresponding author email is presented Yes
Validation scores are presented in the abstract Yes
Introduction includes at least three parts: Yes
background, related work, and motivation

A pipeline/network figure is provided 1
Pre-processing 4
Strategies to use the partial label 4-5
Strategies to use the unlabeled images. 5-9
Strategies to improve model inference 9
Post-processing 9
The dataset and evaluation metric section are presented 9-10
Environment setting table is provided 2
Training protocol table is provided 1
Ablation study 11-12
Efficiency evaluation results are provided 11
Visualized segmentation example is provided 8
Limitation and future work are presented Yes

Reference format is consistent. Yes




