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Abstract
Deep learning-based Natural Language Pro-001
cessing (NLP) models are vulnerable to adver-002
sarial attacks, where small perturbations can003
cause a model to misclassify. Adversarial Train-004
ing (AT) is often used to increase model ro-005
bustness. Despite the challenging nature of006
textual inputs, numerous AT approaches have007
emerged for NLP models. However, we have008
discovered an intriguing phenomenon: delib-009
erately miscalibrating models such that they010
are extremely overconfident or underconfident011
in their predictions, disrupts adversarial attack012
search methods, giving rise to an illusion of013
robustness (IOR). This extreme miscalibration014
can also arise implicitly as part of existing AT015
schemes. However, we demonstrate that an016
adversary aware of this miscalibration can per-017
form temperature calibration to modify the pre-018
dicted model logits, allowing the adversarial019
attack search method to find adversarial exam-020
ples whereby obviating IOR. Consequently, we021
urge adversarial robustness researchers to in-022
corporate adversarial temperature scaling ap-023
proaches into their evaluations to mitigate IOR.024

1 Introduction025

Deep learning Transformer-based Natural Lan-026

guage Processing (NLP) models are able to per-027

form well in a range of tasks (Treviso et al., 2023).028

However, these NLP models are susceptible to ad-029

versarial attacks, where clean input text samples030

perturbed slightly (accidentally or maliciously by031

an adversary) can lead to a NLP model misclassi-032

fying the perturbed input (Huq and Pervin, 2020).033

However, the emergence of the Adversarial Train-034

ing (AT) paradigm (Bai et al., 2021) has shown035

some success in training models to be more ro-036

bust to these small adversarial perturbations. Here,037

the traditional training process is adapted to mini-038

mize the empirical risk associated with a “robust-039

ness loss” as opposed to the risk associated with040

the standard loss for clean input samples. The ro-041

bustness loss is the standard loss applied to the042

Figure 1: Accuracy on adversarial examples gener-
ated with an out-of-the-box adversarial attack for mod-
els with different average predicted class confidence,
Ep(x)[Pθ̂(ĉ|x)]. Extremely overconfident and under-
confident models demonstrate increased robustness.

worst-case (loss maximizing) adversarial sample 043

for each training sample. In NLP, due to the dis- 044

crete nature of the text, this adversarial training 045

min-max formulation is particularly challenging 046

as the inner maximization is computationally ex- 047

pensive (Yoo and Qi, 2021). Nevertheless, a vari- 048

ety of approaches have been proposed in literature, 049

ranging from augmentation of the training set with 050

adversarial examples for a specific model, to so- 051

phisticated token-embedding space optimizations 052

for the inner maximization step (Goyal et al., 2023). 053

However, this work demonstrates that simple ap- 054

proaches, without the need for the computationally 055

expensive min-max optimisation of AT, can be used 056

to design models that appear far less susceptible 057

to out-of-the-box adversarial attacks. Specifically, 058

we show that by intentionally creating highly mis- 059

calibrated models with an extreme predicted class 060

confidence (Guo et al., 2017), it is difficult for out- 061

of-the-box adversarial attacks to find adversarial 062

examples, i.e., disrupting an adversarial attack’s 063

search process, giving an initial illusion of robust- 064
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ness (IOR) to adversarial attacks (Figure 1). The065

difference between a model with IOR and a model066

that is truly robust is that the margin (distance to de-067

cision boundary (Xu et al., 2023; Raina and Gales,068

2023)) is large for a truly robust model, whilst for069

a model with IOR the margin is as small as for070

a non-robust model, but the attack search process071

is simply unable to find an effective adversarial072

perturbation direction.073

Nevertheless, we demonstrate that an adversary074

aware of a model’s miscalibration in the form075

of extreme predicted class confidences, can also076

largely mitigate the model’s IOR at inference-time.077

For example, test-time temperature calibration ap-078

proaches can ensure the model predicts more sensi-079

ble class probabilities which then enables standard080

adversarial attack algorithms to operate and find081

effective adversarial examples. We further show082

that an adversary can use a more sophisticated and083

better tailored temperature scaling optimization ap-084

proach to better pierce a model’s IOR.085

In this work, we emphasize that it is easy for086

model developers to (unknowingly) develop tech-087

niques that trigger high model miscalibration that088

at first impressions suggests increased model ro-089

bustness. As an example, we show that incorporat-090

ing the optimal Danskin’s Descent Direction (DDi)091

update direction with existing AT algorithms (La-092

torre et al., 2023) results in highly overconfident093

models and as a result the models appear to be094

robust to adversarial attacks. In reality, however,095

this is an illusion, as the high model confidence096

simply interferes with an attack algorithm’s search097

method and does not actually make a model robust098

to adversarial examples. We show how an adver-099

sary can apply temperature scaling at inference100

time to remove the disruption to the adversarial101

attacks search methods. In light of our findings,102

we urge the adversarial robustness community to103

adopt optimized temperature scaling approaches104

in all adversarial robustness evaluations to ensure105

they accurately reflect a proposed defense’s ability106

to induce robustness.107

2 Background108

2.1 Adversarial Attacks109

An untargeted adversarial attack is able to fool a110

classification system, F() with trained parameters111

θ̂, by perturbing an input sample, x to generate112

an adversarial example x̃ to cause a change in the113

predicted class, 114

F(x; θ̂) ̸= F(x̃; θ̂). (1) 115

Traditional adversarial attack definitions (Szegedy 116

et al., 2014) require the perturbation to be imper- 117

ceptible as per human perception. In NLP it can be 118

challenging to measure imperceptibility. Following 119

Morris et al. (2020) and Raina and Gales (2023), 120

we can separate modern NLP imperceptibility con- 121

straints into two categories: 1) pre-transformation 122

constraints, which limit the changes that can be 123

made to a clean sample x, such that an adver- 124

sarial example is limited to a specific set of se- 125

quences x̃ ∈ A(x); and 2) distance-based con- 126

straints, which aim to mathematically limit the dis- 127

tance between the original, clean sample and the 128

adversarial example using a proxy distance mea- 129

sure G(x, x̃) ≤ ϵ. 130

A plethora of adversarial attack approaches have 131

been proposed for efficiently discovering adversar- 132

ial examples for NLP models (Alzantot et al., 2018; 133

Garg and Ramakrishnan, 2020; Li et al., 2020; 134

Gao et al., 2018; Wang et al., 2019; Ren et al., 135

2019; Jin et al., 2019; Li et al., 2018; Tan and Joty, 136

2021; Tan et al., 2020). Many of the popular at- 137

tack approaches are implemented in the TextAttack 138

library (Morris et al., 2020). These adversarial 139

attack approaches can be classed as either white- 140

box attacks, where the adversary has full access 141

to the model parameters (and gradients) or black- 142

box attacks, where the adversary can only access 143

input-output pairs from the model (Tabassi et al., 144

2019). 145

2.2 Traditional Adversarial Training 146

Standard supervised training methods seek to find 147

model parameters, θ̂ that minimises the empirical 148

risk (for a dataset of x ∼ p(x)), characterised by a 149

loss function, 150

θ̂ = argmin
θ

E
x∼p(x)

[L(x, θ)]. (2) 151

Adversarial Training (AT) (Goodfellow et al., 152

2015) adapts the training scheme to minimise the 153

empirical risk associated with the worst-case ad- 154

versarial example, x̃, such that we are minimising 155

a robust loss 156

θ̂ = argmin
θ

E
x∼p(x)

 max
x̃:

G(x,x̃,)≤ϵ, x̃∈A

L(x̃, θ)

 .

(3) 157

2



It is too computationally expensive to perform the158

inner maximization step to find textual adversar-159

ial examples in each step of training. A group160

of AT methods speed-up this optimization step161

by finding adversarial examples in the token em-162

bedding space, which allows for faster gradient-163

based approaches: PGD-K (Madry et al., 2018),164

FreeLB (Zhu et al., 2020), TA-VAT (Li and Qiu,165

2020), InfoBERT (Wang et al., 2020). However,166

limited success of these approaches has been at-167

tributed to perturbations in the embedding space168

being unrepresentative of real textual adversarial169

attacks. Hence, AT methods such as Adversar-170

ial Sparse Convex Combination (ASCC) (Dong171

et al., 2021) and Dirichlet Neighborhood Ensemble172

(DNE) (Zhou et al., 2020) identify a more sensible173

embedding perturbation space, which they define174

as the convex hull of word synonyms. Nevertheless,175

today the simplest and most popular AT approach176

in NLP is to simply to augment (once) the training177

set with textual adversarial examples x̃ for each178

clean sample x using standard NLP attack mecha-179

nisms on a model trained in the standard manner180

(Equation 2).181

2.3 Model Calibration182

Modern deep learning models are often miscali-183

brated, where the model’s confidence in the pre-184

dicted class does not reflect the ground truth cor-185

rectness likelihood (Guo et al., 2017). Intuitively,186

for 100 model predictions with a model confidence187

of 90%, we should expect 90% of these predic-188

tions to be correct. More formally, a model with189

a predicted class confidence Pθ̂(ĉ|x), is defined as190

perfectly calibrated when191

P
(
ĉ = c∗|Pθ̂(ĉ|x) = p

)
= p, p ∈ [0, 1], (4)192

where ĉ = F(x; θ̂) is the predicted class and the193

true (label) class is c∗.194

The extent of a model’s miscalibration can be vi-195

sualized on a reliability diagram (Degroot and Fien-196

berg, 1983; Niculescu-Mizil and Caruana, 2005),197

displaying the sample accuracy as a function of198

model confidence. Any deviation from an identity199

function indicates miscalibration. Typical single-200

value summaries for the calibration error are given201

by the Expected Calibration Error (ECE) and the202

Maximum Calibration Error (MCE) (Naeini et al.,203

2015).204

3 Extreme Predicted Class Confidence 205

Traditional AT approaches conform to the min- 206

max formulation of Equation 3. Yet, we argue 207

that this computationally expensive approach is 208

not necessary for robustness and instead one can 209

maintain the simpler base training objective of 210

Equation 2 in a manner that can disrupt out-of- 211

the-box NLP adversarial attacks (Section 2.1) by 212

intentionally or accidentally causing a high level 213

of model miscalibration. This miscalibration can 214

induce extreme confidence predictions, such that 215

the model’s predicted class confidence Pθ̂(ĉ|x) is 216

either very high (overconfident) or very low (under- 217

confident). Figure 1 (using a standard NLP model, 218

test dataset and adversarial attack described in Sec- 219

tion 5) demonstrates that highly miscalibrated mod- 220

els with extreme confidence values in the predicted 221

class (around 1.0 for overconfident models or 1/C, 222

with C as the number of classes for underconfident 223

models) are significantly more robust to out-of-the- 224

box adversarial attacks. 225

The increased robustness of extremely miscali- 226

brated models can perhaps be explained. For both 227

underconfident and overconfident models, the pre- 228

dicted class confidence has very little variance for 229

different input sequences, x, 230

Ep(x)[Pθ̂(ĉ|x)− Ep(x)[Pθ̂(ĉ|x)]]
2 < ζ, (5) 231

where ζ is some small variance. The narrow con- 232

fidence distribution makes it challenging for an 233

adversary to identify an appropriate search direc- 234

tion for adversarial examples. To illustrate this, 235

consider a miscalibrated model with extremely 236

high confidence in the predicted class probabil- 237

ity, Pθ̂(ĉ|x) ≈ 1.0, then for most search directions 238

d that are not in an adversarial direction d ̸= d̃ 239

(where x̃ = x+ d̃) the model has very little sensi- 240

tivity,1 i.e., 241

dT∇xPθ̂(ĉ|x) ≈ 0. (6) 242

As a consequence of this little sensitivity, any white- 243

box adversarial attack approach looking to exploit 244

gradients or even a blackbox attack approach mea- 245

suring the sensitivity of the predicted probability, 246

has a small confidence range to observe, meaning 247

that the impact of any proposed perturbation gives 248

a very noisy signal to its actual effect on the output. 249

1Note that these strict mathematical operations are not
defined for the input text space and are simply representative
of equivalent discrete textual space perturbations.
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As a result, the adversarial attack search process250

will converge extremely slowly or fail to find the251

desired adversarial perturbation direction d̃.252

This high level of miscalibration to disrupt the253

attack search process can be achieved through an254

explicit process (Section 3.1) or may be implic-255

itly induced as a component of an AT approach256

(Section 3.2).257

3.1 Explicit: Developer Temperature Scaling258

Let θ̂ be a model trained using the standard (base)259

training objective, as in Equation 2. For this260

model with predicted logits, l1, . . . , lC for C out-261

put classes, the probability of a specific class is262

typically estimated by the Softmax function,263

Pθ̂(c|x) =
exp (lc)∑
i exp (li)

. (7)264

However, a model developer can intentionally mis-265

calibrate the model and increase the model confi-266

dence at inference time by using a design tempera-267

ture, T = Td, to scale the predicted logits,268

Pθ̂(c|x;T ) =
exp (lc/T )∑
i exp (li/T )

. (8)269

A design choice of Td ≪ 1.0 at inference concen-270

trates the probability mass in the largest logit class271

to create an overconfident model, whilst conversely272

Td ≫ 1.0 creates an underconfident model. Hence,273

explicitly setting a design temperature T (d) at infer-274

ence time can be used to serve highly miscalibrated275

models, which can disrupt an adversary’s attack276

search process as described in Equation 6, whilst277

maintaining the simplicity of the standard training278

objective (Equation 2).279

3.2 Implicit Overconfidence: DDi AT280

As opposed to directly designing the inference pro-281

cess to serve a highly miscalibrated model as in Sec-282

tion 3.1, it is possible that implementation strate-283

gies and algorithmic features in specific Adver-284

sarial Training (AT) procedures (Equation 3) can285

lead to inherently overconfident models. This in-286

herent overconfidence can be demonstrated with287

the incorporation of the Danskin Descent Direction288

(DDi; Latorre et al., 2023) into an AT approach.289

With experiments in the computer-vision do-290

main, Latorre et al. (2023) adapt the standard AT291

paradigm of Equation 3 to identify optimal gradient292

update directions for increased model robustness.293

In Appendix A we detail how the DDi algorithm294

can be used to compute gradients while adversari- 295

ally training NLP classifiers. It is observed (Table 296

1) that the DDi gradients applied in AT for NLP 297

classifiers induces highly overconfident models, 298

without compromising on clean accuracy, such that 299

the a model undergone DDi-AT almost always pre- 300

dicts near 100% confidence in its predicted class, 301

Pθ̂(c|x) ≈ 1.0. Our ablations (Appendix B) reveal 302

that one core component of the DDi algorithm, gra- 303

dient normalization (can be noted in Equation 12), 304

is responsible for the induction of inherent model 305

overconfidence. On the whole, the example of DDi- 306

AT demonstrates how there can exist features of 307

AT approaches that under the hood can implicitly 308

induce extreme model miscalibration, e.g., in the 309

form of overconfidence. As discussed in Equa- 310

tion 6, this miscalibration can make these systems 311

appear to be robust to out-of-the-box adversarial 312

attacks by disrupting the attack search process for 313

adversarial examples (Equation 6). 314

4 Piercing the Illusion 315

Section 3 demonstrates how intentional or acciden- 316

tal extreme miscalibration of a model can create 317

extreme confidence distributions that disrupt out- 318

of-the-box adversarial attack search methods. This 319

section offers simple approaches for an adversary 320

to mitigate the risk of these extreme model confi- 321

dences to remove the disruption of the attack search 322

methods and highlight that the model robustness 323

to out-of-the-box is only an illusion of robustness 324

(IOR). 325

The following approaches require an adversary 326

to modify aspects of the output of the model to 327

mitigate the disruption to an attack search pro- 328

cess. Note that these modifications are only used 329

by the adversary to create/find adversarial exam- 330

ples, which can then be applied to the original (un- 331

modified) model served by the model developer. 332

4.1 Adversary Temperature Calibration 333

Highly miscalibrated models, such as the design of 334

overconfident models in Section 3, interfere with 335

adversarial attacks from finding meaningful search 336

directions due to the little sensitivity in the output 337

predicted probabilities. An adversary aims to mit- 338

igate this disruption to the attack search process. 339

The simplest solution for an adversary is to attempt 340

to calibrate the model so that the confidences are in 341

a sensible range and can be exploited by adversarial 342

attacks. 343
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A strong indicator of model miscalibration (Sec-344

tion 2.3) can be given by the Negative Log Likeli-345

hood (NLL; Hastie et al., 2017). Thus, assuming346

an adversary has access to the output model log-347

its l1, . . . , lC and a labelled validation set of data348

{xi, c
∗
i }i, test-time temperature calibration (Guo349

et al., 2017) can be applied.2 Here the adversary350

optimizes an adversarial temperature, Ta to min-351

imize the Negative Log Likelihood (NLL) of the352

validation set samples,353

Ta = argmin
T

∑
i

− logPθ̂(c
∗
i |xi;T ), (9)354

where Pθ̂(c
∗|x;T ) is the confidence of the true355

class after temperature scaling as in Equation 8.356

Due to the continuous nature of the transformation357

and the need to optimize a single parameter, Ta,358

in this work we use the standard gradient descent359

optimization.3360

Other than temperature optimization, an ad-361

versary can attempt other post-training model362

calibration approaches such as Histogram Bin-363

ning (Zadrozny and Elkan, 2001), isotonic regres-364

sion (Zadrozny and Elkan, 2002) and multi-class365

versions of Platt scaling (Niculescu-Mizil and Caru-366

ana, 2005; Platt and Karampatziakis, 2007). How-367

ever, temperature calibration is found to be the most368

practical and effective for an adversary seeking to369

mitigate a model’s IOR. A more detailed discussion370

is presented in Appendix D.5.371

4.2 Adversary Temperature Optimization372

Section 4.1 outlines a temperature calibration ap-373

proach an adversary can use to mitigate the disrup-374

tion to out-of-the-box adversarial attack methods.375

However, this approach has two shortcomings:376

1. The adversarial temperature, Ta is not directly377

tuned to minimize adversarial robustness, as378

it only considers the likelihood of clean exam-379

ples in a validation set.380

2. Learning the adversarial temperature, Ta to381

minimize the NLL (Equation 9) uses a gra-382

dient descent based optimization algorithm383

where the stability of the algorithm is sensitive384

to hyperparameters and does not guarantee an385

optimal solution.386

2Note that the logits received by an adversary may already
have been explicitly scaled by a model designer to intention-
ally miscalibrate the system as in Section 3.1.

3The optimization method is inspired by
https://github.com/gpleiss/temperature_
scaling/tree/master.

Hence, this section outlines an algorithm that 387

directly optimizes the adversarial temperature Ta 388

to minimize a model’s adversarial robustness. We 389

define the adversarial accuracy, Q() as a function 390

of the temperature parameter, 391

Q(T ) =
1

J

∑
j

I
[
F(x̃j(T )) = c∗j

]
, (10) 392

where x̃j(T ) represents the adversarial example 393

generated from an out-of-the-box adversarial attack 394

on the given model, θ̂ with the logits scaled by a 395

temperature T as in Equation 8. Figure 1 illustrates 396

that as the temperature parameter is swept from 397

large to small values (increasing model confidence), 398

the adversarial accuracy, Q() behaves almost as 399

a convex function of temperature, T , such that, 400

Q(αT1 + (1−α)T2) ≤ αQ(T1) + (1−α)Q(T2), 401

where 0 ≤ α ≤ 1. The optimal adversarial temper- 402

ature Ta is the minimizer of the adversarial accu- 403

racy Q(T ), 404

Ta = argmin
T

Q(T ). (11) 405

The minimizer, Ta can be found efficiently over 406

the non-differentiable convex function, Q() us- 407

ing a search method such as the Golden-section 408

search algorithm (Kiefer, 1953). In this work we 409

use the Brent-Dekker method, an extension of 410

Golden-section search that accounts for a poten- 411

tially parabolic convergence point (Brent, 1971). 412

Note, as is the case for the calibration approach 413

of Section 4.1, to optimize for Ta, an adversary 414

is not required to query the target model multiple 415

times as the adversary only requires the output 416

model logits l1, . . . , lC . 417

Although the temperature optimization approach 418

in this section offers an adversarial temperature 419

Ta optimized for adversarial robustness, the search 420

method is significantly slower than the gradient 421

descent approach for calibration on a clean (not ad- 422

versarially attacked samples) validation set (Equa- 423

tion 9). The greatest computational cost can be 424

attributed to calculation of the adversarial accuracy 425

(Equation 10), as this requires an adversarial attack 426

to be applied to each clean sample in the valida- 427

tion set, {xj , c
∗
j}Jj=1. Therefore, we recommend 428

that by default an adversary adopts the calibration 429

approach of Equation 9, but when there is access 430

to greater computational resources Equation 11 is 431

followed. 432
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5 Experiments433

5.1 Experimental Setup434

Data: Experiments are carried out on three stan-435

dard NLP classification datasets. First, Rotten436

Tomatoes (Pang and Lee, 2005) is a binary senti-437

ment classification task for movie reviews, consist-438

ing of 8530 training, 1066 validation and 1840 test439

samples. Next, we consider the Twitter Emotions440

Dataset (Saravia et al., 2018), which categorizes441

tweets into one of six emotions: love, joy, surprise,442

fear, sadness or anger, with a total of 16,000 train-443

ing, 2000 validation and 2000 test samples. Finally444

we consider the popular AGNews dataset (Zhang445

et al., 2015), consisting of articles from 2000 news446

sources classified into one of four topics: business,447

sci/tech, world or sports. There are a combined448

120,000 training samples and 7600 test samples.449

For readability we present the results in this section450

for the Rotten Tomatoes dataset, with the equiva-451

lent results presented for the other datasets in Ap-452

pendix D.1. The same general trends are observed453

across the different datasets.454

Models: Transformer-encoder models (Vaswani455

et al., 2017) give state-of-the-art performance on456

many NLP classification tasks. Hence, in this work457

we perform experiments with three Transformer-458

encoder base models (110M parameters). Specif-459

ically, we consider DeBERTa(He et al., 2020),460

RoBERTa (Liu et al., 2019) and BERT(Devlin et al.,461

2018). The results in this section are presented for462

the Deberta model with equivalent results presented463

for the other models in Appendix D.2. Identical464

trends are observed for all the models. Hyperparam-465

eter settings for training of these models is given466

in Appendix C. All experiments are run over three467

random seeds.468

Adversarial attacks: We consider four popular469

out-of-the-box adversarial attack approaches in470

this work. Bert Adversarial Example (bae) (Garg471

and Ramakrishnan, 2020) is included as a word-472

level blackbox attack, where the adversary has only473

access to the model inputs and predicted logits.474

Next, we include the more powerful Textfooler475

(tf) (Jin et al., 2019) and Probability Weighted476

Word Saliency (pwws) (Ren et al., 2019) word-477

level, whitebox adversarial attacks with full model478

access. Finally, we include the DeepWordBug479

(dg) (Gao et al., 2018) attack as a whitebox, char-480

acter-level adversarial attack approach. Each ad-481

versarial attack is implemented with the default482

configuration as in the TextAttack Library (Morris483

et al., 2020). To evaluate the impact of the differ- 484

ent adversarial attacks we report the adversarial 485

accuracy, which is the accuracy of the target model 486

with adversarial examples at the input (for each test 487

sample in the dataset). 488

AT Baselines: Adversarial robustness of the target 489

models is compared to a range of standard NLP Ad- 490

versarial Training (AT) baseline approaches. As de- 491

scribed in Section 2.2, we consider PGD-K (Madry 492

et al., 2018) and FreeLB (Zhu et al., 2020) as 493

embedding-space AT schemes and ASCC (Dong 494

et al., 2021) as a text-embedding combined AT ap- 495

proach. Finally, we consider the most popular NLP 496

AT approach: simple augmentation of the train- 497

ing set with adversarial examples. In this work, 498

to generate these adversarial examples the target 499

model is trained in the standard manner (Equation 500

2) and the DeepWordBug adversarial attack is used 501

to attack the trained model, such that an adversarial 502

example is found for each clean training sample. 503

The target model architecture is then re-trained (as 504

per Equation 2) on the training set augmented with 505

the generated adversarial examples. Hence, for the 506

augmentation-based AT model, the DeepWordBug 507

attack can be viewed as a seen attack and the re- 508

maining attacks as unseen. It would be expected 509

that the model is relatively more robust to seen at- 510

tacks. Hyperparameter settings for each individual 511

AT baseline method is given in Appendix C. 512

Methodology: The results in this section aim to 513

demonstrate that explicit or implicit training ap- 514

proaches that cause a model to become highly 515

underconfident or overconfident (miscalibrated) 516

demonstrate an illusion of robustness (IOR), where 517

the models are robust to out-of-the-box adversarial 518

attacks. We demonstrate this is an illusion as an 519

adversary can apply modifications to the output of 520

the model that allow for out-of-the-box adversar- 521

ial attacks to find adversarial examples. Results 522

in this work give the accuracy of the original (un- 523

modified) model with these discovered adversar- 524

ial examples at the input, i.e. this simulates the 525

real-world setting when an adversary’s modifica- 526

tions are simply to mitigate the disruption to the 527

adversarial attack search process to find adversarial 528

examples for the original target model. 529

5.2 Experimental Results 530

Section 3 proposes that highly miscalibrated sys- 531

tems with extreme predicted class confidences can 532

be created explicitly by temperature scaling (Sec- 533
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tion 3.1) or can be induced implicitly due to an534

underlying training feature. To verify this, we con-535

sider a base model trained in the standard manner to536

minimize the empirical risk (Equation 2). Then, af-537

ter the model is trained, we create two new versions538

of the base model using explicit design tempera-539

ture scaling (Equation 8): a highly underconfident540

model (↓conf) with Td = 2000000 and a highly541

overconfident model (↑conf) with Td = 0.005. Fur-542

ther, we use the DDi-AT approach (training hyper-543

parameters are given in Appendix C) to implicitly544

create an overconfident model (ddi-at). Table 1545

verifies that models ↑conf and ddi-at are signifi-546

cantly more confident than the base model, whilst547

the ↓conf model is far less confident, as intended.548

The differences in the confidence are more promi-549

nent for the adversarial examples (pwws is used to550

attack the test set here). Further note that the clean551

accuracy on the test data is the same or similar to552

that of the base model.553

Model clean P̄ (ĉ|xclean) P̄ (ĉ|xadv)

base 88.96
±0.30

97.08
±0.26

86.04
±0.68

↓conf 88.96
±0.30

50.00007
±0.00

50.00004
±0.00

↑conf 88.96
±0.30

99.98
±0.02

99.95
±0.01

ddi-at 87.90
±0.49

99.97
±0.03

99.91
±0.01

Table 1: Clean accuracy (%) and model confidence (%)
on clean and adversarial (pwws) examples for extreme
confidence systems: high confidence ( ↑conf), low con-
fidence (↓conf) and DDi-AT.

Table 2 presents the adversarial robustness of554

each model as measured by the adversarial accu-555

racy under the different out-of-the-box adversarial556

attacks. Further, the adversarial accuracy for the557

different popular baseline AT approaches is also558

given for comparison. In general the baseline AT559

approaches do increase model robustness across all560

the different attack methods, with the augmentation561

approach being the most effective. The low con-562

fidence model also demonstrates comparable ad-563

versarial robustness to the augmentation-based ap-564

proach. However, the highly overconfident models565

indicate a significantly higher (two-fold increase)566

adversarial robustness relative to the baseline AT567

approaches. The increased model robustness is568

particularly surprising for the explicit confidence569

manipulation models, ↓conf and ↑conf, as the mod-570

els are identical to base (which has not been trained571

on any adversarial examples), with the only change572

being temperature scaling of the logits. 573

Method clean bae tf pwws dg

base 88.96
±0.30

31.39
±1.20

17.82
±0.49

20.42
±0.62

20.11
±0.94

↓conf (§3.1) 88.96
±0.30

31.21
±0.94

20.98
±0.99

25.17
±0.89

32.18
±2.78

↑conf (§3.1) 88.96
±0.30

37.71
±1.18

54.35
±0.73

59.29
±0.62

65.60
±1.81

ddi-at (§3.2) 87.90
±0.49

39.18
±0.75

56.54
±1.67

61.07
±0.99

66.73
±1.01

aug 87.12
±0.39

34.74
±1.59

22.36
±1.83

26.11
±2.57

37.43
±0.75

pgd 88.24
±0.73

33.65
±0.57

19.92
±0.47

26.70
±0.87

26.05
±0.61

ascc 87.77
±0.36

33.61
±0.64

15.13
±2.17

23.50
±0.77

26.80
±2.11

freelb 88.74
±0.32

32.52
±0.52

19.51
±1.70

24.55
±0.70

24.52
±0.73

Table 2: Accuracy (%) of extreme confidence systems
compared to standard AT methods on out-of-the-box
adversarial attacks.

Section 3 attributes the increased adversarial ro- 574

bustness of the extreme confidence models in Table 575

2 to the notion that the out-of-the-box attack search 576

process is being disrupted, i.e. the models are ac- 577

tually susceptible to adversarial examples (which 578

we know must be true for the temperature scaled 579

models as the predicted class for any input for these 580

models is identical to the base model) but the ad- 581

versarial attacks are unable to find these adversarial 582

examples. Hence, the observed robustness is an 583

IOR. Section 4 offers two simple approaches an ad- 584

versary could employ to mitigate the disruption of 585

the adversarial attack search processes and remove 586

the IOR. First, temperature calibration (cal) can be 587

applied to the trained model to learn an adversar- 588

ial calibrating temperature Ta. This temperature 589

is learnt by minimizing the NLL on the validation 590

data (Equation 9) with a gradient-descent based 591

optimizer. The learning rate is set to 0.01 with a 592

maximum of 5000 iterations. Alternatively, the ad- 593

versary can optimize the temperature Ta (opt) by 594

accounting for the adversarial examples for a vali- 595

dation set (Equation 11). Here, the DeepWordBug 596

attack is used to attack the validation set to opti- 597

mize for Ta. For both approaches, the target model 598

is modified by scaling the predicted logits by Ta 599

and then the out-of-the-box adversarial attacks are 600

run on the modified model to find adversarial exam- 601

ples. These adversarial examples are evaluated on 602

the original, unmodified model. Table 3 shows the 603

impact of the different adversarial approaches (cal 604

and opt) to learn Ta on the adversarial robustness 605

of the models. For the overconfident models, ↑conf 606

and ddi-at, simple temperature calibration (cal) is 607
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sufficient to cause a significant drop in model ro-608

bustness. For the low confidence model, the more609

computationally expensive temperature optimiza-610

tion approach (opt) is necessary to significantly611

reduce model robustness. This demonstrates that612

an adversary can remove the IOR of highly miscal-613

ibrated systems by optimizing for the adversarial614

scaling temperature Ta.4 Note that the baseline615

AT approaches (aug, pgd, ascc, freelb) and base in616

Table 2 do not give highly miscalibrated systems617

and thus do not present an IOR. This is verified in618

Appendix D.4.619

Method Adv. clean bae tf pwws dg

base - 88.96
±0.30

31.39
±1.20

17.82
±0.49

20.42
±0.62

20.11
±0.94

↓conf - 88.96
±0.30

31.21
±0.94

20.98
±0.99

25.17
±0.89

32.18
±2.78

cal 88.96
±0.30

31.52
±0.34

21.89
±0.43

27.58
±1.31

31.52
±0.34

opt 88.96
±0.30

31.44
±1.15

17.82
±0.49

20.86
±0.64

21.98
±1.66

↑conf - 88.96
±0.30

37.71
±1.18

54.35
±0.73

59.29
±0.62

65.60
±1.81

cal 88.96
±0.30

31.39
±1.20

17.82
±0.49

20.45
±0.74

21.64
±1.46

opt 88.96
±0.30

31.39
±1.20

17.82
±0.49

20.90
±0.94

21.06
±0.82

ddi-at - 87.90
±0.49

39.18
±0.75

56.54
±1.67

61.07
±0.99

66.73
±1.01

cal 87.90
±0.49

31.80
±0.57

18.36
±3.01

23.08
±1.96

22.89
±3.38

opt 87.90
±0.49

31.80
±0.57

18.88
±3.32

22.16
±1.03

22.28
±1.12

Table 3: Clean and adversarial accuracy (%) for the
adversarial mitigation of the Illusion of Robustness of
highly miscalibrated systems with temperature calibra-
tion (cal) or optimized temperature scaling (opt).

It is apparent that there is the risk that proposed620

AT approaches, such as with the naive use of the621

DDi gradients within AT, can give the illusion of622

robustness when in reality these approaches do623

not give robust models for an informed adversary.624

However, it can perhaps be argued that to expose625

this weakness it may not be necessary for an ad-626

versary to modify the model with adversarial tem-627

perature scaling to find adversarial examples. In-628

stead, adversarial examples can be found for an-629

other model (e.g., base) and directly transferred to630

the target model. This follows from Demontis et al.631

(2018) where it is shown that similar architectures632

can be susceptible to the same adversarial exam-633

ples. This is explored in Table 4, where adversarial634

examples are found for the source model and eval-635

uated on the target model. It is clear from these636

results that although the transfer attack from base637

4Appendix D.3 discusses the relationship between the cali-
bration error and the model confidence.

to ddi-at is effective in reducing the adversarial ac- 638

curacy, it is unable to bring the adversarial accuracy 639

down to the values for base, as is achieved by the 640

temperature optimization approaches in Table 3. 641

tgt src clean bae tf pwws dg

base base 88.96
±0.30

31.39
±1.20

17.82
±0.49

20.42
±0.62

20.11
±0.94

ddi-at ddi-at 87.90
±0.49

39.18
±0.75

56.54
±1.67

61.07
±0.99

66.73
±1.01

ddi-at base 87.90
±0.49

48.91
±0.60

52.47
±1.15

50.00
±1.64

48.53
±0.99

Table 4: Transferability: adversarial examples for each
attack method are generated for the source model and
adversarial accuracy (%) is given for the target model.

Overall, these results have demonstrated that 642

highly miscalibrated systems can appear robust to 643

out-of-the-box attack methods by disrupting adver- 644

sarial attack search processes. However, in real- 645

ity this robustness is an illusion as simple modifi- 646

cations can mitigate the disruption of the search 647

process. Therefore, we encourage future work in 648

adversarial robustness to incorporate model cal- 649

ibration or temperature optimization at test-time 650

to ensure that any proposed AT schemes are not 651

presenting IOR. 652

6 Conclusion 653

Modern NLP models are susceptible to adversarial 654

attacks, where small changes in the input cause the 655

model to predict the incorrect class. A range of 656

Adversarial Training (AT) approaches have been 657

proposed in literature to encourage model robust- 658

ness to adversarial attacks. Nevertheless, this work 659

demonstrates that equivalent and much greater 660

gains in apparent adversarial robustness to out-of- 661

the-box adversarial attacks can be achieved through 662

intentionally or accidentally causing a model to 663

be highly miscalibrated, such that the predicted 664

class confidence is extreme: either very undercon- 665

fident or near 100% (overconfident). However, this 666

gain in robustness is an illusion of robustness. The 667

extreme confidence only disrupts adversarial at- 668

tack search methods, and so an adversary can use 669

various optimized temperature scaling approaches 670

to reduce the extremity of the class confidence, 671

which mitigates the disruption to the adversarial 672

attack search processes. Therefore, we recommend 673

that future adversarial robustness evaluation frame- 674

works incorporate adversarial temperature scaling 675

at test-time to ensure that any observed robustness 676

is genuine and not an illusion. 677
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7 Limitations678

This work demonstrates that a model developer can679

create an illusion of robustness (IOR) to adversar-680

ial attacks by serving highly miscalibrated systems.681

An aware adversary can mitigate the IOR by per-682

forming targeted temperature calibration at infer-683

ence time. The following limitations have been684

identified for this work:685

• Empirical results are presented for state-of-686

the-art encoder-based Transformer models.687

However, recently with the rise of genera-688

tive models, classification tasks are being ap-689

proached with the use of decoder-based mod-690

els. Although many of the out-of-the-box ad-691

versarial attack approaches cannot be applied692

directly to decoder models, it would be useful693

to investigate how susceptible decoder models694

are to the IOR.695

• In this work we consider popular Adversar-696

ial Training (AT) baselines to demonstrate697

how the IOR can give apparent robustness698

gains significantly higher than these base-699

lines. However, future work would benefit700

from considering other recently proposed al-701

ternative approaches for adversarial robust-702

ness, e.g., contrastive learning based ap-703

proaches (Rim et al., 2021) and Textual Mani-704

fold Defence (Nguyen Minh and Luu, 2022),705

where all inputs are mapped to a robust man-706

ifold. It would be interesting to also explore707

to what extent these proposed approaches are708

offering true robustness and to what extent709

they may be unknowingly creating an IOR.710

8 Risks and Ethics711

This work presents results on the topic of adversar-712

ial training. The contributions in this work encour-713

age the development of truly robust systems and714

therefore there are no identified ethical concerns.715
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A Danksin’s Descent Direction for NLP951

A.1 Original Theory952

Latorre et al. (2023) demonstrate that the standard953

formulation and implementation of AT (as in Equa-954

tion 3) is potentially flawed. Specifically, solv-955

ing the inner maximization to find the worst-case956

adversarial example x̃, can give a gradient direc-957

tion (in standard stochastic gradient descent ap-958

proaches), that can in fact increase the robust loss959

(the new worst-case adversarial example, x̃, with960

the updated model parameters, θ, can give a robust961

loss that is greater than before the update step),962

i.e. worsening the adversarial robustness of the963

model. This flaw is attributed to the reliance on a964

single adversarial example, as a parameter gradient965

step to reduce the model’s sensitivity to a particular966

adversarial example does not guarantee reduction967

in the model’s sensitivity to all adversarial exam-968

ples (the model may now be less robust to other969

adversarial examples) for a specific sample x. The970

paper argues that their exist multiple solutions to971

the inner-maximization for the robust loss and the972

optimal parameter gradient direction depends on973

all of those solutions. Thus, Equation 3 can the-974

oretically be adapted to selecting the adversarial975

example that maximises the gradient direction in976

each gradient update step for a batch size of K977

samples,978

θi+1 = Φ

(
θi,γ

∗ = − ∇θg(x1:K , θi, ˆ̃x1:K)

||∇θg(x1:K , θi, ˆ̃x1:K)||2

)
,979

g(x1:K , θi, ˆ̃x1:K) =
1

K

∑
k

L(ˆ̃xk, θi),980

ˆ̃xk = argmax
x̃∈S∗(θi,xk)

||∇θ=θiL(x̃, θ)| |2,

(12)

981

where Φ(θ,γ) is the first-order stochastic gradi-982

ent descent (SGD) algorithm used to update θ as983

per descent direction γ, e.g. in standard SGD,984

Φ(θ, γ) = θ + βγ, where β is the step-size (learn-985

ing rate). Further S∗(θi,xk) represents the set of986

all maximizers of the robust loss,987

S∗(θ,x,G) = argmax
x̃:

G(x,x̃,)≤ϵ, x̃∈A

L(x̃, θ). (13)988

This set of (robust loss) maximizers, S∗(θ,x,G)989

can theoretically be infinite. However, if assume990

we have access to a finite set with M adversarial991

examples, such that they define,992

S∗(M)(θ,x) = {x̃(1), . . . , x̃(M)}, (14)993

then Latorre et al. (2023) propose an efficient algo- 994

rithm termed, Danskin’s Descent Direction (DDi), 995

that provides a method to approximate the steepest 996

direction, γ∗ as though as if we are still selecting 997

from the infinite set S∗ 5, despite only having ac- 998

cess to S∗(M). The optimization problem over an 999

infinite set in Equation 12 can be solved by find- 1000

ing an optimal linear combination, α ∈ △M of 1001

the gradients of the loss, ∇θg for each different 1002

adversarial example. Note that △M defines the 1003

M -dimensional simplex (on which α lies). If we 1004

let ∇θg(θ, S
∗(M)
1:K (θ)) be the matrix with columns 1005

∇θg(x1:K , θi, x̃
(m)
1:K)) for m = 1, . . . ,M , then 1006

γ∗ = −
∇θg(θ, S

∗(M)
1:K (θ))α∗

||∇θg(θ, S
∗(M)
1:K (θ))α∗||2

, 1007

α∗ = argmin
α∈△M

||∇θg(θ, S
∗(M)
1:K (θ))α||22. (15) 1008

A.2 DDi-AT for NLP classification 1009

The challenge with NLP is that generating strong 1010

textual adversarial examples as per Equation 14 1011

can be extremely slow. Hence to increase speed, 1012

we generate adversarial examples in the token em- 1013

bedding space, such that we follow Equation 15, 1014

but adapt Equation 12 to, 1015

g(x1:K , θi,
ˆ̃h1:K) =

1

K

∑
k

L(ˆ̃hk, θi), 1016

ˆ̃hk = argmax
h̃∈S∗(θi,hk)

∣∣∣|∇θ=θiL(h̃, θ)
∣∣∣ |2, (16) 1017

where hk = {hk,1, . . . ,hk,L} represents the se- 1018

quence of token embeddings for tokens xk = 1019

{xk,1, . . . ,xk,L}. We can create our proxy finite 1020

set of maximizers, S∗(M) (Equation 14) by using a 1021

computer-vision style Projected Gradient Descent 1022

(PGD) attack (Madry et al., 2019) in each token 1023

embedding space with initialisations of the PGD 1024

attack at different points to create multiple adver- 1025

sarial examples, 1026

S∗(M)(θ,h) = {PGD(1)(θ,h), . . . ,PGD(M)(θ,h), }.
(17) 1027

In this work we refer to DDi gradients applied to 1028

PGD AT as, DDi-AT. 1029

B DDi-AT Gradient Normalization and 1030

Overconfidence 1031

It is shown in Table 1 that the use of the DDi gradi- 1032

ents with the PGD AT approach (ddi-at) gives rise 1033

5Theorem 3 in the paper justifies the conditions to certify
that the approximation is the steepest descent direction
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to a highly overconfident model, which is responsi-1034

ble for the IOR. This section aims to determine the1035

route cause of this overconfidence in the DDi gradi-1036

ent update algorithm. Equation 12 indicates that in1037

the DDi gradient update algorithm global gradient1038

normalization is applied. Note that this is different1039

to standard training algorithms where either no nor-1040

malization is applied or gradient clipping is used1041

where global gradient normalization is only applied1042

if the global gradient norm is larger than a thresh-1043

old (Pascanu et al., 2012). Table 5 demonstrates1044

that the use of the global gradient normalization in1045

DDi-AT is responsible for the overconfidence and1046

thus IOR.1047

Normalization clean P̄ (ĉ|xclean) P̄ (ĉ|xadv)

gradient norm 87.90
0.49

99.97
0.03

99.91
0.01

gradient clipping 88.28
0.68

97.16
0.30

86.12
0.72

none 88.20
0.55

96.98
0.42

86.16
0.66

Table 5: Model Confidence on clean and adversarial
(pwws) examples for DDi-AT with different forms of
gradient normalization in the DDi gradient update step.

C Hyperparameter selection1048

We train the Transformer base models using stan-1049

dard hyper-parameter settings (He et al., 2020):1050

initial learning rate of 1e− 5; batch size of 8; total1051

of 5 epochs; 0 warm-up steps 6; ADAMW opti-1052

mizer, with a weight decay of 0.01 and parameters1053

β1 = 0.9, β2 = 0.999, ϵ = 1e− 8.1054

The Adversarial Training (AT) baseline ap-1055

proaches are trained with the same hyperparam-1056

eters as for the base model and AT specific hy-1057

perparameters are as described in Li et al. (2021b).1058

The default hyperparameters for each baseline (pgd,1059

ascc and freelb) are: 5 adversarial iterations; adver-1060

sarial learning rate of 0.03; adversarial initialisation1061

magnitude of 0.05; adversarial maximum norm of1062

1.0; adversarial norm type of l2; α for ascc is 10.0;1063

and β for ascc is 40.0. For DDi-AT, DDi gradients1064

are applied to the PGD AT approach, with M = 31065

gradients and K = 3 PGD iteration steps.1066

C.1 DDi-AT Ablation1067

The main results report DDi-AT results for DDi gra-1068

dients applied to PGD AT with K = 3 PGD steps1069

6We follow TextDefender (Li et al., 2021a) (presenting
benchmark comparisons for AT approaches) in setting no
warm-up steps. Further, empirically validation accuracy re-
mained the same with warm-up of 50 and 100 steps.

to find each adversarial example (in the embedding 1070

space) during training and M = 3 adversarial ex- 1071

amples (refer to Section A.2). Table 6 gives the 1072

impact on adversarial accuracy (with and with out 1073

adversarial temperature calibration) of varying K 1074

and M . It appears that with greater iteration steps, 1075

K, the model presents a smaller IOR and a greater 1076

true robustness as the robustness accuracy does not 1077

degrade as much after calibration. 1078

M K Adv clean pwws dg

3 3 - 87.90
±0.49

61.07
±0.99

66.73
±1.01

cal 87.90
±0.49

23.08
±1.96

22.89
±3.38

3 5 - 87.87
±0.57

55.53
±10.10

61.73
±10.06

cal 87.87
±0.57

31.08
±4.61

32.90
±6.31

3 7 - 88.12
±0.11

40.06
±12.24

44.50
±15.79

cal 88.12
±0.11

31.21
±1.26

30.93
±0.61

5 5 - 87.65
±1.17

50.59
±21.23

54.00
±26.22

cal 87.65
±1.17

28.08
±2.05

27.95
±4.29

5 7 - 88.15
±0.38

31.68
±2.96

34.96
±4.79

cal 88.15
±0.38

29.92
±1.17

31.61
±0.84

Table 6: Ablation: DDi-AT with M PGD adversarial
examples, with each PGD adversarial example search
during training using K iteration steps.

D Extra Results 1079

D.1 Other Datasets 1080

Equivalent results are presented for Twitter (6 emo- 1081

tion classes) in Table 7 and for the AGNews dataset 1082

(4 news classes) in Table 8. 1083

Method clean bae tf pwws dg

base 93.13
±0.24

30.17
±0.85

5.77
±0.55

11.80
±2.01

8.32
±2.98

↓conf (§3.1) 93.13
±0.24

29.63
±0.80

6.78
±0.58

15.22
±1.55

14.68
±3.01

↑conf (§3.1) 93.13
±0.24

30.62
±0.76

16.62
±0.51

28.85
±1.01

31.03
±2.07

ddi-at (§3.2) 93.40
±0.18

27.92
±1.23

9.90
±0.79

18.57
±0.67

18.17
±1.65

aug 92.58
±0.11

31.52
±2.82

4.68
±0.25

9.33
±0.11

29.45
±0.64

pgd 93.48
±0.03

28.83
±0.43

4.88
±1.24

9.95
±0.69

5.45
±1.08

ascc 91.15
±0.57

34.65
±0.23

4.60
±1.05

12.15
±0.22

11.28
±1.40

freelb 93.67
±0.23

29.15
±1.00

4.93
±1.25

10.15
±0.30

5.48
±0.73

Table 7: Twitter: Extreme confidence systems com-
pared to standard AT methods on out-of-the-box adver-
sarial attacks.
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Method clean bae tf pwws dg

base 93.75
±0.25

78.46
±0.51

31.63
±1.11

42.25
±2.93

46.21
±1.31

↓conf (§3.1) 93.75
±0.25

81.08
±0.51

59.17
±0.19

70.79
±2.24

75.71
±1.06

↑conf (§3.1) 93.75
±0.25

85.71
±0.80

84.79
±0.89

88.21
±0.36

88.17
±0.31

ddi-at (§3.2) 94.25
±0.33

88.00
±0.75

88.08
±1.00

88.96
±0.36

89.25
±0.13

aug 94.13
±0.43

74.58
±1.63

33.92
±0.19

50.33
±1.25

56.38
±0.38

pgd 94.00
±0.50

85.13
±0.50

45.86
±1.27

59.58
±0.95

57.00
±1.44

ascc 94.03
±0.46

83.19
±0.87

49.80
±1.95

54.04
±1.86

58.70
±1.32

freelb 93.58
±0.07

83.46
±0.71

44.13
±0.66

58.13
±1.73

54.25
±2.05

Table 8: AGNews: Extreme confidence systems com-
pared to standard AT methods on out-of-the-box adver-
sarial attacks. *Evaluation on 1000 samples.

D.2 Other Models1084

The illusion of robustness is presented for an over-1085

confident, underconfident and DDi-AT DeBERTa1086

model in the main paper in Table 2. The same1087

trends are observed for other popular Transformer-1088

encoder (base) models: RoBERTa (Table 9); and1089

BERT (Table 10).1090

Method clean bae tf pwws dg

base 88.27
±0.47

32.46
±0.74

17.01
±0.72

21.23
±0.05

24.30
±1.71

↓conf 88.27
±0.47

31.77
±0.33

20.42
±1.27

24.92
±1.43

32.99
±1.33

↑conf 88.27
±0.47

37.65
±0.76

53.63
±0.94

58.66
±0.61

66.32
±0.92

ddi-at 88.06
±0.62

36.24
±0.85

50.84
±0.41

54.85
±1.25

62.76
±1.27

Table 9: RoBERTa Model: Robustness of Mis-
calibrated systems.

Method clean bae tf pwws dg

base 85.08
±0.50

30.52
±0.76

21.01
±0.32

21.20
±0.34

23.14
±2.14

↓conf 85.08
±0.50

29.74
±0.19

20.95
±0.53

24.58
±1.36

30.64
±0.24

↑conf 85.08
±0.50

35.08
±1.11

45.84
±0.85

53.25
±1.37

57.50
±2.06

ddi-at 85.55
±0.43

36.80
±0.29

48.09
±0.69

51.50
±1.04

56.60
±1.16

Table 10: BERT Model: Robustness of Mis-calibrated
systems.

D.3 Calibration Error1091

In Table 11 we verify that the calibration ap-1092

proaches are effective in calibrating the models.1093

We report the metrics: Expected Calibration Error1094

(ECE) and Maximum Calibration Error (MCE).1095

Method ECE MCE P̄ (ĉ|xclean) P̄ (ĉ|xadv )

base 48.82
±0.62

51.98
±1.15

97.08
±0.26

86.04
±0.68

↓conf 38.96∗
±0.30

38.96∗
±0.30

50.00007
±0.00

50.00004
±0.00

+cal 38.96∗
±0.30

38.96∗
±0.30

50.00004
±0.00

50.00002
±0.00

↑conf 51.31
±1.03

62.62
±11.8

99.98
±0.02

99.95
±0.01

+cal 42.30
±0.91

48.28
±1.04

90.36
±0.45

75.88
±0.58

ddi-at 52.41
±0.57

74.87
±20.97

99.97
±0.03

99.91
±0.05

+cal 42.60
±0.58

62.73
±18.36

90.13
±0.11

87.54
±0.80

Table 11: Calibration Error and Average Predicted Con-
fidence (on clean and adv-pwws). N.B. std is across
seeds. *off-the-shelf calibration error computation fails
here as all confidences very close to 50%, so manual
computation of CE here: accuracy - 50%.

D.4 Calibrating Baseline Approaches 1096

The main results demonstrate that highly miscal- 1097

ibrated systems have an illusion of robustness 1098

(IOR), where an adversary’s temperature calibra- 1099

tion can mitigate this illusion of robustness. Table 1100

12 demonstrates that the baseline AT approaches 1101

considered in this work do not suffer from IOR 1102

as calibration does not degrade their adversarial 1103

accuracy. 1104

Method Adv clean bae tf pwws dg

base - 88.96
±0.30

31.39
±1.20

17.82
±0.49

20.42
±0.62

20.11
±0.94

cal 88.96
±0.30

31.39
±1.20

17.80
±0.51

20.46
±0.66

20.05
±0.88

aug - 87.12
±0.39

34.74
±1.59

22.36
±1.83

26.11
±2.57

37.43
±0.75

cal 87.12
±0.39

34.74
±1.59

22.36
±1.81

25.98
±2.32

37.45
±0.74

pgd - 88.24
±0.73

33.65
±0.57

19.92
±0.47

26.70
±0.87

26.05
±0.61

cal 88.24
±0.73

33.65
±0.57

19.90
±0.46

26.74
±0.90

26.10
±0.54

ascc - 87.77
±0.36

33.61
±0.64

15.13
±2.17

23.50
±0.77

26.80
±2.11

cal 87.77
±0.36

33.60
±0.63

15.10
±2.19

23.49
±0.79

26.75
±2.03

freelb - 88.74
±0.32

32.52
±0.52

19.51
±1.70

24.55
±0.70

24.52
±0.73

cal 88.74
±0.32

88.74
±0.32

19.50
±1.72

24.35
±0.55

24.54
±0.75

Table 12: Temperature calibration does not degrade
baseline AT models’ adversarial accuracy. They do not
suffer from IOR.

D.5 Alternative Calibration Approaches 1105

In the main results, temperature calibration was 1106

implemented to detect adversarial examples based 1107

on two central considerations: 1) Temperature cal- 1108

ibration effectively facilitates the adversarial at- 1109
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tack search, especially for obviously mis-calibrated1110

models; and 2) Temperature calibration preserves1111

the rank order of logits, thereby ensuring transfer-1112

ability of adversarial examples from the calibrated1113

to the original uncalibrated model. To broaden the1114

analytical scope, alternative calibration techniques1115

are examined. The goal is to assess their potential1116

in mitigating the disruption to the adversarial attack1117

search processes and to determine the potency of1118

the resulting adversarial examples on the uncali-1119

brated model. Binning-based calibration is deemed1120

unsuitable due to its intrinsic non-differentiability,1121

which could prevent the adversarial search process.1122

Hence, the multi-class version of Platt Scaling is1123

explored as a viable calibration strategy and subse-1124

quently contrasted against the benchmark temper-1125

ature calibration approach from the main results.1126

The performance of the calibration results is shown1127

in Table 13, where it is evident that the Platt scaling1128

approach is far less stable than temperature calibra-1129

tion and can in fact excessively enhance the illusion1130

of robustness.1131

For automatic calibration, standard training hy-1132

perparameters were employed. Specifically, the1133

temperature calibration protocol was set at 5,000 it-1134

erations with a learning rate of 0.01. Similarly, the1135

Platt scaling protocol was also designed for 50001136

iterations with a learning rate of 0.01. A point1137

to note for practical implementation: adversaries1138

might need to refine calibrator hyperparameters to1139

minimize the Expected Calibration Error (ECE) on1140

a specified validation set. However, ECE determi-1141

nation is nuanced, largely due to its sensitivity to1142

chosen bin widths, as highlighted in Table 11 for1143

instances of underconfidence.1144

Method Adv clean bae tf pwws dg

base - 88.96
±0.30

31.39
±1.20

17.82
±0.49

20.42
±0.62

20.11
±0.94

↓conf - 88.96
±0.30

31.21
±0.94

20.98
±0.99

25.17
±0.89

32.18
±2.78

temp 88.96
±0.30

31.52
±0.34

21.89
±0.43

27.58
±1.31

31.52
±0.34

platt 88.96
±0.30

72.08
±12.15

70.33
±18.00

72.70
±16.72

74.73
±17.11

↑conf - 88.96
±0.30

37.71
±1.18

54.35
±0.73

59.29
±0.62

65.60
±1.81

temp 88.96
±0.30

31.39
±1.20

17.82
±0.49

20.45
±0.74

21.64
±1.46

platt 88.96
±0.30

37.21
±3.73

34.55
±17.90

37.46
±19.70

41.09
±19.59

ddi-at - 87.90
±0.49

39.18
±0.75

56.54
±1.67

61.07
±0.99

66.73
±1.01

temp 87.90
±0.49

31.80
±0.57

18.36
±3.01

23.08
±1.96

22.89
±3.38

platt 87.90
±0.49

43.34
±19.42

38.77
±32.23

42.25
±31.66

42.72
±32.72

Table 13: Adversarial mitigation of highly miscalibrated
systems using different test-time calibration approaches.
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