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ABSTRACT

Graph neural networks (GNNs) have seen widespread application across diverse
fields, including social network analysis, chemical research, and computer vision.
Nevertheless, their efficacy is compromised by an inherent reliance on the ho-
mophily assumption, which posits that adjacent nodes should exhibit relevance or
similarity. This assumption becomes a limitation when dealing with heterophilic
graphs, where it is more common for dissimilar nodes to be connected. Ad-
dressing this challenge, recent research indicates that real-world graphs gener-
ally exhibit monophily, a characteristic where a node tends to be related to the
neighbours of its neighbours. Inspired by this insight, we introduce Neighbour-
hood Transformers (NT), a novel approach that employs self-attention within ev-
ery neighbourhood of the graph to generate informative messages for the nodes
within, as opposed to the central node in conventional GNN frameworks. We
develop a neighbourhood partitioning strategy equipped with switchable atten-
tions, significantly reducing space consumption by over 95% and time con-
sumption by up to 92.67% in NT. Experimental results on node classification
tasks across 5 heterophilic and 5 homophilic graphs demonstrate that NT out-
performs current state-of-the-art methods, showcasing their strong performance
and adaptability to different graph types. The code for this study is available at
https://anonymous.4open.science/r/MoNT-BD3C.

1 INTRODUCTION

Graph neural networks (GNNs) have emerged as a fundamental technology in the realm of graph
learning, garnering extensive research interest and a wealth of practical applications over the past
decade (Wu et al., 2021b). Their versatility has been demonstrated across a wide array of disciplines.
In the domain of social network analysis, for instance, GNNs are utilized to predict user interactions
and to pinpoint pivotal influencers within the network (Fan et al., 2019). Within the field of chem-
istry, GNNs are instrumental in predicting molecular attributes and unravelling the mechanisms
behind chemical reactions (Gilmer et al., 2017). In the realm of computer vision, GNNs are applied
to model the complex interdependencies among visual components, enhancing tasks such as object
detection and scene graph generation (Sarlin et al., 2019). Central to the functionality of GNNs is
the message passing mechanism, which facilitates the exchange of information between nodes and
their adjacent neighbours, thereby allowing GNNs to harness both node features and the structural
topology of the graph (Scarselli et al., 2009).

Message passing (MP) implicitly posits that adjacent nodes are relevant or similar to one another,
as is often the case in social networks where connected individuals tend to share similar inter-
ests (McPherson et al., 2001; Gerber et al., 2013; Ciotti et al., 2015). However, recent investigations
have called into question this homophily assumption by introducing a collection of heterophilic
benchmark graphs, where the premise of similarity between neighbouring nodes does not consis-
tently apply (Pei et al., 2020; Lim et al., 2021; Platonov et al., 2023). For instance, in financial
transaction networks, the majority of users with whom fraudsters engage in transactions are not
engaged in fraudulent activities themselves (Pandit et al., 2007). On such heterophilic graphs, re-
searchers have noted that a node often exhibits similarity not with its immediate neighbours, but with
its 2-hop neighbours, or the neighbours of its neighbours (Zheng et al., 2022; Zhu et al., 2020). This
characteristic, referred to as monophily (Altenburger & Ugander, 2018; Chin et al., 2019), is also
prevalent in homophilic graphs (Lei et al., 2022; Xiao et al., 2023). Consequently, the monophily
assumption appears to be a universal trait in graphs, irrespective of their degree of homophily.
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Figure 1: Unevenly distributed neighbourhood sizes. 1⃝ Paralleled Processing pads node features
of all neighbourhoods and processes the padded tensor in a single operation, occupying excessive
memory when the node degree distribution is long-tailed. 2⃝ Sequential Processing organizes
neighbourhoods by size and processes node features group by group, consuming prohibitive time
when the node degree distribution is dispersed.

Drawing upon the monophily assumption, we introduce Neighbourhood Transformers (NT),
which enables message exchanging among nodes within each neighbourhood through self-
attention (Vaswani et al., 2017) and constructs node representations by aggregating the exchanged
messages from the neighbourhoods of all its neighbours. A pivotal challenge of applying self-
attention in each neighbourhoods is the high complexity resulting from the variable sizes of neigh-
bourhoods. In real-world graphs, the distribution of node degrees, correspond to the neighbourhood
sizes, tends to be scattered and follow a long-tailed pattern, characterized by a small number of
nodes with high degrees and a large number of nodes with low degrees (Yin et al., 2012). This
attribute presents NT with a quandary, as illustrated in Figure 1: either pad an excessive amount of
redundant space to facilitate parallel processing (Vaswani et al., 2017) or tolerate considerable time
overhead to implement sequential processing (Yan et al., 2020). Moreover, the quadratic complexity
of self-attention must also be taken into account when processing large neighbourhoods. To tackle
these challenges, we incorporate linear-attention (Tay et al., 2023) and devise a neighbourhoods
partitioning strategy, significantly diminishing both the space and time requirements in NT. For in-
stance, when applied to the Tolokers dataset (Platonov et al., 2023), our method reduces the memory
footprint from over 80GB, necessitated by parallel processing, to less than 4GB and accomplishes
the training in only 7.33% of the time required for sequential processing. These optimizations ren-
der NT practical, enabling us to conduct extensive experiments and assess its superiority against
state-of-the-art baselines.

In summary, our contributions include 1) a model, Neighbourhood Transformers, designed to har-
ness the recently identified property of monophily within real-world graphs, 2) a neighbourhood
partitioning strategy equipped with switchable attentions to reduce space and time consumtions of
NT, and 3) extensive experiments across diverse benchmark graphs and thorough ablation studies.

2 RELATED WORKS

Heterophlilic GNNs (HGNN) are improved GNNs to address the challenges posed by het-
erophily (Pei et al., 2020; Maurya et al., 2022; Li et al., 2022; Bo et al., 2021; Du et al., 2022;
Wang & Zhang, 2022). The two most prevalent strategies of HGNN are passing messages along the
second-order adjacency matrices A2 (Lei et al., 2022; Zhu et al., 2020; Xiao et al., 2023), and ag-
gregating neighbour-embeddings in separation with the ego-embeddings (Zhu et al., 2020; Platonov
et al., 2023). Similar to their utilization of A2, NT also accesses information from 2-hop neighbours
for a node due to the message exchanging within its belonging neighbourhoods. The key distinction
is that the message exchanging in each neighbourhood is uniquely conditioned on its central node,
as depicted in Figure 2c, thereby enriching the diversity of exchanging patterns and enhancing the
attentiveness of aggregated representations. This flexible conditioning on neighbourhoods’ centers
of NT also ensures compatibility with traditional message passing and maintains performance in
homophilic settings, if disregarding the neighbourhood and focusing on the centers. Besides, the
ego-neighbour separation technique of HGNN is not essential for NT, as NT inherently aggregates
information from monophilic nodes with similarity, thus obviating the need for such separation.
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(a) Message Passing (b) Graph Transformers (c) Neighbourhood Transformers

Figure 2: An illustration of computing representations for node v1 (represented by a double-lined
circle) using various mechanisms. (a) Message Passing: Messages from different nodes (e.g.,
v3, v4, v5, v6) are propagated along edges towards node v1 to compute its representation, but are
diluted and over-squashed when passing through heterophilic bottlenecks (e.g., v2). (b) Graph
Transformers: Node v1 aggregates messages from all nodes using self-attention. This approach
may inadvertently downplay the importance of information from nearby nodes due to a reduction
in the influence of topological structure. (c) Neighbourhood Transformers (Ours): Node v1 ex-
changes messages (depicted as squares) in each of its constituent neighbourhoods through self-
attention, thereby acquiring attentive and structure-aware representations.

Graph Transformers (GT) employ self-attention across the entire node set to capture global data
dependencies (Wu et al., 2021a; Chen et al., 2023), as depicted in Figure 2b. This capability is ad-
vantageous in overcoming the information bottleneck associated with message passing (MP) (Alon
& Yahav, 2021) and in aggregating high-order information to address heterophily challenges (Ying
et al., 2021). However, due to the lack of topological regulation, GT often prioritizes distant nodes,
potentially overlooking nearby nodes that typically carry more relevant information (Xing et al.,
2024). As a trade-off, GT necessitates the explicit integration of structural encodings (Kreuzer
et al., 2021; Dwivedi et al., 2022) and the implicit representations of MP to address this shortcom-
ing (Deng et al., 2024). These limitations suggest that GT should be integrated with MP (Shirzad
et al., 2023; Ma et al., 2023; Rampásek et al., 2022), rather than replacing MP as a standalone graph
learning method. In contrast to GT, Neighbourhood Transformers (NT) apply self-attention within
each neighbourhood of the graph and propagate the fully-exchanged messages to all nodes within
that neighbourhood, as depicted in Figure 2c. As such, NT maintains the ability to leverage struc-
tural information and can focus learning on the 2-hop local structure without succumbing to the
issue of over-globalization.

3 PRELIMINARIES

We denote a graph as G = (V, E), where V = {vi|i = 1, 2, . . . , |V|} is the node set and
E = {eij |vi connects vj} is the edge set. Node features are a matrix X ∈ R|V|×d where d is
the dimensions of node features. The i-th row Xi,: corresponds to the feature vector of node vi.
Edge attributes are a matrix E ∈ R|E|×de where de is the dimensions of edge attributes. We denote
the attributes of edge eij as E(i,j),:. The neighbourhood of node vi is the set of nodes that connect
to vi, denoted as N (vi) = {vj |eij ∈ E}.

3.1 MESSAGE PASSING IN GRAPH NEURAL NETWORKS

The predominant architecture of graph neural networks (GNNs) is founded on the message passing
(MP) mechanism, which comprises two essential components: the combiner and the aggregator.
The combiner is a node-specific function, such as a straightforward linear transformation or a multi-
layer perceptron (MLP), that encodes the input node features X into messages Z ∈ R|V|×h. The
aggregator is an order-invariant operation, like mean (Kipf & Welling, 2016), max (Hamilton et al.,
2017), sum (Xu et al., 2019), weighted-mean (Velickovic et al., 2018; Brody et al., 2022), or gated-
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sum (Bresson & Laurent, 2017), which is utilized to aggregate the messages Z from neighbouring
nodes to produce the final node representations H ∈ R|V|×h. In essence, an MP layer operates as
follows:

Z = ϕ(Combiner(X)), Hi,: = Aggregator({Zj,:|vj ∈ N (vi)}),
where ϕ(·) denotes a non-linear activation function, such as GELU (Hendrycks & Gimpel, 2016).

3.2 SELF-ATTENTION IN TRANSFORMERS

Self-attention is the core innovation of Transformer, designed to capture intricate dependencies
among the n input nodes. It initially maps the node features X ∈ Rn×d into corresponding query,
key, and value matrices Q,K,V ∈ Rn×h. Subsequently, an n × n correlation matrix is generated
by the matrix multiplication of Q and KT , which indicates the importance weights for information
selection from V . Concisely, a self-attention module can be formalized as:

(Q,K,V ) = X · (Wq,Wk,Wv), SelfAttention(X) = softmax(
Q ·KT

√
h

) · V ,

where Wq,Wk,Wv ∈ Rd×h are trainable parameters.

3.3 LINEAR-ATTENTION IN PERFORMERS

The quadratic complexity O(n2) of self-attention, as evidenced in the operation Q ·KT , becomes
computationally infeasible when the number n of nodes is substantial. Consequently, a variety of
efficiency-enhanced attention mechanisms with linear complexity O(n) have been proposed (Tay
et al., 2023). Among these, Performer (Choromanski et al., 2021) offers an unbiased or nearly-
unbiased estimation of self-attention, complete with provable convergence and reduced variance.
It initially maps the query and key matrices Q,K into Q̂, K̂ ∈ Rn×p using its orthogonal ran-
dom features P ∈ Rh×p. Next, the product of K̂T and V results in a p × h matrix, which then
matrix-multiplies Q̂ to yield the approximated attention weights. The approximated self-attention
mechanism in Performer can be expressed as follows:

Q̂ = exp(
1√
h
·Q · P ), K̂ = exp(K · P − ∥K∥2

2
),

D̂ = diag(Q̂ · (K̂T · 1n×1)), SelfAttention(X) ≈ D̂−1Q̂ · (K̂T · V ).

When h is held constant and p is set to h log h, as recommended by Performer, the complexity of
this linear-attention is O(nph) = O(n).

4 METHOD

4.1 NEIGHBOURHOOD TRANSFORMERS

Motivated by the universal monophily in graphs, we propose to facilitate the message exchanging
among nodes from the same neighbourhoods and implement Neighbourhood Transformer (NT) as:

Z(j,k),: = ϕ(Combiner(
[
H ′

j,: H ′
k,:

]
)), (1)

M (j) = ϕ(SelfAttention(⊕{Z(j,k),:|vk ∈ N (vj)})), (2)

Hi,: = Aggregator({M (j)
(i),:|vj ∈ N (vi)}), (3)

where ⊕ denotes the operation of stacking a set of row vectors into a matrix, H ′ is the node rep-
resentations from the previous NT layer initialized as H ′ = X . In Equation 3, NT computes the
h-dimensional representation Hi,: for node vi by aggregating messages M (j)

(i),: from all its adjacent

nodes vj ∈ N (vi). Here, M (j)
(i),: corresponds to the row vector for node vi in matrix M (j). The

matrix M (j) ∈ R|N (vj)|×h encapsulates messages from node vj to all its neighbours, which are
comprehensively exchanged within its neighbourhood N (vj) through self-attention, as delineated
in Equation 2. This message exchanging exploits the monophily property, a feature that has been
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shown to be advantageous in heterophilic graphs, and aids nodes in capturing intricate dependencies
among similar 2-hop neighbours. Prior to exchange, in Equation 1, the initial message Z(j,k),: from
node vj to node vk is computed by combining their node representations H ′

j,: and H ′
k,:. The mes-

sage exchanged within each neighbourhood is thus uniquely tailored to its central node, endowing
NT with the diversified capability to accommodate various graphs. Besides, the combiner is opti-
mizable, allowing it to adaptively prioritize H ′

j,: over H ′
k,: when sole reliance on 1-hop neighbours

is sufficient, such as in homophilic graphs, thereby mimicking traditional message passing (MP).
We provide the theoretical proofs to this adaptiveness in Appendix E.

4.2 EFFICIENT NEIGHBOURHOOD TRANSFORMERS

Figure 3: Partitioning neighbourhoods into multiple groups for space and time efficiency. We parti-
tion neighbourhoods into two groups based on the degrees of their central nodes. Neighbourhoods
with more than n nodes will be processed by Performer for efficiency and other small neighbour-
hoods will be processed by Transformer for accuracy. Each group of neighbourhoods is recursively
partitioned into two approximately equal halves in terms of area (s1 ≈ s2), provided that the parti-
tioning leads to a considerable compression rate α.

As we have discussed in Section 1, the primary obstacle to the practical application of NT is the
excessive complexity arising from the uneven distribution of neighbourhood scales. To address this
challenge, we have developed a neighbourhood partitioning strategy that partitions all neighbour-
hoods into several smaller groups. Each group is processed through an attention module that can
be switched between the precise self-attention of the Transformer and the computationally efficient
linear-attention of the Performer. We depict this strategy in Figure 3 and provide a detailed descrip-
tion in the subsequent sections.

4.2.1 PARTITIONING NEIGHBOURHOODS BY SIZE

The self-attention mechanism, with its quadratic complexity, necessitates a significant amount of
memory when applied to large neighbourhoods. To mitigate this issue, we implement a switch-
able attention module that processes neighbourhoods with different scales. This module employs
the linear-attention of the Performer to handle neighbourhoods exceeding n nodes, prioritizing ef-
ficiency, and switches to the self-attention of the Transformer for neighbourhoods with n nodes or
fewer, ensuring accuracy. Notably, both attention algorithms share a single set of parameters, which
is made possible by the Performer’s remarkable property of full compatibility with the Transformer.
As detailed in Section 3.3, the self-attention in the Transformer computes an n× n matrix Q ·KT ,
whereas the linear-attention in the Performer computes two n×p matrices Q̂, K̂ and a p×h matrix
K̂T ·V . Here, p and h represent the dimensions of the orthogonal random features in the Performer
and the node representations, respectively. Thus, we set n = p+

√
p2 + hp by solving the equation

n2 = 2np+ hp to ensure that the linear-attention indeed reduces the memory footprint compared to
the original self-attention.

4.2.2 PARTITIONING NEIGHBOURHOODS BY AREA

In scenarios where we have N neighbourhoods, and the largest neighbourhood contains D nodes,
processing these neighbourhoods in parallel necessitates padding the node features into an N×D×d
tensor (with an N × D boolean matrix to indicate the paddings). Due to the long-tail distribution
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Algorithm 1 Partitioning Neighbourhoods by Area

Input: compression rate α, a list [(n1, c1), (n2, c2), . . . , (nl, cl)] with n1 > n2 > . . . > nl and
l∑

i=1

ci = |V| where an element (ni, ci) indicates ci neigbourhoods with size ni.

Output: a set S where an element (i, j, s) indicates a group of neighbourhoods sized in [ni, nj ] and
its area is s.

1: Define: Area(i, j) = (aj − ai + ci)× ni, where ai :=
i∑

j=1

cj

2: Initialize: S := {(1, l,Area(1, l))}
3: while true do
4: select (i, j, s) from S with maximum s
5: if j = i then
6: return S
7: end if
8: t∗ :=

j

argmin
t=i

max(Area(i, t),Area(t+ 1, j))

9: s1 := Area(i, t∗)
10: s2 := Area(t∗ + 1, j)
11: if max(s1, s2) ≥ α · s then
12: return S
13: end if
14: S := S \ {(i, j, s)} ∪ {(i, t∗, s1), (t∗ + 1, j, s2)}
15: end while

characteristic of real-world graphs, this pre-processing step often results in substantial space wastage
due to padding and an increase in time due to redundant computation. To address this issue, we
propose to partition the neighbourhoods into smaller groups and process them sequentially rather
than in a single paralleled operation. As Figure 3 shows, processing the two partitioned groups
sequentially results in a memory footprint proportional to the area of max(s1, s2), which is smaller
than the memory footprint of the original group, proportional to the area of s = s1 + s2 + s3.

Partitioning a group of neighbourhoods into two can reduce not only memory footprint but also
redundant computation on padded bits. However, it may increase processing time due to the sequen-
tial handling of the partitioned halves. We therefore adopt the partitioning strategy only when the
compression rate max(s1, s2)/s is significantly reduced, indicating a substantial enough saving in
redundant computation to offset the potential increase in sequential processing.

As a result, we develop an algorithm, described in Algorithm 1, to adaptively partition a group
of neighbourhoods into multiple parts for both space and time efficiency. In the algorithm, we
define a function to calculate the area of a neighbourhood group as the product of the number of its
containing neighbourhoods and their maximum size (in line 1). Then, we initialize the algorithm
with all inputted neighbourhoods as a single group (in line 2). In the main loop, we repeatedly
select the group with the largest area from the set (in line 4) and partition it into two halves with
minimal and approximal areas (in line 8). We prove that, in Appendix F, this partitioning can lead to
minimal memory consumption required by neighbourhood transformers. If the partitioning leads to
a considerable compression rate (in line 11), we accept the partitioning and replace the group with
its two halves (in line 14). By adjusting the hyperparameter α, we can control the tradeoff between
memory usage and processing time. Our empirical findings suggest that α = 0.4 is a good balance,
resulting in fast processing with relatively low memory consumption. When a group is atomic (line
6) or a partitioning is refused (line 12), we terminate partitioning other smaller groups and output
the group set S.

4.3 EXTENSIONS FOR NEIGHBOURHOOD TRANSFORMERS

4.3.1 DYNAMIC AGGREGATORS

In addition to the static aggregators, such as mean,max, sum, we harness the exchanged messages
to simplify the implementation of dynamic aggregators. Specifically, we double the dimensions of
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the output matrices M (j) from Equation 2 and split them into two parts. The first part is normalized
by σ, which corresponds to the Softmax function for the weighted-mean aggregator and the Sigmoid
function for the gated-sum aggregator, to generate the weights for aggregating the second part. This
results in Equation 3 being expressed as:

Hi,: = Aggregator({M (j)
(i),:|vj ∈ N (vi)}) =

∑
vj∈N (vi)

σ(
1

h
·

h∑
l=1

M
(j)
(i),l) ·M

(j)
(i),h+1:2h.

The weights of the messages M
(j)
(i),h+1:2h from node vj to node vi are determined not solely by

the two endpoints but by the entire neighbourhood N (vj), thereby enhancing the attentiveness and
suitability of our approach for NT.

4.3.2 DIR-NT: DIRECTED NEIGHBOURHOOD TRANSFORMERS

Figure 4: In directed graphs, the source nodes (v2, v3, v4) to the central node (v1) and its destination
nodes (v5, v6) construct different neighbourhoods.

In the context of directed graphs, we adhere to the findings of Rossi et al. (2023), which suggest
that leveraging the directionality of edges can lead to substantial improvements, particularly in het-
erophilic graphs. To adapt NT for directed graphs, we introduce a directed variant called Dir-NT.
This variant differentiates between the source neighbours (nodes that have edges pointing towards
the central node) and the destination neighbours (nodes that the central node points to), as shown in
Figure 4. We apply two separate NT instances to these distinct sets of neighbours. The mathematical
expression for this approach is as follows:

NT1(X,E) + NT2(X,E′), where E′
(k,j),: = E(j,k),:,∀ejk ∈ E .

Here, NT1 and NT2 represent two separate instances of the NT. By summing the outputs of NT1

and NT2, we combine the information from both the source and destination neighbourhoods, al-
lowing the model to capture the directional information in the graph and potentially improve the
representation learning for nodes in directed graphs.

5 EXPERIMENTS

To evaluate the performance of the Neighbourhood Transformer (NT) and the proposed neighbour-
hood partitioning strategy, we design a series of node classification experiments on a diverse set
of graphs. These experiments are conducted on five heterophilic and five homophilic graphs to
demonstrate the model’s strong performance and the effectiveness of our partitioning strategy. The
heterophilic graphs in our study are Roman Empire, A-ratings, Minesweeper, Tolokers, and Ques-
tions (Platonov et al., 2023),. The homophilic graphs include A-computer, A-photo (McAuley et al.,
2015), CoauthorCS, CoauthorPhy (Shchur et al., 2018), and WikiCS (Mernyei & Cangea, 2020).
An analysis on the descrepencies of neighbourhood sizes among these datasets is provided in Ap-
pendix D. For the homophilic graphs, except for WikiCS, we follow the splitting strategy from
Shirzad et al. (2023), dividing the nodes into training (60%), validation (20%), and testing (20%)
sets. For the rest graphs, we use the default data splits provided with the original datasets. Other
detailed experimental setups are in Appendix B.

Researchers have already conducted experiments on these 10 datasets so that we can retrieve the
highest accuracy scores possible for the state-of-the-art (SotA) baselines from previous works, in-
cluding their original papers and leaderboards of the respective datasets (Platonov et al., 2023;
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Table 1: Averaged accuracy scores and the standard deviations in 10 runs on heterophilic graphs.
The best score of undirected approaches (the upper section) for each dataset is bolded, and the
second best is underlined.

Roman Empire A-ratings Minesweeper Tolokers Questions
GCN 73.69±0.74 48.70±0.63 89.75±0.52 83.64±0.67 76.09±1.27
GraphSAGE 85.74±0.67 53.63±0.39 93.51±0.57 82.43±0.44 76.44±0.62
GAT-sep 88.75±0.41 52.70±0.62 93.91±0.35 83.78±0.43 76.79±0.71
CPGNN 63.96±0.62 39.79±0.77 52.03±5.46 73.36±1.01 65.96±1.95
FSGNN 79.92±0.56 52.74±0.83 90.08±0.70 82.76±0.61 78.86±0.92
GBK-GNN 74.57±0.47 45.98±0.71 90.85±0.58 81.01±0.67 74.47±0.86
JacobiConv 71.14±0.42 43.55±0.48 89.66±0.40 68.66±0.65 73.88±1.16
GGCN 74.46±0.54 43.00±0.32 87.54±1.22 77.31±1.14 71.10±1.57
OrderedGNN 77.68±0.39 47.29±0.65 80.58±1.08 75.60±1.36 75.09±1.00
tGNN 79.95±0.75 48.21±0.53 91.93±0.77 70.84±1.75 76.38±1.79
CDE 91.64±0.28 47.63±0.43 95.50±5.23 — 75.17±0.99
BloomGML 85.26±0.25 52.92±0.39 93.30±0.16 85.92±0.14 77.93±0.34
NT 91.71±0.57 54.25±0.50 97.42±0.50 85.69±0.54 78.46±1.10
Dir-GNN 91.23±0.32 47.89±0.39 87.05±0.69 81.19±1.05 76.13±1.24
Dir-NT 94.77±0.31 49.43±0.62 93.92±0.59 85.02±0.77 77.99±1.00

Deng et al., 2024). The baselines we compare against are a comprehensive list of GNNs, in-
cluding GCN (Kipf & Welling, 2016), GraphSAGE (Hamilton et al., 2017), GAT (Velickovic
et al., 2018), GAT-sep (Platonov et al., 2023), GCNII (Chen et al., 2020), GPRGNN (Chien
et al., 2021), APPNP (Klicpera et al., 2019), PPRGo (Bojchevski et al., 2020), GGCN (Yan et al.,
2022), OrderedGNN (Song et al., 2023), tGNN (Hua et al., 2022), CDE (Zhao et al., 2023),
BloomGML (Zheng et al., 2024), FSGNN (Maurya et al., 2022), CPGNN (Zhu et al., 2021),
FAGCN (Bo et al., 2021), GBK-GNN (Du et al., 2022), JacobiConv (Wang & Zhang, 2022), and
Dir-GNN (Rossi et al., 2023).

5.1 PERFORMANCE ON HETEROPHILIC AND HOMOPHILIC GRAPHS

We showcase the capabilities of NT on five heterophilic graphs and compare its performance against
SotA GNNs, which are specifically designed to handle heterophily. The average accuracy scores
across 10 runs for each method on each graph are in Table 1. The table reveals that NT outperforms
the existing SotA GNNs on three of the five graphs and ranks as the second best on the rest two
datasets. These results provide strong evidence that NT is a robust and powerful approach for node
classification tasks on heterophilic graphs, where traditional GNNs often struggle due to the lack of
homophily.

In addition to the general results, we have also included the performance of Dir-GNN (Rossi et al.,
2023) and our proposed Dir-NT in the lower part of Table 1. The data clearly indicate that Dir-NT
surpasses Dir-GNN across all tested datasets, with a particularly impressive accuracy score of 94.77
on the Roman Empire graph. This demonstrates that Dir-NT is more effective at leveraging the
directional information in edges compared to Dir-GNN. However, we observe that on the A-ratings
and Minesweeper datasets, both Dir-GNN and Dir-NT underperform compared to their undirected
counterparts. This discrepancy can be attributed to the nature of these datasets. Although Platonov
et al. (2023) has annotated these datasets with uni-directional edges, the relationships they repre-
sent, such as co-purchased products in A-ratings and adjacent grids in Minesweeper, are inherently
undirected. Consequently, modelling these graphs as directed does not provide any additional ben-
eficial information. Instead, it splits the neighbourhood into source and destination halves, which
can interfere with the full exchange of monophilic messages. Similarly, the Tolokers dataset, which
represents a network of project colleagues, is also fundamentally undirected. However, its signifi-
cantly higher density (more than 10 times denser than the other four graphs) means that dividing the
neighbourhood into two parts has a minimal negative impact on performance.

Moreover, we showcase the adaptability of NT on five homophilic graphs and compare its perfor-
mance against other SotA GNNs. The average accuracy scores from 10 independent runs for each
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Table 2: Averaged accuracy scores and the standard deviations in 10 runs on homophilic graphs.
The best score for each dataset is bolded, and the second best is underlined.

A-computer A-photo CoauthorCS CoauthorPhy WikiCS
GCN 89.65±0.52 92.70±0.20 92.92±0.12 96.18±0.07 77.47±0.85
GraphSAGE 91.20±0.29 94.59±0.14 93.91±0.13 96.49±0.06 74.77±0.95
GAT 90.78±0.13 93.87±0.11 93.61±0.14 96.17±0.08 76.91±0.82
GCNII 91.04±0.41 94.30±0.20 92.22±0.14 95.97±0.11 78.68±0.55
GPRGNN 89.32±0.29 94.49±0.14 95.13±0.09 96.85±0.08 78.12±0.23
APPNP 90.18±0.17 94.32±0.14 94.49±0.07 96.54±0.07 78.87±0.11
PPRGo 88.69±0.21 93.61±0.12 92.52±0.15 95.51±0.08 77.89±0.42
GGCN 91.81±0.20 94.50±0.11 95.25±0.05 97.07±0.05 78.44±0.53
OrderedGNN 92.03±0.13 95.10±0.20 95.00±0.10 97.00±0.08 79.01±0.68
tGNN 83.40±1.33 89.92±0.72 92.85±0.48 96.24±0.24 71.49±1.05
NT 92.61±0.63 96.12±0.39 96.07±0.32 97.32±0.11 80.04±0.61

method on each of the homophilic graphs are presented in Table 2. As the table reveals, NT achieves
the highest performance scores on all five graphs. It confirms our earlier analysis that NT is capable
of adapting to the homophily present in graphs, making it a robust and general framework for graph
representation learning.

In summary, NT demonstrates SotA performance on a variety of graphs, regardless of whether
they are heterophilic or homophilic, undirected or directed. More comparisons against SotA graph
transformers can be found in Appendix C.

5.2 ABLATION STUDIES ON NEIGHBOURHOOD PARTITIONING

Figure 5: Ablation studies on the neighbourhood partitioning strategy. Bars represent mem-
ory footprints and curves are time consumptions. We compare paralleled processing (the first
bar/point), partitioning neighbourhoods by size (the second bar/point), by both size and area with
α = 0.1, 0.2, . . . , 0.9 (the hollow bars/points), and sequential processing (the last bar/point).
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In this section, we benchmark NT using nine datasets to elucidate the attributes of the neighbourhood
partitioning strategy. Figure 5 provides a visual representation of the GPU memory consumption and
training time for parallel processing, partitioning neighbourhoods by size, by both size and area, and
sequential processing. Parallel processing runs out of 80GB memory (OOM, depicted as red bars)
in six out of the nine datasets and is only feasible on graphs with a low maximum node degree
D. By partitioning neighbourhoods by size and incorporating Performer, the memory footprint is
dramatically decreased to below 30GB across all graph datasets. With additional partitionings by
area, the memory footprint is further reduced, for instance, to less than 4GB when α = 0.4. This
reduction in GPU memory utilization is crucial for the practical application of NT.

Moreover, as illustrated in the figure, the training time curves exhibit a bowl-shaped pattern with
the minimum points occurring around α = 0.4, showing that our method can be an order of magni-
tude faster than sequential processing (e.g., 8.63 times faster on WikiCS and 12.64 times faster on
Tolokers). The only exception is observed on the Roman Empire graph, where our approach is 16%
slower compared to sequential processing. This discrepancy arises due to the highly concentrated
distribution of node degrees in Roman Empire, which has an average node degree of 2.91. In such a
scenario, the simplicity of the graph structure allows sequential processing to handle all neighbour-
hoods within a limited number of operations, negating the benefits of our partitioning strategy.

Figure 6: Testing accuracy scores (%, the horizontal axes) in 10 runs of different attention mod-
ules: Transformer with self-attention, Performer with linear-attention, and our switchable attention
module. The vertical line in the centre of each violin plot represents the average score.

As the above experiments indicate, the integration of our switchable attention module with the linear
attention mechanism of Performer substantially diminishes the memory and computational demands
of NT. To investigate whether this integration impairs node classification accuracy, we conducted an
ablation study focusing on the attention module. Figure 6 displays the accuracy scores for different
attention modules across ten datasets. As depicted in the figure, while the Performer with linear
attention lags on Roman Empire, A-ratings, A-computer, A-photo, and WikiCS, there is no sta-
tistically significant discrepancy in accuracy between the Transformer with full-rank self-attention
and our proposed switchable attention module. Consequently, we deduce that switching between
different attentions does not degrade classification accuracy.

In summary, our neighbourhood partitioning strategy successfully diminishes the spatial and tempo-
ral complexities associated with NT, all while maintaining its performance integrity.

6 CONCLUSIONS

We introduce Neighbourhood Transformers (NT) designed to exploit the universal monophily ob-
served in real-world graphs. This exploitation allows NT to effectively address heterophily and to
be adaptive in homophilic graphs. We overcome the space and computational challenges inherent
to NT with a neighbourhood partitioning strategy, thereby enabling the practical implementation of
NT on standard hardware.
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A ABLATION STUDIES

A.1 ON AGGREGATORS

Figure 7: Testing accuracy scores (%, the horizontal axes) in 10 runs of different aggregators. The
vertical line in the centre of each violin plot represents the average score.

In this section, we perform an ablation study on the aggregator used within our Neighbourhood
Transformers (NT). We evaluate five different aggregators: mean, weighted-mean, sum, gated-
sum, and max. As shown in Figure 7, there is no clear trend in performance across different aggre-
gators, with the exception that the sum aggregator tends to be unstable and often results in worse
performance. Among the tested aggregators, weighted-mean appears to be a more robust choice
overall. However, the gated-sum aggregator achieves the highest score on the Questions dataset,
while the mean aggregator performs best on the WikiCS dataset. This suggests that the choice of
aggregator can significantly impact the performance of NT and that the optimal aggregator may vary
depending on the specific characteristics of the dataset.
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Figure 8: Testing accuracy scores (%, the horizontal axes) in 10 runs of whether to add self-loops.
The vertical line in the centre of each violin plot represents the average score.

A.2 ON SELF-LOOPS

In this section, we investigate the impact of adding self-loops to nodes in NT. Adding self-loops,
which are edges connecting a node to itself, is a technique often used to modify the graph spectrum
and facilitate the learning of smoother representations (Wu et al., 2019). When self-loops are added
in NT, each node effectively becomes part of its own neighbourhood. This inclusion introduces an
inductive bias towards homophily, as it assumes that nodes are similar to their neighbours, which
may not always be the case in heterophilic graphs. The ablation study presented in this section, as
depicted in Figure 8, reveals that incorporating self-loops can occasionally degrade performance on
heterophilic graphs due to the aforementioned incorrect inductive bias. In contrast, for homophilic
graphs, the addition of self-loops does not lead to an accuracy increase on 4 out of 5 datasets. This
suggests that NT is already adept at capturing the homophily present in these graphs, and thus, the
extra self-loops do not contribute additional benefits. These findings highlight the importance of
considering the underlying graph structure and the nature of the relationships between nodes when
deciding on the use of self-loops in graph representation learning models like NT.

A.3 ON EMBEDDINGS SEPARATION

Figure 9: Testing accuracy scores (%, the horizontal axes) in 10 runs of whether to separate ego-
and neighbour-embeddings. The vertical line in the centre of each violin plot represents the average
score.
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Table 3: Statistics of datasets in our experiments

Homophily (%) #Nodes #Edges Mean Deg. Features Classes
Roman Empire -4.68 22662 32927 2.91 300 18
A-ratings 14.02 24492 93050 7.60 300 5
Minesweeper 0.94 10000 39402 7.88 7 2
Tolokers 9.26 11758 519000 88.28 10 2
Questions 2.07 48921 153540 6.28 301 2
A-computer 68.23 13752 245861 35.76 767 10
A-photo 78.50 7650 119081 31.13 745 8
CoauthorCS 78.45 18333 81894 8.93 6805 15
CoauthorPhy 87.24 34493 247962 14.38 8415 5
WikiCS 57.90 11701 216123 36.85 300 10

Zhu et al. (2020) shows that the challenge posed by heterophily in graphs can be mitigated by
distinguishing between ego-embeddings (representations of the central node itself) and neighbour-
embeddings (representations of the node’s neighbours) during the aggregation process. Can this
experience of message passing (MP) be brought into NT? We answer this question by presenting
Figure 9, which shows the outcomes of our study on whether to implement this separation in NT. The
results indicate that except for the A-ratings and Tolokers datasets, adopting the separation of ego-
and neighbour-embeddings leads to a decline in performance on 8 out of 10 graphs. The rationale
behind this is that in heterophilic graphs, the central node tends to be dissimilar to its neighbouring
nodes. Therefore, these dissimilar nodes require different transformations before aggregating and
the separation trick addresses this requirement. However, NT is to aggregate messages from 2-hop
neighbours, which are similar to the targeted node according to monophily. Thus, this separation
is not necessary. This finding suggests that NT’s inherent ability to handle the aggregation of node
information may already be sufficient to capture the complex relationships in heterophilic graphs,
rendering the separation of ego- and neighbour-embeddings an unnecessary step for improving per-
formance in most cases.

B EXPERIMENTAL DETAILS

Table 3 provides a detailed description of the 10 datasets utilized in our experimental analysis. The
first five datasets are classified as heterophilic graphs (Platonov et al., 2023). The latter five datasets
are identified as homophilic graphs (Shchur et al., 2018; Mernyei & Cangea, 2020). To quantify
the degree of homophily within a graph, we use the adjusted homophily metric, as introduced in
Platonov et al. (2023). It is evident from the measurements that heterophilic graphs exhibit lower
homophily scores across the board.

Our experimental setup involves the integration of NT into the GAT-sep architecture, as proposed in
Platonov et al. (2023). Specifically, the network architecture is structured as follows: it begins with
a linear encoder, followed by L residual blocks, and concludes with a linear predictor. Each residual
block incorporates a skip connection (He et al., 2015) and consists of a layer normalization layer, an
NT layer, and a two-layer multi-layer perceptron (MLP). For model training, we utilize the Adam
optimizer (Kingma & Ba, 2015).

When conducting experiments that produce results of NT in Table 1 and Table 2, the training process
is limited to a maximum of 2500 epochs and employs an early stopping strategy to halt training if
the performance on the validation set stagnates for 500 consecutive epochs. The learning rate for
the optimizer is 0.001. Other hyperparameters are tuned using We use Optuna (Akiba et al., 2019)
to search aggregator in mean, weighted-mean, sum, gated-sum, and max, the number of hidden
dimensions in each attention head from 8 to 64, the number of attention heads from 1 to 8, the
number of NT layers from 1 to 5, and dropout in {0.1, 0.2, . . . , 0.8}. The optimal hyperparameters
we found are summarized in Table 4. The same hyperparameter space is also searched to get the
results in Figure 9. Other ablation studies are manually assigned with experimental settings as
described in Table 5.
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Table 4: Hyperparameters of NT on 10 graphs.

Aggregator #dimensions #heads #layers Dropout
Roman Empire sum 32 6 5 0.4
A-ratings mean 40 8 1 0.3
Minesweeper sum 53 1 5 0.2
Tolokers gated-sum 30 2 5 0.1
Questions sum 32 4 1 0.2
Roman Empire (directed) max 36 5 5 0.4
A-ratings (directed) max 23 7 4 0.4
Minesweeper (directed) sum 15 2 5 0.1
Tolokers (directed) gated-sum 9 4 4 0.2
Questions (directed) gated-sum 27 7 1 0.3
A-computer sum 17 4 5 0.4
A-photo mean 18 7 4 0.6
CoauthorCS weighted-mean 41 8 2 0.3
CoauthorPhy weighted-mean 16 2 2 0.1
WikiCS mean 38 1 3 0.2

Table 5: Experimental settings of NT on ablation studies.

Figure 5 Figure 6 Figure 7 Figure 8
Aggregator mean weighted-mean — weighted-mean
#dimensions 8 8 8 8
#heads 4 4 8 8
#layers 1 1 2 2
Dropout 0 0.2 0.2 0.2
Learning rate 0.01 0.01 0.01 0.01
#Epochs 500 1000 200 200
Early stop 50 200 200 200

For the experiments that yield the results of NT presented in Table 1 and Table 2, the training
protocol is constrained to a maximum of 2500 epochs. An early stopping mechanism is imple-
mented to terminate training when there is no improvement in the validation set performance for
500 consecutive epochs. The learning rate for the optimizer is set at 0.001. The selection of other
hyperparameters is facilitated by Optuna (Akiba et al., 2019), which is used to perform a search over
the following parameters: the aggregator type, including mean, weighted-mean, sum, gated-sum,
and max; the number of hidden dimensions per attention head, ranging from 8 to 64; the number
of attention heads, ranging from 1 to 8; the number of layers, ranging from 1 to 5; and the dropout
rate, which is searched within the set {0.1, 0.2, . . . , 0.8}. The optimal hyperparameters identified
through this search are summarized in Table 4. The identical hyperparameter space is also explored
to obtain the results presented in Figure 9. Additional ablation studies are conducted with manually
assigned experimental settings, as detailed in Table 5.

C COMPARING WITH GRAPH TRANSFORMERS

We illustrate the comparison between NT and state-of-the-art graph transformers (GT) with Ta-
ble 6 and Table 7 by referencing the latest data from Polynormer’s publication (Deng et al., 2024),
which also includes GraphGPS (Rampásek et al., 2022), NAGphormer (Chen et al., 2023), Ex-
phormer (Shirzad et al., 2023), NodeFormer (Wu et al., 2022), DIFFormer (Wu et al., 2023), and
GOAT (Kong et al., 2023).

In Table 6, we observe that NT outperforms GT on the Roman Empire dataset by a significant margin
due to its utilization of directional information. On the contrary, GT layers do not consider the edges
of nodes, thus they are unable to model the directionality of edges to achieve optimal performance
on such graphs. On other heterophilic datasets, NT exceeds most GTs and is only slightly behind

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Table 6: Averaged accuracy scores and the standard deviations in 10 runs on heterophilic graphs.
The best score of undirected approaches (the upper section) for each dataset is bolded, and the
second best is underlined.

Roman Empire A-ratings Minesweeper Tolokers Questions
GraphGPS 82.00±0.61 53.10±0.42 90.63±0.67 83.71±0.48 71.73±1.47
NAGphormer 74.34±0.77 51.26±0.72 84.19±0.66 78.32±0.95 68.17±1.53
Exphormer 89.03±0.37 53.51±0.46 90.74±0.53 83.77±0.78 73.94±1.06
NodeFormer 64.49±0.73 43.86±0.35 86.71±0.88 78.10±1.03 74.27±1.46
DIFFormer 79.10±0.32 47.84±0.65 90.89±0.58 83.57±0.68 72.15±1.31
GOAT 71.59±1.25 44.61±0.50 81.09±1.02 83.11±1.04 75.76±1.66
Polynormer 92.55±0.37 54.81±0.49 97.46±0.36 85.91±0.74 78.92±0.89
NT 94.77±0.31 54.25±0.50 97.42±0.50 85.69±0.54 78.46±1.10

Table 7: Averaged accuracy scores and the standard deviations in 10 runs on homophilic graphs.
The best score for each dataset is bolded, and the second best is underlined.

A-computer A-photo CoauthorCS CoauthorPhy WikiCS
GraphGPS 91.19±0.54 95.06±0.13 93.93±0.12 97.12±0.19 78.66±0.49
NAGphormer 91.22±0.14 95.49±0.11 95.75±0.09 97.34±0.03 77.16±0.72
Exphormer 91.47±0.17 95.35±0.22 94.93±0.01 96.89±0.09 78.54±0.49
NodeFormer 86.98±0.62 93.46±0.35 95.64±0.22 96.45±0.28 74.73±0.94
DIFFormer 91.99±0.76 95.10±0.47 94.78±0.20 96.60±0.18 73.46±0.56
GOAT 90.96±0.90 92.96±1.48 94.21±0.38 96.24±0.24 77.00±0.77
Polynormer 93.68±0.21 96.46±0.26 95.53±0.16 97.27±0.08 80.10±0.67
NT 92.61±0.63 96.12±0.39 96.07±0.32 97.32±0.11 80.04±0.61

Polynormer. We would like to emphasize that the hyperparameter budgets for Polynormer are higher
than those for NT. Specifically, even without considering the additional GT layers, the maximum
number of its convolutional layers is 10, while for NT, it is 5. This is because many of our (and
also Performer’s) baselines in Table 1 and Table 2, which are cited from Platonov et al. (2023), are
with this low-budget settings. In Table 7, NT is ranked as one of the top 2 methods across all five
homophilic datasets, with the best average rank of (2+2+1+2+2)/5 = 1.8, which is better than
Polynormer’s average rank of (1 + 1 + 4 + 3 + 1)/5 = 2.

In conclusion, NT demonstrates competitive performance against the SoTA GTs across both het-
erophilic and homophilic datasets.

However, we would like to emphasize additionally that, as analyzed in the Related Works, GTs are
unable to replace Message Passing Neural Networks (MPNN) as an independent method due to the
information loss of topology. Consequently, the current GT methods are usually combined with
MPNNs (e.g. GraphGPS) and would be more accurately described as ‘GT-augmented MPNNs’. In
contrast, our research demonstrates that NT is capable of handling heterophily and can be adaptively
compatible with MP, potentially replacing it as an alternative component in future GNN architec-
tures. This is actually orthogonal to the GT approach; that is, NT can also be combined with GT to
form an enhanced ‘GT-augmented NT’.

D ANALYSIS ON THE DESCREPENCIES OF NEIGHBOURHOOD SIZES IN
TRAINING AND IN INFERENCE

To check if NT performs consistently when neighbourhood sizes are shifted from training to the
inference stage, we conduct an analysis to measure the discrepancy between neighbourhood sizes in
the training set and beyond.

We first approximate the averaged size of belonging neighbourhoods for each node using s =
deg(A2)/deg(A), where A is the adjacency matrix and deg(·) is a function to derive node degrees
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Table 8: Descrepencies of Neighbourhood sizes in training and in inference for the 10 graphs.

Roman Empire A-ratings Minesweeper Tolokers Questions
3.5% 5.3% 0.6% 8.8% 3.9%

A-computer A-photo CoauthorCS CoauthorPhy WikiCS
6.5% 8.8% 6.5% 7.2% 14.4%

from the adjacency matrix. Then, with 100 histogram bins, we transform elements of s correspond-
ing to the training set to distribution P and the other elements to distribution Q. After that, we
calculate the discrepency between the two distributions as

∑
i

|pi− qi|, where pi is the probability of

the i-th histogram bin of P and qi is that of Q.

The discrepencies for the 10 datasets are reported in Table 8, indicating varying levels of discrep-
ancy across the datasets, with Minesweeper showing low discrepancy and WikiCS showing high
discrepancy. Despite these variations, NT maintains consistent performance, as demonstrated by the
experiments in Table 1 and Table 2.

E THEORETICAL ANALYSIS ON NEIGHBOURHOOD TRANSFORMERS

Here, We outline some theoretical foundations that underpin our approach.
Theorem 1. When the combiner concentrates on information from central nodes of neighbourhoods,
the Neighbourhood Transformer is a message passing layer.

Proof. When Equation 1 omits H ′
k,: and becomes

Z(j,k),: = ϕ(Combiner(H ′
j,:)) ≜ Z(j),

Equation 2 becomes a simple transformation of Z(j) as

M (j) = ϕ(SelfAttention(⊕{Z(j),Z(j), . . . ,Z(j)}) =


ϕ(Z(j)Wv)
ϕ(Z(j)Wv)

· · ·
ϕ(Z(j)Wv)

 .

Then, the output of Equation 3 is actually equivalent to the output of a message passing layer:

Hi,: = Aggregator(M (j)
(i),:|vj ∈ N (vi)) = Aggregator(ϕ(ϕ(Combiner(H ′

j,:)) ·Wv)|vj ∈ N (vi)).

Theorem 1 demonstrates that NT is compatible with message passing (MP) and possesses superior
or at least equivalent expressiveness. This ensures that NT can leverage the proven strengths of MP
when dealing with homophily, while still potentially offering additional benefits.
Theorem 2. When the combiner omits information from central nodes of neighbourhoods, the
Neighbourhood Transformer with linear-attention is a two-layered message passing network.

Proof. When omitting H ′
j,: in Equation 1 and using linear-attention in Equation 2, the final repre-

sentations of Equation 3 are

Hi,: = Aggregator({ϕ(Q̂i,: ·K(j)
v

Q̂i,: ·K(j)
1

)|vj ∈ N (vi)}),

where K
(j)
v and K

(j)
1 indicates the formulas K̂T · V and K̂T · 1n×1 of Performer applied in the

neighbourhood N (vj). In detail, the element at the position (x, y) of K(j)
v is

∑
vk∈N (vj)

K̂k,xVk,y

and the x-th element of K(j)
1 is

∑
vk∈N (vj)

K̂k,x.
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Regarding K
(j)
v and K

(j)
1 as the result of a message passing layer, which aggregates information of

N (vj) to node vj , NT can be rewritten as a two-layered message passing network, as

Z(1) = (K̂,V ) = (exp(XWkP − ||XWk||2

2
),XWv),

H
(1)
i,: = (K(i)

v ,K
(i)
1 ) = ([

∑
vj∈N (vi)

K̂j,x · Vj,y]xy, [
∑

vj∈N (vi)

K̂j,x]x),

Z(2) = H(1),

H
(2)
i,: = Aggregator′(exp(

1√
h
·Xi,:WqP ), {Z(2)

j,: |vj ∈ N (vi)}),

where X is the inputted node features.

Theorem 2 implies that, with simplifications, NT is a message passing layer that utilizes information
from 2-hop neighbours. This can be beneficial for capturing the monophilic patterns when handling
heterophily.

F THEORETICAL ANALYSIS ON THE PARTITIONING ALGORITHM

To formalize our analysis on Algorithm 1, we outline the following two assumptions to measure the
memory usage in neighbourhood processing.
Assumption 1 (Paralleled Processing). The memory consumption of applying the transformer to a
group of neighbourhoods is proportional to the group’s area, defined as the product of the number
of neighbourhoods and their maximum size.

Assumption 2 (Sequential Processing). Sequentially processing two neighbourhood groups with
areas s1 and s2 consumes memory proportional to max(s1, s2).

With these assumptions in place, we are able to state and prove the following theorem:
Theorem 3. Given any partitioning that divides neighbourhoods into two groups, there exists an
alternative partitioning that requires the same or less processing memory, where all neighbourhoods
in one group are not smaller than those in the other group.

Proof. Considering a partitioning where group G1 contains c1 neighbourhoods and group G2 con-
tains c2 neighbourhoods, with the maximum size d1 of neighbourhoods in G1 being not smaller
than that d2 of G2 (d1 ≥ d2). If the smallest neighbourhood (with size d3) in G1 is smaller than
the largest one (with size d2 > d3) in G2, we can swap their positions to create two new groups G′

1
and G′

2. The area of G′
1 remains unchanged since max(d1, d2) × c1 = d1 × c1, while the area of

G′
2 is unchanged or reduced since min(d3, d4) × c2 ≤ d2 × c2, where d4 is the size of the second-

largest neighbourhood in G2. We can keep swapping the smallest neighbourhood in the first group
with the largest neighbourhood in the second group if the former is smaller than the latter until any
neighbourhood in the first group is not smaller than those in the second, with the processing memory
remaining unchanged or reduced.

From Theorem 3, we conclude that the optimal partitioning can be achieved by first ordering the
neighbourhoods and then scanning linearly for the partitioning point, as done in line 8 of Algo-
rithm 1. The complexity of this search is O(n log n), accounting for the sorting step.
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