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ABSTRACT

Lossy KV cache compression is a well-explored subfield of machine learning effi-
ciency, with improved latency being one of its major gains. However, lossy com-
pression techniques can fumble from time to time, exhibiting various — and often
catastrophic — failure patterns that are not only difficult to resolve but some-
times even hard to identify in the first place, making the direct deployment of
models with compressed KV cache a risky endeavor. In this work, we explore a
way to preserve lossless generation quality while still benefiting from the accel-
eration provided by attending only to a compressed KV cache. Specifically, we
draw inspiration from the n-gram candidate pool decoding paradigm pioneered by
Lookahead Decoding — a largely overlooked and underdeveloped way to achieve
efficient yet lossless decoding — where we purposely allow the model to Fumble
Around with compressed KV cache to generate multiple lossy “n-gram guesses”
with just one forward pass, while Find Out via lossless verification in the same for-
ward pass in truly parallel fashion. From a conceptual standpoint, our proposed
framework is compatible with all typical static or dynamic KV cache compression
methods from the token dropping realm, thus opening up a new avenue for the
stagnant n-gram decoding paradigm. Practically, we show that — with careful
system support — this framework presents many useful traits that similar draft-
less baselines (e.g., Self-Speculative Decoding) simply cannot achieve, such as
requiring only one set of KV cache and being far less sensitive to model, task, and
input-length scenarios. Our comprehensive empirical results show FAFO provides
1.20-2.71x latency speedup over the original model, while consistently outper-
forming other lossless + draftless solutions by a large margin.

1 INTRODUCTION AND BACKGROUND

Transformer-based Large Language Models (LLMs) have demonstrated strong capabilities across
a wide range of general and specialized tasks. However, one innate challenge of relying on
transformer-based architectures is the Key-Value (KV) cache, which is necessary for efficient in-
ference. The KV cache typically grows linearly with batch size and sequence length, and its sheer
size creates a significant efficiency bottleneck for model-serving systems, as noted in prior art like
Pope et al.| (2023)); [Fu| (2024). For these reasons, KV Cache Compression as a subfield has received
major interest and advancement over the past year (Yuan et al.}[2024; Luohe et al.,|2024)), with many
lossy efficiency methods proposed to allow models to process using only compressed KV cache,
thereby achieving significant savings on memory footprint and improved latencyﬂ In this work,
we present a lossless KV cache compression framework — Fumble Around and Find Out (FAFO)
— within the draftless efficient decoding paradigm. Specifically, FAFO leverages a modified ver-
sion of the n-gram candidate-pool decoding paradigm pioneered by Lookahead Decoding (Fu et al.,
2024) and introduces several significant advancements.

! As faithful authors, we want to emphasize that FAFO does not provide savings on memory footprint over
full-model inference, but only offers latency advantages. We note that this is the norm for all efficient decoding
methods that pursue lossless generation quality, since lossless verification cannot be achieved without full
attention over the full KV cache. However, FAFO does present significant memory-footprint savings over
typical speculative decoding methods. More on this in SectionE}
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We will show that, while integrating token dropping—based KV cache compression into the draftless,
lossless efficient decoding paradigm is conceptually straightforward — as already attempted by var-
ious self-speculative decoding works like TriForce (Sun et al.,|2024)), MagicDec (Sadhukhan et al.,
2025)), Self-Speculative (Zhang et al.|[2023a), and SWIFT (Xia et al., 2025) — its combination with
n-gram candidate-pool decoding (hereinafter “n-gram decoding’) presents unique system challenges
but, when done correctly, yields substantial gains. Specifically, we find that (when implemented with
careful system support), this integration exhibits properties that prior self-speculative decoding
methods cannot match, such as requiring maintenance of only a single set of KV cache and being
agnostically compatible with different models, tasks, and input sequence lengths. Further, thanks
to the inherent characteristics of n-gram decoding and the advances in FAFO, our framework can
produce many more “n-gram guesses” — addressing a major limitation noted by the Lookahead De-
coding authors — and is therefore particularly effective for tasks that benefit from repetition, such
as summarization, writing improvement, and coding, which are common uses of today’s LLMs.
As a result, the FAFO framework provides a 1.20-2.71 x latency speedup over the baseline model,
presenting a large margin over other draftless solutions that also preserve lossless generation quality.

1.1 Lossy KV CACHE COMPRESSION CAN SOMETIMES FAIL, AND FAIL SO IN
UNPREDICTABLE WAYS

One unresolvable challenge of lossy efficiency approaches is they do fail under certain
model-method—task—setting—compression rate combinations. Prior benchmark works like [Yuan
et al.| (2024)) indicate that when they fail, they often fail catastrophically. Such failure-triggering
conditions are often tricky to identify, as they can be hidden under layers of different settings. For
instance, [Yuan et al.| (2024)) reveals that H20 (Zhang et al.l[2023b)) can perform decently on Needle-
in-a-Haystack/passkey retrieval-like tasks (Mohtashami and Jaggil [2023) if given a shorter passkey
to retrieve and a continued prompt, but would fail catastrophically (dropping from 100% to 35%)
once the passkey length is extended. Similarly, benchmarks like SCBench (Li et al., [2025a) and
later works like Ada-KV (Feng et al.l [2024) reveal that while strong token dropping methods like
SnapKV (Li et al., 2024a) are often performant across many tasks, they face a significant perfor-
mance degradation if they are unaware of the user query before eviction, thus directly hurting their
multi-turn performance — arguably one of the signature capabilities of instruction-following LLMs.

Further, one important aspect of lossy compression schemes that we don’t see the community discuss
enough is task accuracy is only a proxy of model utility. The robustness of model behavior — which
can be loosely defined as whether the model would react in a consistent manner — also matters,
and such robustness is often severely compromised post-compression. For instance, Dutta et al.
(2024) demonstrates that while compressing the model to relatively high bitwidths (W8A16 and
WZ8AS) can result in similar accuracy readings to their uncompressed counterparts across standard
tasks, the model behavior has covertly undergone a drastic shift. For instance, as much as 18.99% of
MMLU questions (Hendrycks et al.,[2021)) went from right to wrong or vice versa, after compressing
Llama2-13B model with SmoothQuant to W8AS (Xiao et al., 2023). This means deploying lossy
compressed versions of the model would potentially result in drastically different user behavior, and
such disparity is not easily reflected in standard benchmarking with accuracy-like metrics.

In other words, while KV cache compression techniques bring significant efficiency benefits,
direct deployment of models utilizing lossy compressed KV cache is often done at the cost of
decreased model reliability. Given the vast existence of potential combinations of models, tasks,
compression methods, compression rates, etc., as well as the technically infinite variants of possible
prompts, service owners also cannot effectively identify such failure cases without constant and
exhaustive empirical stress testing. This calls for a lossless KV cache compression technique
with meaningful efficiency benefits preserved. Our FAFO provides exactly that in the latency
department.

1.2 KV CACHE COMPRESSION + N-GRAM CANDIDATE POOL DECODING BRINGS UNIQUE
ADVANTAGES OVER TYPICAL SELF-SPECULATIVE DECODING

While lossy KV cache compression methods might have their own pitfalls if employed in an end-
to-end manner, it is common knowledge that not every word within a perfectly written sentence is
hard to infer, as plain languages like English often contain many easy filler words that do not require
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outstanding model intelligence to predict correctly. In fact, this very idea fuels the established
Speculative Decoding (SD) paradigm (Xia et al., 2022; [Leviathan et al.,|2023)), where a small draft
model with fewer resource demands first generates guesses, which are then verified with the larger
target model. The main drawback of standard SD methods is that they involve non-trivial effort
and resources to align and host a separate draft model (Yan et al.| 2025} |Li et al.| 2024blic; [2025b).
A subfield named Self-Speculative Decoding (self-SD) has since been promoted by removing the
need to host a separate draft model, where the draft tokens are instead generated by the same target
model, but under a much more resource-efficient mode. Specifically, methods like Sun et al.|(2024);
Sadhukhan et al.| (2025); [Zhang et al.| (2023a); |Xia et al.| (2025) have explored the general idea of
integrating lossy KV cache compression with speculative decoding, attempting to deliver lossless
generation quality with improved latency.

However, we find all such self-speculative decoding methods come with two practical short-
comings. First, they all require maintaining separate sets of KV cache for the “draft” and “target”
token generation, making them more memory-hungry than just doing full model inference. This un-
dercuts the very purpose of going draftless in the first place: self-SD methods typically deliver worse
latency performance than standard SD (as the latter can afford to craft and train an SD-specific draft
model (Li et al.| 2025b)), so the main goal of going draftless is to reduce memory demands, which
is critical in resource-constrained scenarios like local hosting. Secondly, we find many such self-SD
methods lack general usability: for instance, TriForce (Sun et al.|[2024) demands a tiny long-context
model that shares the target model’s vocabulary, and can be as slow as 0.17x the full model infer-
ence under certain scenarios. SS (Zhang et al., 2023a)) can require 7-to-20+ hours of task-specific
optimization before it is ready for inference, MagicDec (Sadhukhan et al.,[2025) only performs well
under large batch sizes, and, in practice, its implementation limits its maximum generation length to
just 96 tokens or lower (Wu et al., 2025). While we respect all prior art for their contributions, we
believe it is fair to argue that such sensitivity makes them less ready for real-world deployment.

With this in mind, we look into other lossless efficient decoding channels and find the n-gram candi-
date pool paradigm pioneered by Lookahead Decoding (Fu et al.l 2024)) to be a potential candidate.
Different from the sequential draft-then-verify design of SD, n-gram decoding generates its newly
drafted n-grams in parallel with its lossless verification (in Lookahead, both are done with full KV
cache). This allows n-gram decoding to achieve a single KV cache footprint and, by design, com-
pletely sidestep the first shortcoming mentioned above.

However, n-gram decoding has its own quirks. Most significantly, since drafting and verification
occur within the same forward pass, it requires non-trivial system engineering efforts to support any
kind of KV cache compression method in a meaningful way. This is vastly different from standard
SD, where the sequential pipeline allows trivial access to almost all KV cache compression methods,
since one can simply engage the drafting forward passes with compression and the verification ones
without. On a more detailed level, Lookahead Decoding is unable to host a large number of n-gram
guesses, making its end-to-end latency advantage less significant than the n-gram potential would
otherwise allow (Fu et al., 2024} [Xia et al., 2025]).

To bridge the gap, we present the FAFO framework: where we utilize the model with compressed
KV cache to Fumble Around with great freedom and efficiency, collecting n-gram guessed tokens
and storing them in a candidate pool, meanwhile Find Out at the same forward pass with the full
KV cache. We present FAFO as a general framework that is compatible with all typical static or
dynamic token dropping-based KV cache compression methods as a means of generating guessed
tokens. In summary, our main contributions are as follows:

* Lossless KV cache compression for improved latency. Unlike typical KV cache methods which
cannot maintain lossless generation quality, or (self) speculative decoding works that maintain
lossless output at the cost of higher memory requirements, we achieve lossless quality, major
latency improvements, and a leveled memory footprint (equal to full model inference) at the same
time. To the best of our knowledge, FAFO is the only approach capable of delivering such a
trifecta other than Lookahead Decoding (Fu et al., 2024)).

* Customized KV cache manager that leverages FlexAttention. We developed a custom KV
cache manager that allows users to couple all typical token dropping-based KV cache compression
techniques with our FAFO framework, while benefiting from the efficiency gains provided by
FlexAttention (Dong et al., [2025)) kernels.
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* General usability that is scenario-agnostic. We empirically show that FAFO is far more robust
than typical self-SD methods when it comes to different models, tasks, and input sequence length
combinations. FAFO delivers consistent speedups across a wide range of scenarios, often with a
significant performance lead over Lookahead and other lossless self-SD methods.

* Revive a stagnant paradigm. The Flex Attention compatibility, along with the FAFO framework
design, opens up a new avenue of efficient draftless decoding leveraging KV cache compression
techniques. We argue that this breakthrough is particularly significant, as there has not been
another lossless n-gram decoding method since the initial Lookahead Decoding, which debuted
in late 2023. This contrast is especially striking, since within the same timeframe we have seen a
cluster of lossy KV cache-based SD methods developed despite their innate shortcomings (Zhang
et al., [2023a}; [Elhoushi et al., [2024; |Liu et al.l [2024; [Xia et al., 2025} |Sun et al., 2024} Sadhukhan
et al.,2025), calling for a revisitation of n-gram decoding.

2 RELATED WORKS

Self-Speculative Decoding To the best of our knowledge, four SD works have touched on SD idea
under a strict draftless context: Self-Speculative (SS) (Zhang et al., 2023a)), TriForce (Sun et al.,
2024), MagicDec (Sadhukhan et al., [2025), and SWIFT (Xia et al.l [2025). Specifically, SS and
SWIFT leverage layer-skipping as the means to efficiently generate draft tokens, whereas TriForce
and MagicDec integrate with KV cache compression methods like SnapKV (Li et al.| [2024a) and
LM-Infinite/StreamingL.LM (Han et al., 2024} Xiao et al., [2024)).

FAFO differs from SD methods by only requiring one model and one set of KV cache. Com-
pared to the four self-SD methods like TriForce and SWIFT, FAFO prevails in requiring just one
set of KV cache. This is because SD methods operate in a sequential draft-then-verify way, where
some of the newly generated tokens will always rely on a lossy KV cache. We provide a detailed
walkthrough on why this drawback is innate to SD methods in Appendix [C| Further, FAFO is em-
pirically much more scenario-agnostic and overall more performant than these four self-SD
methods (see Table [2). Finally, technically speaking, FAFO also differs from SD in its parallel
verification process, which we will discuss in the next section.

N-Gram Candidate Pool Decoding Among efficient yet lossless decoding pipelines, n-gram de-
coding presents a unique paradigm. Developed from the Jacobi Decoding process (Santilli et al.,
2023)) and first proposed under Lookahead Decoding (Fu et al., 2024), n-gram decoding generates
multiple guessed tokens and stores them in an n-gram candidate pool. It can then generate additional
n-gram candidates and verify them against existing ones under the same forward pass in a truly par-
allel manner. This stands in contrast to the sequential process of all SD methods, where guessed
tokens must first be generated by the draft model and only then verified by the target. We note
that, while some prior art often introduces n-gram decoding (and specifically Lookahead Decoding)
under the same realm as speculative decoding, the n-gram and speculative decoding paradigms
are completely different, given the parallel draft-and-verify vs the sequential draft-then-verify
difference. Unique opportunities and challenges arise across each pipeline, where careful consider-
ations must be made.

This parallel design grants n-gram decoding several unique properties. Most notably, it allows n-
gram decoding to take advantage of guessed n-gram tokens that are correct further down the de-
coding path, but not immediately as the next decoded token — something SD cannot do. This
phenomenon is extremely common, as from a linguistic standpoint, some degree of repetition is
often needed to form a cohesive paragraph. Such repetition is exemplified by their blog’s first GIF
which we recommend readers check out to get an intuitive sense of how frequently this occurs.

FAFO’s verification process follows this n-gram candidate pool design. However, different from
Lookahead Decoding, FAFQ’s guessed token generation employs a cache-compressed version
of the target model, allowing it to generate many more n-gram candidates within the same
forward pass. We emphasize that although this design sounds simple, it involves non-trivial system
optimization, as a naive attempt to integrate KV cache compression with n-gram decoding would
fail: the expensive overhead of mask recomputation during each decoding step would cancel out any
latency improvements. Meanwhile, even with efficient n-gram generation, methods like Lookahead

2Figulre lofhttps://lmsys.org/blog/2023-11-21-1ookahead-decoding/.
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cannot host a large number of n-gram guesses, bottlenecking their potential by incurring an intoler-
able latency drop as the number of guessed tokens increases (Figure [T). Additional improvements
over Lookahead Decoding are discussed in Section 4}

3 MOTIVATION: PRACTICAL OVERVIEW OF FAFO’S ADVANTAGES

As detailed in Section 2] KV cache compression and self-speculative decoding have already seen
mature development, while n-gram decoding — though stagnant in terms of progress — is also an
established paradigm, first introduced in late 2023 (Yuan et al.| 2024} Xia et al, [2024; |Fu et al.,
2024])). Thus, much of the contribution of our work lies in whether our proposed FAFO can present
significant advantages over these existing solutions — which we shall gladly report that it can.

Given the highly technical nature of n-gram decoding (Fu et al.l 2024) and the lack of any loss-
less follow-up to Lookahead (in terms of being draftless, doing parallel verification, and using an
n-gram candidate pool) until FAFO, we believe the majority of our intended audience is likely un-
familiar with the implementation details of Lookahead Decoding. Thus, for a smoother delivery,
we present FAFO at a high level, comparing it against existing designs under controlled settings.
Readers can view this section as a practical overview of FAFQO’s advantages. We later introduce
the design and implementation details of FAFO in Section[4]

Again, n-gram decoding is a draftless technique that generates multiple n-gram guessed tokens and
verifies the model output with existing stored n-grams under the same forward pass. It is our honest
assessment that the original Lookahead Decoding manuscript does not do the best job in explain-
ing how these n-grams are generated and reused, but Figure 4 (a GIF) of its accompanying blog
illustrates the mechanism far more clearly. We strongly encourage readers to check out this Fig-
ure 4 GIFE] before proceeding, as no static visualization can provide a better walkthrough of
Lookahead Decoding, and understanding this algorithm is essential to understanding FAFO.

At the highest level, FAFO can be viewed as a major improvement over Lookahead Decoding, with
two main components: Fumble Decoding and Find Out Verification. During decoding, Fumble
Decoding allows FAFO to generate n-gram guessed tokens using compressed KV cache, rather
than the full cache required in Lookahead. In practice, this is enabled by leveraging KV cache
compression methods such as LM-Infinite/StreamingLLM (Han et al., 2024 [Xiao et al., [2024) and
Quest (Tang et al.l [2024)), under our FlexAttention-powered (Dong et al., [2025) custom KV cache
manager (Appendix [D). Find Out Verification further improves upon Lookahead by caching more
than just the most recently decoded token. More details are provided in Section .3

3.1 FAFO PRESENTS SIGNIFICANT MEMORY SAVINGS OVER SELF-SPECULATIVE
DECODING METHODS

Self-SD methods reduce memory footprint compared to standard SD by eliminating the need for
a separate draft model’s weights. Naturally, self-SD methods like TriForce (Sun et al.l |2024) and
SWIFT (Xia et all [2025) tend to leverage compressed KV cache for guessed token generation.
However, they still require hosting multiple sets of KV cache, as the draft forward must be computed
independently from the target forward with full cache (see Appendix |C|for details).

Table 1: Llama-2-7b-chat over MT-Bench, with TriForce additionally utilizing a llama-68m as the
draft-draft model, following its own configuration. 7 is the average acceptance length, a theoretical
upper bound of practical speedup offered by a method with optimal implementation.

Method Peak Memory (MB) | Speedup | 7

FAFO-Stream 2362 1.91x 2.29
FAFO-2forward 3455 1.19x 2.18
TriForce 4584 0.21x 1.06

Table 1| shows that TriForce occupies a much larger memory footprint than FAFO. We also observe
that under challenging multi-turn tasks like MT-Bench (Zheng et al.,|2023)), TriForce is significantly
slower than simply running inference on the full model. This is because it requires guessed tokens to

3Figulre 4 of https://1lmsys.org/blog/2023-11-21-1ookahead-decoding/.
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be generated at the exact right time and position — a condition that is difficult to meet, as reflected
by the 7 = 1.06 theoretical upper bound in Table 2] In contrast, FAFO with StreamingLLM (Xiao
et al., 2024) as the backbone KV cache compression method achieves a 1.91x practical speedup
with a 2.29x theoretical upper bound — a significant improvement over TriForce.

To determine whether FAFO’s gains over TriForce stem from the n-gram candidate pool allowing
more flexible guessed token positions than speculative decoding, or from KV cache compression
being more effective under parallel verification, we design an investigatory method called FAFO-
2forward (Table[T). In FAFO-2forward, we drop the parallel verification design; instead, we perform
one forward pass with compressed KV cache to collect n-gram guessed tokens, followed by a second
forward pass to verify. Results show that FAFO-2forward is outperformed by the full FAFO-Stream
by 60% (1.91x vs. 1.19x) in practical latency speedup, despite having similar theoretical average
acceptance lengths (7 = 2.29 vs. 2.18). This indicates that while maintaining an n-gram candidate
pool does provide an inherent advantage over strict sequential speculative generation when it comes
to integration with KV cache compression means, the pipeline is only fully leveraged when com-
bined with parallel verification upon fumble-generated tokens — justifying the integrated framework
proposed by FAFO.

3.2 FAFO ALLOWS FOR MUCH MORE GUESSED N-GRAM GENERATION THAN
LOOKAHEAD DECODING

One major distinction between FAFO and

Lookahead Decoding is that FAFO’s n-gram . 22 _
guessed tokens are generated using only com- 2 B
pressed KV cache (Fumble Decoding; see Sl 7 “%
Section 4.2 for details). This design allows = 20¢
FAFO to generate far more guessed tokens than 255 e 5
Lookahead, overcoming a key limitation rec- g FAFO - Throughput 1'93?
ognized by the Lookahead authors (see Fig- £ 50 = tf\;’gaf‘iigll:;‘;ﬁghp“t 182
ure 8 of (Fu et al.| 2024}, where Lookahead’s ~=- Lookahead - Acc. Length | | _
45

practical speedup drops sharply as the num- o % % n

ber of guesses increases). As shown by the # Guesses

blue lines in Figure [T, FAFO can generate

more n-gram guesses without incurring a speed Figure 1: FAFO vs Lookahead Decoding with
penalty, whereas Lookahead peaks around 10 increased number of n-gram guesses. It can be
guesses and then suffers decreasing throughput observed that FAFO significantly outperforms in
as guesses increase. Note that the number of terms of both practical speedup and theoretical n-
n-gram guesses almost directly determines the ~gram generation quality.

overall performance of a candidate-pool-based

method, since more guesses provide more opportunities for matches.

Beyond Fumble Decoding, we also introduce a small but critical improvement at the verification
stage: Find Out Verification (Section .3). Instead of caching n-grams solely based on the most
recently generated token, we assign a lookback window and cache them as part of the n-gram.
Combined with Fumble Decoding, this enables FAFO to generate both more numerous and higher-
quality n-grams, as reflected by the red lines in Figure[I] which show the theoretical upper bound of
the average token acceptance length.

4 FAFO: FUMBLE AROUND AND FIND OUT

FAFO Fumbles Around with a compressed set of KV cache: generating and collecting multiple fu-
ture subsequences (guesses) in parallel. These speculative subsequences are offloaded to a CPU-side
cache pool and subsequently verified during the lossless Find Out verification, enabling multiple to-
kens to be decoded per step. FAFO executes Fumble Around generation and Find Out verification
concurrently within a single forward pass with a customized sparse attention kernel (detailed in Sec-
tion[#4). This single-pass co-scheduling amortizes QKV attention over both drafting and verifica-
tion, avoids costly separate draft/verify passes (e.g. speculative decoding), and enables multi-token
acceptance per iteration. The complete workflow is illustrated in Figure
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Figure 2: General Pipeline of FAFO. Walkthrough of FAFO decoding with (1) the input prompt
“Alan Turing is”. (2) FAFO retrieves 2-gram candidate sequences such as “a computer” and “a
genius” based on the suffix “Turing is”. (3) In parallel, Fumble Decoding generates next tokens
of guesses like “from United”. A single forward pass is executed for both the Fumble Decoding
and Find Out Verification branches. (4.1) Verified candidates (e.g., “a genius”) are accepted and
appended to the input. (4.2) Newly generated 2-grams (e.g., “United Kingdom”) are cached by
combining with previously buffered tokens from the same speculative subsequence (e.g., “come
from”). (5) These new cached sequences are then added to the shared cache pool for reuse.

4.1 PRELIMINARY

We consider a language model p, and a full sequence of tokens available at a given point in decoding
Ty, consisting of both the initial prefill tokens and all tokens generated so far, where |x| denotes
the total number of tokens. Associated with xy.|, is a set of key-value (KV) cache entries, denoted
by kvy. |, Let yéi+135i+k = (Ys;+1, Ys;+2; - - - » Us, +k ) denote a subsequence of k tokens, where the
index range (s;+1:s;+k) refers to absolute positional indices, assuming the tokens in subsequence
+ are placed at positions s; later in the current decoded sequence x1;|;|. FAFO maintains a set of
n such subsequences as speculative future subsequences. We also define a KV cache compression
function C, i.e. methods such as LM-Infinite/Streamingl.LM (Han et al.,|2024; |Xiao et al., 2024)).

4.2 FUMBLE DECODING

FAFO uses a compressed set of KV cache to speculate future tokens. At each decoding step, FAFO
maintains a set of n independent speculative subsequences y! ;. stk Y2 i tiey ks Ys +1es, ke
Given the current KV cache entries kv |, and a KV cache compression function C, FAFO leverages

the compressed cache C(kvy.|,|) to generate the next token for each speculative subsequence y' as:

yii-&-k-«—l = argmax p(y;+k+1|yit+l:s7¢+kac (kV1:|x|)) Vie{l,...,n} (D

To ensure continuous generation of future tokens, the oldest token in each subsequence, namely
yi .1, is discarded after each step. Each subsequence ys 4.5, 1 k41 are collected and offloaded to
the CPU pool for later use in the verification phase, followmg caching strategy of our “Find Out”

verification. Specifically, each updated subsequence y; 1 2.5, +k+1 18 cached into a shared pool based

on k previously discarded tokens, stored as a buffered sequence y? _, t2:5,41 from earlier iterations.

4.3 FIND OUT VERIFICATION

Given the most recent token z|,, FAFO first retrieves n speculative subsequences (guesses)
a',...,a", generated earlier with Fumble Around Decoding, from a cache pool using the (k)-token
sufﬁx T —k+1:[a| (Alg. EI; Fig.[2). These candidates are then verified in parallel with the full KV
cache via distribution matching, following the standard speculative-decoding accept/reject rule in
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Leviathan et al.| (2023): the target LLM is forwarded on the draft tokens in parallel, each token is
accepted based on whether the model’s predicted output exactly matches the corresponding draft to-
ken (Alg.|3). Unlike Lookahead, which caches and retrieves candidates conditioned solely on x|,
FAFO conditions retrieval on a longer suffix, yielding higher-quality guesses. After verification, all
accepted tokens are appended at once before the next iteration, and in practice more than one token
is typically accepted, translating into lower end-to-end decoding latency.

4.4 FUMBLING AROUND TO FIND OUT IN ONE STEP WITH ATTENTION SPARSITY

FAFO has both Fumble Around decoding and Find Out verification in a single forward pass of a
single model, achieving a draftless setting: FAFO concatenates tokens from both the fumble decod-
ing and verification phases, using a designated attention mask (Figure [3). In Fumble Around, we
organize n subsequences in a column-wise manner (details in Appendix [DJ.

Although Fumble Around using a compressed KV cache, a generic dense attention kernel largely
nullifies the potential speedup: lossless verification still requires retaining the full KV cache, and
during the fumble phase tokens compute attention over the entire cache with irrelevant entries merely
masked out. In other words, without a dedicated sparse attention kernel aligned to the cache
sparsity, KV compression does not translate into real efficiency. We therefore employ FlexAt-
tention to implement the required sparsity patterns and realize the intended acceleration.

From dynamic inference to fixed-size KV blocks for efficient sparse attention. FlexAtten-
tion performs well in prefill, where sequence length is static, but naively applying it to decoding
would require recomputing the block mask at every step, which is prohibitively expensive. We
avoid this by reserving a fixed region at the head of the KV tensors to hold the compressed entries
C(kvy.|z|)—shared by both Fumble Around and Find Out (Fig. . Concretely, given the current

sequence 1|, we lay out the cache as [ C(kvy.4() || R(kvy,4|) |, where R(:) stores the remaining
KV cache. After each decoding step, we swap newly selected entries into the fixed compressed
region and evict discarded ones according to C, leaving the region’s shape and block addresses un-
changed. This design lets us apply a static block mask across steps, exploiting sparsity in the com-
pressed region without per-step mask recomputation, thereby realizing decoding speedups (App.[G).

5 EXPERIMENTS

Models and Settings Our core evaluations focus on Llama-2-Chat (7B) (Touvron et al., [2023)),
LLaMA-3-Instruct (8B) (Grattafiori et al.,2024), LLaMA-3.1-Instruct (8B) (Grattafiori et al., 2024),
and Qwen?2.5-Instruct (7B, 32B) (Yang et al., 2024)), providing fair coverage of different attention
architectures, model families, and scales. Additionally, we evaluate DeepSeek-R1-Distill (Qwen-7B
and Llama-8B) (Guo et al.,[2025) under reasoning tasks. ~All experiments are conducted on a single
NVIDIA A100 GPU with 80GB of memory. Unless otherwise specified, all models are served with
FP16 precision and a batch size of 1, following the setup of existing latency-oriented works (Cai
et al., 2024; [Fu et al., [2024)). FlexAttention kernels (Dong et al.l 2025)) with our customized KV
cache manager are used for efficient sparse attention computation.

Benchmarks Following prior speculative decoding works (Fu et al., [2024; |Li et al., |2024b), we
evaluate FAFO on three widely used benchmarks: MT-Bench (Zheng et al., 2023), GSM8K (Cobbe
et al., 2021), and HumanEval (Chen et al.l 2021). Additionally, we test FAFO on Multi-IF (He
et al.| [2024), SCBench (Li et al.| [2025a), LongBench (Bai et al., 2023)), and AIME 24 to further
demonstrate performance under multi-turn, long-context, and long-generation scenarios. Finally, we
include PG19 for alignment with TriForce. Following Fu et al.| (2024)); |[Li et al.| (2024b); Sadhukhan
et al.| (2025), we report FAFO’s performance with the following metrics:

* Wall-clock speedup ratio: The observed speedup relative to vanilla autoregressive decoding,
measured in tokens per second.

» Average acceptance length 7: The average number of tokens accepted per decoding step.

Baselines We compare FAFO against established self-SD and n-gram decoding methods, includ-
ing TriForce (Sun et al., |2024), SWIFT (Xia et al) [2025), and Lookahead Decoding (Fu et al.,
2024). We omit MagicDec (Sadhukhan et al., 2025), as its implementation cannot support more
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than 96 newly decoded tokens, making it incompatible with most challenging tasks. Older methods
like SS (Zhang et al.,|2023a)) are also omitted, as they have been extensively compared with our fea-
tured baselines and no longer represent the SOTA baselines (Xia et al.|[2025). “FAFO-Stream” and
“FAFO-Quest” refer to our proposed FAFO method instantiated with LM-Infinite/StreamingLLM
(Han et al.l 2024} Xiao et al., [2024) and Quest (Tang et al., [2024)) as the KV cache eviction meth-
ods. We chose these two because they are established representatives of static and dynamic token-
dropping approaches. While we could have developed a custom KV cache compression method
to replace them, we intentionally avoid doing so to respect prior art and to prevent reinventing the
wheel under unnecessary conditions. More importantly, we believe the community benefits most
from a general framework where they can experiment with different KV cache compression meth-
ods, rather than a baked implementation supporting only our own.

Table 2: Observed practical latency speedup and average acceptance length 7 on MT-bench,
GSMSK, and HumanEval-Completion.

MT-bench GSMSK HumanEval-C
Speedup 7 | Speedup 7 | Speedup T

FAFO-Stream  1.91x 2.29 | 1.63x 270 | 2.03x 2.34
FAFO-Quest 1.32x 2.20 1.40x 2.60 1.63x 2.33

Models Method

Llama-2-7b-chat Lookahead 1.61x 1.66 1.58x 1.65 1.72x 1.77
TriForce 0.21x 1.06 | 0.17x 1.12 | 0.22x 1.06
SWIFT 1.17x 2.65 1.22x 243 1.13x 3.79

FAFO-Stream  1.58x 2.12 | 1.60x 2.10 | 1.65x 2.00
FAFO-Quest 1.50x 2.05 1.45% 2.05 1.43x 2.00
Lookahead 1.49x 2.01 1.39x 1.99 1.52x 1.90
SWIFT 1.18x 3.33 1.34x 3.73 1.22x 3.90

FAFO-Stream  1.50x  2.10 | 1.31x 208 | 1.57x 220
FAFO-Quest 1.40x  2.08 1.28x  2.08 1.48x 219
Lookahead 1.21x 201 1.25x 201 1.28x 210
SWIFT 094x 293 | 0.98x 322 | 1.03x 238

FAFO-Stream  1.43x 210 | 1.60x 230 | 144x 210
FAFO-Quest 146x 220 | 1.44x 220 | 1.38x 208

FAFO-Stream  1.20x  2.07 1.30x 236 | 140x 233
Lookahead 1.09x 215 | 144x 242 | 126x 236

Llama-3-8B-Instruct

Llama-3.1-8B-Instruct

Qwen2.5-7B-Instruct

Qwen2.5-32B-Instruct

5.1 END-TO-END EFFECTIVENESS

Table [2| reports the wall-clock speedup ratio and average acceptance length of FAFO compared to
other baselines. FAFO-Stream or FAFO-Quest essentially achieve the practical speedup and theoret-
ical 7 under all featured settings, approximately 30% faster than Lookahead Decoding. Specifically,
we find FAFO to be robust under challenging tasks like MT-Bench and GSM8K — tasks that pose
a significant challenge to methods like TriForce and SWIFT, which sometimes experience negative
speedups.

Table 3: Speedup ratio and average acceptance length 7 on datasets from LongBench.

Models Method Multi-News LCC TREC Qasper 2WikiMQA
Speedup 7 | Speedup T | Speedup T | Speedup T | Speedup T
FAFO-Stream 1.97x 2.81 1.78x 3.08 2.01x 4.27 2.20x 3.54 1.94x 3.73
L3.18B FAFO-Quest 1.62x 2.83 1.70x 3.10 1.80% 4.37 2.12x 3.65 1.87x 3.95
" Lookahead 1.12x 1.93 1.48x 2.58 1.54% 3.69 0.85x 2.19 1.01x 2.94
SWIFT 1.09x 3.15 1.08x 3.72 1.09x 4.17 1.41x 4.10 1.13x 3.25

Given KV cache is most significant under a long context setting, we further feature LongBench to
verify that FAFO is still performant under such practical setting. According to Table[7] we are glad to
report that FAFO tends to offer even better performance over short context tasks (Table [2). This re-
sult is intuitive as constant budget KV cache compression methods like LM-Infinite/StreamingLLM
often offer the most efficiency gains under such long context settings.

6 CONCLUSION

We present FAFO, a draftless decoding pipeline that leverages compressed KV cache for efficient
guess token generation (Fumble Decoding) while preserving full model quality (FindOut Verifica-
tion). We offer efficient customized KV cache manager built on FlexAttention kernels, which opens
a new avenue of research on efficient draftless decoding.
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ETHICS STATEMENT

Given the technical focus of this work on algorithmic improvements for decoding efficiency via
compressed KV cache with integrated verification, we do not identify specific limitations that re-
quire emphasis within the scope of our methodology. The design and evaluation of our approach
are grounded in controlled latency benchmarking and lossless generation quality, and the method
demonstrates consistent speedup without increasing memory overhead. While integration into pro-
duction pipelines may require careful engineering, the underlying mechanism remains general and
compatible with a wide range of KV cache compression strategies. Broadly, our work contributes
to the ongoing effort to make large language models more efficient and deployable, potentially low-
ering the environmental and economic costs of inference. However, it also highlights the need for
continued research into the failure modes of lossy compression methods and the development of
robust safeguards for their deployment in high-stakes settings.

REPRODUCIBILITY STATEMENT

We facilitate reproducibility through multiple artifacts and detailed documentation. A repository
will be released in the future host source code, experiment scripts, and configuration files. Com-
prehensive procedural details are provided in Sectiond] Section [5] Appendix [D| Appendix [E] and
Appendix [G] enabling independent verification and extension.

At present, public release of the code is temporarily deferred due to our employer’s policies govern-
ing dissemination of software and research artifacts (including approvals related to IP ownership,
confidentiality, and third-party licensing). We are in the process of obtaining the necessary au-
thorizations and credentials for open-source release. Upon paper’s publication, we will promptly
publish the repository under an appropriate license.
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A USAGE OF LARGE LANGUAGE MODELS

LLMs were employed solely for minor wording and fluency tweaks. The authors reviewed and
corrected all text, and all scientific contributions are wholly original.

B EXTENDED RELATED WORKS

Token Dropping-based KV Cache Compression Due to the growing nature of the KV cache,
many lossy compression techniques have been developed to reduce memory footprint and improve
generation latency. For instance, LM-Infinite/StreamingL.LM (Han et al.| [2024; Xiao et al.| [2024)
preserves only the first few “attention sink” and recent tokens while dropping intermediate ones,
achieving a constant KV cache budget. H20 (Zhang et al., |2023b) and SnapKV (Li et al., |[2024a)
evict tokens based on attention scores, representing static KV cache eviction methods. Dynamic
counterparts like Quest (Tang et al., [2024) and NSA (Yuan et al.| 2025) select retained tokens at
each decoding step, unlike static methods which typically evict in one shot after prefill. FAFO
differs from these methods by offering lossless generation quality. To our knowledge, nearly
all KV cache compression techniques are lossy, with their failure patterns occasionally revealed via
benchmarks like 1ongctx_bench (Yuan et al., 2024) and SCBench (Li et al., 2025a). FAFO is
well-suited for cases demanding both latency speedup and lossless outputs.

Speculative Decoding Speculative Decoding (SD) uses a smaller draft model to generate guessed
tokens and a larger target model to verify them, enabling the potential of confirming multiple tokens
per single forward pass (Xia et al., [2022; [Leviathan et al.| 2023)). Later works like SpecInfer (Miao
et al.| 2023) and Sequoia (Chen et al.,|2024) use tree attention for efficient multi-token verification.

As mentioned in the Section[I] the main criticism of SD is the need to craft and host a separate draft
model, which induces significant alignment efforts and resource demands — a major challenge for
r/LocalLLaMA-like local hosting users. Thus, scholars have explored the potential of draftless
SD, often known as Self-Speculative Decoding (self-SD), which adopts the same model as both draft
and target, often with the draft forward being a sparse variant of the target forward.

Strictly Draftless Methods By “strict draftless context” in Section [2} we mean that there is one
original model, with no parameter or architectural modification, serving as both draft and target.
We clarify that TriForce (Sun et al., 2024)) does not fit this description, as it is a three-level method
where a tiny draft-draft model sharing the target model’s vocabulary is used to conduct the first
drafting, which is then processed by the target model with partial cache, and finally verified with
the target model in full cache. Strictly speaking, TriForce is therefore not fully draftless. However,
we include it here and use it as a major baseline because: a) if we remove the tiny draft-draft
model, it is strictly draftless in the second and third stages, meaning that this additional stage is
likely of significant value despite its small additional footprint; and b) TriForce was developed by
the same lab as MagicDec (Sadhukhan et al.,[2025)), but is more performant under latency-sensitive
(batchsize=1) scenarios, making it a major landmark to benchmark against FAFO. Hereinafter, we
might refer to TriForce as a draftless/self-SD method for concise delivery.

More Tangentially-Related Speculative Decoding Methods. We note that there are additional
SD methods that also leverage lossy compression, such as Kangaroo (Liu et al., 2024) and Layer-
Skip (Elhoushi et al., [2024). However, Kangaroo requires training additional components on top of
the original model, and LayerSkip demands weight updates. As a result, they either diverge from the
“strictest draftless context,” or are no longer lossless to the original model. These works are techni-
cally unrelated to FAFO by large, but we opt to feature them here because the distinction relies on
an intricate understanding of such methods.

C TECHNICAL COMPARISON OF FAFO VS. SPECULATIVE DECODING
METHODS

We first provide details explanation on why FAFO can achieve leveled memory footprint, while
other SD baselines need to maintain addition KV cache. Recall that Speculative Decoding (SD)
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methods follow the sequential draft-THEN-verify pipeline. So for such methods to be effective, the
draft model must generate multiple (and consecutive) draft tokens; THEN, such draft tokens are
verified.

Let us take the simplified TriForce (Sun et al.l [2024) (ignoring the 68M tiny draft-draft model) as
an example. From a fresh start (given a certain length of input, with no output yet), we have the
following steps:

1. Inmitial Prefill: TriForce first identifies a set of token chunks from the prefill as “important”
and evicts the rest, forming a lossy cache. At this point, this lossy cache is still a strict
subset of the full/exact cache.

2. Draft Token Generation: TriForce then sequentially decodes multiple draft tokens, where
the lossy cache naturally grows. Since the newly decoded draft tokens are generated upon
the lossy KV, their own KV are also lossy. Thus, during draft generation, the lossy cache is
no longer a subset of the full cache.

3. Full Cache Verification & Lossy Cache Update: After obtaining the draft tokens, Tri-
Force engages in verification and obtains the full and exact cache of all accepted tokens.
TriForce updates the lossy cache by replacing the accepted tokens’ KV with the exact ones.
It then evicts a number of “least important” tokens from the updated lossy cache to prevent
its size from growing out of control.

4. Repeat and Rebuild: Steps 2 & 3 are repeated, and occasionally a full rebuild of the lossy
cache is triggered, pending on various factors (e.g., low acceptance rate). TriForce cannot
afford to materialize only one set of KV cache because of two main reasons: a) During
Step 2, its lossy and exact cache copies diverge, where some lossy KV must be stored; and
b) Although the lossy cache becomes a subset of the full cache again by the end of Step
3 verification, generating draft tokens upon this lossy cache would require an updated and
relatively fine-grained slicing/gathering (compared to something like a StreamingL.LM-
style masking) upon the full cache — which is a fairly costly operation to engage in per
each verification step.

We note that this stands in contrast to n-gram candidate methods like FAFO, where verification
occurs in parallel with the guess token generation. At each step, exactly one token is added per each
“input” (# of input = # of n-grams + # verification + 1). In this setting, the lossy and full caches never
diverge, so storing just one copy of the KV cache is sufficient. However, realizing efficiency gains
under this setting still requires non-trivial efforts, as a naive attention mask provides negligible
efficiency improvements over full attention and becomes a bottleneck in the parallel pipeline. To
address this, we construct a static block-wise mask with FlexAttention and utilize our proposed
swapping-based KV cache management design to maintain end-to-end efficiency.
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D FAFO’S TOKENS STRUCTURE AND ATTENTION MASK

FAFO has both Fumble Around decoding and Find Out verification in a single forward pass of
a single model, achieving a draftless setting: FAFO concatenates tokens from both the fum-
ble decoding and verification phases, using a designated attention mask (Figure [3). In Fumble
Around, instead of organizing the n subsequences in a row-wise manner, we organize them in a
column-wise manner (i.e., grouping tokens at the same position across subsequences step-by-step:
vl 2, .yt ys,v3, ... Y8, . .), following the practice in[Fu et al|(2024). The attention mask of
tokens in fumble around decoding part is then constructed such that each token can only attend to to-
kens that (i) appear earlier in the sequence (i.e., have smaller position indices) and (ii) belong to the
same subsequence (i.e., share the same column index). This column-wise organization significantly
simplifies updating the sequence when new tokens are generated. Instead of shifting existing tokens
and inserting new ones (as would be needed in a row-wise layout), FAFO only needs to append the
newly generated tokens ¥ 1, Y71, - - -, Y} to the end of the concatenated sequence. In contrast,
tokens in the verification part follow the standard causal attention masking.

3 3
ko - hva R(kvy) Koe g .o kvgaze ul 83 9} ud 4 4 ol o) o2 o} o} d

s AINEENESSEEEEEEEROIUIUODOOUOn

IINEEEENEEEEEERCOEOCO00000000
Fumble + EEENENENENENENEEEOOEOCO0O000O0O
Decoding + IENENNENNENNEEEEEECORCO00000O

- IINEEEENEENEEEERCOEOOEDO00000

e RO NEEEO NN W EMOCIOCEE]

- IR EENEENCCO000R0O000
«INNNEEENEEEEEEECOO0000REOOO0
Findout < EENENEENEEEEEENEEEOCO00CC00OEOOO
Verification « NN EEEEEEEEREENCOO0O00000EEOO

AN EEEEEEEEEEENOIOOOUUODOOOEO
cANNEEEEREREEREEERCIOO0OOOO0OE .

Figure 3: Attention mask for FAFO’s concatenation of fumble around decoding and find out verifi-
cation. Here, x|, represents the latest token in the sequence while kv; ... kv, are the KV cache
of previous tokens. Tokens a},...,a3 correspond to the verification phase and are flattened into
a 1-D tensor with standard causal masking. Tokens y1,. ..,y correspond to the fumble decoding
phase and are flattened into a 1-D tensor using the designated masking described in Section4.4]and

Appendix D}
E CACHE POOL MANAGEMENT

Although cached subsequences are offloaded to the CPU pool to save GPU memory, the pool size
is expected to grow linearly, adding more load to the verification process later. On the other hand,
subsequences generated earlier have a lower chance of being accepted later as the decoded sequence
length increases more and more. To mitigate this, we limit the number of cached subsequences
per starting token to n. Older candidate subsequences are evicted in a least-recently-used (LRU)
manner.
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F ADDITIONAL EXPERIMENTS

Due to page limitations, we can only include so many experiments in the main text. Here, we present
additional experiment results on FAFO under a non-greedy decoding setting, its performance under
reasoning task (as with reasoning models tend to decode a lot of chain-of-thought tokens before
delivering the final answer, making up a huge presence in KV cache), and how it holds up again
SCBench’| which is often regarded as one of the hardest benchmark for lossy KV cache compression
methods. Last, we conduct ablation studies on hyper-parameters crucial to FAFO.

F.1 SAMPLING DECODING

Table ] presents FAFO vs Lookahead under non-greedy sampling setting. For each model, we adopt
their default generation_config. json for sampling setting as different model might prefer a
different sampling setup. Specifically, we have:

* Llama-2-7b-chat: temperature 7' = 0.6, top-p = 0.9

* Llama-3-8B-Instruct: temperature 7" = 0.6, top-p = 0.9

¢ Llama-3.1-8B-Instruct: temperature 7' = 0.6, top-p = 0.9

* Qwen2.5-7B-Instruct: temperature 7' = 0.7, top-p = 0.8, top-k = 20
* Qwen2.5-32B-Instruct: temperature 7' = 0.7, top-p = 0.8, top-k = 20

Table 4: Observed practical latency speedup and average acceptance length 7 on MT-bench,
GSMBK, and HumanEval-Completion with sampling temperature 7" > 0.

MT-bench GSMSK HumanEval-C
Speedup 7 | Speedup T | Speedup T

FAFO-Stream  1.91x 225 | 1.95x 272 | 1.87x 235
Llama-2-7b-chat FAFO-Quest 1.78x 219 | 1.71x 260 | 1.87x 234
Lookahead 1.64x  2.01 1.68x 250 | 1.79x  2.33

FAFO-Stream  1.58x  2.06 | 1.57x  2.09 | 1.58x  2.00
Llama-3-8B-Instruct FAFO-Quest 1.47x 2.00 1.46x 2.02 1.49x 2.01
Lookahead 1.40x 1.99 1.43x% 2.03 1.50% 1.98

FAFO-Stream  1.39x 2.08 | 141x 2.10 | 1.58x 2.22
Llama-3.1-8B-Instruct FAFO-Quest 1.37x 2.10 1.36x 2.07 1.50x% 2.20
Lookahead 1.28x 2.00 1.28x 2.03 1.45% 2.08

FAFO-Stream  1.48x 2.16 | 1.56x 230 | 1.55x 210
FAFO-Quest 1.41x 2.03 1.48x 2.26 1.41x 2.07

FAFO-Stream  1.25x  2.10 | 1.35x 240 | 144x 235
FAFO-Quest L12x  2.02 1.23x 232 1.33x 2.35
Lookahead 1.20x 212 1.16x  2.35 1.27x 2.30

Models Method

Qwen2.5-7B-Instruct

Qwen2.5-32B-Instruct

F.2 ROBUSTNESS UNDER REASONING-INTENSIVE TASK

Table 5: Speedup ratio and average acceptance length 7 on AIME24.

Models Method Speedup T

FAFO-Stream  1.60x 2.40
DeepSeek-R1-Distill-Qwen-7B  FAFO-Quest 1.46x 2.35
Lookahead 1.37x% 2.26

FAFO-Stream 1.65x 2.41
DeepSeek-R1-Distill-Llama-8B  FAFO-Quest 1.50% 2.27
Lookahead 1.48 % 2.40

*nttps://huggingface.co/datasets/microsoft/SCBench
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F.3 ROBUSTNESS UNDER MULTI-TURN EVALUATION (MULTI-IF)

Table 6: Speedup ratio and average acceptance length 7 on Multi-IF.

Models Method Speedup T

FAFO-Stream 2.02x 2.84
Llama-2-7b-chat FAFO-Quest 1.76 % 2.76
Lookahead 1.69x 2.73

F.4 ROBUSTNESS UNDER SCBENCH

Table 7: Speedup ratio and average acceptance length 7 on datasets from SCBench.

Math.Find RepoQA ICL.ManyShot Retr.MultiHop
Speedup 7 | Speedup 7 | Speedup 7 | Speedup T
L3.18B FAFO-Stream 1.37x 2.88 ‘ 1.26x 2.60 ‘ 1.26x 2.61 ‘ 1.46x 2.90

Models Method

F.5 MORE KV CACHE COMPRESSION METHOD

We feature a third KV-cache compression method—SnapKV—in addition to Stream and Quest,
which we have extensively benchmarked. This complementary design broadens the applicability of
our approach across tasks and models.

Table 8: Speedup ratio and average acceptance length 7 on Llama3-8B-Instruct with FAFO-
SnapKYV. Entries show speedup x ().

Models Method MTBench  HumanEval Multi-IF
Llama3-8B-Instruct FAFO-SnapKV 1.69x (1.90) 1.87x (2.41) 1.81x (2.47)

F.6 FAFO vs. TRIFORCE

Because TriForce’s native implementation is incompatible with GQA, also to ensure that we are not
running it in a much disadvantaged setting (as the 0.21 x seems abnormal from a quick scan), we
tested TriForce in its own reported setting (Yarn-Llama-2-7b-128k with PG-19 and NarrativeQA)
in Table [I0] and Table O] In this setting, we do observe significant practical speedup from Tri-
Force (though still below FAFOs) and 5x+ of 7, this hints two conclusions: 1) TriForce is most
performant under easy general language modeling tasks, but not challenging, goal-specific tasks;
and 2) Even under such tasks, TriForce’s implementation bottlenecks from fully leverage its high
guess generation quality, likely because of complexity of three-model pipeline. In contrast, FAFO
is capable of offering decent improvement over all reported tasks.

Table 9: Speedup ratio and average acceptance length 7 on TriForce’s NarrativeQA with Yarn-
Llama-2-7b-128Kk. Entries show speedup x (7).

Model Method / Input Length 3072 5120 10240
TriForce 1.44% (426) 1.37x (4.12) 0.29x (0.11)
Yarn-Llama-2-7b-128K )z giream 2.50% (4.23) 1.80x (4.01) 1.24x (4.07)

F.7 ABLATION STUDY

We do ablation study on different number of guesses and on the length of each k-gram guess. On
MT-Bench (TIJ), FAFO-Stream exhibits a clear interior optimum: short guesses (k=4) underperform
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Table 10: Speedup ratio and average acceptance length 7 on different context lengths of PG-19.

Models Method 1024 2048 3072
Speedup 7 | Speedup 7 | Speedup T

FAFO-Stream  2.71x  3.03 | 1.90x 284 | 180x  2.65

FAFO-Quest  2.03x 238 | 135x 2.0 | 122x 193

Yarn-Llama-2-7b-128k o1 orad 175x 253 | 136x 251 | L16x 255

TriForce 1.83x 5.75 1.63x 5.14 1.74x 5.50

(0.90x, 7=1.90), while mid-range guesses around k~6-7 yield the highest speedups (~ 1.9x) with
only modest increases in acceptance length (7~2.10-2.14). Pushing k beyond this range slightly
tapers speedup (e.g., k=8-9: 1.75-1.81x) without 7 benefits, indicating diminishing returns once
guesses get too long.

Table 11: Speedup ratio and average acceptance length 7 on different lengths of k — gram guess
subsequences on MT-Bench.

4 5 6 7 8 9
Speedup 7 | Speedup 7 | Speedup 7 | Speedup 7 | Speedup 7 | Speedup T
Llama-2-7b-chat FAFO-Stream  0.90x 1.90 ‘ 1.03x 2.04 ‘ 1.90x 2.10 ‘ 1.90x 2.14 ‘ 1.75x 2.20 ‘ 1.81x 2.15

Models Method

Varying the number of parallel guess subsequences (I2)) consistently increases speedup: FAFO-
Stream improves from ~ 1.05x at 10 to ~ 1.92x at 40, and 7 rises smoothly from ~ 1.9 to ~ 2.3.
FAFO-Quest follows the same monotonic trend.

Table 12: Speedup ratio and average acceptance length 7 on different number of guess subsequences.

10 20 30 40
Speedup T | Speedup 7 | Speedup 7 | Speedup T

FAFO-Stream  1.05x 1.92 1.78 x 2.10 1.81x 2.20 1.92x 2.30
FAFO-Quest 0.90x 1.86x 1.59% 2.10 1.64x 2.17 1.70x 2.19

Models Method

Llama-2-7b-chat

Finally, we conduct compression ratio ablation study (Table[I3)) on Multi-IF with Llama-2-7b-chat.
Result shows a familiar trade-off: a moderate Init+Local token budget (= 760 tokens) maximizes
speedup (2.02x) while keeping 7 flat (=2.84), whereas overly aggressive compression (1360) low-
ers speedup (1.59x).

Table 13: Speedup ratio and average acceptance length 7 on Multi-IF with Llama-2-7b-chat across
different compression settings. Entries show speedup x (7).

Model Method / Init+Local Tokens 360 560 760 1360
Llama-2-7b-chat FAFO-Stream 1.93x (2.76) 1.98x (2.83) 2.02x (2.84) 1.59x (2.86)
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G KV CACHE MANAGEMENT
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Step 3 (update new KV cache block for Fumble Decoding)

Figure 4: KV Cache Management with selective swapping into fixed-size KV blocks. The red KV
cache represents the newly generated entry at the current decoding step, while the green KV caches
denote previously selected entries retained by the compression function C.

Attention Sparsity with FlexAttention. Although a compressed KV cache is used to generate fu-
ture subsequences, the efficiency gain remains largely unrealized due to the need to retain the full
KV cache for the lossless verification phase. Consequently, during the fumble decoding stage, to-
kens must still attend to the entire KV cache, with irrelevant entries masked out post hoc if a general-
purpose attention kernel is used. Without a dedicated sparse attention kernel, the method fails
to achieve any real efficiency benefit from KV cache compression, making such a kernel indis-
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pensable for practical acceleration. To this end, FlexAttention is employed to realize the efficiency
gains made possible by the sparsity patterns.

From Dynamic Inference to Fixed-Size KV Blocks for Efficient Sparse Attention Computa-
tion. While FlexAttention is well-suited for the prefill phase, where the input length remains static,
applying it to the decoding phase is highly non-trivial. The context grows with each generated to-
ken, requiring the block mask to be recomputed at every step. This recomputation is prohibitively
costly, rendering naive use of FlexAttention during decoding impractical without a decoding-
aware block masking scheme specifically designed to handle dynamic attention contexts. To address
this, we propose allocating a fixed number of blocks at the beginning of the KV cache tensors to
store the compressed KV entries - C(kvy,|,), which are used by both Fumble Around and Find Out
verification (Figure . Formally, given the current sequence .||, we organize the KV cache as:
[C(kv1.jq) | R(kv1.4)], where C(kvy.|,|) denotes the compressed subset of KV cache entries se-
lected by the compression function C, and R(kv1:|m‘) denotes the remaining KV cache entries, i.e.,
the entries not selected by C. After each decoding step, we dynamically swap in the newly selected
KV cache entries and swap out the discarded ones based on the compression function C (detailed
in Appendix [G). With this architecture, we eliminate the need to recompute FlexAttention kernel’s
block masks at each decoding step by leveraging pre-allocated shared KV cache blocks. This design
enables FAFO to achieve decoding speedups by effectively exploiting the attention sparsity of the
compressed KV cache, without requiring block mask recomputation at every step.

In Figure[] suppose we are using StreamingLLM as the KV cache compression function. After each
decoding step, new KV cache entries are generated (Step 1). FAFO manages the cache by swapping
the new KV entries with discarded ones—the oldest ones in this case, utilizing StreamingL.LM as
function C. This operation takes place within a fixed region of KV cache blocks that is shared
by both the Fumble Decoding and Find Out phases, ensuring that all relevant KV entries remain
compactly located.

This design is well-suited to FlexAttention, which improves efficiency by skipping over blocks that
are entirely sparse [Dong et al.| (2025). Since FAFO maintains the active KV entries within a fixed
number of blocks (two blocks in Figure ), FlexAttention only needs to load these specific blocks
into the GPU’s streaming multiprocessors (SMs) for attention computation. In contrast, without
FAFO, the KV cache becomes scattered across all cache blocks, forcing FlexAttention to load the
entire KV cache, even when most blocks contain only discarded or irrelevant entries. A visual
comparison is shown in Figure [5]

Moreover, we would like to emphasize that the cost of precomputing the BlockMask for FlexAtten-
tion is prohibitively high, rendering it impractical in the context of the dynamic and ever-growing
KV cache during the autoregressive inference process. While one might argue that in methods such
as STREAMLLM, where the number of KV cache blocks remains constant, FLEXATTENTION could
similarly load only a small number of blocks, this overlooks a critical limitation: maintaining this
efficiency would require recomputing the BlockMask at every decoding step to reflect the current
structure of the compressed KV cache. Unfortunately, this recomputation is extremely expensive—
often more costly than simply loading the full KV cache into memory. As a result, without a
mechanism like FAFO to ensure locality and block consistency over time, the theoretical benefits of
sparse attention are outweighed by the overhead of managing the sparsity structure itself.
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Figure 5: FlexAttention with and without FAFO’s KV Cache Management Strategy: When FAFO'’s
cache management is used (Fig[5a), FlexAttention only needs to load two blocks of the KV cache
(in green) for the attention computation. In contrast, without FAFO (Fig[5b), the KV cache entries
are spread across all memory blocks, causing FlexAttention to unnecessarily load the entire set of
KV cache blocks, leading to significant overhead.

H VERIFICATION ON LOSSLESS GENERATION QUALITY OF FAFO

Theoretically proven in [Leviathan et al.| (2023), FAFO preserves lossless generation quality. Fol-
lowing Lookahead Decoding’s evaluation practice, we benchmark on LLaMA-2-7B-Chat over 160
samples from MT-Bench using Hugging Face greedy as the reference. Under FP3*, FAFO repro-
duces the greedy outputs exactly on 157/160 samples, whereas only has difference from 3 - 10
characters in the remaining cases. Under FP16, FAFO’s outputs align with the corresponding Hug-
ging Face greedy results, while exhibiting small deviations from the FP32 reference (36/160). Thus,
although practical runs at reduced precision may not perfectly match Hugging Face greedy, FAFO
retains the greedy output distribution within the numerical error range—no worse than Hugging
Face’s half-precision behavior—while remaining lossless by construction under identical numerical
settings.
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I “FIND OUT” CACHING, RETRIEVAL, AND VERIFICATION ALGORITHM

In this section, we present such three technical components in pseudocode.

Algorithm 1 “Find Out” Caching

Input: A cache pool G, n subsequences y;1+2:81+k+1, <3 Ye 1o tpr1. and their buffers of
discarded tokens ygl_k:sl"l‘l’ S N
Output: Updated cache pool G
for i = 1tondo

for j = 51 + 1 downto s; — kdo

G[(yjl':sl—‘,-l)]'add(yil+2:sqj+k’+l)

end for
end for
return G

Algorithm 2 “Find Out” Retrieval

Input: An input sequence z1.|,, a cache pool G, number of sequence to be retrieved for verifica-
tion m, sequence length k

Output: m retrieved sequences for verification

{{} denotes a set}

retrievedSeqs + {}

suffixSeqlLen < k + 2

while size(retrievedSeqs) < m & suffixSeqLen > 0 do
for sequence y € G[m\xlfsufﬁxSeqLen:\ﬂ] do
retrievedSeqs < retrievedSeqs U y
if size(retrievedSeqs)= m then
Break
end if
end for
end while
return retrievedSeqs
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Algorithm 3 “Find Out” Verification

1: Input: An input sequence zi.,, a language model p, m candidate sequences A =

{01, al}
2: Output: accepted tokens ¢
3 e+ 0

4: fora € Ado

5: D(—p(l‘m”l‘l:m,l)

6:

7: fori=1tondo

8: if argmax(D) = a; then
9: D + p(ai|c, 21:)2|)
10 c + [|ai]

11: else

12: break

13: end if

14:  end for

15: ¢ « [¢'|argmax(D)]
16:  if size(c’) > size(c) then

17: ce—c
18:  end if
19: end for

20: return c
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