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Abstract

Generative Artificial Intelligence is emerging as an important technol-
ogy, promising to be transformative in many areas. At the same time,
generative Al techniques are based on sampling from probabilistic mod-
els, and by default, they come with no guarantees about correctness,
safety, fairness, or other properties. Statistical methods offer a promis-
ing potential approach to improve the reliability of generative AI tech-
niques. In addition, statistical methods are also promising for improv-
ing the quality and efficiency of Al evaluation, as well as for designing
interventions and experiments in Al. In this paper, we review some of
the existing work on these topics, explaining both the general statistical
techniques used, as well as their applications to generative AI. We also
discuss limitations and potential future directions.
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1. Introduction

Artificial Intelligence, and more specifically, Generative Al, is emerging as an important
technology. Over the past few years a number of prominent generative Al technologies have
been developed and have received widespread attention; ranging from text generation via
large language models (ChatGPT, Claude, Llama, Gemini, DeepSeek, Qwen, etc), image
generation via diffusion models (Dall-E, Stable Diffusion, etc), to scientific generative Al
techniques used for protein generation (e.g., Watson et al. 2023, etc), DNA sequence editing
(e.g., Ruffolo et al. 2025, etc).

Such methods have been quickly adopted by end users and institutions, both via direct
usage, as well as integrated in other tools such as code assistants and web search agents. The
scientific community has shown significant interest in using generative Al models, achieving
a number of breakthrough results (see e.g., Davies et al. 2021, Hayes et al. 2025, etc),
culminating in a 2024 Nobel Prize in Chemistry awarded in part for work with a significant
component in protein structure design and generation (The Royal Swedish Academy of
Sciences 2024).

Yet, the adoption of generative Al (GenAI) methods more generally is hindered by
their lack of reliability (see e.g., Farquhar et al. 2024, Strauss et al. 2025, Manduchi et al.
2025, etc). At their core, these methods rely on sampling from probability distributions
over complex spaces that are learned from huge datasets. At the outset, GenAl does not
provide any guarantees about correctness, safety, or any other desired criteria. While the
performance and reliability of GenAI models is increasing steadily, so far, issues around
reliability have not been successfully eliminated.

Statistical methods offer potential opportunities to improve the reliability of GenAl
systems. In this paper, we review several examples, highlighting statistical methods with
proven or potential applications in generative AI. We focus on four topics: improving and
changing the behavior of systems, diagnostics and uncertainty quantification, Al evaluation,
as well as interventions and experiment design. We highlight here that the approaches we
discuss are as of now mainly in the research phase, and they are usually not yet deployed in
mainstream generative Al products. Their eventual usefulness remains to be determined.
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Table 1 Representative types of generative AI models and their input and output

spaces.
Generative AT Model p Input Space X Output Space Y
Language Models Text Text
Diffusion Models Text Images
Multimodal Language Models Images, text Images, text, sound, video
Protein Structure Generation Amino acid sequence 3D structure

1.1. About This Review

Generative Al models are commonly studied separately, for each specific modality that they
pertain to (text, images, video, etc), or based on the underlying technology (diffusion mod-
els, large language models or LLMs, etc). There are already a few reviews with significant
coverage of statistics related to these topics individually, including Chen et al. (2024), Zhang
et al. (2025) for diffusion models, Suh & Cheng (2024) for deep learning more generally,
but also touching on generative models, and Ji et al. (2025) for language models.

Our focus is different, rendering our work largely non-overlapping with the above works.
We focus on techniques that are applicable to all generative Al models, regardless of their
modality. Moreover, with a few exceptions, do not focus on statistical methods that are
applicable to generative Al only when the tasks of interest are essentially simple classifi-
cation/regression tasks (e.g., multiple-choice question-answering with LLMs). For these,
there are already numerous useful references.

We also focus specifically on statistical methodology for AI and omit discussion about
statistical theory of generative AI, as well as statistics-adjacent methods that primarily
leverage optimization or other techniques. Further, we omit certain topics, such as water-
marking, which have already been discussed in detail in the above works. Due to space
limitations, we mainly consider simple methods that have clear theoretical motivation and
often provable guarantees. Moreover, we also omit discussion of how generative AI models
can be used to improve statistical analysis, see e.g., Bashari et al. (2025) for a representative
example.

Target audience. Our target audience includes statisticians eager to see how their
expertise can drive impact in generative AI, Al researchers interested in how statistical
methods can strengthen their tools, and scientists looking to better understand this emerg-
ing area. For this reason, our paper aims to be largely self-contained, with prerequisites
that include knowledge of introductory undergraduate-level probability and statistics, and
a basic familiarity with Al at the advanced undergraduate level.

1.2. What is Generative Al?

Generative Al usually refers to the use of generative models, which are learned probability
distributions one can sample from. Concretely, consider an input space X (e.g., images,
text, documents, their combinations, etc., represented in an appropriate way) and an output
space ) (similarly, this could be images, text, audio, video, etc). See Table 1 for some
examples.

Formally speaking, this includes as a special case standard statistical machine learning
problems such as classification (when ) consists of the classes) and regression (when Y = R,
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Generative Model: A
generative model p
provides a way to
sample an output

Y ~ p(- | z) from the
conditional
distribution of p
given any input

e X.

Input x Generative model Output y

Why is the missing at random The assumption is
assumption needed? . ——" needed because [...]

Can you remove the tree? Sure, here it is:

Figure 1

General workflow of a generative model: inputs (e.g., text prompts, images) are processed through
a black-box model to produce outputs.

for instance). However, the cases of interest in generative Al are usually high-dimensional
spaces ) representing objects that are semantically meaningful to humans, such as text—
viewed as a sequence of symbols (z1,...,2%) € V* for a finite set V of symbols—or images,
viewed as tensors representing pixels.

Generative AI models are often designed for interaction with humans. A simple protocol
is as follows: The user inputs a specific z € X, for instance, a text prompt such as “How
can I fix a broken lamp?”. Then, the generative model p provides a way to draw a sample
Y ~ p(- | ) from the conditional distribution p given x; for instance, a textual response by
the language model such as “To fix a broken lamp, you need to [...]”. This is then returned to
the user. See Figure 1 for an illustration. The interaction can also continue. For simplicity,
we will mostly restrict our discussion to one round of interaction.

1.3. How is a Generative Model Learned?

The GenAl model p is usually obtained by empirical loss minimization, in a manner that
is conceptually similar to that used in most standard statistical modeling and machine
learning. This is performed by running an algorithm—often a stochastic gradient descent-
based method or a variant—aiming to minimize a loss function over a large function class
using a massive data set.

For instance, for language models, the training data consists of text represented as a
collection of sequences x = (z1,2,...,xr), where for a finite set V' usually referred to as
a vocabulary, each z; € V, j < k. The length k of the strings can vary, up to a so-called
context length L. Instead of viewing text as a sequence of letters, usually, text is encoded
in tokens which are adjacent groups of letters that can offer more efficiency in the modeling
process. For instance, “encoded” might consist of the tokens “en+code+d”.

The loss used is often the negative log-likelihood 6 — — Zzev log po(z). The function
class 6 — pp usually consists of huge neural nets parametrized in very special ways, with
up to hundreds of billions of parameters. The dataset used for training consists of text
data crawled from the internet, enriched with high information content (Wikipedia, arXiv),
and other sources such as books. Typical costs for training powerful Generative AI models
can start from millions of US dollars, which means that only organizations with significant
financial resources can perform the initial training.
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1.4. Access Mode to the Generative Model

An important consideration is the mode of access that we have to the generative model of
interest. At the time of writing, the most powerful GenAl models are closed-source and
run by commercial providers on their own cluster infrastructure, accessible only through
querying. This leads to a black boxr mode of access, meaning that for any given input x, we
can only observe the output Y, but not any internal components of the generation process p.
Sometimes some additional information is provided in a gray box access mode; for instance,
the probability p(Y|z) may also be returned.

Open-source or open-weights GenAI models may be run on local machines depending on
the available hardware.! In such cases, it is possible to inspect the internal workings of the
models. However, since generative models tend to be highly complicated neural networks,
using the internal information is challenging. Therefore, to maintain generality, we will
usually focus on methods applicable to black box GenAl models. In a few cases, we will
also discuss methods that require gray or white box access.

2. Statistical Methods in Generative Al

Our goal is to discuss a few emerging areas of research where statistical methods or ideas
can be used in generative Al. A key starting point is that Al systems can be wrong. They
can make any type of mistake, and they have no guarantees by default about correctness,
content, logical consistency, safety, etc.? This stems intrinsically from their structure as
sampling methods.?

While there are a variety of engineering approaches to improve reliability, such as en-
dowing the AI models with external tools, such as calculators, web search, or access to a
computer where they can run programs, the use of these tools is in turn orchestrated by a
sampling-based generative Al model, which can still have reliability problems. Moreover,
while there are constrained sampling methods that aim to ensure certain basic formatting
and correctness criteria, their current scope is limited; for example, at the moment they
cannot ensure logical correctness.

For these reasons, statistical methods that aim to improve the behavior of generative
models—sometimes with provable guarantees—are particularly significant; we begin our
discussion with this topic. Crucially, to have an impact in this area, statistical methods
must directly align with AT practice and goals; endowing practically useful Al-enhancement
methods with desirable guarantees. To put it another way, statistical methods act as simple
tunable wrappers that can be calibrated to meet explicit error budgets with finite sample
guarantees.

IThey typically require powerful graphics processing units (GPUs) to be run with a reasonable
speed.

2 At the moment, it is only possible to rigorously understand and analyze individual components
of GenAlI models in isolation, see e.g., Noarov et al. (2025) for an example of analyzing the final
decoding step in language models.

3t is often possible to ensure that the generation process is deterministic; for instance, in
large language models, one can set the temperature parameter to zero. However, the resulting
deterministic generative models still inherit the lack of intrinsic correctness due to the black box
nature of the original model.
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Refusal /Abstention:
‘When a generative
Al model does not
return an output.
Can be useful for
improving safety.

Predictive Inference:
The goal of
endowing the
outputs of predictive
models—including
GenAl—with
statistical
guarantees.

2.1. Improving and Changing Behavior

To improve the performance of a generative Al model, there are numerous of standard
approaches relying on variants of standard training (e.g., supervised fine-tuning for LLMs).
Once these have been exhausted, there is room for alternative techniques that change the
behavior of the generative model in a non-standard way that can conceivably improve certain
accuracy metrics, for instance, by returning a trimmed version of the input from which false
claims have been deleted (see e.g., Mohri & Hashimoto 2024, etc). These techniques can
be roughly categorized into changing (a) the output y, (b) the input z, or (c) the internal
workings on the generative model p.

Moreover, many of these techniques require a degree of hyperparameter tuning; for
instance, determining how much to trim the outputs. This process of tuning can sometimes
be endowed with statistical correctness guarantees (see Table 2), and so this is the first
topic we review in this work.

2.1.1. An example: Controlling the probability of refusal /abstention. To get a sense of the
types of problems that can be solved, as well as the types of statistical methods that are
used, we will explain one specific example in some detail. We will consider the example of
abstaining from generation when a risk score is high (see e.g., Farquhar et al. 2024, Yadkori
et al. 2024, etc).

Consider a given loss function? £ : X x ) — R. This could measure the quality or safety
of an input-output pair. There are many examples, including the negative log likelihood
l(x,y) = —logp(y|x) specified by the generative model itself, or the negative of a pre-
trained reward function (measuring for instance safety), etc. The loss could depend on
both x and y, or only on one of the two. If the loss only depends on the input z, it can
capture either input ambiguity, or the dispersion in outputs generated by the model (Lin
et al. 2024); or some combination thereof.

To improve user experience, a strategy is to refuse/refrain/abstain from answering when
the loss is high. Specifically, we want to find a threshold 7 such that when ¢(z,Y") > 7 we
should instead return a special message like ¢ ‘Sorry I cannot answer.’’, where Y ~
p(-|z) is generated by the model p. There is a trade-off: decreasing the threshold will
ensure that only higher quality—lower loss—generations/answers are returned, but higher
refusal also hampers utility to users.

The threshold 7 can be set by standard hyperparameter tuning, by checking the loss
values and abstention rates on a dataset. However, there is also a statistical approach, which
can provide provable guarantees on the behavior of the system under certain conditions.
This approach is based on predictive inference/conformal prediction (Vovk et al. 2005), and
the ideas date back to work on tolerance regions (e.g., Wilks 1941, Wald 1943, etc).

The statistical approach aims to guarantee generalization to a distribution D of prompts.
The goal is then to control the abstention probability over the distribution D, which can
be written as PrXNDnyﬁ(Alx)(g(X7 Y) > T). We do not fully know the distribution D,
because it represents the behavior of future users. However, we assume that we have a cal-
ibration dataset—also referred to as a validation or hold-out dataset—D, = {X1,...,Xn}
of prompts which we view as an i.i.d. sample from D. This is collected based on user inter-

4In the literature cited above, this is sometimes called a risk score, but we will not use that
term, in order to avoid a conflict of terminology with the classical notion of risk—namely, expected
loss—from statistical decision theory.
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Table 2 Types of methods that change the behavior of generative Al systems; most

of them endowed with statistical guarantees. Some methods belong to multiple cate-

gories.
Technique Type Examples
Additional | Highlight parts of output (Sun et al. 2022, Vasconcelos et al.
output type 2025)
Abstain from generation when a risk score is high (Farquhar
Change et al. 2024, Yadkori et al. 2024)
output Add “Everything Else” as a possible answer (Noorani et al. 2025)
Construct prediction interval for each output coordinate (Hor-
omv oty | witz & Hoshen 2022, Teneggi t al. 2023)
Generate set of outputs (Quach et al. 2024, Gui et al. 2024, Nag
et al. 2025)
Trimmed Delete parts of output until correctness is achieved (Khakhar
output et al. 2023, Mohri & Hashimoto 2024)
Find small parent set of possible outputs in a directed acyclic
graph (Zhang et al. 2024)
Regenerated | Reformulate output until it is appropriately correct and specific
output (Jiang et al. 2025)
Task-specific | Train model to improve performance in downstream task (Band
output et al. 2024)
Construct prediction intervals for latent variables of a generated
output (Sankaranarayanan et al. 2022)
Interactively ask questions that maximize the informativeness
of the answers (Chan et al. 2025)
Change Set of Retrieve sets of documents in RAG (Li et al. 2024)
input inputs Select prompts that control risk (Zollo et al. 2024)
Change — Accelerate generation by early exit (Schuster et al. 2021, 2022,
other Jazbec et al. 2024)
alg(t)tr'ithm Reduce ambiguity by seeking additional input (Ren et al. 2023,
settings

2024)

Control a “size” component of the sampling mechanism (Ravfo-
gel et al. 2023, Deutschmann et al. 2024, Ulmer et al. 2024)

Switch between models when risk score is high (Overman &
Bayati 2025)

actions that are representative of the distribution, and we assume that they have not been

used for model training.

Then, we aim to construct an estimated threshold # = 7(D,,) using the calibration
dataset D,, such that the abstention probability® is controlled at a user-specified level
a>0,ie, Prxup yep(x),0, ((X,Y) > #(Dpn)) < a.

The key observation is the following: suppose we generate responses Y; ~ p(-|X;) for

Calibration dataset:
Given a trained
GenAl model, a
separate dataset
used to endow the
model with various
statistical properties.

5Notice that this probability now also includes the randomness over D, .
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Exchangeability:
Informally, the
property that a
sequence of random
variables is equally
likely to be
presented in any
order.

each of our inputs ¢ = 1,...,n from the calibration dataset. Then the values ¢; := £(X;,Y;),
¢t =1,...,n are i.i.d. random variables with the same distribution as the test loss ¢(X,Y")
where X ~ D is a test data point and Y ~ p(:|X) is a corresponding outcome sampled
from the generative model. Of course, the distribution of these loss values is in general still
unknown, because it depends on the unknown target distribution D.

Exchangeability. However, since the ¢; are i.i.d., conditional on the set (or multiset)
of their values Sp41 = {l1,...,6n,£(X,Y)}, their ordering is uniform given S,+1. This
corresponds to exchangeability, and it is their only property used here.

Therefore, assuming for simplicity of exposition that there are no ties,® the rank of
(X,Y) among {1, ...,0,,4(X,Y) is distributed uniformly over {1,...,n + 1}, conditional
on Sp+1. Now, for any 8 € [0,1], let Qg be the S-th quantile of {¢1,...,£¢,}, namely
Qp = inf{t : #{i : £; <t} > pn}. We have that £(X,Y) > Qu—_a)1+1/n) if and only if the
rank of £(X,Y) among {¢1,...,4n,0(X,Y)} is at most |a(n + 1)].

Consequences of exchangeability. By exchangeability, this occurs with probability
at most |a(n + 1)]/(n + 1) < a, conditional on S,yi. Hence, if we choose 7(D,) :=
Q(—a)(1+1/n), We find Pr (é(X, Y)> %(Dn)‘SnH) < a, for any Sp41. Since this holds for
any set Sy,41, it also holds unconditionally, i.e., Pr (Z(X, Y)> %(Dn)) < a, as desired.

The above argument explains how, by choosing a threshold for abstention equal to a
particular quantile of the calibration losses, we can control the abstention rate. All that is
needed is that the test loss is exchangeable with the calibration losses.

2.1.2. An overview of applications and techniques. The above discussion is quite represen-
tative of a variety of methods designed to improve the behavior of generative Al models.
Some of the common elements include: (1) introduction of a loss function; (2) introduction
of a small number of tunable hyperparameters; (3) formulation of a desired goal in terms
of expectations of the losses and probabilistic properties, and (4) using distribution-free or
only weakly distributionally dependent probabilistic tools—such as the distribution of order
statistics or concentration inequalities—to ensure the desired goal. We refer to the works
cited in Table 2 for details.

For instance, one approach proposes to delete claims from the output Y of a large
language model until correctness is reached (Khakhar et al. 2023, Mohri & Hashimoto
2024). This approach defines a deletion operator A, typically implemented by another
large language model, and a sequence Y® = A(YUC*U), k > 1, starting with Y@ =Y.
The loss function ¢ is defined based on whether Y®) has any claim that contradicts a
ground truth answer y* for the prompt x. This is also evaluated by another large language
model. The tunable hyperparameter is the number & of deletions; and the goal is to ensure
correctness with probability at least 1 — . Then the required number of deletions can be
determined based on a calibration dataset, similarly to above.

Many of the methods discussed above rely on some form of non-parametric statis-
tics, distribution-free predictive inference, conformal prediction, and variants. The idea
of distribution-free prediction sets dates back at least to the pioneering works of Wilks
(1941), Wald (1943), etc. Distribution-free inference has been extensively studied in recent
works (see, e.g., Saunders et al. 1999, Vovk et al. 1999, Papadopoulos et al. 2002, Vovk
et al. 2005, Vovk 2012, Lei et al. 2013, Lei & Wasserman 2014, Lei et al. 2018, Guan 2023,

6The extension to the case of ties is not hard, but it can require some care; see for instance Vovk
et al. (2005), Angelopoulos et al. (2023).
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Table 3 Types and examples of uncertainty quantification methods for generative Al.

Approach Type Examples
Defining Epistemic & Define and estimate epistemic and aleatoric uncertainty through
Uncertainty | Aleatoric Unc. input clarification ensembling (Hou et al. 2024)
Semantic Cluster outputs to capture semantic uncertainty (Kuhn et al.
Uncertainty 2023)

black-box models (Lin et al. 2024)

Soft-cluster outputs with partially overlapping meaning from

measures tribution (Abbasi Yadkori et al. 2024)

Other Estimate pseudo-entropy of a prompting-induced sampling dis-

(Yang et al. 2024, Wang et al. 2024)

Approximate Bayesian posterior uncertainty by updating model

lems (Ji 1. 2021
Calibration ems (Jiang et al. 2021)

Re-calibrate probabilities in multiple choice/classification prob-

Liu et al. 2024)

Calibrate uncertainty to predict performance (Huang et al. 2024,

Romano et al. 2020, Dobriban & Yu 2025, etc). Predictive inference methods have been
developed under various assumptions (see, e.g., Geisser 2017, Bates et al. 2021, Park et al.
2022b,a, Sesia et al. 2023, Qiu et al. 2023, Li et al. 2022, Kaur et al. 2022, Si et al. 2024,
Lee et al. 2024). Overviews of the field are provided by Vovk et al. (2005), Shafer & Vovk
(2008), and Angelopoulos et al. (2023).

2.2. Diagnostics and Uncertainty Quantification

When AT systems encounter problems, one should of course aim to improve the behavior of
the AI system. A crucial step toward this is to precisely diagnose the problem. A variety
of approaches exist for this task, ranging from constructing unit tests to fine-tuning the
model. There are also a number of methods based on computing certain specific diagnostic
scores (e.g., Farquhar et al. 2024, Yadkori et al. 2024, Lin et al. 2024, etc). Such diagnostics
are already used in many of the methods discussed in Section 2.1 to change or improve the
generative model; for instance, if a safety score for the input is low, the model can refrain
from generating an output.

In this section, we are specifically interested in diagnostics that aim to quantify uncer-
tainty, as these have close connections to probability and statistics. There are a variety of
interpretations of uncertainty quantification, see e.g., Baan et al. (2023), Shorinwa et al.
(2024), Liu et al. (2025), Abbasli et al. (2025), Xia et al. (2025), He et al. (2025), Campos
et al. (2024), Trivedi & Nord (2025). Due to space reasons, here we can only discuss a few
specific approaches, see Table 3.

2.2.1. Epistemic and aleatoric uncertainty. We start by introducing the notions of epistemic
and aleatoric uncertainty. To set the stage, we observe that given an input z, the output y
is not always uniquely determined. For instance, the query = = “Write a paragraph about
an economist” has ambiguity, since it does not specify a particular economist. This is some-
times referred to as epistemic uncertainty (Der Kiureghian & Ditlevsen 2009, Hiillermeier &
Waegeman 2021). It can be reduced by collecting more information. In particular, the Al
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Epistemic and
aleatoric uncertainty:
Roughly speaking,
uncertainty due to
lack of knowledge,
and due to random
chance, respectively.
Can be hard to
define precisely.

Uncertainty and
confidence scores:
Numerical values
computed based on
the input, output, or
other characteristics
of the GenAl model,
aiming to capture
the level of
uncertainty.

10

system could query “Which economist?”; to which the answer, e.g., “Adam Smith”, could
greatly reduce the uncertainty of the answer to be generated.

In practice, there are usually many such sources of epistemic uncertainty for any given
query. For instance, even after knowing which economist to consider, we still do not know
the desired number of sentences, the target audience (children, general public, scientists, or
some other group), etc. Some of these might be more important than others to the user,
but either way they contribute to the uncertainty of the possible answers.

We can contrast epistemic uncertainty with aleatoric uncertainty. For instance, in
the query “Choose between A and B uniformly at random.”; all information is perfectly
well specified (so the epistemic uncertainty vanishes), yet there is still irreducible random
uncertainty in the desired output, which is sometimes referred to as aleatoric uncertainty
(Der Kiureghian & Ditlevsen 2009).

While multiple definitions exist (see, e.g., Schweighofer et al. (2025)), including ap-
proaches tailored to estimating them in generative Al models (see, e.g., Hou et al. (2024)),
in many cases the definition of—say—aleatoric uncertainty reduces to specifying what we
choose not to predict, rather than to something intrinsically fixed.

2.2.2. Uncertainty in model generations. While the discussion in Section 2.2.1 refers to
uncertainty in ideal “ground truth” answers, in practice we need to take into account that
we only have an empirical model p, not the ground truth; and need to handle the uncertainty
in the answers generated by p. Equivalently, we should quantify to what extent the model
is certain. There have been several approaches aimed to extract this form of uncertainty
from generative Al models.

For language models, a special ability is that they might potentially be able to express
uncertainty in words. However, this capability is not guaranteed to work well by default,
and special fine-tuning techniques have been developed to induce this behavior in certain
special cases (Lin et al. 2022).

An approach that applies more generally to all generative models, regardless of their
modality, is to compute some uncertainty or confidence score” based on the input x, the
output y, and/or the model p (e.g., Farquhar et al. 2024, Yadkori et al. 2024, Lin et al.
2024, etc). For instance, one can consider the probability p(y|z), Which reflects how likely
the generated output is according to the model; and thus can be viewed as a very basic
form of a confidence score. Alternatively, for generations whose length can vary, such as for
standard language models, one can consider a length-normalized version f)(y|x)1/ Il where
ly| is the length of y; aiming to correct for the effect that longer generations tend to have
smaller probabilities.

However, it is not always straightforward to use and interpret such scores. There are
multiple key challenges:

Challenge 1: Inability to recover “true” probabilities and lack of calibration.
The probabilities p(y|z) represent only the model’s internal beliefs about the likelihood
of output y given input x; by default, they do not correspond to any notion of “true”
probabilities. Because the input and output spaces are extremely high-dimensional, the
probabilities produced by a generative AI model should not be expected to be consistent

"Note that Lin et al. (2024) define uncertainty scores to refer to the entire distribution p(-|x)
and confidence scores to refer to a specific input-output pair (z,y). Due to lack of space, we will
not make this distinction.
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for any “ground truth”. However, we might hope to achieve weaker forms of correctness.

One such relaxation is calibration, which is a general property associated with probabilis-
tic forecasts (Gneiting & Katzfuss 2014) that only asks for a restricted set of probabilities
to reflect real probabilities. For instance, for a calibrated weather forecaster, if we predict
“50% chance of rain tomorrow”, then over all such days, we expect that it rains half the
time (Lichtenstein et al. 1977, Van Calster & Vickers 2015, Van Calster et al. 2019).
There are a variety of notions of calibration relevant to GenAl, and empirical work has
found that model calibration is not guaranteed by default. Instead, it can depend strongly
on model training, model size, etc; see e.g., Kadavath et al. (2022), Achiam et al. (2023).

A direct way to apply calibration to answers generated by an LM p is to construct an
additional probability predictor § for the claim “The chance that my answer is right is §.”
Such a probability predictor can be obtained via re-calibration on separate calibration data
(Mincer & Zarnowitz 1969, Guo et al. 2017), but it might require a lot of calibration data.

If less calibration data is available, one may still be able to approximately satisfy a
weaker form of calibration, e.g., that the average accuracy increases with the predicted
probability of success, a behavior termed rank-calibration (Huang et al. 2024).

Challenge 2: Semantic multiplicity. Another key challenge is that there are often
many equivalent answers. For instance, in text generation, answers such as “15 pages” and
“fifteen pages” are semantically equivalent. We usually want to pool them together when
determining the model’s confidence.

An approach to this problem—termed semantic uncertainty—was proposed by Kuhn
et al. (2023), who suggested generating multiple outputs Y1, ..., Yk ~ p(:|z) i.i.d., clustering
them based on their semantics (via another LLM), and then estimating uncertainty based
on the resulting distribution induced over the clusters.

2.3. Al Evaluation

Evaluating generative Al models is important in order to properly understand the capabil-
ities that these models possess. However, model evaluation can be surprisingly challenging,
and in particular, it can bring novel challenges compared to the evaluation of more standard
machine learning models, see e.g., Burden et al. (2025) for a review.

A typical current workflow for evaluating a GenAl model—in particular, a large lan-
guage model—is as follows. Suppose we want to measure reasoning ability in mathematical
problems. To evaluate this ability, we collect test data consisting of such problems. Then
we evaluate the accuracy of the model on these problems and report the results.

This simple workflow is mired with a number of challenges. First of all, the specific data
required for evaluation (say mathematical problems), can be quite complex, and finding
genuinely new test problems that the model has not seen during training is hard. Indeed,
information leakage from standard public test datasets into the model training sets is a
genuine concern (see e.g., Matton et al. 2024, etc). This leads to potential biases in model
performance evaluation, where the models score higher because they have already seen the
problems during training.

A potential approach is to have private test data sets that are not released to the public.
Another potential approach is to use dynamically generated Al evaluation environments,
such as based on debates (Moniri et al. 2025). Due to these reasons, and as collecting
large, high quality, and genuinely new evaluation datasets can be expensive, high quality
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test datasets sometimes have relatively small sample sizes.®

Second, checking correctness can be non-trivial and ambiguous outside of simple prob-
lems with clear, well-defined answers. For instance, in a mathematical problem, it can be
straightforward to evaluate the correctness of a numerical answer, but it can be much harder
to evaluate the correctness of a reasoning process. For this reason, often heuristics such as
other LLMs are used for checking answers, which in turn raises questions about reliability.

Third, evaluating the largest models can be expensive, which further poses a limit on
the sample sizes that we can collect for evaluation depending on the available budget.

Due to these reasons, evaluation can involve dealing with small sample sizes and various
biases. Thus, statistical methods and thinking can be valuable for reliable and efficient
evaluation.

2.3.1. A basic statistical formulation of model evaluation. We consider a basic setting
of model evaluation, in which we have some inputs x for which we wish to evaluate the
performance of a GenAI model. For mathematical reasoning, this could correspond to
the problem statement, and may also include instructions to the model. The problem
has a ground truth answer y*, which can be an entire solution/reasoning path or just the
final result. Then, we sample a candidate answer Y ~ p(-|z). Again, this may include
intermediate steps, and a final answer is extracted at the end.

As in Section 2.1.1, the quality of the answer is evaluated via a loss function ¢, such that
£(z,y*,y) measures the (negative) utility of answer y for input z with ground truth y*. In
some cases, designing loss functions is straightforward. For instance, for an integer answer
y*, we may use the binary loss I(y # y*). However, for more elaborate problems, designing
a loss function can be non-trivial. For instance, for a reasoning problem, we want to make
sure that all valid and concise reasoning paths receive low loss, not just the reference path.

Tasks in AI evaluation. Given these components, there are several possible
tasks of interest. For a distribution D of inputs, we may want to estimate or per-
form statistical inference (confidence intervals, tests) for the task performance 6§ =
Ex,v*)~D, vrp(1x) (X, YY),

Given a dataset D, = {(X;,Y;") : ¢ = 1,...,n} of question—answer pairs sampled
iid. from D, we can generate outputs Y; ~ p(- | X;) independently, and compute the loss
values ¢; = 0(X;,Y;",Y;), i =1,...,n; as in Section 2.1.1.

Then, these loss values {1, ..., ¢, are sampled i.i.d. from a distribution whose population
mean is the unknown true task performance 6. Thus, this problem becomes that of inference
for a population mean, for which many statistical methods exist (Casella & Berger 2024,
Lehmann & Romano 2005).

Notably, in many important examples we are interested in (A) binary losses, leading
to inference for a Binomial parameter; (B) or bounded losses (for which concentration
inequalities such as Hoeffding’s inequality can be used); (C) or given a large sample size (so
that an asymptotic normal approximation works well).

80ne of the most reliable approaches at the moment is to use new test datasets that are initially
designed for humans; for instance, it is common to test mathematical reasoning on the problems
of mathematical competitions, such as the International Mathematical Olympiad (IMO), as soon
as the new problems are released. The thought process is that those problems have been filtered
by the problem selection committee to be new for humans, and thus this reduces the chances of
contamination from the training set. However, this again leads to relatively small sample sizes, for
instance, the International Mathematical Olympiad has six problems every year.
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Al Evaluation and Statistical Inference. Al evaluation with limited data has a very close link to
statistical inference.

Table 4 Types and examples of statistical evaluations of generative AI models.
Technique Type Examples

Confidence | Review of standard large-sample methods (Miller 2024)

Inference on intervals Construct Cls with improved finite-sample coverage on model
Performance accuracy under i.i.d. and clustered data settings (Bowyer et al.
2025)

Develop asymptotically valid Cls for comparing the KL diver-
gence to the true distribution of two models (Gao & Sun 2025)
Construct uniform upper bound on the CDF of a performance
metric (Vincent et al. 2024)

Construct confidence interval for probability of biased answers

on counterfactual prompts (Chaudhary et al. 2025)

Hypothesis | Test hypothesis about which policy achieves higher reward,
testing choosing number of trials adaptively (Snyder et al. 2025)

Small-sample | Estimate model accuracy on multiple questions and models

Small-data performance leveraging item response theory (Polo et al. 2024)

Evaluation .
Synthetic Combine synthetic and human labels for unbiased performance
+ estimates and Cls (Boyeau et al. 2024, Fisch et al. 2024, Oost-
human labels .
erhuis et al. 2024)
Rank models with hybrid label sets (Chatzi et al. 2024)
Multi-task Active Actively sample and evaluate in multitask settings (Anwar et al.
Evaluation testing 2025)

An important observation here is that Al evaluation with limited data has a very
close link to statistical inference. Beyond this core setting, there are a variety of im-
portant additional scenarios. For instance, we may be interested in comparing the
performance of two models p1,p2. If we can query both models on the same inputs
Xi,i = 1,...,n, this can be formulated as statistical inference for the parameter A =
E(x,v*)~D, Y1~p1(-|X), Yarpa(-|X) [E(X, Y*. Y1) — (X, Y*,Yg)}. Considerations and methods
similar to the ones above apply.

Standard methods for the above two problems have been reviewed in Miller (2024);
where other considerations, such as power analysis and clustered data arising from repeated
generations for the same input, are also considered. However, this work focuses on a signal-
plus-noise model for the observed losses, which may need to be relaxed.

2.3.2. Additional methods. There are a variety of works addressing other settings in Al
evaluation, see Table 4 for examples. A few of them are discussed in more detail below.
However, a comprehensive and unified statistical methodology that addresses most of the
common evaluation problems with a unified terminology and set of methods remains to be
developed.
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1. Bowyer et al. (2025) study methods for producing confidence intervals on model per-
formance, focusing on inference for Bernoulli parameters of model accuracy. They
include single-model performance (for i.i.d. and clustered data), two-model compar-
ison (both independent data and paired samples). They conclude that the most
straightforward asymptotic normality-based confidence intervals can be inaccurate
for small datasets at most n = 100 datapoints. They argue for using Bayesian cred-
ible intervals, which they argue have adequate frequentist coverage when one can
specify appropriate prior distributions.

2. Gao & Sun (2025) develop methods for comparing the Kullback-Leibler (KL) diver-
gence of two generative methods for which the probabilities p can be computed. They
show how to construct an asymptotically valid confidence interval for the difference
of KL divergences.

3. Polo et al. (2024) develop methods for estimating accuracy using a small number of
datapoints, leveraging methods item response theory. They consider settings where
the performance of a model p on an example z is captured by (unknown) model-
specific and example-specific latent variables 65 and ~,. For instance, we may model
the probability Q(p,x) of a correct answer by p on the input z via a logistic model
logit(Q(p, x)) = 0;71 + B.. Then, these parameters are estimated on a small dataset,
and the correctness probability predictions they induced are used on new test exam-
ples to extrapolate correctness; leading to significant savings in the number of test
examples needed. See also Zhou et al. (2025), Gignac & Ili¢ (2025), Kipnis et al.
(2025) for other uses of item response theory and related methods.

4. Boyeau et al. (2024), Fisch et al. (2024), Oosterhuis et al. (2024) develop methods to
use a large set of synthetically generated labels along with a small set of human labels
for unbiased model evaluation, including confidence intervals for model performance.
See Chatzi et al. (2024) for ranking.

5. Anwar et al. (2025) develop methods for multi-task evaluation of (robot) policies with
active testing, where they pool information on performance of several policies across
several tasks, prioritizing tasks with high information gain leveraging Bayesian active
learning (Houlsby et al. 2011).

6. Chowdhury et al. (2025) develop a variational lower bound on the expected loss
incurred by a language model, and use it to find prompts that elicit problematic
behavior. Concretely, let ¢ be a loss, p be the target LLM. Our goal is to find
prompts z to make £(z,Y’) large when Y ~ p(-|z). Formally, we aim to make S(z) =
log Ey ~p(.e) xp(S(x,Y)) large. To find such z, we rely on an auxiliary LLM ¢ for
which the loss tends to be larger for all x. Due to Jensen’s inequality, we have the
variational lower bound S(z) > Ey 4 |x)[logd(Y|z) —logp(Y|z) + S(x,Y)]. This
lower bound is estimated by sampling Y ~ §(:|z) repeatedly, which can be more
efficient than estimating S(x) directly.

2.4. Interventions and Experiment Design

Interventions refer to systematically modifying or perturbing the inputs of an Al system, to
gain understanding or control of its behavior. This approach has become one of the most
widely used and most powerful tools in a variety of Al research directions, including inter-
pretability, robustness, and fairness (e.g., Zhao et al. 2018, Rudinger et al. 2018, Belinkov
2022, Kotek et al. 2023, etc). The ideas underlying interventions are closely connected to
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statistical causality and experiment design; see also Pearl (2001), Soumm (2024).

2.4.1. Basic setting for interventions. In a basic setting for interventions, we have a gen-
erative model p to which we can provide an input z (e.g., a query to an LLM). In contrast
to the other parts covered in this review, for interventions, it is often the case that the in-
termediate computations are of crucial importance. The reason is that, empirically, certain
internal mechanisms can sometimes be responsible for specific behaviors, such as biases and
harmful outputs (see e.g., Mikolov et al. 2013b, Turner et al. 2023, Rimsky et al. 2024, Zou
et al. 2023, etc).

Therefore, in this section, we will sometimes also assume that we have access to in-
termediate computations e(z) (e.g., representations, intermediate/chain of thought tokens)
of the model. Most often, vector-valued intermediates e(x) are considered. Finally, we
also consider the output layer o(z) of the model (e.g., last-layer predicted probabilities
or log-probabilities), as well as the final model output y. These quantities can be either
deterministic or random.

We want to understand or control a certain components of the behavior of the Al
system. We consider components measured through the input, intermediate computation,
or output. For instance, which components of an LLM (activations, neurons) contribute
to gender bias? How can we intervene to reduce such biases? How does an LLM behave
internally when it is non-truthful, and does this differ from truthful behavior? Are there
specific components that are activated when the LLM generates harmful output, and can
we intervene to suppress this behavior?

To do this, we find a way to intervene by perturbing the input « to induce the condition
of interest. For example, to understand how harmfulness is propagated, we can change part
of a harmful input to a harmless concept: e.g., * = “how to build a bomb?” — z’ = “how
to build a chair?”. We can also intervene on an intermediate computation in the AI system.
Then, we track the change in either the intermediate stage or the final output, depending
on what we are interested in.

Example 2.1. Contextual concept vectors measure the difference in embeddings that a
change in a concept leads to, in the form C,_, . := e(z')—e(x), where T is an input and x’ is
the corresponding input with the concept changed, e.qg., for the concept of gender, x="king”,
2’ =“queen”; x="actor”, ' =“actress”, etc. Early work investigating related questions dates
back at least to Mikolov et al. (2013a,b), Pennington et al. (2014) for word embeddings, and
more recently has studied human biases (Bolukbasi et al. 2016), developed steering vectors
(Turner et al. 2023, Rimsky et al. 2024) and introduced representation engineering (Zou
et al. 2023).

To obtain a more stable and generalizable picture about the effect of the intervention, it
is common to consider a distribution D of interest, and the associated mean Ex~p[Cx s x/]
or top principal component of the covariance matrix Covx~p(Cx_x’) (Zou et al. 2023).
These are typically estimated using the standard plug-in estimators. Let ¢ be such an
estimated concept vector.

Steering vectors. These estimates can be used as steering vectors (Turner et al. 2023,
Rimsky et al. 2024) to make certain behaviors more likely. A common approach is to take
any input x, compute its intermediate representation e(x), and add a scaled version A -é for
some A > 0 to obtain a new intermediate representation e’ = e(x) + A - & The computation
then continues identically to obtain the final output. Here A is a hyperparameter that
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requires careful tuning. This operation approximates a shift of the representation of the
original input towards the representation of a changed input e(z’). For instance, in the
above example, the goal would to approximately remove the harmful concept. Empirically,
it has been observed that the resulting final output can sometimes indeed correspond to
the desired concept change (Turner et al. 2023, Rimsky et al. 2024); which however comes
with caveats (Tan et al. 2024).

Assessing biases. Analogously, to assess biases® (e.g., gender bias), one can
choose a representative output variable o(x), such as the probability of a gen-
dered word, and then repeat the above analysis. For instance, to study gender
bias, Kotek et al. (2023) intervene to modify gender in an input such as z =

“The doctor called the nurse because he was late. Who was late?” They change this to
2’ = “The doctor called the nurse because she was late. Who was late?”

Then, they evaluate its effect on an output o which they choose as a measure of the
probability of the output “nurse”. Specifically, they compute O,_,, = o(z’) — o(z), which
measures how much more likely the model is to output “nurse” solely due to the change
“he” — “she”, and thus it can be interpreted as a form of gender bias. Kotek et al. (2023)
also design an improved version that also permutes “doctor” and “nurse”, aiming to control
for the effect of syntactic position.

Probing. A related concept is that of probing (see e.g., Alain & Bengio 2016, Belinkov
2022, etc). To understand if a feature e captures a concept x — 2, in probing one trains
a classifier of datapoints X ~ D versus their transformed counterparts X', using a simple
function—often linear—of the features e. If this classifier has a high accuracy, then it is
concluded that the feature captures the concept. This approach has been leveraged in
generative Al, e.g., to understand where models store spatial information about the input
(Gurnee & Tegmark 2024).

See Table 5 for some examples of related methods. A few examples are discussed below:

1. There is work aiming to identify sub-networks (not just representations) responsible
for specific tasks, by pruning to the networks and checking if they can still perform
the computation (Nanda et al. 2023). Further, Zhang & Nanda (2024) systematized
activation patching methods to localize causal computations in LLMs, providing best
practices for intermediate-stage interventions.

2. Greenblatt et al. (2023) used intervention-based prompts to elicit deceptive behavior
from an LLM, finding that LMs may internally simulate misaligned objectives while
faking alignment.

3. There has been work to design perturbations of standard mathematical datasets to
evaluate LLM reasoning robustness (Shi et al. 2023, Mirzadeh et al. 2025).

2.4.2. Causal mediation analysis. Causal mediation analysis (Pearl 2001) is a more ad-
vanced technique from statistical causality, which can be used to identify the precise effects
of intermediate components of generative Al models (e.g., Vig et al. 2020, etc.). In a ba-
sic setting for causal mediation analysis, we consider an input z, and a changed input z’,
Where we intervene via an intervention that we would like to study, for instance changing
the sentiment of a review x from positive to negative.

9The term bias is used with a variety of meanings in AI, which are moreover usually different
from the standard statistical meaning of bias in estimation. In our example, bias refers to a behavior
that is different from a desired one (equal frequency of genders output).
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Table 5 Types and examples of interventions and experiment design in generative

Al.
Technique Type Examples
Learn bias Learn gender bias in output by modifying input (Bolukbasi et al.
gnder.“an.d or association | 9016, Zhao et al. 2018, Rudinger et al. 2018)
ehavior via
Intervention Identify internal/intermediate component associated with bias
or factual association via causal mediation analysis (Vig et al.
2020, Meng et al. 2022, Dai et al. 2022)
Learn effect of circuits (sub-networks) by pruning to the circuit
and observing behavior (Nanda et al. 2023)
Learn effect of thoughts (intermediate outputs) by modifying
them (Bogdan et al. 2025)
Learn concept or steering vector by inducing concept modifying
Learn concept | . K .
input (Mikolov et al. 2013a,b, Pennington et al. 2014, Turner
et al. 2023, Rimsky et al. 2024, Zou et al. 2023)
Evaluate Perform ablation study: change algorithm setting and test be-
performance | havior
Design perturbed dataset to evaluate LLLM reasoning robustness
(Wu et al. 2024, Shi et al. 2023, Mirzadeh et al. 2025)
Evaluate Design prompt eliciting behavior that would modify AI system
alignment and observe behavior (Greenblatt et al. 2023)
Under‘stan‘d Identify neurons associated with sentiment (Radford et al. 2017)
Beg?gé?flgla or neurons that represent world state (Li et al. 2023a)
Identify sparse linear combinations of neurons that represent
features (Gurnee et al. 2023)

Change Add gradient of concept classifier (Dathathri et al. 2020) or
Behavior via steering vector (Subramani et al. 2022, Turner et al. 2023, Zou
Intervention et al. 2023, Li et al. 2023b) to elicit behavior

Patch activations from one input into the activations of another
input (Meng et al. 2022, Zhang & Nanda 2024)

T — e(z) — > o(x)

‘ | |

! | |

! | |

| | |

\ \ \

o) ———> e(a)) ——— o(z')

Figure 2

Diagram to represent computational flow and interventions, for use with causal mediation analysis
Solid arrows denote standard computational flows; dashed arrows denote interventions or their

effects.

We aim to study a generative model of interest. We consider an intermediate represen-

tation/activation e whose effect we aim to study; in causal mediation analysis e is known
as the mediator. The final output representation o of the generative model depends on

the intermediate representation e, as well as on other model components, which together

we denote by el. Algebraically, we write the output representation in the functional form
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o(z) = gle(z),e*(x)) for all x € X, for some set of computations denoted by g. See Figure
2 for a diagram representing this setting.

Then, o(z') — o(x) represents the overall effect of the intervention z — z’. Typically,
we are interested not just in the particular query x, but rather about the average behavior
over a distribution of interest. The total average effect of z — z’ is E[0o(X") — o(X)]. This
can be decomposed into a the sum of natural direct and indirect effects.

Natural direct effect. The natural direct effect of x — 2’ on o is the effect that
happens through pathways other than the mediator e. This expression keeps e fixed:

E [o (e(X),eJ‘(X')) — o(X)] =E [0 (e(X),eJ‘(X')) -0 (e(X),eJ‘(X))]

If the direct effect is small, this can be interpreted as the mediator e capturing most of the
effect of ' on 0. When the direct effect is small, we can view the mediator as having an
important role in enacting the effect z — z’, making it a promising target for interventions
if we aim to mitigate this effect.

Natural indirect effect. To complement this, the natural indirect effect of x — z’
on o captures the remaining part of the total effect, which goes through the mediator
e(x) — e(z'):

E [O(Xl) —o (e(X),el(X'))] =E [o (e(X/),eL(X')) -0 (e(X),eL(X'))] .

This decomposition of effects into direct and indirect ones has been used, among others,
to identify components responsible for gender bias (Vig et al. 2020) as well as other factual
associations (Meng et al. 2022, Dai et al. 2022) in LLMs. In some cases, ¥’ can correspond
to “adding noise” to tokens that contain specific information, e.g., “The Space Needle is in”
—“**[i.i.d. Gaussian activations]** is in”; by acting at the levels of token embeddings of
x. This allows capturing the effect of deleting information from the input. However, fully
rigorous and well-justified methods for interventions on the identified mediators have not
yet been developed.

3. Discussion

We have presented overviews of some applications of statistical ideas to generative Al
focusing on topics such as improving and changing the behavior of GenAl models, diag-
nostics and uncertainty quantification, evaluation, as well as interventions and experiment
design. These leverage ideas from classical statistical inference, distribution-free predictive
inference, forecasting and calibration, as well as causality.

At the moment, generative Al models are exceedingly complex, and are usually best
viewed as black boxes. To ensure usefulness in GenAl, one needs to develop methods that
are light on assumptions. Moreover, in order to to maximize impact, the methods need
to be illustrated on current GenAl models, which requires both a familiarity with ongo-
ing developments in AI, and adequately large computational resources. For statisticians,
collaboration with Al researchers can help ensure that these requirements are met.

1. GenAI lacks guarantees. Generative Al models are stochastic black boxes: as
probability distributions over large semantic spaces (text, images) from which we
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can sample. While showing promising performance in a variety of areas, they do
not have any guarantees about correctness, safety, etc., by default.

2. Statistical methods for GenAlI need to handle black box models. In order
to be applicable to black-box generative AI models, statistical methods need to
be light on assumptions and able to handle structured semantic input and output
spaces.

3. The flexibility of statistical “wrappers”. There are a variety of approaches to
change the behavior of Al models, both in terms of their inputs and their outputs.
Statistical “wrappers” can be used in order to precisely control the performance of
these approaches.

4. Uncertainty quantification must be calibrated and handle semantics.
Quantifying the uncertainty of a GenAI model could be a promising way to make
it more reliable; however, the issues of semantic multiplicity and lack of calibration
need to be handled.

5. Evaluation is statistical inference. Al evaluation, especially with small
datasets, presents opportunities for leveraging statistical inference methods.

6. The power of interventions. Interventions on generative Al systems, building on
ideas from causal inference, have the potential to identify components responsible
for specific capabilities and to induce desired behaviors.

7. The promise of dataset and experiment design. Calibration, evaluation, and
intervention all hinge on carefully collected, held-out calibration sets and targeted
perturbations, which offer opportunities for statistical thinking.

1. Statistical methods aimed at improving AT models need to be developed by taking
into account the black-box nature of AI, where often only the inputs and outputs
of the models are available, and the intermediate computations are unknown.

2. A comprehensive statistical framework for the evaluation of generative Al systems
is yet to be developed.

3. Well-justified methods for interventions on mediators identified in generative Al
models remain to be introduced.
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