Internal and External Knowledge Interactive Refinement Framework for
Knowledge-Intensive Question Answering

Anonymous ACL submission

Abstract

Recent works have attempted to integrate exter-
nal knowledge into LLMs to address the lim-
itations and potential factual errors in LLM-
generated content. However, how to retrieve
the correct knowledge from the large amount
of external knowledge imposes a challenge. To
this end, we empirically observe that LLMs
have already encoded rich knowledge in their
pretrained parameters and utilizing these in-
ternal knowledge improves the retrieval of
external knowledge when applying them to
knowledge-intensive tasks. In this paper, we
propose a new internal and external knowledge
interactive refinement paradigm dubbed IEKR
to utilize internal knowledge in LLM to help
retrieve relevant knowledge from the external
knowledge base, as well as exploit the external
knowledge to refine the hallucination of gen-

2022; Bang et al., 2023). To mitigate these limi-
tations, recent works propose retrieval augmented
generation (RAG) (Lewis et al., 2020; Izacard et al.,
2022; Khattab et al., 2022) to integrates external
knowledge retrieved into the generative process.
However, there is inevitably a gap between the in-
put text and the needed knowledge in retrieval (Ma
et al., 2023) and how to retrieve the right knowl-
edge remains a challenge. To this end, we empiri-
cally discover the internal knowledge encoded in
LLM parameters help the retriever to obtain the cor-
rect external knowledge in demand for knowledge-
intensive tasks.

question:

P Which of these would let the most heat travel through?
A) a new pair of jeans.

ah — B) a steel spoon in a cafeteria.

C) a cotton candy at a store.

D) a calvin klein cotton hat

& - What do you know about steel?

erated internal knowledge. By simply adding P
heat has property warm LM ==

a prompt like “Tell me something about” to
the LLMs, we try to review related explicit

retriever B | Metal is a thermal conductor

knowledge and insert them with the query into
the retriever for external retrieval. The exter-
nal knowledge is utilized to complement the
internal knowledge into input of LLM for an-
swers. We conduct experiments on 3 bench-
mark datasets in knowledge-intensive question
answering task with different LLMs and do-
mains, achieving the new state-of-the-art. Fur-
ther analysis shows the effectiveness of differ-
ent modules in our approach.

1 Introduction

Large Language Models (LLMs) have shown re-
markable abilities for human language processing
and extraordinary scalability and adaptability in
few- or zero-shot settings (Brown et al., 2020;
Ouyang et al., 2022; Chowdhery et al., 2023).
In spite of LLM’s ability to generate plausible-
sounding text, hallucination can occur when the
model produces text that includes facts or claims
that are fictional or misleading rather than provid-
ing reliable and truthful information (Yao et al.,
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Figure 1: One example from OpenbookQA dataset

In Figure 1, the query is “Which of these would
let the most heat travel through? A) a new pair of
jeans. B) a steel spoon in a cafeteria. C) a cotton
candy at a store. D) a calvin klein cotton hat”, and
the needed knowledge to answer the question is
“Metal is a thermal conductor”. There is a gap be-
tween the option in query “steel” and this external
knowledge, so the retriever chooses many relevant
but not needed knowledge like “steel is related to
heavy, heat has property warm” which distracts the
LLM to answer the question. However, the knowl-
edge gap can be filled by prompt the LLM to reflect
on its internal knowledge about the steel.

To improve the retrieval of needed external
knowledge for question answering (QA), we pro-



pose our internal and external knowledge interac-
tively refinement framework (IEKR), where the
internal knowledge within LLM is utilized to re-
trieve needed knowledge in external knowledge
base (KB), and the external knowledge retrieved
is incorporated into complementing the internal
knowledge. Specifically, first we prompt the LLM
to generate the intrinsic knowledge about the con-
cepts in the query. Then we input the internal
knowledge along with the query to the language
model (LM) retriever and get the top-k knowledge
sentences from the external KB. The internal and
external knowledge is inputted to the reader to an-
swer the question. We conduct experiments on
three benchmark knowledge-intensive QA datasets
across different domains, OpenbookQA, Common-
senseQA and MedQA, becoming the new state-of-
the-art. Further experimental results demonstrate
the effectiveness of internal knowledge to retrieve
the needed external knowledge, as well as the com-
plement of internal knowledge with external knowl-
edge.

To conclude, we summarize the contributions of
this work as follows: 1. We explicitly incorporate
internal knowledge within LLM to retrieve needed
external knowledge for knowledge-intensive QA,
filling the gap between the input text and the needed
knowledge in retrieval. 2. We introduce self-
criticism to refine the internal knowledge based on
the retrieval and highlight the reflection process for
further reasoning. 3. We introduce self-conclude to
conclude the intermediate result and provide clues
for further retrieval. 4. We conduct experiments
on three benchmark datasets with different LLMs
across different domains, and derive the SOTA per-
formance. Further experiments show the effective-
ness of different modules of our approach.

2 Related Work

Previous studies have shown that PLMs implicitly
contain a large amount of knowledge. Petroni et al.
(2019) have shown that such language models can
be used in a KB completion task by converting KB
relations into natural language templates. Based on
this finding, researchers attempt to treat the PLM
as a knowledge base. Some studies (Bosselut et al.,
2019; West et al., 2021) employ PLMs to construct
knowledge graphs automatically. Meanwhile, some
others (Shwartz et al., 2020; Li et al., 2022) find
that the knowledge possessed by the PLMs can
be used to enhance the model’s performance in

downstream tasks. To date, several work (Wang
etal., 2022; Zelikman et al., 2022) attempt to utilize
PLMs to generate free-text rationales for reasoning.
Our approach differs from previous works in that
we aim to utilize the internal knowledge in LLMs
to enhance the external knowledge retrieval.

Using interactive question-knowledge alignment,
Zhang et al. (2023) presents a method for mitigat-
ing language model hallucination Their proposed
approach focuses on aligning generated text with
relevant factual knowledge, enabling users to in-
teractively guide the model’s responses to produce
more accurate and reliable information. This tech-
nique aims to improve the quality and factuality
of language model outputs by involving users in
the alignment process. LLMAUGMENTER (Peng
et al., 2023) improves LLMs using external knowl-
edge and automated feedback. It highlights the
need to address the limitations and potential fac-
tual errors in LLM-generated content. This method
involves incorporating external knowledge sources
and automated feedback mechanisms to enhance
the accuracy and reliability of LLM outputs. By
doing so, the paper aims to mitigate factual inac-
curacies and improve the overall quality of LLM-
generated text. Similarly, Li et al. (2023) intro-
duces a framework called “Chain of Knowledge”
for grounding LLMs with structured knowledge
bases. Grounding refers to the process of connect-
ing LLM-generated text with structured knowledge
to improve factual accuracy and reliability. This
approach aims to improve the alignment of LLM-
generated content with structured knowledge, re-
ducing the risk of generating inaccurate or hallu-
cinated information. These methods neglect the
internal knowledge within the LLLM and there re-
mains a gap between between the input text and
the needed knowledge in retrieval.

3 Task Formulation

We focus on the multi-choice QA task (Robinson
et al., 2022). The query includes a natural text ques-
tion and several candidates and the model needs to
choose an answer from the candidates:

a=argmaxP(a|q) (1)

aeC
where C denotes the answer candidates and ¢ de-
notes the question. There is an external KB to
provide external knowledge for the model. The KB
contains a series of factual triples and each triple
(fact) is composed of two entities and one relation.



A KB can be denoted as G = {(e,r,€e)|e, e’ €
E,r € R}, where G denotes the KB, E' denotes
the entity set and R denotes the relation set.

4 Methodology

In this part, we introduce the architecture of our
approach. Our model composes 4 steps: internal
reflection, external retrieval, self-criticism and self-
conclusion.

For an input query, first we prompt the LLM M
to reflect on its internal knowledge about the query
entities. Secondly we utilize the internal knowl-
edge as well as query to retrieve the relevant exter-
nal knowledge by retriever R to complement inter-
nal knowledge. Then the model critic the internal
knowledge based on the complementary external
knowledge. Then the model conduct self-conclude
to derive intermediate reasoning result.

4.1 Internal Knowledge Reflection

In this part, we aim to dig into the LLM about the
internal knowledge about the entities in query. We
utilize off-shelf Named Entity Recognition model
to extract the named entities in the query. For ex-
ample, as to “Frilled sharks and angler fish live far
beneath the surface of the ocean”, we extract the
“Frilled sharks”, “angler fish” and “ocean” as the
named entities.

For each entity, we construct the prompt like
“tell me something about [entity]” to ask LLM M
to generate the internal knowledge about it. We
arrange the generation about each entity sequen-
tially as the internal knowledge of LLM M of the
current query:

iki = M(P + ¢;) 2)
IK = Concatelik; ||ikz]| - - - ||likn] ()

where P denotes the reflection prompt to LLM M,
n denotes the number of entities, e; denotes the i-th
entity in query.

4.2 External Knowledge Retrieval

In this part, we utilize a pretrained LM to retrieve
the relevant knowledge from the external KB G
base on the internal knowledge [ K and query as
the complement. The KB contains a large set of
triples of the form (h, 1, t), like (ice, HasProperty,
cold), where h and t represent head and tail entities
in the entity set V' and r is a certain relation type
from the pre-defined set. To reduce the search

space, we following (Zhang et al., 2022) to perform
entity linking to G to derive an initial set of nodes
Vilinked and prune the original KB G to keep the
entities within 2 hops from Viyjhkeq. We convert
the triples into natural language templates, such as
“(ice, HasProperty, cold)” is converted into “Ice has
the property of cold”.

The retriever contains a pretrained cross-encoder
with transformer architecture, on top of which there
is a classifer to predict the similarity score between
the internal knowledge and the external knowledge
sentence. We choose the top-k external sentences
based on the similarity score as complements of
internal knowledge:

si = MLP(R([q : IK : ek;])) S
EK = Concateleky)|lek()|| - - - |[ekm)] (5)

where q denotes the query, ek; denotes the i-th
external sentence, ek;) denotes the i-th external
sentence after sorting by s; and m denotes the num-
ber of external knowledge sentence.

4.3 Self-Criticism

In this part, we prompt the LLM to correct the in-
ternal knowledge based on the retrieved external
knowledge. Considering the hallucination of LLM,
there may be some incorrect or distracting knowl-
edge in the generation of section 4.1. We input
each piece of internal knowledge and the relevant
external knowledge and ask the LLM to refine the
correctness of internal knowledge:

ek; = argmax{MLP(R([ik;, ek¢])) (6)
Cci = M([P, ik; + ekj]) @)
Crit = Concate[cq]| - ||cn] (8)

where ek; denotes the most relevant item of exter-
nal knowledge about the i-th internal reflection ik;
and P denotes the respective prompt.

4.4 Self-Conclude

In this part, we prompt the model M to select the
current helpful internal knowledge and external
knowledge, and derive the intermediate result for
the query. If the intermediate result does not derive
the final answer, the model generates the required
information such as “should figure out if medal is
a thermal conductor and what calvin klein is” in
Figure 2:

Con = M([P,IK, EK, Crit|) )
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""Query: which of these would let the most heat travel through?
A: a calvin klein cotton hat

‘\ B: a steel spoon in a cafeteria

Internal knowledge

("Step 1: internal reflection
steel is made of medal. The speed of heat travel is related to

\_material. A conductor is a man command in the musical event.

retriever

External knowledge

("Step 2: external retrieval
Thermal conductor is a material. Thermal conductor allows

_heat to travel.

(Step 3: self criticism
The conductor here denotes the thermal conductor, instead of
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Step 4: self conclude
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Figure 2: The pipeline of our approach. Our model composes 4 steps: internal reflection, external retrieval,
self-criticism and self-conclusion. Red denotes the question inputted in respective step, and blue and green denote
the external knowledge and internal knowledge respectively.

where Con denotes the generated self-conclusion
and P denotes the repective prompt. We iteratively
start the next phrase of internal reflection, external
retrieval and self criticism based on the required
information.

4.5 Answer Generation

In this part, we input the final internal knowledge,
external knowledge, self-criticism as well as the
self-conclusion into the LLM M to generate the an-
swer. The cross-entropy loss is utilized to optimize
the model:

L = —logp(al|q,IK, EK, Crit, Con) (10)
1
= —log Hp(ai|q, IK, EK, Crit, Con,a-;)
i=1
(11)
!
= — Z log p(ai|q, IK, EK, Crit, Con, a-;)
i=1

(12)

where a denotes the answer generated, [ denotes
the answer length, Crit denotes the self-criticism
and Con denotes the self-conclusion .

5 Experiments

5.1 Datasets

We evaluate IEKR on three diverse multiple-choice
question answering datasets across two domains:

CommonsenseQA (Talmor et al., 2018) and Open-
BookQA (Mihaylov et al., 2018) as commonsense
reasoning benchmarks, and MedQA-USMLE (Jin
et al., 2021) as a clinical QA task. Common-
senseQA is a 5-way multiple-choice question an-
swering dataset of 12,102 questions that require
background commonsense knowledge beyond sur-
face language understanding. We perform our ex-
periments using the in-house data split of (Lin
et al., 2019) to compare to baseline methods. Open-
bookQA is a 4-way multiple-choice question an-
swering dataset that tests elementary scientific
knowledge. It contains 5,957 questions along with
an open book of scientific facts. We use the official
data splits from (Mihaylov et al., 2018). MedQA-
USMLE is a 4-way multiple-choice question an-
swering dataset, which requires biomedical and
clinical knowledge. The questions are originally
from practice tests for the United States Medical
License Exams (USMLE). The dataset contains
12,723 questions. We use the original data splits
from (Jin et al., 2021).

5.2 Implementation Details

We utilize the widespread Flan-T5 (3B) (Chung
et al., 2022) as the LLM M for Common-
senseQA and OpenbookQA. Because MedQA-
USMLE requires more domain-specific knowledge,
we choose the LLama2 (7B) (Touvron et al., 2023)
as the LLM M. We adopts the same verifier }V for
the three datasets, which is initialzed with LLama2
(7B). To reduce computation cost and keep prior



Methods Dev  Para
LM+GNN
MHGRN (Feng et al., 2020) 74.5 -
QA-GNN (Yasunaga et al., 2021)  76.5 -
GREASELM (Zhang et al., 2022)  78.5 -
RumiDeBERTa (Yao et al., 2023)  74.3 -
GrapeQA (Taunk et al., 2023) 74.9 -
Dragon (Yasunaga et al., 2022) 76.0 -
LLM
GPT-3 (Xu et al., 2021b) 73.0 175B
UnifiedQA (Khashabi et al., 2020) 79.1 11B
Flan-T5 (Chung et al., 2022) 83.2 3B
RumiFlanT5 (Yao et al., 2023) 84.3 3B
GKP (Liu et al., 2021) 853 11B
LLM+RAG

ReFeed 88.8 3B
FLARE 90.5 3B
Self-RAG 91.0 3B
Step-Back 90.7 3B
IEKR 93.7 3B

Table 1: Results on CommonsenseQA dataset compared
with LM+GNN and LLM+RAG based methods. We
adopt accuracy as the metric to evaluate the performance.
GKP denotes Generated Knowledge Prompting. para
denotes the parameter number in the model.

knowledge in LLM, we use LoRA (Hu et al., 2021),
which freezes the pretrained model weights and in-
jects trainable rank decomposition matrices into
each layer of the LLM M. So the number of train-
able parameters of IEKR-7B is 4.5M, only 0.06%
of total parameters of LLaMA2-7B.

We use ConceptNet (Speer et al., 2017), a
general-domain knowledge graph, as our external
knowledge source G for both CommonsenseQA
and OpenbookQA. It has 799,273 nodes and
2,487,810 edges in total. For MedQA-USMLE, we
use a self-constructed knowledge graph that inte-
grates the Disease Database portion of the Unified
Medical Language System (Bodenreider, 2004)
and DrugBank (Wishart et al., 2018). The knowl-
edge graph contains 9,958 nodes and 44,561 edges.

We adopt the pretrained dense retriever BGE-
Reranker (Chen et al., 2024) to initialize the re-
triever R. The number of cases /N sampled from
training dataset to finetune R is set to 500. The
number of external knowledge sentences m re-
trieved by R wth the query and internal knowledge
is set to 50. We utilize AdamW as the optimizer
to train the LLM M and the learning rate is set to
3e-5. Training batch size is set to 2.

5.3 Baselines

We compare our methods with 2 groups of base-
lines: LM based methods with graph neural net-
work (GNN) and LLM based methods with re-
trieval augmented generation (RAG). LM+GNN
methods utilize GNN to incorporate the exter-
nal knowledge from KB for knowledge-intensive
QA. Because GNN involves much computation
cost which does not apply to LLM, LLM+RAG
based methods adopt retrieval augmented genera-
tion (RAG) to retrieve the external knowledge text
and conduct task specific finetuning.

For LM+GNN methods, we compare our method
with RoOBERTa-Large RGCN (Schlichtkrull et al.,
2018), GeonAttn (Wang et al., 2019), KagNet (Lin
et al., 2019), RN (Santoro et al., 2017), MHGRN
(Feng et al., 2020), QA-GNN (Yasunaga et al.,
2021), GREASELM (Zhang et al., 2022), RumiDe-
BERTa (Yao et al., 2023), GrapeQA (Taunk et al.,
2023), and Dragon (Yasunaga et al., 2022) for
OpenbookQA and CommonsenseQA; as well as
SapBERT (Liu et al., 2020), QA-GNN (Yasunaga
et al., 2021), GREASELM (Zhang et al., 2022),
and GrapeQA (Taunk et al., 2023) for MedQA.

For LLM based methods, we compare our
method with GPT-3 (Xu et al., 2021b), UnifiedQA
(Khashabi et al., 2020), Flan-T5 (Chung et al.,
2022), RumiFlanT5 (Yao et al., 2023), DeBERTa-
xxlarge (Xu et al., 2021b), GKP (Liu et al., 2021),
and GenMC (Huang et al., 2022) for OpenbookQA
and CommonsenseQA; as well as GPT-Neo (Black
et al., 2022), LLama2 (Touvron et al., 2023), and
RumilLLama?2 (Yao et al., 2023) for MedQA. For
RAG based LLM, we compare with FLARE(Jiang
et al., 2023) and ReFeed (Yu et al., 2023), and re-
place the original backbone from GPT-3.5 to the
same as ours. We also compare with strong RAG
methods self-RAG (Asai et al., 2023) and Step-
back (Zheng et al., 2023).

5.4 Results

Our results in Tables 1 and ?? demonstrate a consis-
tent improvement on the CommonsenseQA dataset
compared with existing LM+GNN based methods
and LLM-based methods, becoming the new state-
of-the-art. Compared with competitive LM+GNN
methods, GREASELM and Dragon, our model out-
performs by 9.4 accuracy on dev set and 17.7 accu-
racy on in-house test set. Compared with best LLM
based method, Generated Knowledge Prompting,
our model outperforms by 2.6 accuracy on dev set.



In Tables 2, our improvements significantly out-
performs the existing LM+GNN and LLM based
methods on OpenbookQA dataset, becoming the
new SOTA. IEKR improves the performance by
7.3 accuracy compared with the best LM+GNN
method GREASELM, and 2.3 accuracy compared
with the best LLM method GenMC on test set. It
demonstrates the effectiveness of our internal and
external knowledge interactively refinement frame-
work.

Our reported results thus far demonstrate the vi-
ability of our method in the general commonsense
reasoning domain. Further, we explore whether
IEKR could be adapted to other domains by evalu-
ating on the MedQA-USMLE dataset. Our results
in Tables ?? and 3 demonstrate that IEKR outper-
forms SOTA LM+GNN method GrapeQA by 11.4
accuracy and LLM based method Rumil.Lama2 by
3.5 accuracy. It demonstrates that with different
LLMs, our approach shows stable improvement
over the knowledge intensive QA task across dif-
ferent domains. Our method effectively reflects on
useful internal knowledge within the model, and
utilize it to enhance the retrieval of external knowl-
edge for QA task.

6 Analysis

In this part, we conduct ablation studies to evaluate
different modules of our approach. Then we gen-
eralize our method to other QA tasks and compare
our methods with different RAG based methods
with the same backbone. Finally, we conduct exper-
iments with different numbers of external knowl-
edge sentences m.

6.1 Ablation Study

In our approach, there are 2 modules: Internal
Knowledge Reflection, External Knowledge Re-
trieval. We successively evaluate the importance of
different modules by removing the respect module.

Does internal knowledge reflection matter? In
this ablation, we remove the process of digging into
the LLM about the internal knowledge about the
entities in query. We directly utilize the query to
retrieve relevant external knowledge as inputs into
LLM M along with the query to derive the answer.
In Table 4, when removing the internal knowledge
reflection, our model drops by 2.3 accuracy on
CommonsenseQA, 3.4 accuracy on OpenbookQA,
and 3.3 accuracy on MedQA. It demonstrates that
without the internal knowledge within LLM, the

Methods Test Para
LM+GNN
Dragon (Yasunaga et al., 2022) 72.0 -
RumiDeBERTa (Yao et al., 2023) 76.0 -
ALBERT+KG (Lan et al., 2019) 81.0 -
HGN (Yan et al., 2020) 81.4 -
AMR-SG (Xu et al., 2021a) 81.6 -
ALBERT+KPG (Wang et al., 2020) 81.8 -
DEKCOR (Xu et al., 2021c¢) 82.2 -
QA-GNN (Yasunaga et al., 2021) 82.8 -
GREASELM (Zhang et al., 2022) 84.8 -
LLM
GPT-3 few shot (Xu et al., 2021b) 73.0 175B
T5 (Raftel et al., 2020) 83.2 3B
T5+KB (Pirtoaca) 854 11B
Flan-T5 (Chung et al., 2022) 86.5 3B
UnifiedQA (Khashabi et al., 2020) 87.2 11B
RumiFlanT5 (Yao et al., 2023) 873 3B
GenMC (Huang et al., 2022) 89.8 11B
LLM+RAG

ReFeed 87.1 3B
FLARE 88.6 3B
Self-RAG 89.3 3B
Step-Back 89.0 3B
IEKR 92.1 3B

Table 2: Results on OpenbookQA dataset compared
with LM+GNN and LLM+RAG based methods. ‘Para”
denotes the parameter number in the model. Rumi-
FlanTS5 are trained by using FlanT5-3B to replace Ru-
miDeBERTa (Yao et al., 2023) as the backbone for fair
comparison.

retriever struggles to retrieve enough needed knowl-
edge from external KB only with the query. How-
ever, compared with direct finetuning, this ablation
model outperforms by 1.1, 2.2, and 0.9 accuracy
on CommonsenseQA, OpenbookQA and MedQA,
which shows our retriever still derives some useful
external knowledge from KB G for the QA task.

Does external knowledge retrieval matter? In
this ablation, we remove the process of retrieving
knowledge from external KB and alleviating hal-
lucination with verifier. We prompt the model to
derive the internal knowledge about the query en-
tity and input the internal knowledge with query to
the LLM for the answer. In Table 4, when removing
the external knowledge retrieval, our model drops
by 1.5 accuracy on CommonsenseQA, 2.3 accuracy
on OpenbookQA, and 2.7 accuracy on MedQA. It



demonstrates that the knowledge derived from inter-
nal reflection does not contain the enough informa-
tion to answer the question. The model still needs
to retrieve from external KB to complement the
internal knowledge for knowledge-intensive QA.
However, compared with direct finetuning, this ab-
lation model outperforms by 1.9, 3.3, and 1.5 ac-
curacy on CommonsenseQA, OpenbookQA and
MedQA, which demonstrates the effectiveness of
prompting LLM to reflect on internal knowledge.

6.2 Comparing with RAG methods

In this part, we compare our method with existing
competitive RAG based methods ReFeed (Yu et al.,
2023) and FLARE (Jiang et al., 2023) with the
same backbone.

In Table ??, it shows our method significantly
outperforms the two competitive RAG baselines by
over 2.2 accuracy on different datasets. Our method
does not need the LLM to have the ability to give
an initial answer or ask follow-up query. We focus
on the concrete factual knowledge within LLM,
which provides more new and valuable informa-
tion for external retrieval. Compared with FLARE,
the follow-up queries generated by smaller LLM
like LLama other than ChatGPT do not provide
as much valuable information as our method for
external retrieval. Moreover, our method does not
need multi-time retrieval and only retrieves once
based on the concrete internal knowledge within
LLM but derives significant improvement. Consid-
ering the large size of external KB, We reduce the
computation cost and improve the performance by
utilizing internal knowledge for external retrieval in
one time. Compared with ReFeed, the concrete in-
ternal knowledge in LLM provides more valuable
information for external retrieval than the initial
answer of LLM. It demonstrates the significant ef-
fectiveness and efficiency of our method over other
RAG methods. We highlighted the concrete fac-
tual knowledge within LLLM instead of the initial
answer or follow-up query of LLM in FLARE and
ReFeed. Considering the setting of multi-choice
QA, the choices has been included in query and
initial answer of LLM will not provide much new
knowledge beyond the content of query. However,
our method prompts the LLM to provide concrete
internal knowledge about the linguistic component
of query. For example, we ask the LLM "tell me
something about heat travel” and the LLM pro-
vides the internal knowledge "Heat travel through a

Methods Acc. Params
LM+GNN
SapBERT (Liu et al., 2020) 37.2 -
QA-GNN (Yasunaga et al., 2021)  38.0 -
GREASELM (Zhang et al., 2022) 38.5 -
GrapeQA (Taunk et al., 2023) 39.5 -
LLM
GPT-Neo (Black et al., 2022) 333 2.7B
LLama?2 (Touvron et al., 2023) 46.7 7B
RumilLLama?2 (Yao et al., 2023) 47.4 7B
LLM+RAG
ReFeed 47.1 7B
FLARE 48.2 7B
Self-RAG 48.0 7B
Step-Back 47.6 7B
IEKR 50.9 7B

Table 3: Results on MedQA dataset compared with
LM+GNN and LLM+RAG based methods. ‘“Params”
denotes the parameter number in the model. RumilL-
Lama?2 are trained by using LLama2-7B to replace Ru-
miDeBERTa (Yao et al., 2023) as the backbone for fair
comparison. We conduct experiments with 5 different
random seeds and the p-value is less than 0.001.

thermal conductor” instead of "the answer is B” in
ReFeed. To our best knowledge, we are the first to
introduce concrete internal knowledge within LLM
for external retrieval.

On the other hand, we design the module of
verifier shared by different datasets to modify the
internal knowledge based on the retrieved exter-
nal knowledge and combine the two sources of
knowledge to answer the question. In FLARE and
ReFeed, the internal knowledge contains the initial
answer or follow-up query and may introduce dis-
tracting contents especially for smaller LLM like
Llama-7b.

Retrieval from external KB can bring much com-
putation cost because of the vast amount of knowl-
edge. Our method does not need multi-time re-
trieval like FLARE and only retrieves once based
on the concrete internal knowledge within LLM to
derive significant improvement.

6.3 Generalization to Other QA Tasks

In this section, we apply our methods to the widely-
recognized open-domain question answering (QA)
dataset, 2WikiMultihopQA (?). Our approach fol-
lows the framework established by FLARE, utiliz-
ing the Llama-7b model as the foundational back-
bone, to showcase the generalization capabilities



Methods CSQA OBQA MedQA

- internal 90.4 88.7 47.6
- external 90.2 89.8 48.2
- self-conclude  91.8 91.0 48.8
= self-critic 92.1 90.8 48.6
IEKR 93.7 92.1 50.9

Table 4: Ablation results on CommonsenseQA IHt-
est set, OpenbookQA test set, and MedQA test set.
“CSQA” denotes CommonsenseQA, “OBQA” denotes
OpenbookQA. “-internal” denotes removing the internal
knowledge relection; “- external” denotes removing ex-
ternal knowledge retrieval; “Backbone” denotes directly
finetuning the backbone model to generate the answer,
i.e., FlanT5-3B for CSQA and OBQA.

Number CSQA OBQA MedQA
10 92.9 91.0 49.5
30 93.2 91.7 50.3
50 93.7 92.1 50.9
100 93.1 92.2 50.4

Table 5: Results with different number of external
knowledge sentences. We use accuracy on test set as
evaluation.

of our methodology. Unlike multiple-choice ques-
tion answering (MCQA), where the objective is
to select the correct answer from a given set of
options, open-domain QA requires generating free-
form text responses to queries. To evaluate the per-
formance of our method, we employ Exact Match
(EM) and F1 score as the primary metrics.

As illustrated in Table 6, our method surpasses
the performance of FLARE, achieving an improve-
ment of 1.4 in EM and 1.9 in F1 score. Notably,
while FLARE necessitates multiple retrievals of
external knowledge to formulate an answer, our
method accomplishes this with a single retrieval
step. This significant difference underscores the
efficiency and effectiveness of our approach when
applied to the open-domain QA dataset. The ability
to reduce retrieval frequency without compromis-
ing accuracy not only highlights the robustness
of our method but also suggests potential for en-
hanced scalability and practicality in real-world
applications.

6.4 Different Retrieval Number

In this section, we examine the impact of varying
the number of external knowledge sentences, de-
noted as m, on our method’s performance. For our
primary experiments, we set m to 50, and we con-

Model EM Fl

ReFeed 61.5 66.2
FLARE 62.0 66.7
Self-RAG  61.7 65.8
Step-Back 62.1 659
Ours 634 68.6

Table 6: Evaluation on 2WikiMultihopQA dataset with
Llama-7b as the backbone. We utilize Exact match and
F1 as the evaluation metrics.

ducted additional experiments varying m from 10
to 100. As shown in Table 5, we observed that gen-
erally, retrieving a greater number of knowledge
sentences from the external knowledge base (KB)
enhances the performance of our method. The in-
clusion of more external knowledge provides the
model with a richer set of factual information perti-
nent to the query, thereby improving the verifier’s
ability to mitigate hallucinations when revising in-
ternal knowledge.

However, an interesting phenomenon occurs
when m is set to 100: the Integrated External
Knowledge Retriever (IEKR) exhibits a slight de-
cline in performance. This drop can be attributed
to the longer external knowledge context, which
includes some relevant but unnecessary sentences.
These extraneous sentences can distract the model,
complicating its reasoning process and ultimately
impairing its ability to derive accurate answers.
Therefore, while increasing the amount of retrieved
external knowledge generally benefits performance,
there is a threshold beyond which the inclusion of
superfluous information can become counterpro-
ductive. This finding underscores the importance
of optimizing the balance between the quantity and
relevance of external knowledge in enhancing the
model’s reasoning capabilities.

7 Conclusion

In this work, we propose the internal and exter-
nal knowledge interactively refinement framework,
where the internal knowledge within LLM are
utilized to retrieve needed knowledge in external
KB, and the external knowledge retrieved are in-
corporated into revising the internal knowledge.
We demonstrate our effectiveness on 3 benchmark
datasets in knowledge-intensive QA with different
LLMs across different domains.



Limitations

We propose the internal and external knowledge
interactively refinement framework, and demon-
strate our effiveness on 3 benchmark datasets
in knowledge-intensive QA with different LLMs
across different domains. The sizes of LLMs we
use range from 3B to 7B, and we will conduct
experiments with LLLM larger than 7B in future
research.
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A Appendix



Dataset Example
CommonsenseQA A weasel has a thin body and short legs to easier burrow after prey in a what?
(A) tree (B) mulberry bush (C) chicken coop (D) viking ship (E) rabbit warren
Which of these would let the most heat travel through?
OpenbookQA (A) a new pair of jeans (B) a steel spoon in a cafeteria

(C) a cotton candy at a store (D) a calvin klein cotton hat

MedQA-USMLE

A 57 -year-old man presents to his primary care physician with a 2-month
history of right upper and lower extremity weakness. He noticed the weakness
when he started falling far more frequently while running errands. Since then,
he has had increasing difficulty with walking and lifting objects. His past
medical history is significant only for well-controlled hypertension, but he says
that some members of his family have had musculoskeletal problems. His right
upper extremity shows forearm atrophy and depressed reflexes while his right
lower extremity is hypertonic with a positive Babinski sign. Which of the
following is most likely associated with the cause of this patients symptoms?

(A) HLA-BS8 haplotype (B) HLA-DR?2 haplotype

(C) Mutation in SOD1 (D) Mutation in SMN1

Table 7: Examples of the Knowledge-intensive QA task for each of the datasets evaluated in this work.
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