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Abstract

Recent works have attempted to integrate exter-001
nal knowledge into LLMs to address the lim-002
itations and potential factual errors in LLM-003
generated content. However, how to retrieve004
the correct knowledge from the large amount005
of external knowledge imposes a challenge. To006
this end, we empirically observe that LLMs007
have already encoded rich knowledge in their008
pretrained parameters and utilizing these in-009
ternal knowledge improves the retrieval of010
external knowledge when applying them to011
knowledge-intensive tasks. In this paper, we012
propose a new internal and external knowledge013
interactive refinement paradigm dubbed IEKR014
to utilize internal knowledge in LLM to help015
retrieve relevant knowledge from the external016
knowledge base, as well as exploit the external017
knowledge to refine the hallucination of gen-018
erated internal knowledge. By simply adding019
a prompt like “Tell me something about” to020
the LLMs, we try to review related explicit021
knowledge and insert them with the query into022
the retriever for external retrieval. The exter-023
nal knowledge is utilized to complement the024
internal knowledge into input of LLM for an-025
swers. We conduct experiments on 3 bench-026
mark datasets in knowledge-intensive question027
answering task with different LLMs and do-028
mains, achieving the new state-of-the-art. Fur-029
ther analysis shows the effectiveness of differ-030
ent modules in our approach.031

1 Introduction032

Large Language Models (LLMs) have shown re-033

markable abilities for human language processing034

and extraordinary scalability and adaptability in035

few- or zero-shot settings (Brown et al., 2020;036

Ouyang et al., 2022; Chowdhery et al., 2023).037

In spite of LLM’s ability to generate plausible-038

sounding text, hallucination can occur when the039

model produces text that includes facts or claims040

that are fictional or misleading rather than provid-041

ing reliable and truthful information (Yao et al.,042

2022; Bang et al., 2023). To mitigate these limi- 043

tations, recent works propose retrieval augmented 044

generation (RAG) (Lewis et al., 2020; Izacard et al., 045

2022; Khattab et al., 2022) to integrates external 046

knowledge retrieved into the generative process. 047

However, there is inevitably a gap between the in- 048

put text and the needed knowledge in retrieval (Ma 049

et al., 2023) and how to retrieve the right knowl- 050

edge remains a challenge. To this end, we empiri- 051

cally discover the internal knowledge encoded in 052

LLM parameters help the retriever to obtain the cor- 053

rect external knowledge in demand for knowledge- 054

intensive tasks. 055

retriever

LLM

question:
Which of these would let the most heat travel through?
A) a new pair of jeans.
B) a steel spoon in a cafeteria.
C) a cotton candy at a store.
D) a calvin klein cotton hat

steel is related to heavy
heat has property warm LLM

What do you know about steel?

Steel is made of metal

retriever Metal is a thermal conductor

B) a steel spoon in a cafeteriaLLM

Figure 1: One example from OpenbookQA dataset

In Figure 1, the query is “Which of these would 056

let the most heat travel through? A) a new pair of 057

jeans. B) a steel spoon in a cafeteria. C) a cotton 058

candy at a store. D) a calvin klein cotton hat”, and 059

the needed knowledge to answer the question is 060

“Metal is a thermal conductor”. There is a gap be- 061

tween the option in query “steel” and this external 062

knowledge, so the retriever chooses many relevant 063

but not needed knowledge like “steel is related to 064

heavy, heat has property warm” which distracts the 065

LLM to answer the question. However, the knowl- 066

edge gap can be filled by prompt the LLM to reflect 067

on its internal knowledge about the steel. 068

To improve the retrieval of needed external 069

knowledge for question answering (QA), we pro- 070
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pose our internal and external knowledge interac-071

tively refinement framework (IEKR), where the072

internal knowledge within LLM is utilized to re-073

trieve needed knowledge in external knowledge074

base (KB), and the external knowledge retrieved075

is incorporated into complementing the internal076

knowledge. Specifically, first we prompt the LLM077

to generate the intrinsic knowledge about the con-078

cepts in the query. Then we input the internal079

knowledge along with the query to the language080

model (LM) retriever and get the top-k knowledge081

sentences from the external KB. The internal and082

external knowledge is inputted to the reader to an-083

swer the question. We conduct experiments on084

three benchmark knowledge-intensive QA datasets085

across different domains, OpenbookQA, Common-086

senseQA and MedQA, becoming the new state-of-087

the-art. Further experimental results demonstrate088

the effectiveness of internal knowledge to retrieve089

the needed external knowledge, as well as the com-090

plement of internal knowledge with external knowl-091

edge.092

To conclude, we summarize the contributions of093

this work as follows: 1. We explicitly incorporate094

internal knowledge within LLM to retrieve needed095

external knowledge for knowledge-intensive QA,096

filling the gap between the input text and the needed097

knowledge in retrieval. 2. We introduce self-098

criticism to refine the internal knowledge based on099

the retrieval and highlight the reflection process for100

further reasoning. 3. We introduce self-conclude to101

conclude the intermediate result and provide clues102

for further retrieval. 4. We conduct experiments103

on three benchmark datasets with different LLMs104

across different domains, and derive the SOTA per-105

formance. Further experiments show the effective-106

ness of different modules of our approach.107

2 Related Work108

Previous studies have shown that PLMs implicitly109

contain a large amount of knowledge. Petroni et al.110

(2019) have shown that such language models can111

be used in a KB completion task by converting KB112

relations into natural language templates. Based on113

this finding, researchers attempt to treat the PLM114

as a knowledge base. Some studies (Bosselut et al.,115

2019; West et al., 2021) employ PLMs to construct116

knowledge graphs automatically. Meanwhile, some117

others (Shwartz et al., 2020; Li et al., 2022) find118

that the knowledge possessed by the PLMs can119

be used to enhance the model’s performance in120

downstream tasks. To date, several work (Wang 121

et al., 2022; Zelikman et al., 2022) attempt to utilize 122

PLMs to generate free-text rationales for reasoning. 123

Our approach differs from previous works in that 124

we aim to utilize the internal knowledge in LLMs 125

to enhance the external knowledge retrieval. 126

Using interactive question-knowledge alignment, 127

Zhang et al. (2023) presents a method for mitigat- 128

ing language model hallucination Their proposed 129

approach focuses on aligning generated text with 130

relevant factual knowledge, enabling users to in- 131

teractively guide the model’s responses to produce 132

more accurate and reliable information. This tech- 133

nique aims to improve the quality and factuality 134

of language model outputs by involving users in 135

the alignment process. LLMAUGMENTER (Peng 136

et al., 2023) improves LLMs using external knowl- 137

edge and automated feedback. It highlights the 138

need to address the limitations and potential fac- 139

tual errors in LLM-generated content. This method 140

involves incorporating external knowledge sources 141

and automated feedback mechanisms to enhance 142

the accuracy and reliability of LLM outputs. By 143

doing so, the paper aims to mitigate factual inac- 144

curacies and improve the overall quality of LLM- 145

generated text. Similarly, Li et al. (2023) intro- 146

duces a framework called “Chain of Knowledge” 147

for grounding LLMs with structured knowledge 148

bases. Grounding refers to the process of connect- 149

ing LLM-generated text with structured knowledge 150

to improve factual accuracy and reliability. This 151

approach aims to improve the alignment of LLM- 152

generated content with structured knowledge, re- 153

ducing the risk of generating inaccurate or hallu- 154

cinated information. These methods neglect the 155

internal knowledge within the LLM and there re- 156

mains a gap between between the input text and 157

the needed knowledge in retrieval. 158

3 Task Formulation 159

We focus on the multi-choice QA task (Robinson 160

et al., 2022). The query includes a natural text ques- 161

tion and several candidates and the model needs to 162

choose an answer from the candidates: 163

â = argmax
a∈C

P (a | q) (1) 164

where C denotes the answer candidates and q de- 165

notes the question. There is an external KB to 166

provide external knowledge for the model. The KB 167

contains a series of factual triples and each triple 168

(fact) is composed of two entities and one relation. 169
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A KB can be denoted as G = {(e, r, e′)|e, e′ ∈170

E, r ∈ R}, where G denotes the KB, E denotes171

the entity set and R denotes the relation set.172

4 Methodology173

In this part, we introduce the architecture of our174

approach. Our model composes 4 steps: internal175

reflection, external retrieval, self-criticism and self-176

conclusion.177

For an input query, first we prompt the LLM M178

to reflect on its internal knowledge about the query179

entities. Secondly we utilize the internal knowl-180

edge as well as query to retrieve the relevant exter-181

nal knowledge by retriever R to complement inter-182

nal knowledge. Then the model critic the internal183

knowledge based on the complementary external184

knowledge. Then the model conduct self-conclude185

to derive intermediate reasoning result.186

4.1 Internal Knowledge Reflection187

In this part, we aim to dig into the LLM about the188

internal knowledge about the entities in query. We189

utilize off-shelf Named Entity Recognition model190

to extract the named entities in the query. For ex-191

ample, as to “Frilled sharks and angler fish live far192

beneath the surface of the ocean”, we extract the193

“Frilled sharks”, “angler fish” and “ocean” as the194

named entities.195

For each entity, we construct the prompt like196

“tell me something about [entity]” to ask LLM M197

to generate the internal knowledge about it. We198

arrange the generation about each entity sequen-199

tially as the internal knowledge of LLM M of the200

current query:201

iki = M(P+ ei) (2)202

IK = Concate[ik1||ik2|| · · · ||ikn] (3)203

where P denotes the reflection prompt to LLM M,204

n denotes the number of entities, ei denotes the i-th205

entity in query.206

4.2 External Knowledge Retrieval207

In this part, we utilize a pretrained LM to retrieve208

the relevant knowledge from the external KB G209

base on the internal knowledge IK and query as210

the complement. The KB contains a large set of211

triples of the form (h, r, t), like (ice, HasProperty,212

cold), where h and t represent head and tail entities213

in the entity set V and r is a certain relation type214

from the pre-defined set. To reduce the search215

space, we following (Zhang et al., 2022) to perform 216

entity linking to G to derive an initial set of nodes 217

Vlinked and prune the original KB G to keep the 218

entities within 2 hops from Vlinked. We convert 219

the triples into natural language templates, such as 220

“(ice, HasProperty, cold)” is converted into “Ice has 221

the property of cold”. 222

The retriever contains a pretrained cross-encoder 223

with transformer architecture, on top of which there 224

is a classifer to predict the similarity score between 225

the internal knowledge and the external knowledge 226

sentence. We choose the top-k external sentences 227

based on the similarity score as complements of 228

internal knowledge: 229

si = MLP(R([q : IK : eki])) (4) 230

EK = Concate[ek(1)||ek(2)|| · · · ||ek(m)] (5) 231

where q denotes the query, eki denotes the i-th 232

external sentence, ek(i) denotes the i-th external 233

sentence after sorting by si and m denotes the num- 234

ber of external knowledge sentence. 235

4.3 Self-Criticism 236

In this part, we prompt the LLM to correct the in- 237

ternal knowledge based on the retrieved external 238

knowledge. Considering the hallucination of LLM, 239

there may be some incorrect or distracting knowl- 240

edge in the generation of section 4.1. We input 241

each piece of internal knowledge and the relevant 242

external knowledge and ask the LLM to refine the 243

correctness of internal knowledge: 244

ekj = argmaxtMLP(R([iki, ekt])) (6) 245

ci = M([P, iki + ekj]) (7) 246

Crit = Concate[c1|| · · · ||cn] (8) 247

where ekj denotes the most relevant item of exter- 248

nal knowledge about the i-th internal reflection iki 249

and P denotes the respective prompt. 250

4.4 Self-Conclude 251

In this part, we prompt the model M to select the 252

current helpful internal knowledge and external 253

knowledge, and derive the intermediate result for 254

the query. If the intermediate result does not derive 255

the final answer, the model generates the required 256

information such as “should figure out if medal is 257

a thermal conductor and what calvin klein is” in 258

Figure 2: 259

Con = M([P, IK,EK,Crit]) (9) 260
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query

LLM

Internal knowledge

External knowledge

retriever

LLM

criticism

LLM

self-conclude

Query: which of these would let the most heat travel through?

A: a calvin klein cotton hat

B: a steel spoon in a cafeteria

Step 1: internal reflection

steel is made of medal. The speed of heat travel is related to 

material. A conductor is a man command in the musical event.
Step 2: external retrieval

Thermal conductor is a material. Thermal conductor allows 

heat to travel.

Step 3: self criticism

The conductor here denotes the thermal conductor, instead of  

a profession.

Step 4: self conclude

steel is made of medal and thermal conductor allows heat to travel. I 

should figure out if medal is a thermal conductor  and what calvin klein is. 

Figure 2: The pipeline of our approach. Our model composes 4 steps: internal reflection, external retrieval,
self-criticism and self-conclusion. Red denotes the question inputted in respective step, and blue and green denote
the external knowledge and internal knowledge respectively.

where Con denotes the generated self-conclusion261

and P denotes the repective prompt. We iteratively262

start the next phrase of internal reflection, external263

retrieval and self criticism based on the required264

information.265

4.5 Answer Generation266

In this part, we input the final internal knowledge,267

external knowledge, self-criticism as well as the268

self-conclusion into the LLM M to generate the an-269

swer. The cross-entropy loss is utilized to optimize270

the model:271

L = −log p(a|q, IK,EK,Crit,Con) (10)272

= −log
l∏

i=1

p(ai|q, IK,EK,Crit,Con, a<i)

(11)

273

= −
l∑

i=1

log p(ai|q, IK,EK,Crit,Con, a<i)

(12)

274

where a denotes the answer generated, l denotes275

the answer length, Crit denotes the self-criticism276

and Con denotes the self-conclusion .277

5 Experiments278

5.1 Datasets279

We evaluate IEKR on three diverse multiple-choice280

question answering datasets across two domains:281

CommonsenseQA (Talmor et al., 2018) and Open- 282

BookQA (Mihaylov et al., 2018) as commonsense 283

reasoning benchmarks, and MedQA-USMLE (Jin 284

et al., 2021) as a clinical QA task. Common- 285

senseQA is a 5-way multiple-choice question an- 286

swering dataset of 12,102 questions that require 287

background commonsense knowledge beyond sur- 288

face language understanding. We perform our ex- 289

periments using the in-house data split of (Lin 290

et al., 2019) to compare to baseline methods. Open- 291

bookQA is a 4-way multiple-choice question an- 292

swering dataset that tests elementary scientific 293

knowledge. It contains 5,957 questions along with 294

an open book of scientific facts. We use the official 295

data splits from (Mihaylov et al., 2018). MedQA- 296

USMLE is a 4-way multiple-choice question an- 297

swering dataset, which requires biomedical and 298

clinical knowledge. The questions are originally 299

from practice tests for the United States Medical 300

License Exams (USMLE). The dataset contains 301

12,723 questions. We use the original data splits 302

from (Jin et al., 2021). 303

5.2 Implementation Details 304

We utilize the widespread Flan-T5 (3B) (Chung 305

et al., 2022) as the LLM M for Common- 306

senseQA and OpenbookQA. Because MedQA- 307

USMLE requires more domain-specific knowledge, 308

we choose the LLama2 (7B) (Touvron et al., 2023) 309

as the LLM M. We adopts the same verifier V for 310

the three datasets, which is initialzed with LLama2 311

(7B). To reduce computation cost and keep prior 312
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Methods Dev Para
LM+GNN

MHGRN (Feng et al., 2020) 74.5 -
QA-GNN (Yasunaga et al., 2021) 76.5 -
GREASELM (Zhang et al., 2022) 78.5 -
RumiDeBERTa (Yao et al., 2023) 74.3 -
GrapeQA (Taunk et al., 2023) 74.9 -
Dragon (Yasunaga et al., 2022) 76.0 -

LLM
GPT-3 (Xu et al., 2021b) 73.0 175B
UnifiedQA (Khashabi et al., 2020) 79.1 11B
Flan-T5 (Chung et al., 2022) 83.2 3B
RumiFlanT5 (Yao et al., 2023) 84.3 3B
GKP (Liu et al., 2021) 85.3 11B

LLM+RAG
ReFeed 88.8 3B
FLARE 90.5 3B
Self-RAG 91.0 3B
Step-Back 90.7 3B
IEKR 93.7 3B

Table 1: Results on CommonsenseQA dataset compared
with LM+GNN and LLM+RAG based methods. We
adopt accuracy as the metric to evaluate the performance.
GKP denotes Generated Knowledge Prompting. para
denotes the parameter number in the model.

knowledge in LLM, we use LoRA (Hu et al., 2021),313

which freezes the pretrained model weights and in-314

jects trainable rank decomposition matrices into315

each layer of the LLM M. So the number of train-316

able parameters of IEKR-7B is 4.5M, only 0.06%317

of total parameters of LLaMA2-7B.318

We use ConceptNet (Speer et al., 2017), a319

general-domain knowledge graph, as our external320

knowledge source G for both CommonsenseQA321

and OpenbookQA. It has 799,273 nodes and322

2,487,810 edges in total. For MedQA-USMLE, we323

use a self-constructed knowledge graph that inte-324

grates the Disease Database portion of the Unified325

Medical Language System (Bodenreider, 2004)326

and DrugBank (Wishart et al., 2018). The knowl-327

edge graph contains 9,958 nodes and 44,561 edges.328

We adopt the pretrained dense retriever BGE-329

Reranker (Chen et al., 2024) to initialize the re-330

triever R. The number of cases N sampled from331

training dataset to finetune R is set to 500. The332

number of external knowledge sentences m re-333

trieved by R wth the query and internal knowledge334

is set to 50. We utilize AdamW as the optimizer335

to train the LLM M and the learning rate is set to336

3e-5. Training batch size is set to 2.337

5.3 Baselines 338

We compare our methods with 2 groups of base- 339

lines: LM based methods with graph neural net- 340

work (GNN) and LLM based methods with re- 341

trieval augmented generation (RAG). LM+GNN 342

methods utilize GNN to incorporate the exter- 343

nal knowledge from KB for knowledge-intensive 344

QA. Because GNN involves much computation 345

cost which does not apply to LLM, LLM+RAG 346

based methods adopt retrieval augmented genera- 347

tion (RAG) to retrieve the external knowledge text 348

and conduct task specific finetuning. 349

For LM+GNN methods, we compare our method 350

with RoBERTa-Large RGCN (Schlichtkrull et al., 351

2018), GconAttn (Wang et al., 2019), KagNet (Lin 352

et al., 2019), RN (Santoro et al., 2017), MHGRN 353

(Feng et al., 2020), QA-GNN (Yasunaga et al., 354

2021), GREASELM (Zhang et al., 2022), RumiDe- 355

BERTa (Yao et al., 2023), GrapeQA (Taunk et al., 356

2023), and Dragon (Yasunaga et al., 2022) for 357

OpenbookQA and CommonsenseQA; as well as 358

SapBERT (Liu et al., 2020), QA-GNN (Yasunaga 359

et al., 2021), GREASELM (Zhang et al., 2022), 360

and GrapeQA (Taunk et al., 2023) for MedQA. 361

For LLM based methods, we compare our 362

method with GPT-3 (Xu et al., 2021b), UnifiedQA 363

(Khashabi et al., 2020), Flan-T5 (Chung et al., 364

2022), RumiFlanT5 (Yao et al., 2023), DeBERTa- 365

xxlarge (Xu et al., 2021b), GKP (Liu et al., 2021), 366

and GenMC (Huang et al., 2022) for OpenbookQA 367

and CommonsenseQA; as well as GPT-Neo (Black 368

et al., 2022), LLama2 (Touvron et al., 2023), and 369

RumiLLama2 (Yao et al., 2023) for MedQA. For 370

RAG based LLM, we compare with FLARE(Jiang 371

et al., 2023) and ReFeed (Yu et al., 2023), and re- 372

place the original backbone from GPT-3.5 to the 373

same as ours. We also compare with strong RAG 374

methods self-RAG (Asai et al., 2023) and Step- 375

back (Zheng et al., 2023). 376

5.4 Results 377

Our results in Tables 1 and ?? demonstrate a consis- 378

tent improvement on the CommonsenseQA dataset 379

compared with existing LM+GNN based methods 380

and LLM-based methods, becoming the new state- 381

of-the-art. Compared with competitive LM+GNN 382

methods, GREASELM and Dragon, our model out- 383

performs by 9.4 accuracy on dev set and 17.7 accu- 384

racy on in-house test set. Compared with best LLM 385

based method, Generated Knowledge Prompting, 386

our model outperforms by 2.6 accuracy on dev set. 387
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In Tables 2, our improvements significantly out-388

performs the existing LM+GNN and LLM based389

methods on OpenbookQA dataset, becoming the390

new SOTA. IEKR improves the performance by391

7.3 accuracy compared with the best LM+GNN392

method GREASELM, and 2.3 accuracy compared393

with the best LLM method GenMC on test set. It394

demonstrates the effectiveness of our internal and395

external knowledge interactively refinement frame-396

work.397

Our reported results thus far demonstrate the vi-398

ability of our method in the general commonsense399

reasoning domain. Further, we explore whether400

IEKR could be adapted to other domains by evalu-401

ating on the MedQA-USMLE dataset. Our results402

in Tables ?? and 3 demonstrate that IEKR outper-403

forms SOTA LM+GNN method GrapeQA by 11.4404

accuracy and LLM based method RumiLLama2 by405

3.5 accuracy. It demonstrates that with different406

LLMs, our approach shows stable improvement407

over the knowledge intensive QA task across dif-408

ferent domains. Our method effectively reflects on409

useful internal knowledge within the model, and410

utilize it to enhance the retrieval of external knowl-411

edge for QA task.412

6 Analysis413

In this part, we conduct ablation studies to evaluate414

different modules of our approach. Then we gen-415

eralize our method to other QA tasks and compare416

our methods with different RAG based methods417

with the same backbone. Finally, we conduct exper-418

iments with different numbers of external knowl-419

edge sentences m.420

6.1 Ablation Study421

In our approach, there are 2 modules: Internal422

Knowledge Reflection, External Knowledge Re-423

trieval. We successively evaluate the importance of424

different modules by removing the respect module.425

Does internal knowledge reflection matter? In426

this ablation, we remove the process of digging into427

the LLM about the internal knowledge about the428

entities in query. We directly utilize the query to429

retrieve relevant external knowledge as inputs into430

LLM M along with the query to derive the answer.431

In Table 4, when removing the internal knowledge432

reflection, our model drops by 2.3 accuracy on433

CommonsenseQA, 3.4 accuracy on OpenbookQA,434

and 3.3 accuracy on MedQA. It demonstrates that435

without the internal knowledge within LLM, the436

Methods Test Para
LM+GNN

Dragon (Yasunaga et al., 2022) 72.0 -
RumiDeBERTa (Yao et al., 2023) 76.0 -
ALBERT+KG (Lan et al., 2019) 81.0 -
HGN (Yan et al., 2020) 81.4 -
AMR-SG (Xu et al., 2021a) 81.6 -
ALBERT+KPG (Wang et al., 2020) 81.8 -
DEKCOR (Xu et al., 2021c) 82.2 -
QA-GNN (Yasunaga et al., 2021) 82.8 -
GREASELM (Zhang et al., 2022) 84.8 -

LLM
GPT-3 few shot (Xu et al., 2021b) 73.0 175B
T5 (Raffel et al., 2020) 83.2 3B
T5+KB (Pirtoaca) 85.4 11B
Flan-T5 (Chung et al., 2022) 86.5 3B
UnifiedQA (Khashabi et al., 2020) 87.2 11B
RumiFlanT5 (Yao et al., 2023) 87.3 3B
GenMC (Huang et al., 2022) 89.8 11B

LLM+RAG
ReFeed 87.1 3B
FLARE 88.6 3B
Self-RAG 89.3 3B
Step-Back 89.0 3B
IEKR 92.1 3B

Table 2: Results on OpenbookQA dataset compared
with LM+GNN and LLM+RAG based methods. ‘Para”
denotes the parameter number in the model. Rumi-
FlanT5 are trained by using FlanT5-3B to replace Ru-
miDeBERTa (Yao et al., 2023) as the backbone for fair
comparison.

retriever struggles to retrieve enough needed knowl- 437

edge from external KB only with the query. How- 438

ever, compared with direct finetuning, this ablation 439

model outperforms by 1.1, 2.2, and 0.9 accuracy 440

on CommonsenseQA, OpenbookQA and MedQA, 441

which shows our retriever still derives some useful 442

external knowledge from KB G for the QA task. 443

Does external knowledge retrieval matter? In 444

this ablation, we remove the process of retrieving 445

knowledge from external KB and alleviating hal- 446

lucination with verifier. We prompt the model to 447

derive the internal knowledge about the query en- 448

tity and input the internal knowledge with query to 449

the LLM for the answer. In Table 4, when removing 450

the external knowledge retrieval, our model drops 451

by 1.5 accuracy on CommonsenseQA, 2.3 accuracy 452

on OpenbookQA, and 2.7 accuracy on MedQA. It 453
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demonstrates that the knowledge derived from inter-454

nal reflection does not contain the enough informa-455

tion to answer the question. The model still needs456

to retrieve from external KB to complement the457

internal knowledge for knowledge-intensive QA.458

However, compared with direct finetuning, this ab-459

lation model outperforms by 1.9, 3.3, and 1.5 ac-460

curacy on CommonsenseQA, OpenbookQA and461

MedQA, which demonstrates the effectiveness of462

prompting LLM to reflect on internal knowledge.463

6.2 Comparing with RAG methods464

In this part, we compare our method with existing465

competitive RAG based methods ReFeed (Yu et al.,466

2023) and FLARE (Jiang et al., 2023) with the467

same backbone.468

In Table ??, it shows our method significantly469

outperforms the two competitive RAG baselines by470

over 2.2 accuracy on different datasets. Our method471

does not need the LLM to have the ability to give472

an initial answer or ask follow-up query. We focus473

on the concrete factual knowledge within LLM,474

which provides more new and valuable informa-475

tion for external retrieval. Compared with FLARE,476

the follow-up queries generated by smaller LLM477

like LLama other than ChatGPT do not provide478

as much valuable information as our method for479

external retrieval. Moreover, our method does not480

need multi-time retrieval and only retrieves once481

based on the concrete internal knowledge within482

LLM but derives significant improvement. Consid-483

ering the large size of external KB, We reduce the484

computation cost and improve the performance by485

utilizing internal knowledge for external retrieval in486

one time. Compared with ReFeed, the concrete in-487

ternal knowledge in LLM provides more valuable488

information for external retrieval than the initial489

answer of LLM. It demonstrates the significant ef-490

fectiveness and efficiency of our method over other491

RAG methods. We highlighted the concrete fac-492

tual knowledge within LLM instead of the initial493

answer or follow-up query of LLM in FLARE and494

ReFeed. Considering the setting of multi-choice495

QA, the choices has been included in query and496

initial answer of LLM will not provide much new497

knowledge beyond the content of query. However,498

our method prompts the LLM to provide concrete499

internal knowledge about the linguistic component500

of query. For example, we ask the LLM "tell me501

something about heat travel” and the LLM pro-502

vides the internal knowledge "Heat travel through a503

Methods Acc. Params
LM+GNN

SapBERT (Liu et al., 2020) 37.2 -
QA-GNN (Yasunaga et al., 2021) 38.0 -
GREASELM (Zhang et al., 2022) 38.5 -
GrapeQA (Taunk et al., 2023) 39.5 -

LLM
GPT-Neo (Black et al., 2022) 33.3 2.7B
LLama2 (Touvron et al., 2023) 46.7 7B
RumiLLama2 (Yao et al., 2023) 47.4 7B

LLM+RAG
ReFeed 47.1 7B
FLARE 48.2 7B
Self-RAG 48.0 7B
Step-Back 47.6 7B
IEKR 50.9 7B

Table 3: Results on MedQA dataset compared with
LM+GNN and LLM+RAG based methods. “Params”
denotes the parameter number in the model. RumiL-
Lama2 are trained by using LLama2-7B to replace Ru-
miDeBERTa (Yao et al., 2023) as the backbone for fair
comparison. We conduct experiments with 5 different
random seeds and the p-value is less than 0.001.

thermal conductor” instead of "the answer is B” in 504

ReFeed. To our best knowledge, we are the first to 505

introduce concrete internal knowledge within LLM 506

for external retrieval. 507

On the other hand, we design the module of 508

verifier shared by different datasets to modify the 509

internal knowledge based on the retrieved exter- 510

nal knowledge and combine the two sources of 511

knowledge to answer the question. In FLARE and 512

ReFeed, the internal knowledge contains the initial 513

answer or follow-up query and may introduce dis- 514

tracting contents especially for smaller LLM like 515

Llama-7b. 516

Retrieval from external KB can bring much com- 517

putation cost because of the vast amount of knowl- 518

edge. Our method does not need multi-time re- 519

trieval like FLARE and only retrieves once based 520

on the concrete internal knowledge within LLM to 521

derive significant improvement. 522

6.3 Generalization to Other QA Tasks 523

In this section, we apply our methods to the widely- 524

recognized open-domain question answering (QA) 525

dataset, 2WikiMultihopQA (?). Our approach fol- 526

lows the framework established by FLARE, utiliz- 527

ing the Llama-7b model as the foundational back- 528

bone, to showcase the generalization capabilities 529
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Methods CSQA OBQA MedQA
- internal 90.4 88.7 47.6
- external 90.2 89.8 48.2
- self-conclude 91.8 91.0 48.8
= self-critic 92.1 90.8 48.6
IEKR 93.7 92.1 50.9

Table 4: Ablation results on CommonsenseQA IHt-
est set, OpenbookQA test set, and MedQA test set.
“CSQA” denotes CommonsenseQA, “OBQA” denotes
OpenbookQA. “-internal” denotes removing the internal
knowledge relection; “- external” denotes removing ex-
ternal knowledge retrieval; “Backbone” denotes directly
finetuning the backbone model to generate the answer,
i.e., FlanT5-3B for CSQA and OBQA.

Number CSQA OBQA MedQA
10 92.9 91.0 49.5
30 93.2 91.7 50.3
50 93.7 92.1 50.9
100 93.1 92.2 50.4

Table 5: Results with different number of external
knowledge sentences. We use accuracy on test set as
evaluation.

of our methodology. Unlike multiple-choice ques-530

tion answering (MCQA), where the objective is531

to select the correct answer from a given set of532

options, open-domain QA requires generating free-533

form text responses to queries. To evaluate the per-534

formance of our method, we employ Exact Match535

(EM) and F1 score as the primary metrics.536

As illustrated in Table 6, our method surpasses537

the performance of FLARE, achieving an improve-538

ment of 1.4 in EM and 1.9 in F1 score. Notably,539

while FLARE necessitates multiple retrievals of540

external knowledge to formulate an answer, our541

method accomplishes this with a single retrieval542

step. This significant difference underscores the543

efficiency and effectiveness of our approach when544

applied to the open-domain QA dataset. The ability545

to reduce retrieval frequency without compromis-546

ing accuracy not only highlights the robustness547

of our method but also suggests potential for en-548

hanced scalability and practicality in real-world549

applications.550

6.4 Different Retrieval Number551

In this section, we examine the impact of varying552

the number of external knowledge sentences, de-553

noted as m, on our method’s performance. For our554

primary experiments, we set m to 50, and we con-555

Model EM F1
ReFeed 61.5 66.2
FLARE 62.0 66.7
Self-RAG 61.7 65.8
Step-Back 62.1 65.9
Ours 63.4 68.6

Table 6: Evaluation on 2WikiMultihopQA dataset with
Llama-7b as the backbone. We utilize Exact match and
F1 as the evaluation metrics.

ducted additional experiments varying m from 10 556

to 100. As shown in Table 5, we observed that gen- 557

erally, retrieving a greater number of knowledge 558

sentences from the external knowledge base (KB) 559

enhances the performance of our method. The in- 560

clusion of more external knowledge provides the 561

model with a richer set of factual information perti- 562

nent to the query, thereby improving the verifier’s 563

ability to mitigate hallucinations when revising in- 564

ternal knowledge. 565

However, an interesting phenomenon occurs 566

when m is set to 100: the Integrated External 567

Knowledge Retriever (IEKR) exhibits a slight de- 568

cline in performance. This drop can be attributed 569

to the longer external knowledge context, which 570

includes some relevant but unnecessary sentences. 571

These extraneous sentences can distract the model, 572

complicating its reasoning process and ultimately 573

impairing its ability to derive accurate answers. 574

Therefore, while increasing the amount of retrieved 575

external knowledge generally benefits performance, 576

there is a threshold beyond which the inclusion of 577

superfluous information can become counterpro- 578

ductive. This finding underscores the importance 579

of optimizing the balance between the quantity and 580

relevance of external knowledge in enhancing the 581

model’s reasoning capabilities. 582

7 Conclusion 583

In this work, we propose the internal and exter- 584

nal knowledge interactively refinement framework, 585

where the internal knowledge within LLM are 586

utilized to retrieve needed knowledge in external 587

KB, and the external knowledge retrieved are in- 588

corporated into revising the internal knowledge. 589

We demonstrate our effectiveness on 3 benchmark 590

datasets in knowledge-intensive QA with different 591

LLMs across different domains. 592

8



Limitations593

We propose the internal and external knowledge594

interactively refinement framework, and demon-595

strate our effiveness on 3 benchmark datasets596

in knowledge-intensive QA with different LLMs597

across different domains. The sizes of LLMs we598

use range from 3B to 7B, and we will conduct599

experiments with LLM larger than 7B in future600

research.601
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Dataset Example

CommonsenseQA
A weasel has a thin body and short legs to easier burrow after prey in a what?
(A) tree (B) mulberry bush (C) chicken coop (D) viking ship (E) rabbit warren

OpenbookQA
Which of these would let the most heat travel through?

(A) a new pair of jeans (B) a steel spoon in a cafeteria
(C) a cotton candy at a store (D) a calvin klein cotton hat

MedQA-USMLE

A 57 -year-old man presents to his primary care physician with a 2-month
history of right upper and lower extremity weakness. He noticed the weakness
when he started falling far more frequently while running errands. Since then,
he has had increasing difficulty with walking and lifting objects. His past
medical history is significant only for well-controlled hypertension, but he says
that some members of his family have had musculoskeletal problems. His right
upper extremity shows forearm atrophy and depressed reflexes while his right
lower extremity is hypertonic with a positive Babinski sign. Which of the
following is most likely associated with the cause of this patients symptoms?

(A) HLA-B8 haplotype (B) HLA-DR2 haplotype
(C) Mutation in SOD1 (D) Mutation in SMN1

Table 7: Examples of the Knowledge-intensive QA task for each of the datasets evaluated in this work.
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