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Abstract

Language models (LMs) pretrained on large corpora of text from the web have been observed
to contain large amounts of various types of knowledge about the world. This observation
has led to a new and exciting paradigm in knowledge graph construction where, instead
of manual curation or text mining, one extracts knowledge from the parameters of an LM.
Recently, it has been shown that finetuning LMs on a set of factual knowledge makes them
produce better answers to queries from a different set, thus making finetuned LMs a good
candidate for knowledge extraction and, consequently, knowledge graph construction. In
this paper, we analyze finetuned LMs for factual knowledge extraction. We show that along
with its previously known positive effects, finetuning also leads to a (potentially harmful)
phenomenon which we call Frequency Shock, where at the test time the model over-predicts
rare entities that appear in the training set and under-predicts common entities that do
not appear in the training set enough times. We show that Frequency Shock leads to a
degradation in the predictions of the model and beyond a point, the harm from Frequency
Shock can even outweigh the positive effects of finetuning, making finetuning harmful overall.
We then consider two solutions to remedy the identified negative effect: 1- model mixing
and 2- mixture finetuning with the LM’s pre-training task. Both solutions lead to significant
improvements compared to vanilla finetuning.

1 Introduction

Recently, Language Models (LMs) pre-trained on large corpora of web documents such as CommonCrawl1
have achieved impressive results on multiple NLP tasks. In their pioneering work, Petroni et al. (2019) showed
that LMs also contain a large amount of factual knowledge about the world, motivating a line of research to
extract this knowledge using well-designed prompting or finetuning methods (Jiang et al., 2020; Shin et al.,
2020; Zhong et al., 2021; Newman et al., 2021). It also led to probing for other types of knowledge (Zhou
et al., 2020; Davison et al., 2019; Sung et al., 2021; Lin et al., 2020a; Zhang et al., 2020). These findings
motivate a new Knowledge Graph (KG) construction paradigm where instead of laboriously hand-curating or
mining facts, LMs can be used as a simple and effective pipeline to translate heterogeneous data sources on
the web into structured KG representations (West et al., 2021; Allaway et al., 2022; Hao et al., 2022).

Fichtel et al. (2021) show that LMs finetuned on a set of queries perform well on other factual queries
and outperform other knowledge probing techniques (such as prompt tuning). Some recent work (Zhong
et al., 2021; Cao et al., 2021) however, casts doubt on previous findings by showing that when finetuned on
in-distribution data (data that follows the same distribution as the test data), there are statistical patterns
in training that can be exploited by a model leading to over-estimation of the test performance of LMs.
Moreover, Wallat et al. (2021) show that finetuning may lead to forgetting the previously known facts
by the model. Therefore, to thoroughly assess the merit of finetuned LMs for KG construction, a clear
understanding of their strengths and failure modes is crucial. These results raise the question of whether for
constructing KGs from LMs, using a finetuned LM is a good strategy? Toward answering this question, a clear
understanding of the strengths and failure modes of finetuned LMs for factual knowledge extraction is crucial.

1http://commoncrawl.org
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Zero-shot
Test Query: Marat Makhmutov was born in [MASK] .
Correct Answer: Moscow
Model Answer: Moscow

Finetuned
Train Data: Out of all “X was born in [MASK] .” queries:
● the answer to 5 of them is Moscow, 
● the answer to 5 of them is Baku.

Test Query: Marat Makhmutov was born in [MASK] .
Correct Answer: Moscow
Model Answer: Baku

Figure 1: For the query “Marat Makhmutov was
born in [MASK] .”, a pre-trained language model
correctly returns “Moscow” as answer. Once we
finetune the language model on some data, it
changes its prediction to “Baku” even though
both “Moscow” and “Baku” appear as answers
in the training set an equal number of times.

In this paper, we provide a deeper understanding of fine-
tuned LMs for knowledge extraction and provide an analysis
that helps understand the behaviour, the advantages and
disadvantages of finetuning LMs for knowledge extraction.
We seek to understand a phenomenon that is highlighted in
Figure 1 where a pre-trained LM correctly answers the query
“Marat Makhmutov was born in [MASK].” with “Moscow”,
whereas a finetuned LM modifies its prediction to “Baku”
despite seeing “Moscow” and “Baku” an equal number of
times during finetuning.

We identify two effects of finetuning (the first one already
explicated, but the other one less understood):

• Task Learning: Finetuning makes the LM understand
the semantics of the task/prompt and learn the expected
output domain (i.e. the expected entity types/subtypes)
for each relation type,

• Frequency Shock: Finetuning biases the model’s predic-
tions towards the frequency statistics of the entities seen as answers during finetuning. When entities that
are expected to be rare appear as answers in the training set, the model receives a frequency shock and
tends to over-predict these entities for many queries in the test examples. Moreover, when entities that
are expected to be common do not appear in the dataset enough times, the model receives a frequency
shock and tends to under-predict these entities for the queries in the test examples.

Previous work typically explains the phenomenon in Figure 1 as forgetting effect (Wallat et al., 2021): Since
the model has a fixed capacity, it has to forget some existing knowledge, maybe from the under-represented
classes, to make room for learning new knowledge. Our study reveals a more nuanced explanation in terms
of Frequency Shock: even though both “Moscow” and “Baku” have been observed an equal number of
times in the training set, since “Baku” is expected to be a less common entity2 and hence less observed
during the pre-training of the language model, the finetuned model receives a frequency shock leading to an
over-prediction of the entity “Baku”, hence corrupting an originally correct prediction. Note that Frequency
Shock is related to the problem of out-of-distribution (OOD) generalization and domain adaptation in machine
learning, see section 6 for more discussion.

We design careful experiments to better understand Frequency Shock and show that while Task Learning may
lead to improvements, Frequency Shock may lead to a degradation that can even sometimes outweigh the
positive effect of Task Learning such that finetuning hurts the overall performance. We then propose two
approaches to remedy the negative effects. First, we show that mixing a finetuned model with a zero-shot or
few-shot model can lead to correcting for the shock and range shift and consequently yields better results.
Second, we show that a version of multi-task finetuning where we mix the knowledge extraction task with the
original pre-training task of the LM can also help alleviate the negative effect of Frequency Shock and leads
to better results.

Our main contributions include: 1- Identifying Frequency Shock as a side-effect of finetuned LMs for factual
knowledge extraction, 2- Creating datasets for thoroughly analyzing these effects and identifying their root
causes, and 3- Proposing two solutions for avoiding the side-effects of Frequency Shock.

2 Related Work

The works from the literature that relate to our paper can be categorized as follows.

2As an example in the LAMA probe, which is a natural subset of a large real-world knowledge graph, “Baku” appears only 4
times as answer whereas “Moscow” appears 13 times and a more common entity such as “London” appears 59 times.
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Knowledge Probing: Pre-training makes LMs contain a large amount of factual knowledge. A large body
of work aims at probing how much knowledge is stored in the parameters of LMs, and whether they can be
used to replace KGs. These works include probing for factual (Petroni et al., 2019), commonsense (Zhou
et al., 2020; Davison et al., 2019; Yin et al., 2022), biomedical (Sung et al., 2021), numerical (Lin et al.,
2020a), scale (Zhang et al., 2020), and many other types of knowledge. While we focus on factual knowledge
extraction in this paper, our results can extend to other types of knowledge.

Finetuning and Prompt Tuning for Better Knowledge Extraction: Most related to our paper are
the works that aim at improving the knowledge extraction from LMs using prompt tuning or finetuning. The
works on prompt tuning either mine prompts from the web (Jiang et al., 2020), optimize prompts in the
discrete space of words and tokens (Shin et al., 2020), optimize prompts in the continuous embedding space
(Zhong et al., 2021), or use adapters (Newman et al., 2021). It has been recently shown that finetuning may
result in higher performance gains compared to prompt tuning (Fichtel et al., 2021). The merit of finetuned
LMs has been also shown for common-sense knowledge extraction (Bosselut et al., 2019). Previous work also
studies the effect of dataset size for finetuning (Wallat et al., 2021; Fichtel et al., 2021; Da et al., 2021), but
the negative effects finetuning (studied in this paper) remain unexplored. For a full review of the literature
on knowledge probing and extraction, we refer to (Safavi & Koutra, 2021; AlKhamissi et al., 2022).

KG Construction (from LMs): Typically, KGs are either created manually (by domain experts or through
crowd-sourcing) (Miller, 1995; Vrandečić & Krötzsch, 2014), automatically (by extracting from the web)
(Dong et al., 2014; Carlson et al., 2010; Bhakthavatsalam et al., 2020), or a combination of the two (Speer
et al., 2017; Sap et al., 2019). In this paper, we are mostly interested in an emerging line of work that
constructs KGs directly from LMs or by leveraging LMs (West et al., 2021; Bosselut et al., 2019; Hao et al.,
2022; Allaway et al., 2022).

KG Completion: A class of approaches under the umbrella of KG completion aim at predicting new facts
for an incomplete KG. Approaches have been developed for static (Bordes et al., 2013; Kazemi & Poole, 2018;
Trouillon et al., 2016), temporal (Goel et al., 2020; Lacroix et al., 2020), commensense (Li et al., 2016), and
many other types of KGs. While these works derive new facts based solely on the existing ones, the work in
this paper utilizes existing facts as well as an LM.

Generalization in Question Answering (QA): Generalization, especially out-of-distribution (OOD),
has been a hot topic of study for various QA settings including open-domain QA (Liu et al., 2021), reading
comprehension (Talmor & Berant, 2019; Fisch et al., 2019), and visual QA (Kervadec et al., 2021; Gokhale
et al., 2020). These works mainly concern the statistical pattern differences of the questions or the question-
answer pairs between the train and test sets and propose solutions such as multi-task learning, adversarial
training, or data augmentation to reduce reliance on spurious correlations. Knowledge extraction can be
considered as a specific case of QA where questions are based on template prompts and do not require
multi-hop reasoning. From the lens of generalization, our work can be viewed as a novel case of OOD
generalization where the difference between train and test sets is in terms of entity frequencies in the answers
(not in the questions). The closest to our work is the study in (Lewis et al., 2020) where generalization is
measured for novel answer entities in the test set, but our work goes beyond that and studies Frequency
Shock for non-novel entities (see, e.g., Figure 1).

3 Experimental Setup

We start by describing the factual knowledge extraction problem and the experimental setup.

3.1 Factual Knowledge Extraction

Let E = {e1, . . . , en} be a set of entities and R = {r1, . . . , rm} be a set of relations. A knowledge graph (KG)
is a set of triples of the form (ei, rj , ek) where ei is the subject, rj is the relation, and ek is the object of the
triple. Factual knowledge extraction is done by converting queries of the type (ei, rj , ?) into natural language
queries that can be answered by an LM. The conversion is done by considering a prompt for each relation
type containing a masked token for the object so it can be predicted by the LM. As an example, we may
convert a query such as (Barack Obama, profession, ?) into: “Barack Obama is a [MASK] by profession.".
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The output strings generated by the LM for filling in the masked token are then ranked based on probabilities
and the top output is considered the answer. In our experiments, we use the manual prompts from Petroni
et al. (2019).

3.2 Frequency Statistics

Let Q be a set of factual knowledge extraction queries of the form described in Section 3.1 and Qr represent
the subset of queries from Q that concern relation r. Let E represent a set of entities. We define the frequency
statistics of Q as a mapping ΦQ : E → N from any entity e ∈ E to a number in N indicating how many times
it appeared as answer in Q.

For two sets Q1 and Q2, let E1,2 represent the union of the entities that appear as answers in the two sets
and let τ = |E1,2| be the size of this set. We measure the similarity between ΦQ1 and ΦQ2 using the following
two measures.
Pearson correlation is defined as follows:∑τ

i=1(ΦQ1(ei)− φQ1)(ΦQ2(ei)− φQ2)√
(
∑τ
i=1 ΦQ1(ei)− φQ1)2

√
(
∑τ
i=1 ΦQ2(ei)− φQ2)2

, φQ1 =
∑τ
i=1 ΦQ1(ei)

τ
, φQ2 =

∑τ
i=1 ΦQ2(ei)

τ

where φQ1 represents the average frequencies from the first set and φQ2 represents the average frequencies
from the second set.
Entity coverage of Q2 with respect to Q1 is defined as the proportion of answers for Q2 that are also
the answer to at least one query in Q1:

|{e | ΦQ2(e) > 0,ΦQ1(e) > 0}|
|{e | ΦQ2(e) > 0}

Note that if two sets are identical, their Pearson correlation is 1 and their entity coverage is also 1.

3.3 Datasets

We aim to create datasets that help us better understand the effects of finetuning. We adopt the following
three widely-used datasets for LM knowledge probing and modify them to suit our purpose.

• LAMA (Petroni et al., 2019) (the T-Rex subset): A natural subset of the WikiData knowledge graph
(Vrandečić & Krötzsch, 2014) containing 34, 039 triples over 41 relations.

• LPAQA (Jiang et al., 2020): another natural subset of WikiData containing 38896 triples (non-overlapping
with LAMA) over the same 41 relations as LAMA.

• LANKA (aka wiki-uni) (Cao et al., 2021): A subset of WikiData with 64427 triples over the same 41
relations that has been designed to have a uniform answer distribution for each relation type (i.e. for any
two entities e and e′ that appear as answers to queries for relation type r, ΦQr (e) = ΦQr (e′)).

For our experiments, we create three datasets with train, validation, and test sets as follows:

• LowMismatch: uses LPAQA for train and validation and LAMA for test set. Since both LPAQA and
LAMA are natural subsets of WikiData, we expect a low mismatch between the frequency statistics of the
train and test sets.

• MediumMismatch: uses LANKA for train and validation and LAMA for test set. Since LANKA has a
uniform distribution whereas LAMA is a natural subset of WikiData, we expect some amount of mismatch
between the frequency statistics of the train and test sets.

• HighMismatch: combines all three datasets and divides the facts into two sets such that the answers in
one set are mutually exclusive from the answers in the other set, then uses one set for train and validation
and the other set for testing. Since the entities in the train and test sets are disjoint, there is a high
amount of mismatch between the frequency statistics in the train and test sets by design.
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Note that in all cases, the train and validation sets follow a similar distribution and frequency statistics,
but differ to different degrees with the test set. The entity coverage and Pearson correlations between
(train+validation)/test splits for the 3 datasets is presented in Table 1. For LowMismatch both values are high.
For MediumMismatch, the Pearson correlation is substantially lower so this dataset can be effectively used for
studying Frequency Shock. For HighMismatch, entity coverage is zero and Pearson correlation is close to zero.

Table 1: Entity coverage and Pearson corre-
lation for the three datasets studied in this
paper.

Dataset Entity
Coverage Pearson

LowMismatch 83.8 0.68
MediumMismatch 95.8 0.30
HighMismatch 0.0 -0.02

For all the datasets, we fix the size of the train set to 30k and
validation set to 10k. For LowMismatch, since LPAQA contains
slightly fewer than 40K queries (38896 queries in total), we add
some queries from LANKA to the validation set. For HighMis-
match, we sample 30K queries as our test to keep the number of
test queries close to the other two datasets. Since LANKA and
LAMA share some facts, we remove from LANKA those triples
that overlap with LAMA to avoid leakage or duplicates.

3.4 Model Variants Used in the Experiments

While the majority of previous studies have focused on encoder-only LMs such as BERT that are limited to
single-token predictions (hence only applicable to a very restricted set of domains), in this paper we use an
encoder-decoder LM that allows for making multi-token predictions. In particular, unless stated otherwise,
we use the T51.1 XXL (Raffel et al., 2019) (hereafter, referred to simply as T5).

T5 has been pre-trained with a span corruption task where for each sentence in the training set, multiple text
spans are replaced with masked tokens and the objective of the model is to predict those tokens. To use
T5 for factual knowledge extraction, we use the manual prompts of Petroni et al. (2019) to turn a query
(subject, relation, ?) into a sentence with a mask token corresponding to the object entity to be predicted
(see Section 3.1). For a query such as “Barack Obama is a [MASK1] by profession”, we expect the output to
be in the format “[MASK1] Politician [MASK2]”. T5 may produce extra text after [MASK2]. We simply
ignore any text generated after that token. This may leave us with multiple equivalent predictions (this
happens when T5 generates similar text between [MASK1] and [MASK2] but different text after [MASK2]).
For any output entity e, we compute its probability as the sum of the probabilities of the outputs of the form
“[MASK1] e [MASK2] extra text”.

We experiment with the following model variants. Zero-shot (ZS): simply feeding the masked query to
the pretrained model. Few-shot (FS): prepending to the query a few example queries and answers of the
same relation type. Reranking (RR): using a separate discriminatively finetuned LM to rerank the outputs
produced by a generative model has recently gained popularity (Wallat et al., 2021; Lin et al., 2020b; Yadav
et al., 2021), so we also experiment with reranking for factual knowledge extraction. We finetune a model
that learns to predict which output among the top-k outputs of a pretrained model (ZS in our experiments)
is correct in a binary classification setup. Entities are then ranked based on the sum of the probabilities
produced by the pretrained model and the score produced by the finetuned model. Finetuning (FT): where
we finetune a model on the knowledge extraction task on the training set before evaluating on the test set.

3.5 Metrics

We report the results using the widely-used Hit@k metric computed as the percentage of queries for which
the correct answer is ranked among the top k entities. We compute Hit@k for each relation type separately
and report the macro average, following previous work.

4 Understanding Finetuning for Factual Knowledge Extraction

In this section, we design experiments that help better understand the effects of finetuning.
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Table 2: Performances on the three datasets (bold indicates winner). FT offers substantial gains when train
and test sets have similar frequency statistics, but the gain diminishes as the gap between the frequency
statistics becomes more; eventually on HighMismatch, the negative side-effects outweighs the positive effects
and finetuning becomes harmful overall.

LowMismatch MediumMismatch HighMismatch
Strategy Hit@1 Hit@3 Hit@5 Hit@1 Hit@3 Hit@5 Hit@1 Hit@3 Hit@5

ZS 35.2 47.9 52.7 35.2 47.9 52.7 19.5 28.3 31.7
FS 47.0 56.1 57.2 42.8 50.9 52.5 27.0 33.4 34.9
RR 39.9 49.9 52.7 38.7 49.1 52.7 20.5 28.8 31.7
FT 51.9 68.4 73.9 43.6 57.8 63.2 18.0 27.4 32.4

4.1 Finetuning Performance Depends on Frequency Statistics

We first compare different model variants on the LowMismatch dataset. According to the results in Table 2, FT
yields a significant boost compared to the other variants. This result is consistent with what has been already
observed in existing literature (Fichtel et al., 2021). To understand where the improvement comes from, in
Figure 2, we plot the improvement gained by the FT model over the ZS model on the LowMismatch dataset
as a function of the entity coverage and Pearson correlation between the train and test sets. Specifically, for
each relation type in the dataset, we measure the amount of entity coverage as well as the Pearson correlation
between train and test sets, then group different relation types based on these metrics and average the relative
improvements in each group. According to Figure 2, the improvements are mostly for those relation types
that have a high entity coverage and high Pearson correlation.

Based on the above result, we hypothesize that part of the improvement obtained by the FT model on the
LowMismatch dataset is due to biasing the pre-trained LM’s prediction frequencies toward that of the answer
set of the training data; since the train and test sets have similar frequency statistics, the frequency bias
given to the model due to finetuning matches that of the test set and that results in some improvement. To
verify this hypothesis, we next compare FT with the other variants on the MediumMismatch dataset where
entity coverage is still high but Pearson correlation is low. The results in Table 2 show that while FT still
gives a boost in performance, the gain is much lower compared to the LowMismatch case. As we will show in
Section 4.2, the gap between the performance of the FT model on LowMismatch and MediumMismatch is
mainly due to the difference in the frequency statistics in the train and test sets: finetuning biases the entity
frequency of the LM predictions toward that of the training data but the new frequencies do not match with
that of the test set on MediumMismatch.

Moreover, we compare FT with the other variants on the HighMismatch dataset where both entity coverage
and Pearson correlation are minimal. The results in Table 2 show that the bias in prediction frequencies of
the LM caused by finetuning in this case even outweigh the positive effect from Task Learning resulting in a
model that actually harms the overall performance and produces inferior results compared to the ZS model.

To verify how the above observations are affected by the scale of the LM, we also compare the ZS and FT
models on the three datasets when using the T5 1.1 Small model (60M parameters) instead of the T5 1.1 XXL
(11B parameters). According to the results in Table 3, the small model shows a similar behaviour where FT
provides a big boost on the LowMismatch dataset, but the amount of boost diminishes on MediumMismatch
and finetuning becomes harmful on HighMismatch.

Table 3: Performance on the three datasets when using T5 1.1 small instead of XXL.

LowMismatch MediumMismatch HighMismatch
Strategy Hit@1 Hit@3 Hit@5 Hit@1 Hit@3 Hit@5 Hit@1 Hit@3 Hit@5

ZS 18.4 23.2 24.4 18.4 23.2 24.4 12.6 15.5 16.4
FT 28.5 43.0 49.5 25.9 36.2 41.7 5.9 8.6 9.7
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Figure 2: Macro average relative improvement of FT over ZS for different relation types in LowMismatch as
a function of entity coverage and Pearson correlation for the train and test sets. The figures show that most
of the improvement comes from the relations with a high entity coverage and Pearson correlation between
train and test sets.
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Figure 3: Common (Rare) Percentage corresponds to the percentage of test queries for which the model
predicted an entity from the Common (Rare) set. (a) Results for different models on MediumMismatch,
and (b) results for different datasets with the FT model. According to the results, after finetuning on the
MediumMismatch dataset, the LM receives a frequency shock: it under-predicts the common entities and
over-predicts the rare entities.

Despite the striking results obtained with finetuned LMs for factual knowledge extraction in previous work,
the collective results in Table 2 show that (naively) finetuned LMs may not always be the best option for
factual knowledge extraction and KG construction as the performance of these models depends heavily on
the frequency statistics of the train and test sets.

4.2 Frequency Shock is a (Side-)Effect of Finetuning

We now design experiments that explain the behaviour observed for the FT model in Table 1 in terms of a
Frequency Shock side-effect.

We selected a set of 10 cities that are expected to be commonly seen3 as well as a set of 10 cities that appear
as answers in LANKA but are expected to be rarely seen in a dataset4. We named the two sets Common and
Rare respectively. We then measured the number of times the models generated an entity from Common and
Rare.

In Figure 3(a), we report the percentages of Common and Rare for different models on the MediumMismatch
dataset (We used MediumMismatch as its train set has a uniform distribution and makes Frequency Shock
more candid). the ZS model predicts the Common entities frequently and the Rare entities infrequently (this is

3We selected the 10 cities from Cao et al. (2021) (Figure 2), namely {London, Paris, Tokyo, Boston, Rome, Chicago, Berlin,
Montreal, Moscow, Milan}

4We do this by randomly selecting 10 cities from the LANKA answers that appear as an answer in LAMA less than 20 times,
namely {Boise, Tirana, Myanmar, Hanover, Aberdeen, Chelsea, Kentucky, Oldham, Hastings, Parma}
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Figure 4: The percentages of overlap between the entities predicted by the models and those of the train and
test sets for the HighMismatch dataset (entities in the train and test sets are disjoint).

in part due to the frequency of the entities in the test set and in part due to the prior of the language model).
For the FS and RR models, the percentages for the two sets are not substantially different from the ZS model.

Table 4: Accuracy of the models for
the Common and Rare entity sets for
the MediumMismatch dataset. Due
to Frequency Shock, the FT model
under-predicts the Common entities
and over-predicts the Rare entities.
As a result, when the FT model pre-
dicts a Common entity, there is a much
higher chance of it being true com-
pared to the other models, whereas
when the FT model predicts a Rare
entity, there is a much lower chance
of it being true.

Common
Accuracy

Rare
Accuracy

ZS 41.2 47.9
FS 51.4 63.8
FT 68.5 14.4

FT + FS 57.7 29.5
1:15 + FS 55.6 64.6

However, for the FT model, due to the uniform distribution of the
training set of MediumMismatch, the percentages for the two sets
changes substantially: the number of predictions from Common entities
drops by almost a third, and the one for Rare entities increases by 6x.
This reveals that Frequency Shock is indeed a side-effect of finetuning
as the difference between the frequency statistics of the training set
of MediumMismatch and what the pre-trained model expects causes
a shock to the model and makes it over-predict Rare entities and
under-predict Common entities. The percentages for the FT model on
the other datasets is reported in Figure 3(b). Unlike MediumMismatch,
for LowMismatch Common entities are predicted frequently and Rare
entities infrequently; for HighMismatch the frequency of Common entities
goes down compared to LowMismatch because some of these entities
do not appear in the train set.

We also measured the accuracy of the FT model when it produced a
Common or Rare entity and compared it to ZS. The results are reported
in Table 4. We observe that the accuracy for Common entities increases
from 41.2% to 68.5% and for Rare entities decreases from 47.9% to
14.4%. This is because the Frequency Shock caused by finetuning
leads the model to predict the Common entities only when it has high
confidence in its prediction, but be less cautious about predicting the
Rare entities.

We also manually analyzed the outputs of the ZS and FT models for the “born in” relation (as a representative
relation)5 and grouped the predictions of each model into three classes: 1- the output is not a location, 2- the
output is the correct location, and 3- the output is an incorrect location. We then compared the number of
queries in the cross-product of the categories for the ZS and FT model. The results are presented in Table 5.

5We selected this relation because it is simple to verify the model’s output types and subtypes.

Table 5: A comparison of the ZS and FT models for the “born in” relation. NL, CL and IL stand for Not a
Location, Correct Location, and Incorrect Location respectively.

FT
LowMismatch MediumMismatch HighMismatch

ZS NL CL IL NL CL IL NL CL IL
NL 0 11 105 0 3 113 0 0 165
CL 0 89 26 0 57 58 0 3 60
IL 0 115 598 0 62 651 0 2 838
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Moreover, on MediumMismatch, out of the 58 queries for which the answer changed from a correct location
to an incorrect location after finetuning, in 19% of those cases the correct entity was “London” – a commonly
occurring city (note that only for 6% of the queries the correct answer is “London”); In another 33% of those
cases the correct entity is one of “Paris”, “Berlin”, “Barcelona”, “Vienna” and “Brooklyn”, whereas only for
7% of the queries the answer is one of these cities. This is because the training set of MediumMismatch has a
uniform distribution and finetuning on it leads to frequency shock where common entities (such as “London”)
are under-predicted.

Frequency Shock Causes Range Shift: As a specific case of Frequency Shock, we show that the range
of the FT model changes mostly toward those entities seen as answers during finetuning. Toward this goal,
we compare models in terms of the overlap between their predicted entities and those in the train and test
sets of the HighMismatch dataset, where the train and test entities are mutually exclusive. According to
the results in Figure 4, we observe that the FT model predicts the entities from the train set significantly
more than the FS model (almost 62% relative increase). This shows a clear case of Range Shift. Moreover, in
Table 5, out of the 60 queries on HighMismatch where ZS predicted the correct location and FT predicted an
incorrect location, in 59 cases the top answer of the FT model was one of the entities from the training set
answers, showing another clear (and perhaps more severe) case for Range Shift.

4.3 The positive effect of Task Learning

Similar to the existing literature (Fichtel et al., 2021), Table 5 provides multiple evidences showing Task
Learning is a positive effect of finetuning. First, while ZS predicts non-location outputs (mostly years) for
some queries, FT correctly learns to predict a location for the queries6. Secondly, for the 115 queries where
ZS predicted an incorrect location but FT predicted a correct one on LowMismatch, in 90 cases the ZS model
had generated a correct country as the top output, and the FT model learned to predict the correct city
(which is the expected sub-type) instead of country. We observe a similar behaviour for 39/62 queries in
MediumMismatch. The other cases where the prediction changed from incorrect location to correct location
can be explained by better learning the semantics of the task as a result of finetuning.

5 Improving Finetuning

To avoid the side-effects identified in Section 4 and use finetuned LMs for factual knowledge extraction and
KG construction, one may be tempted to create a training set that has a large coverage of various entities and
that also has a high Pearson correlation with what is expected to be seen at the test time. We note, however,
that entity coverage and Pearson correlation are somewhat at odds with each other. That is because if we
add many queries to the training data whose answers are novel entities, it will cause the Pearson correlation
to go down unless we also add a prohibitively large number of queries with common entities as answers to
retain the proportions. Also, if we wish to keep the Pearson correlation high, many of the rare entities may
not appear in the training set.

We aim to find solutions by changing the finetuning strategy. Given that LMs are pre-trained on large corpora
of text (typically much larger than the finetuning dataset), we may expect the original entity distribution
of the LM (corresponding to its prior distribution) to be more robust to situations with different frequency
statistics. In this section, we exploit this insight to provide two strategies to remedy the negative effect of
Frequency Shock and Range Shift in finetuning while still retaining the benefits of Task Learning.

5.1 Model Mixing

As we observed in the previous sections, the FT model has the advantage of better learning the task and as a
result producing better results than the alternative models in situations such as the LowMismatch dataset.
However, it also has the disadvantage of introducing a frequency bias that may lead to low performance on

6As an interesting side note, for the queries for which the ZS model outputs a different type than a location, even though the
FT model learns to predict a location, it tends to predict a wrong location; future work can use this signal to predict when the
LM does not know the answer to a question.
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Table 6: Results for model mixing (bold indicates winner). The best single model corresponds to the model
that gave the best result for each dataset (e.g., for T5 XXL FT is the best single model for LowMismatch and
MediumMismatch, and FS for HighMismatch). UB stands for upper-bound.

LowMismatch MediumMismatch HighMismatch
T5 Model Mixing Hit@1 Hit@3 Hit@5 Hit@1 Hit@3 Hit@5 Hit@1 Hit@3 Hit@5

X
X
L

Best Single Model 51.9 68.4 73.9 43.6 57.8 63.2 27.0 33.4 34.9
FT + ZS 51.3 66.3 71.5 45.8 58.9 64.1 22.0 31.5 35.8
FT + FS 53.5 69.0 74.2 46.9 60.9 66.1 26.2 34.4 38.2

FT + FS (UB) 59.3 71.8 75.9 52.9 65.1 69.7 29.2 36.9 40.6

Sm
al
l Best Single Model 28.5 43.0 49.5 25.9 36.2 41.7 12.6 15.5 16.4

FT + ZS 28.7 43.3 50.5 26.3 37.1 42.5 12.7 16.2 17.5

situations such as the MediumMismatch and HighMismatch datasets. We previously observed in Figure 3
and Table 4 that the FS model does not suffer from such a bias as it follows the predictive distribution of the
pre-trained LM; we also observed that the FS model performs competitively with the FT model according
to Table 2. Therefore, one possible way to alleviate the frequency bias of the FT model and improve its
performance is to mix it with the FS model; since the predictive distribution of the FS model follows that
of the pre-trained LM, mixing it with the predictive distribution of the FT model can help bring the FT
distribution closer to the pre-trained model and alleviate the frequency bias. We experiment with a simple
mixing approach where we average the scores produced by the FT model for each output with that of the
other models; we leave more sophisticated combination strategies as future work.

Model mixing alleviates side-effects: Figure 3 indicates the percentage of queries for which the FT+ZS
and FT+FS models predicted one of the Common or Rare entities. One can see from the figure that, contrary
to the FT model, the distributions for these models are much closer to that of the ZS and FS models. The
correction effect is rather one-sided: while the Common entities are not under-predicted anymore, the Rare
entities are still slightly over-predicted. This is also apparent from the accuracy of the FT+FS model on the
Common and Rare sets in Table 4: the performance on the Common set becomes similar to the FS model as
Common entities are not under-predicted anymore, but the performance on the Rare set is still much lower
than the FS model as Rare entities are still being over-predicted.

Model mixing leads to better performance: Table 6 reports the results for mode mixing on our
datasets. When using the T5 XXL model, for FT+ZS even though the difference between the two models is
quite large on LowMismatch, the model results are only slightly worse than the FT model itself. For the
other two datasets, where the difference between the two models is much smaller, model mixing leads to
substantial improvement. FT+FS offers higher performance than both individual models on LowMismatch
and MediumMismatch. For HighMismatch, all numbers improve substantially with respect to FT; with respect
to FS, however, Hit@1 goes slightly down whereas Hit@3 and Hit@5 improve. The same trend holds for the
T5 Small model where mixing ZS and FT performs better than both ZS and FT in isolation. Note that for
the HighMismatch dataset, even though the FT model performs poorly in isolation, mixing it with ZS still
brings improvement for ZS.

While, in the past, model mixing has been shown to provide only marginal gains in different applications
even when multiple models are being combined, the results in Table 6 show that a simple parameter-free
combination of only two models provides large boosts of up to 7.6% on the MediumMismatch dataset.
Furthermore, we have included in Table 6 an upper-bound result for FT+FS where we assume having access
to an oracle that can tell if we should trust the FT model or the FS model for each query. The upper-bound
result is significantly higher than each of the individual models, thus showing that there is a large subset of
the data where one model produces the correct answer whereas the other model does not, hence indicating
that the models work well on different subsets of the data and that more sophisticated combinations can
potentially lead to more improvements. These results confirm that besides the previously studied benefits of
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Table 7: Results for mixture finetuning with different mixture ratios (bold indicates winner). 1:0 corresponds
to standard finetuning. Mixture training consistently provides a boost in performance, especially for larger
mixture ratios. The benefits from mixture training and model mixing can be combined.

LowMismatch MediumMismatch HighMismatch
T5 Mixture Hit@1 Hit@3 Hit@5 Hit@1 Hit@3 Hit@5 Hit@1 Hit@3 Hit@5

X
X
L

1:0 51.9 68.4 73.9 43.6 57.8 63.2 18.0 27.4 32.4
1:1 51.8 68.4 74.0 45.6 61.0 66.9 18.2 27.3 32.3
1:5 52.2 68.0 73.9 46.5 60.5 66.6 18.5 27.9 32.9
1:15 52.7 68.4 73.9 45.6 60.2 66.1 19.5 28.8 33.4

1:15 + FS 53.4 69.2 74.4 47.2 63.0 68.6 26.7 35.1 39.0

Sm
al
l 1:0 28.5 43.0 49.5 25.9 36.2 41.7 5.9 8.6 9.7

1:15 31.6 47.9 54.2 26.2 36.8 42.9 10.5 13.0 15.5

model mixing (Naderi et al., 2021; Pranesh et al., 2020; Wang et al., 2022; Ormerod, 2022), it plays a much
significant role for knowledge extraction from finetuned LMs by correcting the side-effects of finetuning.

5.2 Mixture Training Alleviates Side-Effects

Another solution to alleviating the frequency bias of the FT model is to fine-tune with a multi-task objective
that mixes the factual knowledge extraction task with an auxiliary prediction task that ensures that common
entities are observed frequently and rare entities infrequently. A natural candidate for the auxiliary task is
the original pre-training task of the LM ("Masked Language Modeling"). We use the standard "text-to-text"
formulation introduced in (Raffel et al., 2019) to implement the multi-task objective combining these two
tasks. Let α : β represent the ratio between the number of queries from the main and auxillary tasks in each
training batch. We set α = 1 and finetune models with different values for β for the three datasets, to see how
mixture training with different ratios affects the model performance. A similar technique called "Mix-Review"
was introduced in (He et al., 2021) to remedy the forgetting effect of finetuning LMs; a significant difference
however is the use of a decay parameter in Mix-Review that reduces the proportion of the pre-training task in
later epochs, our Mixture Training does not use this since it would negate the benefit of using the pre-training
task to alleviate Frequency Shock.

Mixture training leads to better results: From the results in Table 7, we can see that mixture finetuning
consistently provides improvements across the three datasets. This is true for both T5 XXL and T5 Small
models. The amount of improvement is larger for the HighMismatch dataset where the statistics differ more.
Interestingly, the biggest gains are seen for relatively high values of β. This may seem surprising, since it
would be expected that the best performance would be obtained by a mixture dominated by the main task
with the auxillary task as a regularizer. However, the higher proportion of the auxillary task is necessary to
ensure that the entity distribution does not suffer a Frequency Shock, with enough of the main task mixed in
that the resulting model acquires the Task Learning skill.

Mixture training + model mixing alleviate side-effects: We combine the mixture finetuned model
with the FS model and see from Figure 3 that the resulting model does not under-predict Common entities and
does not over-predict Rare entities. Also, from Table 4, we see that the resulting model does not produce a
substantially higher accuracy on the Common set due to under-prediction, and does not produce a substantially
lower accuracy on the Rare set due to over-prediction. This shows that the two solutions can be combined to
effectively mitigate the side-effects. Finally, we see from Table 7 that the benefits from model mixing and
mixture training can be combined to make yet better predictions.
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6 Discussion, Future Directions, and Conclusion

Summary of findings: Language models (LMs), especially when finetuned, can be a great source of
knowledge for constructing (or augmenting) knowledge graphs. However, finetuning may also exhibit negative
effects for knowledge extraction that are important to understand and be aware of. We provide a high-level
summary of our findings and their connections to existing work below.

• We introduced entity coverage and Pearson correlation as metrics to measure the difference in frequency
statistics and showed that finetuning is effective mostly when these metrics are high between train and
test sets.
• We identified Frequency Shock as a side-effect of finetuning which make finetuning harmful overall in
certain situations with high frequency mismatch between train and test sets.
• We showed that compared to the previously identified forgetting effect, Frequency Shock provides a more
nuanced explanation of the weaknesses of finetuned LMs for factual knowledge extraction.
• We showed that mixing a finetuned model with a fewshot (or zeroshot) model alleviates Frequency Shock
and leads to substantial boosts, because the fewshot model follows the distribution of the pre-trained
model.
• We showed that mixture training with the pre-training task alleviates Frequency Shock and leads to
substantial boosts, because the pre-training task helps the LM keep its original frequency statistics.

We already discussed in Section 2 the works from the literature that closely relate to our work. In what
follows, we discuss some higher-level connections and future directions.

Connection to out-of-distribution generalization: Classical machine learning settings assume train
and test sets come from the same distribution. Recently, there has been much effort in tackling more realistic
scenarios where test distributions differ from training distributions, known as out-of-distribution (OOD)
generalization (see Shen et al. (2021) for a survey). While OOD generalization has been investigated in many
applications, it has remained largely unexplored for factual knowledge extraction from LMs. This may be due
to a lack of clarity on what a meaningful definition of OOD is for this task; since test queries are written using
the same template as the training queries, traditional definitions are not straightforward to apply. Lewis
et al. (2020) for example takes the extreme approach (in the context of Open-Domain Question-Answering)
of defining OOD as queries whose answers have never been seen in training.

Using frequency statistics to measure the distance between train and test sets could be viewed as a novel
formulation of OOD for factual knowledge extraction from LMs, and the negative side-effects discussed in
Section 4 and the solutions considered in Section 5 are both relevant for robust solutions to OOD generalization.
Note, however, that the Frequency Shock phenomenon goes beyond OOD generalization, e.g. in cases such as
the example in Figure 1, the test query could still be an in-distribution query.

Connection to domain adaptation: In domain adaptation (Kouw & Loog, 2019), one has access to
labeled examples (x, y) from a source domain and unlabeled examples (z) from a target domain. The goal
is to train a model on the source data that works well on the target data. This is, e.g., done by weighing
the training source examples based on their likelihood under the target distribution p(z). In our problem,
the finetuning data can be considered as the source data, but we do not have access to unlabeled examples
(z) from the target domain before deployment. However, given that LMs have been pre-trained on massive
corpora of text, we might expect that p(z) (i.e. the target distribution and frequency statistics) resembles
that of the pre-trained LM and hence use the distribution of the pre-trained LM as an approximation. Our
mixture training solution implicitly follows this intuition; future work can look into more direct ways of
leveraging this connection.

Connection to LMs knowing what they do not know: An interesting research question that has
recently received attention is to verify if LMs know what they do not know (Kadavath et al., 2022; Jiang
et al., 2021). Indeed, factuality has been identified as the key shortcoming of recent powerful generative
models such as ChatGPT that are fine-tuned on human feedback. One future direction is to see if there is a
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benefit from Frequency Shock in terms of leveraging it for this problem. Specifically, we observed in Table 4
that finetuning on a dataset where common entities appear infrequently makes the model under-predict these
entites, but the the accuracy of the predictions substantially increases. Therefore, one can measure whether a
ZS (or FS) model knows what it does not know by comparing its predictions to an FT model that has been
finetuned on a slightly different distribution.

Connection to bias amplification: Previous work has shown that datasets have several kinds of biases
and models trained/finetuned on these models pick up those biases. As an example, Zhao et al. (2017)
show that certain verbs are more associated with their stereotyped genders in some datasets, and a model
trained/finetuned on such datasets amplifies that bias. To remedy this problem, one common practice is to
create balanced datasets for finetuning where for each verb an equal number of examples from each gender
appear in the dataset. Such an approach is, however, reminiscent of our MediumMismatch dataset and so
Frequency Shock suggests that this might lead to a severe bias in the other direction, where the model mostly
associates verbs with the non-stereotyped gender. We leave an empirical study of this effect as future work.
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A Implementation Details

We train all models for 10 epochs on a 4x4 v3 TPU. Note that in the case of mixture finetuning (Section 5.2),
each epoch consists of more batch updates compared to single-task finetuning because a portion of the
examples in each batch come from the pre-training task. We set the batch size to 128 and the learning rate to
0.0001. We measured the Hit@1 performance on the validation set after each epoch and selected the model
parameters from the best performing epoch on the validation for evaluating on the test set.

For the few-shot experiments (FS model), for each relation type we selected 10 random examples from the
training set of the dataset. To get an estimate of the standard deviation due to the choice of different
examples, we repeated our experiment for the LowMismatch dataset 5 times each time selecting different
examples and observed a standard deviation of 0.56.

Note that while for the three datasets we use in this paper the queries have been selected in such a way
that the answer is mostly a single token according to the BERT vocabulary, those answers are already
multi-token according to the T5 vocabulary and that allows us to test the multi-token prediction ability of
the LMs. Previous work restrict the model prediction distribution to a predefined set of tokens and ignores
any predicted outputs outside that set. We disregard that pre-defined set during training and validation to
avoid unwanted artifacts introduced due to the use of that specific vocabulary set. However, we use that set
for measuring performance on the test set so that the final results are in the same footing as those of the
previously published work.

B Model Details

We used four models in this paper, zeroshot, fewshot, reranking, and finetuned. We provided a brief description
in the main text. Here, we provide more detail on how each model works.

• Zeroshot (ZS): For this model, the pre-trained model parameters remain fixed. For a test query
such as (Barack Obama, profession, ?), a template is used to turn it into a question in natural
language form such as “Barack Obama is a [MASK] by profession.", where the [MASK] token is
where the answer is expected to be. The question is fed to the LM for which the LM produces a
distribution over sequences for the [MASK] token. We use the sequence with the highest probability
as the answer.

• Fewshot (FS): This model is similar to the ZS model except that some example questions and
answers are prepended at the beginning of the LM input. These examples are for the same relation
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as that of the query to be answered. For (Barack Obama, profession, ?), for example, the input of
the LM may be as follows: “Doug Rhodes is a keyboardist by profession. Greg Davidson is a referee
by profession. Sandra Sarikakis is a cook by profession. Barack Obama is a [MASK] by profession.".
The fewshot examples are randomly selected from the training set and fixed for all examples. We
tuned the number of fewshot examples on the validation set.

• Reranking (RR): We first use the ZS model to predict a distribution over possible answers for the
examples in the train and validation sets, and select the top-k (k = 5 in our experiments) answers.
Then, we use the procedure outlined below to create a finetuning dataset based on the train set. For
any question q and answer a in the top-k answers, we create a query similar to the ZS model, but
where the [MASK] token is filled with a. For example, if for (Barack Obama, profession, ?) one of
the top-k answers is politician, we create the query “Barack Obama is a politician by profession.".
We assign a label of 1 to the query if a is the correct answer to q and 0 otherwise. We follow a similar
procedure for the validation set. For the training set, if none of the answers in the top-k are correct,
we also create another query where the [MASK] token is replaced with the correct entity and the
label is 1. We then finetune an LM on this dataset for binary classification. During finetuning, we
measure the performance of the LM on the validation set after each epoch and select the epoch that
offers the highest Hit@1 on the validation set. For testing, we get two scores for each example: 1-
using the ZS model, 2- we obtain the top-k predictions of the ZS model and use the finetuned model
to predict their correctness probabilities. We sum these two scores and select the answer with the
highest total score as the final answer.

• Finetuned (FT): Similar to the ZS model, we first convert queries into natural language form
using templates. Then, we use the train set and finetune an LM with the masked language modeling
objective, where the LM is finetuned to predict the correct answer for the [MASK] token given the
query. For example, given query “Barack Obama is a [MASK] by profession.", the LM is finetuned
to predict “politician” as output. During finetuning, we measure the performance of the LM on the
validation set after each epoch and select the epoch that offers the highest Hit@1 on the validation
set. At the test time, we evaluate the LM similar to the ZS model but with the updated parameters.
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