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ABSTRACT

Our perception of the world is inherently colourful, and colour has well-documented ben-
efits for vision: it helps us recognise objects more quickly and remember them more ef-
fectively. We hypothesised that colour is not only central to perception, but also a rich
and decodable source of information in electroencephalography (EEG) signals recorded
non-invasively from the scalp. Previous studies have shown that colour can be decoded
from neuroimaging brain signal to simple, uniformly coloured stimuli, but it remains un-
clear whether this extends to natural, complex images where colour is not explicitly cued.
To investigate this, we analysed the THINGS-EEG dataset, in which 64-channel EEG was
recorded while participants viewed over 1,800 distinct objects presented for 100 ms each
in a rapid serial visual presentation paradigm. We established a perceptual colour ground
truth through an online psychophysical experiment, where participants briefly viewed each
image and selected all perceived colours from a palette of thirteen options. We then
trained an artificial neural network to predict these scene-level colour distributions di-
rectly from EEG signals, and we found that colour information was robustly decodable
(average F-score about 0.5). We next asked whether colour could enhance EEG-based ob-
ject decoding. Given the strong link between colour and object perception, we segmented
images using the Segment Anything Model (SAM), assigned each object a representa-
tive colour based on its average pixel values, and extracted features from these colour-
augmented images with CLIP vision encoders. We trained an EEG encoder—CUBE
(ColoUr and oBjEct decoding)—to align features not only in object space but also in
colour space. Across both THINGS EEG and MEG datasets, in a 200-class object recog-
nition task, integrating colour features improved decoding accuracy for all participants by
about 5% across architectures. Together, these results demonstrate that EEG signals carry
substantial colour information during natural vision and that modelling colour explicitly
can strengthen neural decoding frameworks. This work highlights a new way to study the
neural representation of colour and its role in supporting visual cognition.

1 HOW STRONG IS THE COLOUR SIGNAL IN NEUROIMAGING?

Our visual system makes sense of a scene with remarkable speed. In just a fleeting glance, as brief as 13
ms, we can attach a simple description such as “green tree” to what we have seen (Potter et al., |2014). This
raises an important question: what kind of rich representations arise in the brain within such a short window,
and can these be detected in neuroimaging signals? Here we turn our attention to colour, an effortless and
ever-present aspect of vision. Colour not only shapes how we perceive objects (Tanaka et al.,|2001; Bramao
et al., |2011), but also enhances memorability (Gegenfurtner & Rieger, |2000; [Wichmann et al.| [2002) and
speeds up recognition (Mgller & Hurlbert, |1996f Rosenthal et al., [2018)).

Research into colour decoding from neuroimaging has a long history (Regan, [1970; |Paulus et al.l [1984).
Studies have shown that signals carry information about chromaticity, luminance, and saturation (Sutterer
et al.,|2021;Hermann et al.,2022;|Pennock et al.| 2023;|Rozman et al.,|2024), the hue circle (Hajonides et al.|
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Figure 1: The schematic framework of CUBE (ColoUr and oBjEct decoding). A: The RSVP paradigm
used to collect the THINGS EEG dataset (Gifford et al., 2022). B: An EEG encoder aligns brain activity
with features from a pretrained vision encoder applied to colour-segmented images. C: A linear projection
layer maps the aligned representation to thirteen-dimensional behavioural colour responses.

2021), the geometry of colour space (Rosenthal et al.| 2021), and even unique hues (Chauhan et al., [2023)).
Fewer studies, however, have examined how colour interacts with object processing. One study suggests that
while both shape and colour can be decoded from as early as 60—70 ms after stimulus onset, shape—colour
congruency only appears much later, around 200 ms (Teichmann et al.| 2020). These insights are valuable,
yet they mostly come from simplified displays of uniform coloured shapes on plain backgrounds. What
remains unclear is whether colour can also be reliably decoded from non-invasive brain signals when people
view rich, natural scenes. This is the challenge we take on in the present study.

In recent years, progress in decoding has accelerated thanks to artificial intelligence and the availability of
large datasets. The NSD dataset (Allen et al., [2022), for example, offers large-scale fMRI data covering
about 10,000 natural images. Similarly, the THINGS EEG (Gifford et al., 2022)) and MEG (Hebart et al.|
2023)) datasets provide recordings of comparable scale, creating new opportunities to investigate how natural
images are represented in the brain. Alongside these resources, contrastive learning (Radford et al., [2021)
has emerged as a powerful tool for decoding. It has already shown strong performance across modalities,
from speech recognition (Défossez et al.l [2023) to visual object recognition in fMRI (Scotti et al., [2024),
EEG (Song et al.| 2024), and MEG (Wu et al., 2025).

1.1 CUBE (CoLOUR AND OBJECT DECODING)

We adopted the same general framework of large datasets and contrastive learning to investigate how colour
is represented in brain signals during natural image viewing. Our focus here is on EEG, which, despite its
low spatial resolution, offers high temporal resolution, affordability, portability, and the possibility of real-
time decoding (Benchetrit et al.,|2023;Robinson et al.,2023). Instead of collecting a new dataset, we created
colour annotations for the THINGS EEG dataset (Gifford et al., 2022)) through a large-scale psychophysical
experiment designed to mimic the conditions of the original recordings. Participants viewed an image for
100 ms and then selected all perceived colours from a palette of 13 options (see Figure [T} panel C).
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We trained an EEG decoder, implemented as a simple artificial neural network (ANN) with two linear layers
and a residual connection, to align EEG representations with visual features extracted from pretrained CLIP
networks. To better capture perceptual colour structure, which operates at the object rather than pixel level
(Gegenfurtner, [2025)), we processed each image I°"9 using the Segment Anything Model (SAM) (Kirillov
et al., [2023). For each segmented region, we averaged pixel colours to create uniformly colour-segmented
images I°“™ (see Figure[I] panel B), providing a closer approximation to colour perception at a glance.

To evaluate colour decoding from EEG signals, we added a linear projection layer atop the CLIP-aligned
features to output a 13-dimensional vector matching the behavioural colour palette. Performance was mea-
sured with the F-score for this multi-class task. Results show reliable decoding, with an average F-score of
0.50 across participants—well above chance (0.17). This constitutes our first contribution: demonstrating
colour decoding from EEG during natural image viewing with 100 ms exposure. Notably, the noise ceiling
in this RSVP paradigm is 0.64, indicating the decoder approaches average human agreement.

Encouraged by these results, we hypothesised that incorporating colour features into the contrastive align-
ment framework could enhance object recognition decoding. Prior work shows that colour and object per-
ception are closely intertwined, both in behavioural studies (Bramao et al.|[2011;|Gegenfurtner, [2025) and at
the neuronal level (Rosenthal et al., 2018}, |[Tanaka et al., [2001)). To model this, we aligned the EEG decoder
simultaneously to CLIP features from the original images [°"9 and from colour-segmented images [°*™
(Figure[J). These segmented images capture object—colour associations more directly, particularly under the
brief 100 ms exposure used in our experiment.

We term this framework CUBE (ColoUr and oBjEct decoding), as it explicitly leverages the interaction
between colour and object representations in the brain. Experimentally, CUBE improves state-of-the-art
object recognition decoding by a consistent 5% across all participants and in both EEG and MEG. This
underscores the importance of colour—object interactions in neuroimaging decoding and points to a strongly
shared representational space for colour and object in the brain.

2 METHOD

2.1 NEUROIMAGING DATASETS

We primarily focused on the THINGS EEG dataset and secondarily on the MEG dataset, both using a subset
of the THINGS collection (Hebart et al., 2019), a high-quality set of 1,854 diverse object concepts.

THINGS EEG dataset (Gifford et al.,[2022): Recordings were collected from 10 participants using a rapid
serial visual presentation (RSVP) paradigm (Intraubl [1981)), where each image was shown for 100 ms, fol-
lowed by a 100 ms blank (Figure |1} Panel A). EEG was recorded with a 64-channel cap. The training set
included 1,654 concepts (10 images per concept, 4 repetitions per image), and the test set 200 unseen con-
cepts (1 image per concept, 80 repetitions per image). Preprocessing followed the original paper: signals
were epoched 0-1000 ms post-stimulus, downsampled to 250 Hz, and reduced to 17 occipito-parietal chan-
nels most relevant to Visio To improve signal-to-noise ratio, repetitions of the same image were averaged,
yielding 16,540 training samples and 200 test samples per participant.

THINGS MEG dataset (Hebart et al., 2023): Recordings from 4 participants, with each image presented
for 500 ms followed by a 1000 £ 200 ms interval. MEG was recorded with 271 channels. The training set
comprised 1,854 concepts (12 images per concept, 1 repetition each), with 200 forming the test set (1 image
per concept, 12 repetitions each). Test concepts were excluded from training to match the zero-shot evalua-
tion of EEG. Preprocessing followed the same strategy as EEG, except MEG signals were downsampled to
200 Hz.
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Figure 2: The colour-aware CUBE framework for object decoding from brain signals. Two EEG decoders
are trained to align with (1) the original RGB images viewed by participants and (2) colour-segmented
versions of the same images. Colour alignment follows contrastive learning (Radford et al. 2021)), while
image alignment employs the Uncertainty-aware Blur Prior algorithm (Wu et al., [2025).

2.2 PSYCHOPHYSICAL EXPERIMENT ON COLOUR PERCEPTION UNDER BRIEF EXPOSURE

When an image is shown for only 100 ms, a key question is how much of the scene can be understood
and accessed consciously (Keysers et al.,[2001). To approximate participants’ colour perception in the EEG
experiment, we conducted a psychophysical study with a similar presentation rate. A blank screen with a
central fixation cross was shown for 750 ms, followed by the image for 100 ms. Participants, instructed via
written guidelines, selected all perceived colours from a thirteen-colour palette (Figure [T} Panel C).

To annotate the full THINGS EEG dataset (16,740 images), the experiment was run online via Prolific
2018). Each participant saw 450 images. For training images, participants had 5 seconds per
trial due to the large volume; for test images, no time limit was imposed to capture all perceived colours. In
total, 133 participants from diverse cultural and linguistic backgrounds participated and were compensated
monetarily.

Subjectively, this fast-paced paradigm shows that participants tend to recall only a few foreground objects
and their colours. Strong colour—object associations emerge, while background colours are poorly remem-
bered unless covering large uniform regions. This is reflected in the responses: participants selected on
average 2.1 colours per image. Beyond the THINGS EEG colour annotations, this large-scale experiment
provides a valuable dataset for studying colour perception under brief exposures in ecologically relevant
settings, which will be released for the community.

2.3 VISUAL NEURAL DECODING

To decode colour and object from neuronal data, we adopted a contrastive learning paradigm (Radford et al.
2021)), which has been widely used in neuroimaging research (Song et al,[2024} [Li et al.| 2024} Scotti et al.
2024). In this framework, an EEG decoder is trained to align its output representations with those of a
pretrained vision encoder, often a variant of CLIP (Figure[2). Similar strategies have also been applied with

other modalities, such as language encoders (Akbarinial [2024) and depth encoders (Zhang et al.| [2025).

Formally, let zZF¢ denote the feature representation predicted by the EEG decoder for sample i, and z! ¢

the corresponding representation from the vision encoder. The goal of contrastive learning is to maximise the
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similarity between matching pairs (zZ7¢, z while minimising similarity with all other non-matching

pairs in the batch. This is achieved with a symmetric cross-entropy objective:
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where N is the batch size, 7 is a learnable temperature parameter, and sim(-, -) denotes the cosine similarity.
This loss encourages the EEG and image representations of the same stimulus to be close in the embedding
space, while separating them from mismatched pairs.

One persistent challenge in neuroimaging applications is dataset size: current datasets are relatively small for
deep learning, leading to overfitting during training and poor generalisation at test time. A recently proposed
technique, the Uncertainty-aware Blur Prior (Wu et al.||2025)), mitigates this by introducing a foveated blur
to the original images [°79, simulating how participants perceive stimuli. By suppressing high-frequency
details, this strategy reduces one of the main drivers of overfitting. We adopt this approach in our training
framework, processing /°"9 with the foveation blur described in [Wu et al.[(2025)).

Building on this idea, we propose a colour-aware contrastive learning framework, in which the decoder
is also aligned with CLIP features extracted from segmented images, denoted /°*". These are obtained
from I°"9 using SAM-1 (Kirillov et al., [2023) with default global segmentation parameters, except for 64
points per side and a stability score threshold of 0.92. We hypothesise that colour-segmented images better
capture perceived colours and object associations during brief exposures (100 ms). To evaluate this, pilot
experiments showed participants 1°"9 for 100 ms, followed by a 750 ms grey screen, after which °*™ was
presented alone or alongside a greyscale version of 1°79. Participants were asked to click mismatched pixels
relative to the original scene. Very few mismatches were reported, suggesting that colour-segmented images
closely approximate perception under 100 ms viewing.

The EEG Decoder in CUBE follows|Wu et al.| (2025)): two linear layers with GELU activation and a residual
connection. The Colour Projector comprises two linear layers with ReLU, mapping CLIP-aligned features
to a thirteen-colour palette. In all experiments, OpenCLIP (Cherti et al.l[2023)) was used to extract features
from different vision encoders. Networks were trained for 50 epochs with batch size 1024 using the AdamW
optimiser (Loshchilov & Hutter, [2017), with learning rate 1 x 104 and weight decay 1 x 10~%. Other
configurations followed [Wu et al.[(2025).

For all experiments, two types of networks were trained. Intra-participant networks were trained and evalu-
ated on the EEG data of the same participant, whereas inter-participant networks were trained on all partic-
ipants except one, which was held out for testing.

3 COLOUR DECODING

Colour decoding is a multi-class task, as multiple colours may co-occur in a single image, and substantial
variation exists across participants, particularly under brief viewing (Bosten, 2022)); for example, one partic-
ipant may label wood as brown, another as beige. Agreement between two human responses was quantified

using the F-score:
TP

F= 2

TP+ i(FP+FN)’ @

where T'P, F'P, and F'N denote true positives, false positives, and false negatives. The same metric eval-
uated EEG colour decoding. As average human responses and model predictions are not binary, both were

thresholded. All reported F-scores use a threshold of 0.33, based on the rationale that at least one-third of
participants should agree on a colour for a given image.
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Figure 3: Colour decoding performance of CUBE. Top: F-score distributions over 200 test images. Chance
level is shown in red and the noise ceiling from behavioural agreement in blue. Asterisks mark significant
differences between models with and without 7°“™. Bottom: Average F-scores for within- (intra) and
across-participant (inter) training. Table cells are colour-coded from green to yellow as F-scores decline.

The results of colour decoding on the THINGS EEG dataset are shown in Figure [3] Overall, the CUBE
model achieves an F-score slightly above 0.50, markedly exceeding chance (0.17), computed over 10,000
iterations with two randomly selected colours per trial, matching the average number of colours chosen per
participant. Performance is also well above the baseline (0.23), calculated similarly but sampling colours
from the training set distribution rather than uniformly. The noise ceiling, the average agreement among all
participants, is 0.64. These results demonstrate that CUBE extracts meaningful colour information directly
from EEG signals, approaching the level of average human responses—a remarkable achievement given
the noisy, low-dimensional nature of EEG data. Inter-participant networks yield lower F-scores (0.33) but
still far exceed chance, indicating a shared representation of colour across individuals (Gegenfurtner, [2003).
Qualitative examples are provided in Appendix Figures [6|and[7]

Decoding performance drops to 0.46 when the EEG decoder is trained only on colour ground truth, without
alignment to 7°*™ features, a reduction that is statistically significant for most participants (Student’s t-test).
While results are reported using the CoCa-ViT-L-14 architecture (Yu et al., 2022), no significant differences
were observed with alternative architectures.

Although F-scores vary by 7% between the best (participant 06) and worst (participant 04), the overall dis-
tribution across the 200 test images is similar for all participants. This consistency is partly due to the colour
ground truth reflecting average human responses, which cannot fully capture individual colour perception
(Bosten, |2022) during the EEG experiment.

4 OBJECT RECOGNITION DECODING

Object decoding networks were evaluated in a zero-shot setting: among 200 possible images, the one with
the highest cosine similarity was taken as the decoded object.

4.1 EEG

Object recognition accuracies of CUBE and several comparison models are reported in Table[I] By incorpo-
rating colour-aware alignment, CUBE improves both top-1 and top-5 accuracy in intra-participant evaluation
by about 6%. Notably, this improvement is consistent across all objects, indicating robust gains from the
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Table 1: Object decoding performance of CUBE on the THINGS EEG dataset (Gifford et al.l 2022) across
200 possible classes. Comparison methods from the literature include BraVL (Du et al.|[2023), NICE (Song
et al., 2024), ATM (L1 et al.,|2024), VE-SDN (Chen et al.,[2024), and UBP (Wu et al., 2025)). Table cells are
colour-coded from green to yellow as accuracies decrease.

Top-1 Top-5
Method S01 S02 S03 S04 SO5 S06 SO7 S08 S09 S10 AVG| SO1 S02 SO03 S04 SO5 S06 SO7 SO08 SO09 S10 AVG
Intra-participant
BraVL .061 .049 .056 .050 .040 .060 .065 .088 .043 .070:.058|.179 .149 .174 .151 .134 .182 .204 .237 .140 .197:.175
NICE 132 135 .145 .206 .101 .165 .170 .229 .154 .174:.161|.395 .403 .427 .527 .315 .440 .421 .561 .416 .458:.436
ATM 256 .220 .250 .314 .129 .213 .305 .388 .344 .291:.285|.604 .545 .624 .609 .430 .511 .615 .720 .515 .635:.604
VE-SDN 326 .344 .387 .398 .294 .345 .345 493 .390 .398:.372|.637 .699 .735 .720 .586 .688 .683 .798 .696 .753:.699
UBpP 412 512 512 511 .422 .575 .490 .586 .451 .615:.509|.705 .809 .820 .769 .728 .835 .799 .858 .762 .882:.797
CUBE 460 .565 .615 .605 .450 .595 .530 .630 .555 .655:.566|.770 .855 .895 .835 .790 .880 .845 .920 .855 .930:.858
Inter-participant
BraVL .023 .015 .014 .017 .015 .018 .021 .022 .016 .023:.018|.080 .063 .059 .067 .056 .072 .081 .076 .064 .085 :.070
NICE .076 .059 .060 .063 .044 .056 .056 .063 .057 .084:.062|.228 .205 .223 .207 .183 .222 .197 .220 .176 .283:.214
ATM .105 .071 .119 .147 .070 .111 .161 .150 .049 | .205:.118|.268 .248 .338 .394 .239 .358 .435 .403 .227 [.465: .337
uBp .115 155 .098 .130 .088 .117 .102 .122 .155 .160:.124].297 .400 .270 .323 .338 .310 .238 .322 .405 .435:.334
CUBE .140 .175 .080 .140 .135 .130 .095 .125 [.195 .155:.137|.335 .410 .235 .350 .310 .355 .335 .385 .415 .420:.355
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Figure 4: Encoder type experiment.

additional colour features introduced in CUBE. Performance peaks at a top-1 accuracy of 66% and a top-5
accuracy of 93% for the best participant—remarkable decoding performance given the noisy nature of EEG
signals. For inter-participant evaluation, the improvement is more modest at just over 1%, likely reflecting
substantial individual variability in visual processing (De Haas et al.,[2019).

We further examined whether CUBE’s improvements generalise across different visual encoders. Results are
shown in Figure ] Across seven encoders with diverse architectures and pretraining datasets, colour-aware
alignment consistently improves performance by approximately 5%, with all gains statistically significant
(Student’s t-test). These findings confirm that incorporating colour alignment enhances EEG decoding across
a wide range of feature spaces. Intuitively, this is expected: when viewing an image for as briefly as 100 ms,
colour is one of the first visual attributes to stand out.

4.2 MEG

We also tested CUBE on the MEG dataset. The results closely mirror the EEG findings: intra-participant
accuracy improves by about 5% and inter-participant accuracy by about 1%. These results indicate that
colour-aware contrastive alignment generalises beyond EEG and is equally effective with other neuroimag-
ing modalities.
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5 DISCUSSION

EEG is remarkably noisy, with core technology dating back a century (Berger, [1929). Recorded non-
invasively over the scalp, it reflects the combined electrical activity of billions of neurons as tiny differences
in ionic potentials (Azevedo et al., 2009; |Gorielyl 2025). Spatial resolution is also very limited (e.g., 17
electrodes at 250 Hz in this study, equals to a single-channel image of size 65). Despite these constraints,
meaningful information can be extracted. For instance, decoding speech from three seconds of EEG can
reach 41% accuracy among 1000 choices (Défossez et al., 2023)). Similarly, object recognition in our study
achieves 57% accuracy—far above the chance level of 1/200—from just one second of EEG, where each
image was presented for 100 ms and the signal is already intermixed with four subsequent images.

Equally remarkable is that we can now predict the perceived colours in natural images with high accuracy
(F-score = 0.5). Importantly, the EEG data were collected without any explicit cues about colour, reflecting
participants’ natural viewing. It is striking that such noisy signals can carry such rich information—it is, in
a sense, even beautifully colourful. Qualitative examples in Appendix Figures [6] and [7] show that, even in
less accurate cases, the network generally captures the dominant colours in a scene, though it occasionally
misclassifies neighbouring shades (e.g., beige for brown) or misestimates their relative prominence.

Comparing colour and object decoding is not straightforward. First, the metrics differ: F-score is used for
multi-class colour, while accuracy is used for single-class objects. Second, the ground truths differ: object
labels are objective (“this is a snail”), whereas colour annotations are subjective averages. Third, object
and colour are intertwined, introducing potential confounds. For example, colour-diagnostic objects can
boost colour decoding (e.g., a banana is yellow), while natural colour statistics can bias object recognition
(e.g., a spherical orange may be decoded as an orange, a striped version as a volleyball) (Tanaka & Presnell]
1999; Therriault et al.,|2009). Fourth, material properties add complexity (Schmidt et al., |[2025), e.g., wood
is typically brown with distinctive texture. Nevertheless, colour decoding performs relatively better when
normalised to chance and noise ceilings: with a human agreement of 0.64, an F-score of 0.50 corresponds
to 0.70, while object decoding remains at 0.57.

5.1 TIME FRAME OF DECODING POWER

One important question in neuroscience is the time frame in which specific features can be decoded. To
address this, we analysed object and colour decoding when training a network on only 100 ms of EEG
from different intervals, e.g., [0, 100), [100, 200), and [900, 1000). We also examined very short windows
(less than 100 ms) by training networks from stimulus onset until time ¢. All other training configurations
matched those of CUBE trained on the full 1 s EEG data. Results are shown in Figure 5]

Although individual differences can be observed, across participants we find significantly decodable infor-
mation in both colour and object signals from about 75 ms to 500 ms. This aligns with previous reports
(Teichmann et al 2020). Importantly, colour decoding above chance emerges earlier—in many subjects
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Figure 5: CUBE decoding of colour and object across temporal epochs. The x-axis (0 ms) marks stimulus
onset; the y-axis shows normalised F-scores (colour) and top-1 accuracy (object), scaled by chance level and
noise ceiling. Data points after 100 ms use EEG intervals [t — 100, ¢), and points before 100 ms from [0, ¢).
Significance lines indicate intervals with decoding above chance (p < 0.05).

immediately after stimulus onset—suggesting that colour information may precede object information in
natural image perception. This contrasts with earlier findings suggesting that colour and object signals arise
at roughly the same time (Teichmann et al.| [2020).

5.2 LIMITATIONS OF THE EEG DECODING

What are the limitations of current EEG decoding frameworks, both in the literature and in the present work?
A first and central issue is inter-participant performance, which remains much lower than within-participant
decoding. This is perhaps not surprising. On the one hand, there are large individual differences across
several dimensions of visual perception (De Haas et al.,|2019; Bosten,[2022)). On the other hand, EEG signals
are inherently dynamic: the same stimulus may elicit different responses depending on the participant’s
cognitive state at a given moment. Moreover, the quality of the recorded signal is affected by technical
factors such as electrode placement and impedance, which can vary across sessions and participants.

One proposed solution is to pretrain models on large, diverse EEG datasets (Wang,2025)), in analogy to large
language models, and then fine-tune them for individual participants. This approach may help bridge the
gap between generalisation and personalisation. Such strategies could be especially valuable for practical
applications of neuroimaging decoding, for example in brain—machine interfaces for individuals with severe
motor disabilities (Chaudhary et al., 2015).

6 CONCLUSION

In this article, we introduced CUBE (ColoUr and oBjEct decoding) and highlighted the importance of
jointly decoding colour and object information. Our results demonstrate that EEG signals contain decodable
colour information, even when recorded during object recognition tasks without explicit colour references
and under very brief viewing conditions (100 ms). We further showed that incorporating colour feature
alignment into standard contrastive learning frameworks for neuroimaging-based object decoding improves
performance by about 5% across participants in both EEG and MEG modalities. Overall, our findings estab-
lish a novel approach for decoding colour from neuroimaging signals, underscoring its potential applications
for brain—computer interfaces and the study of colour representation under naturalistic conditions.
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Figure 6: High F-score examples of colours decoded from EEG alongside the corresponding colours re-
ported in the psychophysical experiment.
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