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Abstract. The medical imaging community generates a wealth of datasets,
many of which are openly accessible and annotated for specific diseases
and tasks such as multi-organ or lesion segmentation. However, most
datasets are only partially annotated for particular purpose, which hin-
ders the training of multi-talent models. We uses a combination of pseudo
labels and partial annotations to generate reliable fully annotated data,
avoiding data conflict issues. Then, we designed a fast segmentation
method for abdominal organs and tumors based on localization and seg-
mentation. To accelerate inference, we adopt a slice-like downsample for
location. To obtain the satisfactory segmentation, we first trained two
models for organs and tumors with different target spacing, then com-
bine the results. We also designed a weighted compound loss function
and training patches selection strategy to finetuning the model. On the
public validation set, the average scores of organ DSC, organ DSC, tumor
DSC and tumor NSD are 0.9164, 0.9597, 0.4856 and 0.4221, respectively.
Under our development enviroments, the average inference time is 8.54
seconds , the average maximum GPU memory is 4221.49 M, the aver-
age area under the GPU memory-time curve is 15074.59. Our code is
available at https://github.com/Shenzhen-Yorktal/flare23.
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1 Introduction

Abdomen organs are quite common cancer sites, such as colorectal cancer
and pancreatic cancer, which are the 2nd and 3rd most common cause of can-
cer death. Computed Tomography (CT) scanning yields important prognostic
information for cancer patients and is a widely used technology for treatment
monitoring. In both clinical trials and daily clinical practice, radiologists and
clinicians measure the tumor and organ on CT scans based on manual two-
dimensional measurements (e.g., Response Evaluation Criteria In Solid Tumors
(RECIST) criteria). However, this manual assessment is inherently subjective
with considerable inter- and intra-expert variability. Besides, labeling medical
images requires professional medical knowledge and rich experience, which makes
manual labeling expensive and time consuming. Moreover, existing challenges
⋆ Corresponding author
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mainly focus on one type of tumor (e.g., liver cancer, kidney cancer). There are
still no general and publicly available models for universal abdominal organ and
cancer segmentation at present.

Different from existing tumor segmentation challenges, the FLARE2023 fo-
cuses on pan-cancer segmentation, which covers various abdominal cancer types.
Specifically, the segmentation algorithm should segment 13 organs (liver, spleen,
pancreas, right kidney, left kidney, stomach, gallbladder, esophagus, aorta, in-
ferior ven cv, right adrenal gland, left adrenal gland, and duodenum) and one
tumor class with all kinds of cancer types (such as liver cancer, kidney cancer,
stomach cancer, pancreas cancer, colon cancer) in abdominal CT scans. Also,
this challenge provides the largest abdomen training dataset, which includes 2200
3D CT partial labeled scans and 1800 unlabeled scans from 30+ medical centers.
However, due to particular clinical purpose at different institutes, these partial
labeled scans consists of 219 all organs labeled scans, 484 partial organs labeled
scans, 888 only tumor labeled scans and 609 partial organs with tumor scans.
What’s more, 609 mixed scans only have 5 organs (liver, right kidney, spleen,
pancreas, left kidney) and tumors, specifically only 592 of these have the all 5
organs, and the rest 17 scans missing some organ. Besides, the length of scans in
axis-z is in range of 74mm to 1983mm which means the region is very different.
In a word, the variety of organs, the difference of tumors, the partial annotations
and the difference of regions make the segmentation a difficult challenge.

An intuitive strategy is extract each kind of label to make the original par-
tially dataset into 14 binary labeled datasets, then train individual models on
each dataset [8]. Afterwards, final segmentation results of all requested organs
can be obtained by ensemble the outputs from individual networks. An alter-
native strategy is to train a single unified model with original partially labeled
dataset, where the organs of interest can be segmented simultaneously. In com-
parison, the latter strategy yields three clear advantages. First, based on the
demonstrated benefits of larger training dataset for deep learning models, a uni-
fied model trained on union of all partially labeled scans, is anticipated to outper-
form individual models trained on each binary labeled dataset. Second, during
deployment, using a single unified model can lead to faster inference speeds and
reduced storage requirements. Lastly, it does not require extra post-processing
steps to address conflicting voxel predictions (a voxel being predicted as different
classes), a challenge that may arise when using multiple models. Therefore, we
adopt the single unified model. To expand training dataset, we also used public
pseudo label generated by the best-accuracy-algorithm [17].

Because of significant differences in the scanning area, we adopt common
localization followed by segmentation method. Specifically, we first use a light
U-Net model to extract abdomen region under large spacing, then segment un-
der fine spacing. To improve tiny organs and tumor segmentation performance,
we also proposed a weighted compound loss based on focal loss and dice loss. Be-
sides, we adopt fine-tuning and model ensemble to improve performance further.
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2 Method

The outline of our method is shown in Fig. 1. Firstly, in order to train uni-
fied segmentation model, we generate fully annotated organs-tumor labels, as
presented in top Fig. 1. Specifically, we replace pseudo annotation with official
label at the same position. Secondly, we train a light model which named ROI
extractor to locate the abdomen for reducing computation, resource usage and
difference of regions. Besides, we cropped the scans to include abdomen exactly
according to the combined labels and trained two segmentation models. Specif-
ically, one named organs model is trained with high resolution, while the other
named tumor model is trained with relative low resolution. Both can segment
organs and tumors, but their performance are different. As shown in bottom
Fig. 1, we ensemble the predictions at the end.

Afterward, we fine-tuning segmentation models to improve tumor and some
small organs segmentation performance with particular training patches selec-
tion strategy. Specifically, we fine-tuning tumor model only with patches which
have tumor at the center. The final prediction is the ensemble of these two mod-
els. Last but not the least, all of our models are trained based on nn-UNet [6],
which is well known and one of the best baselines for medical image segmentation.

2.1 Preprocessing

Image preprocessing is very important for segmentation. Generally, it con-
tains interpolation and normalization. The nn-UNet interpolates isotropic and
anisotropic data differently [6]. Median spacing of all training cases is set as
default target spacing. For isotropic data, nn-UNet [6] zooms data and segmen-
tation maps with third order spline and nearest-neighbor interpolation respec-
tively. For anisotropic data, nn-UNet [6] zooms data with third order spline in
plane first, then interpolates across the out plane axis is done with the nearest
interpolation. After that, nn-UNet [6] normalizes CT dataset in a global zero-
score manner. Specifically, where a global normalization scheme is determined
based on the intensities found in foreground voxels across all training cases.

For ROI extractor, we use a slightly different methods. Specifically, we sam-
ple the original data and segmentation maps with a step of 4 in the plane and an
integer on the outer axis of plane that makes original spacing close to 5mm. Also,
we clipped the data to [-1024, 1024] then normalize it by global mean intensities
and standard variance. For segmentation models, we adopt default methods in
nn-UNet but change target spacing, [4.0, 1.2, 1.2] for tumor and [2.5, 0.82, 0.82]
for organs, respectively.

2.2 Proposed Method

Network: As mentioned before, we adopt a two-stage segmentation method.
The first stage is a ROI extractor, which treat all organs as foreground and the
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Fig. 1. The process of our proposed segmentation framework. (a) shows how we gen-
erate the training datasets. (b) shows the final inference pipeline.
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others as background. We followed the conventional nn-Unet configuration and
got a 5-stages U-Net shown in Fig.2

Specifically, the encoder consists of an initial convolution layer and 5 encoder

Fig. 2. U-Net

blocks with depths of 2, 2, 4, 6, and 4, respectively. Depth denotes number of the
sequence of Conv-BatchNorm-ReLU-layers. Strides of the first convolution layer
in each encoder block are 1, 2, 2, 2 and 2, respectively. The decoder consists of 4
decoder blocks, each of them consists of a transpose convolution layer which is
used to upsample image, and 2 Conv-BatchNorm-ReLU sequential layers which
is used to refine features. There are 4 short paths between the encoder and
decoder for reusing low level features, enhancing model capacity, and avoiding
gradient vanishing. It is worth noting that batch-Norm layer can be absorbed
into convolution for acceleration during inference process [3].

Our segmentation models are also based on U-Net, which have different con-
figuration with extractor. Specifically, both models have 6 encoder blocks with
depths of 2, 4, 6, 8, 8 and 8, respectively. The basic structure of encoder block
is a residual block and the instance normalization is adopted in this model. De-
coders are similar to the one in extractor, but with an extra decoder block with
stride 2. The only difference is that tumor model has large target spacing while
organs model has smaller spacing.

Loss function and training data selection Recently, compound losses
have been suggested as the most robust losses for medical image segmentation
tasks [9]. For model prediction P and label G , we apply the sum of weighted
Dice loss [15] and weighted focal loss [7] as the supervised segmentation loss:



6 Yajun Wu et al.
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We also proposed a particular data selection strategy. Specifically, we dy-
namically selected patches during training by the location of organs and tumors.
For organs model, we only choose those patches which have organ in the center.
For tumors model, we choose patches which have tumor in the center. We be-
lieve that this strategy behaves like data oversampling, making the model more
focused on specific class.

The loss function together with the data selection improves model perfor-
mance, especially when we increase weights of small organs and tumors, details
are showed in section 4.1.

Fully annotations: We generated fully annotated pseudo labels using the
best-accuracy-algorithm [17], and then merged them with offical labels of the
2200 partial labeled scans. Specifically, if a voxel has a foreground annotation,
we replace the pseudo label with this annotation, otherwise we use generated
pseudo label as the ground-truth. The 1800 unlabeled images were not used be-
cause of missing information of tumors.

Strategies to improve inference speed and reduce resource con-
sumption

We improve inference from four aspects.

– Interpolate the probability by GPU: We found that restore the shape
of predicted probability to the original shape was the most time-consuming.
The reason behind this is that the computation is too huge for third order
spline interpolation, especially interpolate by CPU. Therefore, we utilize the
powerful parallel computing capabilities of GPU to reduce running time.
Considering that computational load and memory usage increase with the
number of target channels and volumes size, we adopted a block calculation
method for large CT scans to avoid GPU memory overflow. Specifically, we
restore probability every 150 slices each time.

– Generate labels by GPU: Default label generation method of nn-UNet
is implemented on CPU. We use GPU again to make it faster.

– Replace preprocessing by torch: Default preprocessing is implemented
by the toolkit for sciPy, which is slightly slower than torch. To reduce running
time further, we decide to adopt interpolation of torch instead.
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– MultiThreading: Another phenomenon is that even if the ROI model is
smaller and there is less ROI data, ROI extraction expands much longer time
than fine segmentation. We believe this is due to initialization of libraries
of pytorch. To solve this problem, we use multithreading method to load
models and complete initialization process when reading and preprocessing
images.

Using these tricks, we were ultimately able to segment almost all of the validation
cases within 15 seconds. Due to precise ROI and interpolate the large images by
block, 4GB GPU Memory is enough. Therefore, we did not make other changes
for the GPU memory resource consumption.

2.3 Post-processing

Inspired by anatomy and the uniqueness of organs, the largest connected
component-based post-processing is commonly used in medical image segmen-
tation. In this work, we found that keep the largest connectivity component can
improve the DSC scores of liver, spleen, pancreas, LAG, RAG and stomach. Due
to the variety of tumors, retaining the largest connectivity component severely
decrease the tumor DSC score. Therefore, we only keep the largest connected
component for liver, spleen, pancreas, LAG, RAG and stomach, while keep the
others unchanged.

3 Experiments

3.1 Dataset and evaluation measures

The FLARE 2023 challenge is an extension of the FLARE 2021-2022 [11][12],
aiming to aim to promote the development of foundation models in abdominal
disease analysis. The segmentation targets cover 13 organs and various abdom-
inal lesions. The training dataset is curated from more than 30 medical centers
under the license permission, including TCIA [2], LiTS [1], MSD [16], KiTS [4,5],
and AbdomenCT-1K [13]. The training set includes 4000 abdomen CT scans
where 2200 CT scans with partial labels and 1800 CT scans without labels. The
validation and testing sets include 100 and 400 CT scans, respectively, which
cover various abdominal cancer types, such as liver cancer, kidney cancer, pan-
creas cancer, colon cancer, gastric cancer, and so on. The organ annotation
process used ITK-SNAP [18], nnU-Net [6], and MedSAM [10].

It is noticeable that we selected our training dataset for fine segmentation.
Specifically, our training dataset only includes scans which have tumors and the
tumor’s bounding box must located in the bounding box of the organs.

The evaluation metrics encompass two accuracy measures—Dice Similarity
Coefficient (DSC) and Normalized Surface Dice (NSD)—alongside two efficiency
measures—running time and area under the GPU memory-time curve. These
metrics collectively contribute to the ranking computation. Furthermore, the
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running time and GPU memory consumption are considered within tolerances
of 15 seconds and 4 GB, respectively.

3.2 Implementation details

Environment settings The development environments and requirements are
presented in Table 1.

Table 1. Development environments and requirements.

Windows/Ubuntu version Windows 10 pro
CPU Intel(R) Core(TM) i7-10700kF CPU@3.80GHz
RAM 16×4GB; 2.67MT/s
GPU (number and type) One NVIDIA RTX 3090 24G
CUDA version 11.1
Programming language Python 3.8
Deep learning framework Pytorch (Torch 1.10, torchvision 0.9.1)
Link to code

Training protocols The training protocols of ROI extractor and fine segmen-
tation model are listed in Table 2 and Table 3. We adopt data augmentation of
additive brightness, gamma, rotation, mirroring, scaling and elastic deformation
on the fly during training.

During training process, the batch size is 2 and 250 batches are randomly
selected from the training set per epoch, the patch size is fixed as 32 * 128 * 192.
For optimization, we train it for 2000 epochs using SGD with a learning rate of
0.01 and a momentum of 0.95. Besides, the learning rate is decayed following
the poly learning rate policy. As for fine-tuning, we reduce the initial learning
rate to 0.0001 and increase the batch size to 4.

4 Results and discussion

4.1 Quantitative results on validation set

At the very beginning, we trained a organ-only segmentation model using
the 219 scans with fully organs annotation. The model was tested on public val-
idation set which got 0.8715 average DSC score and 0.9342 NSD score. Due to
limited training data and the presence of tumors, it is lower than the winner of
FLARE2022.

Next, we constructed a larger training set with 2200 scans as described in sec-
tion 2 and trained a basic segmentation model. Benefit from more training data,
the organ DSC, NSD, tumor DSC, and NSD scores of this model are 0.9078,
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Table 2. Training protocols for the ROI model.

Network initialization “he" normal initialization
Batch size 2
Patch size 80×128×128
Total epochs 2000
Optimizer SGD with nesterov momentum (µ = 0.95)
Initial learning rate (lr) 0.01
Lr decay schedule poly learning rate policy lr = 0.01 ∗ (1− e

m
)2

Training time 76.5 hours
Number of model parameters 10.66M
Number of flops 103.36G

Table 3. Training protocols for the refine model.

Network initialization “he" normal initialization
Batch size 2 or 4(fine-tuning)
Patch size 32×128×192
Total epochs 2000
Optimizer SGD with nesterov momentum (µ = 0.95)
Initial learning rate (lr) 0.01 or 0.0001(fine-tuning)
Lr decay schedule poly learning rate policy lr = 0.01 ∗ (1− e

m
)2

Training time 104.5 hours
Number of model parameters 68.34M
Number of flops 158.13G
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0.9461, 0.3841 and 0.2994, respectively. Then, we fine-tuned the model. Specif-
ically, we increase the batch size to 4, set the initial learning rate to 0.0001,
selected the patches with organs in the center and retrained the model for 1000
epochs. This increase the organs DSC and NSD scores to 0.9153 and 0.9558,
which are 0.0075 and 0.0097 higher. Besides, the tumors DSC and NSD scores
are 0.3886 and 0.3237, which are also slightly better.

Obviously, there are significant differences in segmentation performance be-
tween organs and tumors. We argue that it is caused by the variety of tumors,
imprecise annotation of tumor especially of tumor boundaries and the data im-
balance between organs and tumors. In order to improve performance of tumors,
we increase the loss weights of tumors, increase the target spacing to [4.0, 1.2,
1.2] and retrain the model from scratch. As expected, the tumor DSC score and
NSD score improved to 0.4426 and 0.3732, respectively, which were 0.0585 and
0.0738 higher than the organ model. Then, we also fine-tuned it with patches
that have tumors in the center. This further improves the model, resulting in tu-
mor DSC and tumor NSD scores of 0.4803 and 0.4201, respectively. Besides, this
model got the organs DSC and NSD scores of 0.9055 and 0.9537, respectively.

To achieve better segmentation performance, we ensemble these two models.
Specifically, if the prediction of the tumor model is a tumor, then the final la-
bel is a tumor, otherwise the final label is the prediction of the organ model,
as showed in equation 5. Our final validation scores of organ DSC, organ NSD,
tumor DSC and tumor NSD are 0.9165, 0.9597, 0.4803 and 0.4201 respectively,
details are presented in Table 4.

L(xi) =

{
Tumor, Mtumor(xi) = Tumor
Morgan(xi), else

(5)

4.2 Qualitative results on validation set

Fig.3 presents some well-segmented cases in the public validation set. Similar
to the DSC scores, there is little visual difference in the segmentation of liver,
spleen, and aorta compared to the ground truth. We believe this is due to the in-
tensity homogeneity, clear boundaries and good contrast. On the contrary, Fig.4
presents some challenging cases, there are apparent difference in the segmenta-
tion of pancreas, gallbladder, duodenum, esophagus and tumors. We believe this
is due to the smaller size, unclear boundaries and the heterogeneity, especially
for tumors.

4.3 Results on final testing set

The FLARE23 organizer collected 400 CT scans from several center sites
as the final testing set. Our final performance on this hidden testing set are
presented in Table 4. We can see the average organs DSC score, organs NSD
score, tumors DSC score and NSD score are 0.9211, 0.9589, 0.6467 and 0.5432,
respectively, which are very close to the scores on validation set. This means our
models have good robustness.
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Fig. 3. Well-segmented cases.
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Fig. 4. Challenging cases. The red dotted circles have significant difference between
ground-truth and prediction.
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Table 4. Quantitative evaluation results

Target Public Validation Online Validation Testing
DSC(%) NSD(%) DSC(%) NSD(%) DSC(%) NSD (%)

Liver 98.40 ± 0.44 99.26 ± 0.73 98.16 99.10 97.23 98.13
Right Kidney 95.07 ±7.45 96.25±7.88 94.97 95.69 95.10 95.15
Spleen 98.24±0.91 99.25±1.30 98.19 99.30 97.91 99.07
Pancreas 87.93±7.96 97.31±4.09 87.28 96.72 90.74 97.11
Aorta 97.35±1.84 99.22±2.15 97.23 99.26 97.76 99.75
Inferior vena cava 93.30±4.30 94.02±4.60 92.11 92.43 92.96 93.86
Right adrenal gland 89.98±4.25 98.22±2.04 89.06 97.87 87.52 96.27
Left adrenal gland 89.03±5.13 97.61±2.84 87.90 96.45 89.40 96.67
Gallbladder 85.80±23.77 86.58±24.63 88.29 89.58 83.96 86.24
Esophagus 84.74±15.70 93.88±13.45 84.78 94.02 89.55 97.24
Stomach 94.36±3.51 96.89±4.16 94.73 97.37 94.99 97.38
Duodenum 83.76±9.05 94.38±6.46 83.56 94.48 88.01 96.11
Left kidney 95.61±5.77 94.98±8.69 95.01 95.38 94.32 94.86
Tumor 53.63±37.10 47.82±34.28 48.56 42.21 64.67 54.32
Average Organs 91.81±5.21 95.99±3.44 91.64±5.10 95.97±2.86 92.11±4.42 95.89±3.36

4.4 Efficiency analysis

As described in section 2.2, we speed up the inference on four aspects, the
inference running time details are present in Table 5. We can see that interpo-
lating the probability to the original image size with GPU reduce the average
running time by 23.88 seconds, generating the labels with GPU reduce the aver-
age running time by 2.88 seconds, preprocessing the image with torch reduce the
average running time by 1.23 seconds and adopt multithreading reduce another
0.85 seconds.

Despite of using models ensemble, our method consumes less than 4GB GPU
memory and can segment most of the scans within 15 seconds on official testing
environment, except the extremely large cases.

Table 5. Comparison of accelerate strategies on local machine. Basic denotes infer-
ence with default nn-UNet. S1 denotes interpolating probability to original size with
GPU. S2 denotes generating labels with GPU. S3 denotes preprocessing image with
torch instead. S4 denotes multithreading, which means load models while reading and
preprocessing images.

Strategies Average Running Time (s) Max Running Time (s) Average GPU (MB) Max GPU (MB)
Basic 37.14 95.35 4195 4624
+S1 13.26 25.41 4205 4625
+S2 10.68 18.41 4197 4624
+S3 9.45 14.14 4203 4624
+S4 8.60 11.74 4226 4721
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Table 6. Quantitative evaluation of segmentation efficiency in terms of the running
time and GPU memory consumption. Total GPU denotes the area under GPU Memory-
Time curve. Evaluation GPU platform: NVIDIA QUADRO RTX5000 (16G).

Case ID Image Size Running Time (s) Max GPU (MB) Total GPU (MB)
0001 (512, 512, 55) 14.18 3674 17980
0051 (512, 512, 100) 9.75 3872 18538
0017 (512, 512, 150) 10.45 3816 16828
0019 (512, 512, 215) 9.08 3750 14843
0099 (512, 512, 334) 9.19 3426 15285
0063 (512, 512, 448) 10.81 3548 18534
0048 (512, 512, 499) 11.45 3638 20567
0029 (512, 512, 554) 14.05 3928 28659

4.5 Limitation and future work

As showed in section 4.1, the DSC scores of gallbladder, esophagus, duode-
num and pancreas are lower than 0.9, the DSC and NSD scores of tumor are
much lower than organs. Besides, our final results are fused by two similar refine
models, which is slightly time-consuming and complex. In the future, we will fo-
cus on improving the segmentation of small organs and tumors. Also, knowledge
distillation maybe adopted to combine the two models into one.

5 Conclusion

In this work, we adopt pseudo labels to address the conflict of background and
missing annotations. Then we proposed a weighted compound loss and a partic-
ular training-patches selection strategy to alleviate the class imbalance problem.
Finally, we improve the performance by fine-tuning and model ensemble. These
techniques may be helpful for other medical image segmentation tasks.
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A pipeline/network figure is provided Figure 1
Pre-processing Page 3
Strategies to use the partial label Page 3,5
Strategies to use the unlabeled images. Page 5
Strategies to improve model inference Page 6
Post-processing Page 6
Dataset and evaluation metric section is presented Page 6, 7
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Ablation study Page 9
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