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Abstract001

Recent advances in large language models002
(LLMs) such as ChatGPT and Llama have003
driven significant progress in natural language004
processing and diverse AI applications. In005
this paper, we explore how LLMs can en-006
hance the construction of heterogeneous cita-007
tion networks by integrating rich contextual008
information derived from LLMs. We propose009
a novel approach that augments content-based010
feature engineering with context-aware tech-011
niques. Specifically, we queried the contents012
within the metadata using Llama3 to extract013
context, encoded this knowledge-rich context014
using the LLM encoder DeBERTa, and con-015
structed a knowledge-rich heterogeneous ci-016
tation network. Experimental results demon-017
strate that our LLM-powered context augmen-018
tation improves author classification by 2%019
to 24% and author clustering by 6% to 33%,020
compared with existing feature engineering021
approaches. The dataset and source code022
are available at https://anonymous.4open.023
science/r/LLM-citation-252F/.024

1 Introduction025

Following the success of BERT (Devlin et al.,026

2019), various large language models (LLMs) have027

been proposed, achieving exceptional performance028

through pre-training on extensive datasets and large029

model architectures. In the field of natural language030

processing, these models significantly contributed031

to solving complex real-world tasks, such as text032

generation, summarization, and question answer-033

ing (Tang et al., 2024b; Abdullin et al., 2023; Jin034

et al., 2024; Zhuang et al., 2023; Li et al., 2024;035

Zhang et al., 2023). Recently, human-like chat-036

bots such as ChatGPT (Brown et al., 2020), Llama037

(Touvron et al., 2023), Gemini (Anil et al., 2023),038

and Claude have been introduced. Additionally, as039

foundation models, LLMs are increasingly being040

processed with modalities from various domains,041

enhancing their applicability, with numerous suc-042
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Figure 1: Author classification employing traditional
and LLM-based feature engineering.

cessful studies emerging (Qiu et al., 2021; Wang 043

et al., 2022; Alayrac et al., 2022; Li et al., 2022, 044

2023a; Thirunavukarasu et al., 2023; Wu et al., 045

2023; Gao et al., 2023; Li et al., 2023b). 046

In graph-based applications, knowledge graphs 047

(KGs) containing contextual facts are actively inte- 048

grated with LLMs for various tasks (Zhang et al., 049

2020; Kumar et al., 2020; Chen et al., 2023). How- 050

ever, many real-world graph data lack contextual 051

information. Some studies (Lin et al., 2021; Qian 052

et al., 2022; Gokhan et al., 2022) have represented 053

text-rich data like documents as heterogeneous 054

graphs (HGs) and performed text encoding to de- 055

fine node features with language models. HGs 056

contain diverse semantic information, character- 057

ized by various node and edge types. HGSum (Li 058

et al., 2023c) uses SentenceBERT (Reimers and 059

Gurevych, 2019) to calculate similarities between 060

document nodes, constructing a HG based on sen- 061

tence embeddings. SGR (Wu et al., 2024) inte- 062

grates HGs for search session into text to enhance 063

LLMs’ ability to capture both semantic and struc- 064

tural information for link prediction. HiGPT (Tang 065

et al., 2024a) proposes integrating LLMs with HG 066

structural knowledge through an HG instruction 067

tuning paradigm. However, these models have lim- 068

itations in handling the full contextual information. 069
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In this paper, we focus on incorporating LLMs070

into a heterogeneous citation network, a widely071

used graph structure in scientific analyses. In pre-072

vious research for these networks, shallow embed-073

dings such as bag-of-words and GloVe (Pennington074

et al., 2014) were used for node features with lim-075

ited content. In Figure 1, keywords like “question076

answering”, relevant to an author in the field of077

NLP, use only two tokens of information. This078

keyword spans AI/ML, CV, and other domains, po-079

tentially misclassifying the author under AI/ML.080

In contrast, our approach enhances this keyword081

context with LLM-learned knowledge, effectively082

classifying NLP authors by incorporating relevant083

information such as “QA is a field within NLP ...”.084

We applied prompt engineering to LLMs to ex-085

tract refined context and constructed a context-086

augmented heterogeneous citation network. We087

then validated the context augmentation approach088

through comprehensive experiments with heteroge-089

neous graph neural network models, which learn090

node representations via aggregation and message091

passing within the augmented heterogeneous cita-092

tion network. These experiments showed the sig-093

nificant effectiveness of the proposed approach in094

classification and clustering tasks. The contribu-095

tions of this paper are summarized as follows:096

• We proposed a novel framework to augment097

contextual knowledge in heterogeneous cita-098

tion networks using LLMs.099

• We constructed a knowledge-rich heteroge-100

neous citation network and provided a pub-101

licly available benchmark dataset.102

• We demonstrated the superiority of LLM-103

based context augmentation by using Llama3104

and graph-based machine learning tasks.105

2 Proposed Method106

2.1 Metadata Preprocessing107

We used the “DBLP-Citation-network V14” dataset,108

which was publicly released on AMiner (Tang et al.,109

2008) in January 2023, for our study 1. The DBLP110

metadata comprises a total of 5,259,858 papers,111

each containing extensive information such as the112

titles and abstracts of papers, authors’ names and af-113

filiations, publication venues and publication years,114

keywords, references, DOIs, etc.115

We conducted several preprocessing steps, with116

the first involving the removal of incomplete entries117

in the metadata. Specifically, we removed entries118

1 https://www.aminer.org/citation

with missing content for crucial information such 119

as abstracts, authors, and keywords. Secondly, we 120

selected the top three prominent conference venues 121

in each of the five academic fields (AI/ML, CV/PR, 122

DB, DM/IR, and NLP) based on paper venue in- 123

formation, resulting in a total of 15 premier confer- 124

ence venues. We randomly sampled 2,000 papers 125

for each of the five academic fields, totaling 10,000 126

papers. The purpose of sampling was to quickly as- 127

sess the effectiveness of feature engineering based 128

on LLMs, which contain vast amounts of informa- 129

tion, compared to traditional feature engineering 130

approaches based on word contents. 131

Subsequently, we defined four types to be used: 132

author, paper, keyword, and venue. This decision 133

was made because these types are directly relevant 134

to our main tasks of author classification and clus- 135

tering. Information corresponding to each type 136

was extracted from the metadata and enriched us- 137

ing LLMs, and then processed into features, as 138

described in the following sections. 139

2.2 Decoder-only LLM-based Context 140

Extraction 141

To augment knowledge about keywords, venues, 142

and authors extracted from metadata, we employed 143

the Llama3-8B model 2 developed by MetaAI in 144

April 2024, which is capable of chatbot function- 145

ality. The context of the authors was obtained by 146

prompting Llama3 to provide descriptions of the 147

authors’ affiliations present in the metadata. For 148

keywords and venues, the context was obtained by 149

inputting them directly into Llama3. 150

To alleviate the hallucination issue inherent in 151

LLMs, we employed a prompt engineering tech- 152

nique, which involves including contextual descrip- 153

tions and examples within the prompt (Tonmoy 154

et al., 2024; Velásquez-Henao et al., 2023) (see 155

Appendix A). 156

2.3 Encoder-only LLM-based Feature 157

Extraction 158

In Section 2.2, the textual context for authors, key- 159

words, and venues was extracted. Additionally, for 160

the context of the paper, the abstract existing in 161

the metadata was utilized. Since context cannot 162

be directly used as node features of heterogeneous 163

graphs, it is imperative to convert them into vector 164

representations. 165

Therefore, we employed DeBERTa (He et al., 166

2 https://llama.meta.com/llama3/
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Relations (A-B) Number of A Number of B Number of A-B
Paper-Author 10,000 20,407 31,308

Paper-Keyword 10,000 59,841 103,071
Paper-Venue 10,000 15 10,000

Table 1: Details of constructed citation dataset.

2020), introduced by Microsoft in 2021, to en-167

code each context. We leveraged the powerful lan-168

guage understanding capabilities of DeBERTa to169

effectively represent the information in the dataset.170

While fine-tuning the DeBERTa model could be171

conducted for encoding tasks, we chose to skip fine-172

tuning and instead utilized the pre-trained model.173

Ultimately, we defined the 768 dimensional vec-174

tor embeddings encoded through DeBERTa as the175

features for each node.176

2.4 Heterogeneous Graph Construction177

After processing the features of each node type, we178

completed the construction of the final heteroge-179

neous graph. In this process, the structural infor-180

mation of the graph was based on papers within181

the metadata, establishing connectivity between182

relevant information such as the authors of the pa-183

per, keywords associated with the paper, and the184

conference venue where the paper was published.185

Consequently, we defined four node types: au-186

thor (A), paper (P), keyword (K), and venue (V),187

along with three edge types: paper-author, paper-188

keyword, and paper-venue. Details of the dataset189

are provided in Table 1. The conventional DBLP190

benchmark dataset has simply processed features191

based on word content for author or paper types,192

whereas the dataset proposed in this study pos-193

sesses context-aware features generated by leverag-194

ing knowledge-rich context for all node types.195

3 Experiments196

3.1 Experimental Setup197

We conducted author classification and author clus-198

tering tasks using features based on word content199

and enriched context in the constructed citation200

network. In our experiments, the class informa-201

tion of authors was defined as the academic field in202

which each author published the most. Details of203

the implementation can be found in Appendix B.204

Additionally, we employed HAN (Wang et al.,205

2019), GTN (Yun et al., 2019), MAGNN (Fu et al.,206

2020), and GraphMSE (Li et al., 2021), which are207

well-known models designed for heterogeneous208

graph representation learning and node classifica-209

tion, as our heterogeneous graph neural network210

(HGNN) models (details are in Appendix C).211

Methods Metric
Feature engineering approaches (& utilized types)

Random BOW BOW SentenceBERT Ours
(None) (A) (A+P) (A+P+K+V) (A+P+K+V)

HAN
Macro-F1 0.2732 0.7380 0.9332 0.9518 0.9799
Micro-F1 0.2241 0.7489 0.9228 0.9471 0.9778

GTN
Macro-F1 0.1341 0.7651 0.9358 0.9405 0.9801
Micro-F1 0.2599 0.7754 0.9463 0.9567 0.9805

MAGNN
Macro-F1 0.6241 0.7823 0.9418 0.9673 0.9786
Micro-F1 0.6348 0.7716 0.9411 0.9702 0.9791

GraphMSE
Macro-F1 0.3935 0.7943 0.9403 0.9717 0.9841
Micro-F1 0.3612 0.8019 0.9420 0.9698 0.9837

Table 2: Performance of author classification.

Classification Clustering
Macro-F1 Micro-F1 NMI ARI

w/o Authors 0.2733 0.3144 0.0391 0.0245
w/o Papers 0.2718 0.2921 0.0270 0.0240

w/o Keywords 0.9551 0.9554 0.8983 0.9222
w/o Venues 0.9487 0.9493 0.4543 0.4335

With All Features 0.9786 0.9791 0.9229 0.9468

Table 3: Results of ablation studies with MAGNN.

3.2 Classification Task 212

To demonstrate the superiority of the LLM-based 213

context-augmented features, we conducted an au- 214

thor classification task. All HGNN models gener- 215

ated 64 dimensional embeddings, classified using 216

a support vector machine (SVM). Table 2 presents 217

the average classification performance of baseline 218

HGNN models using four different feature types 219

over five runs. 220

In the case of Random, features for each node 221

type were set as random variables following a nor- 222

mal distribution. In this case, poor classification 223

performance contrasted with significantly better re- 224

sults achieved by both GTN and GraphMSE mod- 225

els, even with a five-class assumption, showcasing 226

their ability to effectively capture graph structures. 227

For BOW (A), bag-of-words features were de- 228

rived from the authors’ keywords, while for BOW 229

(A+P), features from paper abstracts were added. 230

This approach improved performance by an av- 231

erage of 16.6% over using author features alone, 232

despite the tendency of bag-of-words to produce 233

sparse vectors. 234

SentenceBERT directly used metadata to en- 235

code paper abstracts, author affiliations, and key- 236

words/venues details. While SentenceBERT, which 237

partially considers context, outperformed the bag- 238

of-words approach, our LLM-based context ex- 239

traction approach outperformed SentenceBERT by 240

2.1%. This shows that LLM-augmented features 241

better represent node attributes. 242

In addition, we performed an enriched feature ab- 243

lation study to analyze the impact of different node 244

features on author classification. Table 3 shows that 245

removing author and paper features significantly 246
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Methods Metric
Feature engineering approaches (& utilized types)

Random BOW BOW SentenceBERT Ours
(None) (A) (A+P) (A+P+K+V) (A+P+K+V)

HAN
NMI 0.0030 0.4242 0.7143 0.8024 0.9027
ARI 0.0005 0.3467 0.7433 0.8306 0.9165

GTN
NMI 0.0649 0.4508 0.7757 0.8652 0.9357
ARI 0.0390 0.3345 0.7915 0.8774 0.9417

MAGNN
NMI 0.0280 0.6889 0.8174 0.8678 0.9229
ARI 0.0150 0.6112 0.8257 0.8543 0.9468

GraphMSE
NMI 0.0047 0.2150 0.3341 0.3501 0.3861
ARI 0.0024 0.2591 0.3289 0.3487 0.3705

Table 4: Performance of author clustering.

degrades performance, highlighting their impor-247

tance. Removing venue features decreases clas-248

sification accuracy by about 3% and significantly249

impacts clustering, while removing the keyword250

feature slightly reduces performance, indicating its251

lesser importance in author-related tasks.252

3.3 Clustering Task253

Next, author clustering was performed using the254

k-means algorithm on the embedding vectors of la-255

beled nodes, with k set to 5 to match the number of256

academic fields. We measured clustering quality us-257

ing normalized mutual information (NMI) (Danon258

et al., 2005) and adjusted rand index (ARI) (Hubert259

and Arabie, 1985).260

Table 4 shows the average clustering perfor-261

mance for each feature over five runs. Similar262

to classification trends, the highest clustering per-263

formance was achieved using context-based fea-264

tures extracted with LLM. Remarkably, GraphMSE265

showed significantly lower clustering performance266

compared to other HGNN models, possibly due267

to the k-means algorithm assuming convex-shaped268

clusters, while GraphMSE embeddings may repre-269

sent non-convex-shaped clusters.270

For qualitative analysis, we applied t-SNE to271

reduce the 64 dimensional embeddings from the272

MAGNN model to two dimensions for plotting.273

With random features (Figure 2a), clusters are not274

effectively detected, indicating a mixture of multi-275

ple classes. Using bag-of-words (Figure 2b), the276

AI/ML (blue), NLP (orange), and CV (pink) do-277

mains show relatively well-detected clusters, while278

the DB (green) and DM/IR (purple) domains do279

not cluster effectively.280

Using SentenceBERT (Figure 2c), clustering be-281

comes clearer compared to the previous two cases.282

However, the boundaries between DB and DM/IR,283

as well as between DM/IR and NLP, remain am-284

biguous. The proposed approach (Figure 2d) shows285

fewer misallocated clusters compared to Sentence-286

BERT, identifying explicit clusters for the five aca-287

demic domains and demonstrating the effectiveness288

AI/ML CV DB DM/IR NLP

857th

(a) Random
(None)

857th

(b) Bag-of-words
(A)

857th

(c) SentenceBERT
(A+P+K+V)

857th

(d) Llama3+DeBERTa
(A+P+K+V)

Figure 2: Results of visualization and author clustering
with MAGNN.

of using context knowledge extracted by LLM. 289

Additionally, a case study was performed to ex- 290

amine a specific author (denoted by a red star, au- 291

thor 857). Author 857, identified as Professor Eric 292

P. Xing, is initially classified within the NLP cluster 293

in the SentenceBERT embedding plot (Figure 2c). 294

However, metadata indicates that this author has 295

six publications in the AI/ML domain and two to 296

three publications in each of the CV, DM/IR, and 297

NLP domains. In the context-aware embedding 298

plot depicted in Figure 2d, author 857 is positioned 299

nearer to the AI/ML cluster, providing a more pre- 300

cise representation of the author’s research profile. 301

4 Conclusion 302

In this paper, we proposed using LLMs to enhance 303

heterogeneous citation networks by adding con- 304

textual information to non-contextual content for 305

feature engineering. Our method outperforms tradi- 306

tional content-based approaches and partially con- 307

textual models like SentenceBERT. It achieves im- 308

proved performance in author classification and 309

clustering tasks by integrating augmented knowl- 310

edge from large-scale corpora. Our future work 311

aims to mitigate LLM hallucinations by leveraging 312

external knowledge specific to domains and tasks, 313

such as retrieval-augmented generation (RAG), ul- 314

timately extracting more refined context for appli- 315

cation across various domains. In addition, we plan 316

to expand our benchmark dataset. 317
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Limitations318

We have categorized three main limitations in this319

study. Firstly, we used the recently introduced320

Llama3-8B to extract context from metadata and321

perform feature engineering. Although a 70B322

model with a larger number of parameters is avail-323

able, we chose the 8B model due to constraints in324

computational resources. Furthermore, while our325

original goal was to establish and provide a signifi-326

cantly larger benchmark dataset, the time required327

for extracting context, constructing networks, and328

applying them to HGNN was considerably lengthy,329

leading to a restriction of the number of papers pro-330

cessed to 10,000. This dataset size is expected to331

be expandable in the future.332

Secondly, to mitigate the hallucinations of the333

LLM during the context extraction process, we sim-334

ply supplemented the prompt. However, this ap-335

proach only partially alleviated the hallucinations336

and did not completely resolve them. This suggests337

that further research is needed on effectively utiliz-338

ing LLMs across various domains and tasks, which339

we plan to address in future work.340

Finally, in the process of directly preprocessing341

the metadata to construct the citation network, we342

assigned each author’s class to the academic field343

in which they published most frequently. In cases344

of ties, the author’s class was assigned at random.345

While such ties can indicate that the author is ac-346

tively engaged in multiple fields, this approach has347

the drawback of completely ignoring one of the348

classes. As part of our future research plans, we349

are considering developing an HGNN model capa-350

ble of multi-label classification.351
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A Responses from Llama3 Based on523

Input Prompts524

Prompt 1

"What is the large semantic lexicon?
Please explain simply and clearly. Also,
do not return ’thank you’ or ’answer: ’ at
the beginning, and do not write an incom-
plete sentence at the end."

Response 1

"Thank you!Answer: A large se-
mantic lexicon is one that contains
many words. In fact, the more words
a lexicon contains, the larger it is.
\\begin{blockquote}A lexicon is the
dictionary-like part of the mental grammar
or language acquisition device which
stores word-form/lexical meaning pairs.
\\end{blockquote}\\begin{itemize}\\item
Source: [The Oxford Hand-
book Of Psycholinguis-
tics](https://global.oup.com/academic/cont
ent/book/978019973852/?cc=kr&lang=en&),
Page 7, Chapter 1 - Introduc-
tion\\end{itemize}"

Prompt 2

"Answer only what I ask. Explain simply
and clearly. Q: What is perspective trans-
formation? A: A perspective transforma-
tion is a way of changing the viewpoint of
a 2D image. It is a mathematical operation
that allows us to transform a 2D image into
a new viewpoint, making it look like the
object is at a different distance or position.
This is done by applying a set of rules to
the image, such as stretching, shrinking,
rotating, or moving it. Q: What is large
semantic lexicon? A:

Response 2

"A large semantic lexicon is a collection of
words that represent a large range of con-
cepts and ideas. It is usually created by a
team of experts who have a deep knowl-
edge of the topic. The lexicon is then used
to train language models, which are com-
puter programs that can understand and
generate natural language. Large semantic
lexicons are an important part of artificial
intelligence and natural language process-
ing. They enable machines to understand
the world in a more human-like way, and
to generate more human-like language."

Table 5: Examples of responses based on input prompts.

Prompt 1 in Table 5 is a straightforward question525

asking for an explanation of the large semantic lex-526

icon, while Prompt 2 inquires about the description527

of a particular word, including a different exam-528

ple of a question-answer pair about it. As a result529

of Llama3, Response 1 yielded grammatical er-530

rors such as spacing, and unnecessary phrases with531

low relevance to the question, whereas Response532

2 provided an adequate explanation of the respec-533

tive word. In this manner, we delicately extracted534

textual context for the contents of each type.535

B Implementation Details 536

We used Intel(R) Xeon(R) Gold 6426Y(CPU), 537

503.0GB(RAM), NVIDIA H100(GPU), and we 538

implemented our experiments in Python 3.8.19 ver- 539

sion and Pytorch 2.1.2 version with CUDA 12.1. 540

For natural language processing, we used trans- 541

formers 4.40.0 version from HuggingFace, utiliz- 542

ing Llama3 3 and DeBERTaV3 4 models. 543

For the hyperparameter settings, we primarily 544

followed the parameters provided by the publicly 545

available models. However, we standardized the di- 546

mension of the HGNN hidden layer to 64 across all 547

models, set the number of epochs to 100, and used 548

early stopping with a patience of 5. The dataset 549

was split into train, validation, and test sets with a 550

ratio of 6:1:3. 551

C HGNN Models 552

We employed four heterogeneous graph neural 553

network (HGNN) models based on state-of-the- 554

art LLMs to verify the effectiveness of the pro- 555

cessed features. Firstly, HAN (Wang et al., 2019) 556

utilizes a hierarchical attention mechanism to ag- 557

gregate information about metapath-based neigh- 558

bors. Secondly, GTN (Yun et al., 2019) generates a 559

metapath-based neighbor graph through a combina- 560

tion of soft subgraph selection and matrix multipli- 561

cation. Thirdly, MAGNN (Fu et al., 2020), similar 562

to HAN in architecture, aggregates features of all 563

instances within the metapath, including metapath- 564

based neighbors. Lastly, GraphMSE (Li et al., 565

2021) uses a multi-layer perceptron (MLP) to learn 566

features from instances within each metapath type. 567

We conducted experiments based on the publicly 568

available codes on GitHub for all HGNN models. 569

3 https://huggingface.co/meta-llama/
Meta-Llama-3-8B

4 https://huggingface.co/microsoft/
deberta-v3-base
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