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ABSTRACT

Generative models for graphs often encounter scalability challenges due to the
inherent need to predict interactions for every node pair. Despite the sparsity
often exhibited by real-world graphs, the unpredictable sparsity pattern of their
adjacency matrices, stemming from their unordered nature, leads to quadratic
computational complexity. In this work, we introduce SparseDiff, a denoising
diffusion model for graph generation that can exploit sparsity during its training
phase. At the core of SparseDiff is a message-passing neural network tailored to
predict only a subset of edges during each forward pass. When combined with
a sparsity-preserving noise model, this model can efficiently work with edge list
representations of graphs, paving the way for scalability to much larger structures.
During the sampling phase, SparseDiff iteratively populates the adjacency matrix
from its prior state, ensuring the prediction of the full graph while controlling
memory utilization. Experimental results show that SparseDiff simultaneously
matches state-of-the-art generation performance on both small and large graphs,
highlighting the versatility of our method. 1

1 INTRODUCTION

Random graph models have been foundational in graph generation, with a rich legacy spanning
several decades (Erdős et al., 1960; Aiello et al., 2000; Barabási, 2013). However, recent interest
has gravitated towards learned graph models, primarily due to their enhanced ability to represent
intricate data distributions. Traditional frameworks like generative adversarial networks (De Cao
& Kipf, 2018) and variational autoencoders (Simonovsky & Komodakis, 2018) predominantly ad-
dressed graphs with a maximum of 9 nodes. This limitation was somewhat alleviated with the advent
of denoising diffusion models (Niu et al., 2020; Jo et al., 2022; Vignac et al., 2023a), elevating ca-
pacity to roughly 100 nodes. However, these models are still not scaled for broader applications like
transportation (Rong et al., 2023) or financial system anomaly detection (Li et al., 2023).

The primary bottleneck of many generative graph models is their computational complexity. While
many natural graphs are sparse, the unordered nature of graphs makes it challenging to exploit this
trait. Without a predetermined sparsity pattern, models frequently make exhaustive predictions for
every node pair, constraining them to a ceiling of ⇠200 nodes (Vignac et al., 2023a). Proposed
methods to circumvent this issue include imposing a node ordering (Dai et al., 2020), assembling
sub-graphs (Limnios et al., 2023), generating hierarchically (Karami, 2023; Jang et al., 2023), and
conditioning the generation on a sampled degree distribution (Chen et al., 2023). These methods,
designed for large graphs, implicitly make assumptions about the data distribution which sometimes
reflects a poor ability to model very constrained graphs such as molecules (Chen et al., 2023; Kong
et al., 2023).

To address these limitations, we propose SparseDiff, a generative model for graphs that exploits
sparsity in its training phase by adopting edge list representations. Unlike other scalable models,
SparseDiff leverages the intrinsic sparsity of training graphs without requiring additional assump-
tions about the data distribution. SparseDiff defines a sparse diffusion model that comprises three
primary components: 1). A noise model designed to retain sparsity throughout the diffusion process;
2). A loss function computed on a set of random node pairs; 3) A sparse graph transformer rooted

1Our code is available at https://anonymous.4open.science/r/SparseDiff-B861.
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Figure 1: Samples from SparseDiff trained on large graphs. (a) Ego training set (50 to 399 nodes);
(b) Generated Ego graphs; (c) Protein training set (100 to 500 nodes); (d) Generated Protein graphs.

in the message-passing framework. During the sampling process, our model iterates over all pairs
of nodes and progressively builds the predicted graph.

Experiment demonstrates that, despite its simplicity, SparseDiff achieves generation performance
comparable to scalable models on large graphs. Additionally, it attains results similar to state-of-
the-art dense models on small molecular datasets, rendering our model suitable for graphs of varying
sizes.

2 RELATED WORK

2.1 DENOISING DIFFUSION MODELS FOR GRAPHS

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020) have gained increasing popularity
due to their impressive performance across generative tasks in computer vision (Dhariwal & Nichol,
2021; Ho et al., 2022; Poole et al., 2022), protein generation (Baek et al., 2021; Ingraham et al.,
2022) or audio synthesis (Kong et al., 2020). Two core components define diffusion models. The
first is a Markovian noise model, which iteratively corrupts a data point x to a noisy sample z

t

until it conforms to a predefined prior distribution at the final step T . The second component is the
denoising network, which is trained to revert the corrupted data to a less noisy state. This denoising
network typically predicts the original data x or equivalently, the added noise ✏.

After the denoising network has been trained, it can be used to sample new objects. The noise z
T

is firstly sampled from a prior distribution, the denoising network is then applied at each time step
to predict the less noisy distribution defined by p✓(zt�1|zt) =

R
x q(z

t�1|zt, x) dp✓(x), from which
the new data z

t�1 is sampled. While this integral is in general difficult to evaluate, two prominent
frameworks allow for its efficient computation: Gaussian diffusion (Ho et al., 2020) and discrete
diffusion (Austin et al., 2021).

When tailored to graph generation, initial diffusion models employed Gaussian noise on the adja-
cency matrices (Niu et al., 2020; Jo et al., 2022). They utilized a graph attention network to regress
the added noise ✏. Given that ✏ = z

t � z, regressing the noise is, up to an affine transformation,
the same as regressing the clean graph, which is a discrete object. To keep the inherent discrete-
ness, subsequent models (Vignac et al., 2023a; Haefeli et al., 2022) leveraged discrete diffusion and
achieved top-tier results. However, such models make predictions for all pairs of nodes, which leads
to a quadratic space complexity and thus restricts their scalability.

2.2 SCALABLE GRAPH GENERATION

Efforts to enhance the scalability of diffusion models for graph generation have mainly followed two
paradigms: subgraph aggregation and hierarchical refinement.

Subgraph Aggregation This approach divides larger graphs into smaller subgraphs, which are
subsequently combined. Notably, SnapButton (Yang et al., 2021) enhances autoregressive models
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Figure 2: Overview of SparseDiff. To train a denoising neural network without considering all pairs
of nodes, SparseDiff combines i) a noise model that preserves sparsity during diffusion; ii) a graph
transformer �✓ implemented within the message-passing framework; iii) a loss function computed
on a subset Eq of all pairs of nodes. Together, these components allow for using edge lists and
training diffusion models on significantly larger graphs than dense methods.

(Liu et al., 2018; Liao et al., 2019; Mercado et al., 2021) by merging subgraphs. Meanwhile, BiGG
(Dai et al., 2020) deconstructs adjacency matrices using a binary tree data structure, gradually gen-
erating edges with an autoregressive model. One notable limitation of autoregressive models is the
breaking of permutation equivariance due to node ordering dependency. To counter this, (Kong
et al., 2023) proposed learning the node ordering – a task theoretically at least as hard as isomor-
phism testing. Separately, SaGess (Limnios et al., 2023) trains a dense DiGress model to generate
subgraphs sampled from a large graph and then merges these subgraphs.

Hierarchical Refinement This approach initially generates a low-resolution graph, which under-
goes successive refinements for enhanced detail (Yang et al., 2021; Karami, 2023). For instance,
the HGGT model (Jang et al., 2023) employs a hierarchical K2-tree representation. Specifically for
molecular generation, fragment-based models (Jin et al., 2018; 2020; Maziarz et al., 2022) adeptly
assemble compounds using pre-defined molecular fragments.

A unique approach outside these paradigms was presented by EDGE (Chen et al., 2023), who ini-
tially generate a node degree distribution d0 for the nodes, and gradually craft an adjacency matrix
A conditioned on this distribution along the reverse process. Despite the universal feasibility of this
factorization, the ease of learning the conditional distribution p✓(A|d0) remains uncertain, as there
do not always exist undirected graphs that satisfy a given degree distribution.

Overall, scalable generation models typically either introduce a dependence on node orderings or
rely heavily on the existence of a community structure in the graphs. In contrast, the SparseDiff
model described in the next section aims at making no assumption besides sparsity, which results in
very good performance across a wide range of graphs.

3 SPARSEDIFF: SPARSE DENOISING DIFFUSION FOR LARGE GRAPH
GENERATION

We introduce the Sparse Denoising Diffusion Model (SparseDiff), designed to bolster the scalability
of discrete diffusion models for sparse graphs. Our model enables efficient training, extends the high
performance of current discrete graph models to significantly larger graphs, and at the same time
offers a user-friendly method for controlling GPU usage.

SparseDiff adopts the sparse graph representation, where a graph G composed of n nodes and m

edges, is denoted as a triplet (E,X,Y ). Here, E 2 N2⇥m represents the edge list detailing indices
of endpoints, while the node and edge attributes are encoded respectively with the one-hot format
X 2 {0, 1}n⇥a and Y 2 {0, 1}m⇥b. As illustrated in Fig. 2, our approach incorporates three core
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Algorithm 1: Sparse Training at Step t with predefined edge fraction �

1: Sample the sparse noisy graph G
t = (Et

,Xt
,Y t) with the sparse noise model (3.1);

2: Sample random query edges Eq of size �n
2 from all node pairs (3.2);

3: Construct the sparse computational graph Gc whose edge list Ec contains Et [Eq (3.3.1);
4: Feed Gc into the message-passing network �✓ and predict X̂ and Ŷq (3.3.2);
5: Perform sparse loss calculation on (X, X̂) and (Yq, Ŷq) (3.2);

components to enable training in a space-efficient manner, and Algorithm 1 provides a step-by-step
description of the training algorithm, referring to their respective explanations. Subsequent sections
will elaborate on each of these three components.

3.1 SPARSITY-PRESERVING NOISE MODEL

To begin with, a sparse graph diffusion model involves a noise model designed to maintain sparsity
throughout the diffusion process. This implies that the number of edges of the noisy graph G

t must
match that of G to sustain consistent complexity throughout the diffusion. At the same time, the
computational complexity of applying noise to a graph should remain sub-quadratic as well.

Marginal Transition The first requirement necessitates the adoption of a discrete diffusion
model. In this framework, instead of using the noisy distribution q(Gt|G) itself as the noisy data, we
sample Gt from q(Gt|G) to keep its discrete nature. Precisely, the noisy distribution can be obtained
through q(Gt|G) = (XQ̄t

X ,Y Q̄t
Y ), where Q̄t = Q1Q2

. . .Qt for X and Y respectively, and Qt

represents the Markov transition matrix from step t� 1 to step t. While there exist different Markov
transition matrices such as uniform transitions, absorbing transitions, and marginal transitions, only
the last one is supported theoretically (Ingraham et al., 2022; Vignac et al., 2023a) and maintains
the same level of sparsity (i.e. edge numbers) through diffusion. In the marginal transition model,
the probability of transitioning to a state is proportional to the marginal probability of that state in
the data. In the context of sparse graphs, this means that jumping to the state ”no edge” will be
very likely, as it is the dominant label in the data. Formally, if pX and pE are the marginal dis-
tribution of node and edge types and p0 is the transpose of p, and �

t controls the noise intensity
at step t and ↵

t = 1 � �
t, the marginal transition matrices for nodes and edges are defined by:

Qt
X = ↵

tI + �
t1apX and Qt

Y = ↵
tI + �

t1bp0
Y .

Theoretical Analysis regarding Sparsity We note that our choice of noise model does not guar-
antee that the noisy graph is always sparse. However, it is the case with high probability as stated
by the following lemma, which is an application of Desolneux et al. (2008) (cf. Appendix B). This
lemma shows that, in large and sparse graphs, the probability that the fraction of edges r in the noisy
graph is higher than the actual existing edge ratio k decreases exponentially with the graph size. For
instance, for k small and r = 2k, this probability can be written with c1e

�c2n
2k for two constants

c1 and c2, which is considerably small when n is large.
Lemma 3.1. (High-probability bound on the sparsity of the noisy graph)

Consider a graph with n nodes and m edges. If the edge ratio given by m/(n(n� 1)/2) is denoted

as r, and the number of edges in the noisy graph G
t

sampled from the marginal transition model is

given by mt. Then, for n sufficiently large and k < 1/4, for any k < r < 1, we have:

log(P[
2mt

n(n� 1)
� r]) ⇠ �n(n� 1)

2
(rlog

r

k
+ (1� k)log

1� r

1� k
) (1)

Sparse Sampling of the Noise Model The second quadratic component arises from noise sam-
pling. Although the marginal transition keeps the sparsity of Gt, to obtain the noisy graph, standard
discrete diffusion models simply compute transition probabilities using a product Y Qt

Y 2 Rn⇥n⇥b

and sample from it. This multiplication based on the dense edge representation is however no longer
compatible with our sparse edges encoded in Y 2 {0, 1}m⇥b and E 2 N2⇥m. To enable sparse
sampling, we adopt a three-step approach to sample noisy graphs without using dense tensors.

1. We consider ”existing edge” types by computing Y Qt
Y 2 Rm⇥b for edges in the edge list

E of the clean graph G and sample their new label from this categorical distribution;
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2. We consider the ”no edge” type, and determine the number of new edges to add to the list
Et. This number follows a binomial distribution B(m̄t, k), which takes m̄t draws from
all edges of ”no edge” type with the probability k of turning into an ”existing edge” state.
Here, m̄t = n(n� 1)/2�mt, and k = 1�Qt[0, 0].

3. We sample positions for these new edges uniformly from non-occupied positions in the
adjacency matrix of G. As elaborated in Appendix A.2, an efficient and highly intricate
algorithm has been devised for sampling with the sparse edge list E instead of the quadratic
adjacency matrix A, which ensures the sub-quadratic space complexity in computation.

3.2 SPARSITY-PRESERVING LOSS FUNCTION

In discrete denoising diffusion for graphs such as (Vignac et al., 2023a; Haefeli et al., 2022), a
neural network is trained to predict the clean graph, i.e., the class of each node and each pair, which
introduces another quadratic component to the model. To avoid this, one alternative method is to
make predictions for a subset of edges instead of for all node pairs. For this purpose, SparseDiff
introduces a parameter ”edge fraction” � which corresponds to a fraction of pairs that are sampled
uniformly in each forward pass. Such sampled edges are called ”query edges”, and denoted by
Eq . In our implementation, � was treated as a constant and chosen to balance GPU usage. The
computational complexity of SparseDiff is up-bounded by O(m + �n

2), as the model needs to
process both the noisy graph and the query edges. However, by choosing � = O(m/n

2), it could
result in a O(m) complexity as opposed to O(n2) for DiGress.

Precisely, if the constant c (set to 5 in experiments) is used to balance the importance of nodes and
edges, the network is trained by minimizing the cross-entropy loss between the predicted distribution
and the clean graph, which is simply a sum over nodes and query edges:

l(p̂G, G) =
X

1in

cross-entropy(xi, p̂
X
i ) +

c

�

X

(i,j)2Eq

cross-entropy(yij , p̂
Y
ij),

3.3 SPARSE MESSAGE-PASSING TRANSFORMER

The final component of the Sparse Diffusion Model is a memory-efficient graph neural network.
In previous diffusion models for graphs, the main complexity bottleneck lay in the need to encode
features for all pairs of nodes, leading to a computation complexity that scaled as O(l n2

de), where
l is the number of layers and de the dimensionality of edge activations. To address this issue, it
is necessary to avoid learning embeddings for all pairs of nodes. Fortunately, as our noisy graphs
are sparse, edge list representations can be leveraged. These representations can be efficiently used
within message-passing neural networks (MPNNs) architectures (Scarselli et al., 2008; Gilmer et al.,
2017) through the use of specialized libraries such as Pytorch Geometric (Fey & Lenssen, 2019) or
the Deep Graph Library (Wang, 2019).

3.3.1 EDGE EMBEDDING MODULE DESIGN

The denoising network of SparseDiff has to deal with two simultaneous constraints. First, it needs to
make predictions for the query edges Eq . Second, in contrast to previous diffusion models, it cannot
compute activations for all pairs of nodes. Although not possible within most message-passing
architectures, the idea of predicting edge labels according to node features is however common in
the context of link prediction for knowledge graphs (Zhang & Chen, 2018; Chamberlain et al., 2022;
Boschin, 2023). We therefore first consider a link prediction approach to our problem.
A first approach: graph learning as a link prediction problem Instead of storing activations
for pairs of edges, link prediction models typically only store representations for the nodes. In this
framework, a graph neural network that learns embeddings for each node is coupled with an aux-
iliary module that predicts edges. In the simplest setting, this module simply computes the cosine
similarity between node representations to predict the probability of being connected. While this
approach is very memory efficient, we find that it has a slow convergence and poor overall perfor-
mance in practice (cf. ablations in Appendix E.6). In particular, it fails to replicate the performance
of dense denoising diffusion models, even on small graph datasets. This suggests that reconstructing
the graph from node representations only, which is theoretically proved to be possible (Maehara &
Rödl, 1990), might be hard to achieve in practice.
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Figure 3: Definition of the noisy graph G
t, the query graph Gq , and the computational graph Gc,

with an edge proportion � = 0.16. The noisy graph G
t is the result of our sparsity-preserving

noising process, the query graph Gq consists of a fraction � of randomly chosen edges, and the
computational graph Gc is the union of the noisy and query graphs. Self-loops are not included in
the calculation.

Second approach: learning representations for edges Based on the previous findings, we con-
sider an approach that stores activations for pairs of nodes. The list of pairs for which we store acti-
vations will define our computational graph Gc, i.e., the graph that is used as input to the message-
passing architecture. This graph contains all nodes with their noisy features Xt, as well as a list of
edges denoted by Ec. In order to bypass the need for an edge prediction module and obtain edge
features directly, the computational graph should contain the list of query edges sampled previously,
i.e., Eq 2 Ec. Furthermore, this graph should contain all topological information about the noisy
graph, which imposes Et 2 Ec. Under these two constraints, we define the computational graph
as the union of the noisy and query edge lists. Since these two graphs are sparse, the computational
graph used in our message-passing architecture is guaranteed to be sparse as well.

An additional advantage of employing a computational graph that encompasses not only G
t but also

randomly sampled ”no type” query edges is that it serves as a graph rewiring mechanism. Such
edges that do not exist in the input graph G

t provide the message-passing network with shortcuts,
which is known to help the propagation of information and alleviate over-squashing issues (Alon &
Yahav, 2020; Topping et al., 2021; Di Giovanni et al., 2023).

3.3.2 MODEL ARCHITECTURE

Our denoising network architecture builds upon the message-passing transformer architecture de-
veloped by Shi et al. (2020). These layers integrate the graph attention mechanism (Veličković
et al., 2017) within a transformer architecture by adding normalization and feed-forward layers. In
contrast to previous architectures used in denoising networks for graphs such as (Jo et al., 2022) or
(Haefeli et al., 2022), the graph attention mechanism is based on edge list representations and is thus
able to leverage the sparsity of graphs. We however incorporate several elements of (Vignac et al.,
2023a) to improve performance. Similarly to their model, we internally manipulate graph-level fea-
tures (such as the time information), as they are able to store information more compactly. Features
for the nodes, edges, and graphs all depend on each other thanks to the use of PNA pooling layers
(Corso et al., 2020) and FiLM layers (Perez et al., 2018) (cf. ablations in Appendix C).

Finally, we use a set of features as structural and positional encodings. These features, which include
information about the graph Laplacian and cycle counts, are detailed in Appendix D. As highlighted
in (Vignac et al., 2023a), these features can only be computed when the noisy graphs are sparse,
which is an important benefit of discrete diffusion models. We note that not all these encodings can
be computed in sub-quadratic time. However, in practice, we find that this is not an issue as these
features are not back-propagated. For instance, on graphs with 500 nodes, computing these features
is five times faster than the forward pass itself. Nevertheless, on even larger graphs, it might be
beneficial to exclude these encodings for more efficient computation.

3.4 ITERATIVE SPARSE SAMPLING

Once the denoising network has been trained, it can be used to sample new graphs. Similar to other
graph diffusion models, we first sample a node number n and keep it constant during diffusion.
Then, from the prior distribution G

T ⇠
Qn

i=1 Cate(pX)⇥
Q

1i<jn Cate(pY ), we sample a ran-
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Figure 4: Visualization of the iterative sampling process, with a query edge proportion � of 50%.
In the figure, SparseDiff iterates twice to cover all node pairs, with each iteration involving the
sampling of new edge types for 50% edges to populate the adjacency matrix.

dom graph based on the sparse sampling algorithm (c.f. 3.1), where pX and pY are the marginal
probabilities of each class in the data and Cate(p) denotes their corresponding categorical distribu-
tion. Note that, in the particular case of unattributed graphs, sampling from this prior distribution
amounts to sampling an Erdos-Renyi graph.

After the graph G
T has been sampled, the denoising network can be applied recursively. However,

the full graph cannot be predicted at once, as this would first require quadratic memory, and would
also create a distribution shift: as the message-passing network has been trained on sparse compu-
tational graphs Gt

c, dense graphs should not be used at inference time. We therefore use an iterative
procedure, illustrated in Fig. 4, to cover all node pairs of Gt�1. We first consider all n(n � 1)/2
indices representing pairs of nodes and randomly permute them. We cut the resulting array into
equal-sized chunks that represent the query edge list Eq at each iteration. We then iterate over these
blocks, adding new edges into the edge list Et�1, while keeping the noisy graph G

t fixed. This
procedure results in d 1

�e calls to the denoising diffusion model at each diffusion step.

We note that our approach introduces higher time complexity during sampling. However, as dis-
cussed before, it is challenging to avoid quadratic predictions without assuming specific charac-
teristics of the data distribution. Moreover, while the high space complexity makes training with
traditional diffusion models almost impossible, increased sampling time does not emerge as the
primary bottleneck for practice usage.

4 EXPERIMENTS

We conduct experiments to present the capability of SparseDiff across a wide range of graphs.
SparseDiff matches state-of-the-art performance on datasets of small molecules (QM9, Moses),
while being simultaneously very competitive on datasets of larger graphs (Planar, SBM, Protein,
Ego). We compare the performance of SparseDiff to GraphNVP (Madhawa et al., 2019), DiGress
(Vignac et al., 2023a), Spectre (Martinkus et al., 2022), GraphRNN (You et al., 2018), GG-GAN
(Krawczuk et al., 2017), JDSS (Jo et al., 2022), as well as several scalable models: HiGen (Karami,
2023), EDGE (Chen et al., 2023), BiGG (Dai et al., 2020) and HGGT (Jang et al., 2023), and
GraphARM (Kong et al., 2023). Considering that certain datasets are conventionally assessed based
on a limited number of generated samples, the variance in results for each sampling can be impor-
tant. To promote a more convincing comparison, we present the average and standard deviation
across 5 runs for each metric. If a result falls within the bounds of the standard deviation of our
results, we also consider them comparable for fair assessment.

4.1 MOLECULE GENERATION

Since our method considers all node pairs as dense models when � = 1, it should match their per-
formance on datasets of small graphs. We verify this capability on the QM9, and Moses molecular
datasets used in DiGress (Vignac et al., 2023a). The QM9 dataset (Wu et al., 2018) that contains
molecules with up to 9 heavy atoms can either be treated with implicit or explicit hydrogens. The
Moses benchmark (Polykovskiy et al., 2020), based on ZINC Clean Leads, contains drug-sized
molecules and features many tools to assess the model performance. Since QM9 contains charged
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Table 1: Molecule generation on QM9 with implicit hydrogens (mean and std over 5 samplings).
For a fair comparison, DiGress was modified to handle formal charges and benchmarked. While
there is no major benefit to using sparsity on small graph, SparseDiff is very competitive, while
other scalable models have a poor FCD metric, indicating that they do not correctly model the data.

Class Method Valid (%) " Unique (%) " Connected (%) " FCD #
Dense SPECTRE 87.3 35.7 - -

GraphNVP 83.1 99.2 - -
GDSS 95.7 98.5 - -
DiGress 99.2 95.9 99.5 0.15
DiGress + charges 99.3±.0 95.9±.2 99.4±.2 0.15±.01

Sparse GraphARM 90.3 - - 1.22
EDGE 99.1 100 - 0.46
HGGT 99.2 95.7 - 0.40
SparseDiff(ours) 99.6±.04 99.7±.01 99.7±.02 0.11±.01

Table 2: Unconditional generation on the Stochastic Block Model (SBM) and Planar datasets.
A SBM graph is valid if it passes a statistical test for the stochastic block model, while a pla-
nar graph is valid if it is planar and connected. Results are presented in the form of ratios:
MMD(generated, test)2/MMD(train, test)2. VUN: valid, unique & novel graphs.

Dataset Stochastic block model Planar

Model Deg.# Clust.# Orbit# V.U.N." Deg. # Clust. # Orbit# V.U.N."
GraphRNN 6.9 1.7 3.1 5% 24.5 9.0 2508 0%
GRAN 14.1 1.7 2.1 25% 3.5 1.4 1.8 0%
GG-GAN 4.4 2.1 2.3 25% – – – –
SPECTRE 1.9 1.6 1.6 53% 2.5 2.5 2.4 25%
DiGress 1.6 1.5 1.7 74% 1.4 1.2 1.7 75%
HiGen 2.4 1.5 1.4 – – – – –
SparseDiff 2.0±1.6 1.5±.0 1.4±.1 56%±8.5 3.6±1.7 1.4±.4 3.4±1.2 88%±7

atoms, we incorporate formal charges as an additional discrete node feature that is learned during
diffusion, similarly to (Vignac et al., 2023b). For a fair comparison, we also apply this improvement
to DiGress.

For the QM9 dataset, we assess performance by checking the proportion of connected graphs, the
molecular validity of the largest connected component (measured by the success of RDKit saniti-
zation), and the uniqueness of over 10,000 molecules. Additionally, we use the Frechet ChemNet
Distance (FCD) (Preuer et al., 2018) which measures the similarity between sets of molecules using
a pretrained neural network.

In Table 1, we observe that SparseDiff overall achieves the best performance on QM9 with implicit
hydrogens except on uniqueness. In particular, it clearly outperforms other scalable methods on the
FCD metric, showing that such methods are not well suited to small and very structured graphs. Re-
sults for QM9 with explicit hydrogens and the MOSES dataset are presented in Tables 6 (Appendix
E.3), and Table 7 (Appendix E.4). We find that SparseDiff compares similarly to the DiGress model.
This result confirms further our performance on small and not highly sparse datasets.

4.2 LARGE GRAPH GENERATION

We also evaluate our model on datasets of graphs with increasing size. First, we test our model’s
ability to generate graphs without edge crossings through a dataset of planar graphs (with 64 nodes
per graph). Then, we consider a dataset drawn from the Stochastic Block Model (SBM) (Martinkus
et al., 2022) with 2 to 5 communities. Its graphs contain up to 200 nodes, which is the largest size
used in dense diffusion models such as DiGress (Vignac et al., 2023a). Finally, we use the Ego (Sen
et al., 2008) and Protein (Dobson & Doig, 2003) datasets that feature graphs with up to 500 nodes.
Ego is sourced from the CiteSeer (Giles et al., 1998) dataset and captures citation relationships,
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Table 3: Unconditional generation on graphs with up to 500 nodes. On such graphs, dense models
such as DiGress clearly fail, whereas SparseDiff presents competitive performance on most metrics.
Results are presented in the form of ratios: MMD(generated, test)2/MMD(train, test)2.

Dataset Class Model Degree # Clustering # Orbit # Spectre # RBF #
Protein Dense GRAN 6.7 7.1 40.6 5.7 –

DiGress 18.4±2.3 14.8±2.1 16.0±5.5 5.9±1.1 5.2
Sparse DRuM 6.3 9.7 10.8 3.3 –

BiGG 0.3 3.7 7.1 5.0 –
HiGen 4.0 6.4 7.3 2.8 –
SparseDiff 10.3±1.1 3.4±.2 15.1±2.0 1.6±.07 3.4±.7

Ego Dense DiGress 354 0.9 100 – 5.3
Sparse EDGE 290 17.3 4.3 – 4.0

HiGen 236 0.3 3.2 – 3.7
SparseDiff 9.5±3.5 5.4±.2 2.5±.1 3.6±1.1 3.9±1.0

Table 4: Convergence comparison after being trained for different time with Ego dataset.

Training time 2 days 4 days

Metrics Deg.# Orbit# Clust.# Spec.# Deg.# Orbit# Clust.# Spec.#
DiGress 0.042 0.185 0.208 0.013 0.033 0.144 0.216 0.011
SparseDiff 0.004 0.053 0.069 0.007 0.002 0.036 0.059 0.004

while Protein represents amino acids connected when they are within 6 Angstroms of each other.
Statistics for these datasets can be found in Appendix E.2.

For evaluation, we first include MMD metrics, which are commonly used in graph generation tasks.
As MMD metrics usually produce small values that are challenging to compare directly, we report
metrics divided by MMD(training, test)2, and provide our raw results in Appendix E.5. We also use
the RBF MMD metric defined in Thompson et al. (2022) to measure the diversity and fidelity of
generated graphs using a randomly parametrized GNN. Besides, we especially report the validity of
generated graphs for the SBM dataset, which is the fraction of graphs that pass a statistical test for
the stochastic block model. For the Planar dataset, validity corresponds to the fraction of graphs that
are planar and connected.

Results are presented in Tables 2 and 4. Although dense models demonstrate excellent performance
on mid-sized graphs like SBM and planar graphs, they struggle with larger graphs. This is due
to the necessity of using a small batch size (e.g., 2 on a 32GB GPU) for such graphs, resulting
in slow training and poor convergence. In contrast, SparseDiff not only matches previous dense
and sparse models on mid-sized datasets but also remains competitive with scalable models across
various metrics on large datasets.

Efficiency Analysis To showcase the empirical efficiency improvement during training of
SparseDiff over its limit case DiGress, Table 4 illustrates the significantly faster convergence of
SparseDiff on the Ego dataset. More precisely, SparseDiff achieved superior results compared to a
DiGress model trained for 4 days, even after only 2 days of training.

5 CONCLUSION

In this study, we introduce SparseDiff, a scalable discrete denoising diffusion model for graph gen-
eration. SparseDiff provides high controllability over GPU usage and permits the use of edge list
representations by predicting only a subset of edges at once. Experimental results demonstrate that
SparseDiff exhibits high performance across all graph sizes, whereas other scalable methods tend to
perform poorly on small, structured graphs. SparseDiff enhances the capabilities of discrete diffu-
sion models to process larger datasets, thereby broadening its applicability, including tasks such as
generating large biological molecules and community graphs, among others.
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Rocı́o Mercado, Tobias Rastemo, Edvard Lindelöf, Günter Klambauer, Ola Engkvist, Hongming
Chen, and Esben Jannik Bjerrum. Graph networks for molecular design. Machine Learning:

Science and Technology, 2021. 3

Chenhao Niu, Yang Song, Jiaming Song, Shengjia Zhao, Aditya Grover, and Stefano Ermon. Per-
mutation invariant graph generation via score-based generative modeling. In International Con-

ference on Artificial Intelligence and Statistics. PMLR, 2020. 1, 2

Ethan Perez, Florian Strub, Harm De Vries, Vincent Dumoulin, and Aaron Courville. Film: Visual
reasoning with a general conditioning layer. In Proceedings of the AAAI Conference on Artificial

Intelligence, volume 32, 2018. 6

Daniil Polykovskiy, Alexander Zhebrak, Benjamin Sanchez-Lengeling, Sergey Golovanov, Oktai
Tatanov, Stanislav Belyaev, Rauf Kurbanov, Aleksey Artamonov, Vladimir Aladinskiy, Mark
Veselov, et al. Molecular sets (moses): a benchmarking platform for molecular generation models.
In Frontiers in pharmacology. Frontiers Media SA, 2020. 7

Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Mildenhall. Dreamfusion: Text-to-3d using 2d
diffusion. arXiv preprint arXiv:2209.14988, 2022. 2

Kristina Preuer, Philipp Renz, Thomas Unterthiner, Sepp Hochreiter, and Gunter Klambauer.
Fréchet chemnet distance: a metric for generative models for molecules in drug discovery. Journal

of chemical information and modeling, 58(9):1736–1741, 2018. 8

Can Rong, Jingtao Ding, Zhicheng Liu, and Yong Li. City-wide origin-destination matrix generation
via graph denoising diffusion. arXiv preprint arXiv:2306.04873, 2023. 1

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The graph neural network model. In IEEE transactions on neural networks. IEEE, 2008. 5

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Gallagher, and Tina Eliassi-Rad.
Collective classification in network data. In The AI Magazine, 2008. 8

Yunsheng Shi, Zhengjie Huang, Shikun Feng, Hui Zhong, Wenjin Wang, and Yu Sun. Masked label
prediction: Unified message passing model for semi-supervised classification. arXiv preprint

arXiv:2009.03509, 2020. 6

Martin Simonovsky and Nikos Komodakis. Graphvae: Towards generation of small graphs using
variational autoencoders. In International conference on artificial neural networks. Springer,
2018. 1

Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsuper-
vised learning using nonequilibrium thermodynamics. In Proceedings of the 32nd International

Conference on Machine Learning, ICML, 2015. 2

Rylee Thompson, Boris Knyazev, Elahe Ghalebi, Jungtaek Kim, and Graham W Taylor. On evalua-
tion metrics for graph generative models. arXiv preprint arXiv:2201.09871, 2022. 9, 17

12



Under review as a conference paper at ICLR 2024

Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and Michael M
Bronstein. Understanding over-squashing and bottlenecks on graphs via curvature. arXiv preprint

arXiv:2111.14522, 2021. 6
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