

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 CONTROLLABLE LOGICAL HYPOTHESIS GENERATION FOR ABDUCTIVE REASONING IN KNOWLEDGE GRAPHS

Anonymous authors

Paper under double-blind review

ABSTRACT

Abductive reasoning in knowledge graphs aims to generate plausible logical hypotheses from observed entities, with broad applications in areas such as clinical diagnosis and scientific discovery. However, due to a lack of controllability, a single observation may yield numerous plausible but redundant or irrelevant hypotheses on large-scale knowledge graphs. To address this limitation, we introduce the task of controllable hypothesis generation to improve the practical utility of abductive reasoning. This task faces two key challenges when controlling for generating long and complex logical hypotheses: hypothesis space collapse and hypothesis reward oversensitivity. To address these challenges, we propose **CtrlHGen**, a **C**ontrollable **o**riginal **l**ogical **H**ypothesis **G**eneration framework for abductive reasoning over knowledge graphs, trained in a two-stage paradigm including supervised learning and subsequent reinforcement learning. To mitigate hypothesis space collapse, we design a dataset augmentation strategy based on sub-logical decomposition, enabling the model to learn complex logical structures by leveraging semantic patterns in simpler components. To address hypothesis reward oversensitivity, we incorporate smoothed semantic rewards including Dice and Overlap scores, and introduce a condition-adherence reward to guide the generation toward user-specified control constraints. Extensive experiments on three benchmark datasets demonstrate that our model not only better adheres to control conditions but also achieves superior semantic similarity performance compared to baselines.

1 INTRODUCTION

Abduction is widely recognized as one of the three major types of reasoning in philosophy (Douven, 2011). Specifically, abductive reasoning (Douven, 2011) is a form of logical inference that seeks the best or most plausible hypothesis to explain an observed phenomenon and it plays a vital role across various fields (Paul, 1993). For example, it serves as a critical tool for hypothesizing causal links between symptoms and underlying pathologies in clinical diagnosis (Pukancová & Homola, 2015; Martini, 2023). Similarly, abductive methods localize system faults by interpreting anomalous signal patterns in anomaly detection (Ramkumar et al., 2024; Ganesan et al., 2019). Its power also extends to scientific discovery (Engelschalt et al., 2023; Wackerly, 2021; Duede & Evans, 2021; Upmeier zu Belzen et al., 2021), including the deduction of unknown celestial bodies from gravitational perturbations in orbital trajectories (Smart, 1946).

On the other hand, effective abductive reasoning requires high-quality, interconnected information. While large language models perform well in common-sense settings (Patil & Jadon, 2025), they often struggle in domains such as healthcare, business, or other scenarios involving sensitive data and strict privacy constraints. Knowledge graphs, whether general-purpose or domain-specific, provide a structured foundation that supports more reliable abductive reasoning. In knowledge graphs, abductive reasoning aims to generate complex logical hypotheses that explain observed entities, leveraging domain knowledge to improve inference precision and reliability. AbductiveKGR (Bai et al., 2024b) was the first to introduce this task, formulating it as logical query generation over structural knowledge and training models through a supervised–reinforcement learning framework.

However, knowledge graphs often contain millions of facts, which can lead to generate numerous plausible but irrelevant hypotheses from a single observation. For instance, even the relatively small DBpedia50 dataset (with only 24,624 entities and 351 relations), produces an average of 50 reasonable

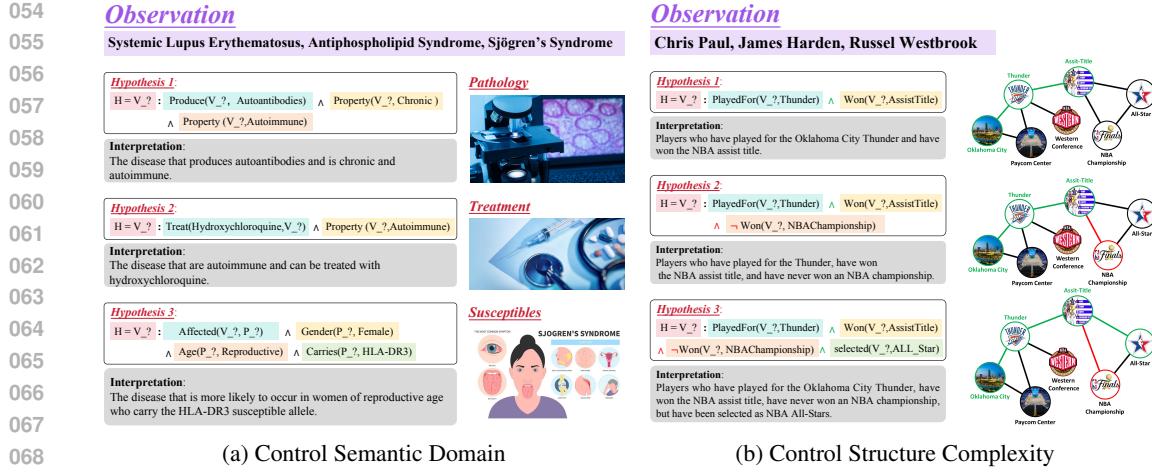


Figure 1: Examples of Controllability in Abductive Reasoning

hypotheses per observation. In larger graphs, this number grows dramatically, underscoring the need to filter hypotheses according to user intent or interests for effective abductive reasoning. To address this challenge, we introduce controlling mechanisms into the hypothesis generation process, focusing on two critical aspects:

Controlling semantic content enables aspect-specific reasoning. We prioritize semantic control to narrow vast hypothesis spaces to relevant aspects, essential for specialized fields where aspect-specific insights drive decision-making. As shown in Fig. 1a, we want to explain the observation involving three diseases: {Systemic Lupus Erythematosus, Antiphospholipid Syndrome, and Sjögren's Syndrome}. Directing attention to specific aspects—such as pathology, treatment, or affected populations—yields hypotheses that are precisely aligned with each aspect. From the pathology aspect, these diseases produce autoantibodies and are both chronic and autoimmune. From the treatment aspect, these autoimmune diseases can be treated with hydroxychloroquine. Finally, from the susceptibility aspect, these diseases are more likely to occur in women of reproductive age who carry the HLA-DR3 susceptible allele. Although these hypotheses are all plausible, their usefulness varies when people seek explanations for different scenarios.

Controlling structural complexity adjusts the level of granularity. We focus on complexity control to address varying information needs across different reasoning scenarios and align with users' cognitive preferences for adjustable information density. In Fig. 1b, for an observation composed of three NBA players, increasing the complexity of the hypothesis structure enables the model to capture richer shared experiences or achievements among them. By adjusting the structural complexity, users can flexibly decide how much information they want to include in the generated hypotheses. Unfortunately, prior work (Bai et al., 2024b) has largely overlooked controllable generation, resulting in hypotheses that are redundant or lack meaningful relevance.

Motivated by these, we introduce the task of controllable abductive reasoning, aiming at controllable generation of hypothesis, which leads to better leverage the practical value of abductive reasoning in knowledge graphs. However, when implementing semantic and structural controls on complex long logical hypotheses, we face two critical challenges: (i) Hypothesis Space Collapse: As illustrated in Fig. 2a, the number of plausible hypotheses drops sharply as their length increases. This sharp decline severely limits our ability to apply structural complexity control, as the model needs to ensure a strong understanding of complex logic in order to make correct candidate hypotheses. (ii) Hypothesis Reward Oversensitivity: The previous approach (Bai et al., 2024b) utilized the Jaccard score as a reward mechanism to enhance the model's understanding of query semantics. However, as illustrated in Fig. 2b, during the model's exploration process, even a minor misstep may lead to a sharp drop in the Jaccard score, severely disrupting training stability and guiding the model toward incorrect directions.

To tackle these challenges, we propose a **Controllable logical Hypothesis Generation** method (**CtrlHGen**) for abductive reasoning in knowledge graphs. To address the problem of hypothesis space collapse, we introduce a dataset augmentation strategy based on sub-logical decomposition. By leveraging the semantic similarity of simpler sub-logics derived from the decomposition of

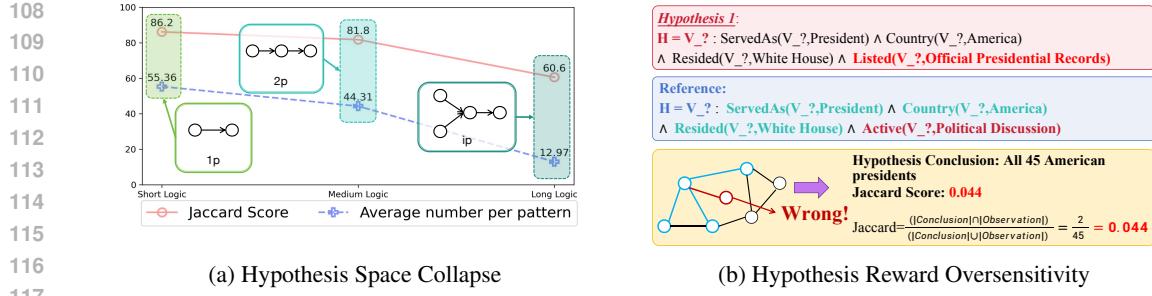


Figure 2: (a) Hypothesis quality (measured in Jaccard) and space size across three logic lengths: short (one predicate), medium (two predicates), and long (three predicates). Valid candidates represent average reference hypotheses per observation. Note the dramatic collapse of hypothesis space as complexity increases. (b) Hypothesis oversensitivity example: Minor errors cause significant Jaccard score drops, creating tension between control adherence and semantic accuracy.

complex hypotheses, this approach enables the model to understand long logical structures, which are composed of these smaller components. The hypothesis generator is then trained using a combination of supervised fine-tuning and reinforcement learning. To address the problem of hypothesis reward oversensitivity, we refine the semantic reward function by incorporating Dice and Overlap coefficient to smooth out minor discrepancies between the hypothesis and the target. Additionally, we introduce a condition-adherence reward to encourage the generation of hypotheses that adhere to the control constraints during exploration. Our main contributions are as follows:

- We are the first to introduce the task of controllable abductive reasoning, enabling abductive reasoning in knowledge graphs to better satisfy practical needs by controlling semantic content and structural complexity.
- We propose an observation-hypothesis pair augmentation strategy via sub-logical decomposition to address the challenge of hypothesis space collapse when generating complex logical structures, significantly enhancing the quality of controllable hypotheses.
- To mitigate hypothesis reward oversensitivity, we refine the semantic reward function by incorporating Dice and Overlap coefficients to accommodate minor discrepancies between hypotheses and targets, while introducing a condition-adherence reward to ensure better compliance with control constraints, leading to more stable and accurate learning.
- Extensive experiments on three datasets demonstrate that our model not only adheres more effectively to control signals but also achieves superior semantic similarity performance compared to the baseline across multiple evaluation metrics.

2 RELATED WORK

Knowledge Graph Reasoning. Deductive reasoning focuses on answering complex logical queries by improving query and answer embeddings (Zhang et al., 2021; Ren et al., 2020; Bai et al., 2022; 2023a;b; 2024a). Inductive reasoning, often framed as rule mining, ranges from efficient symbolic methods like AMIE (Galárraga et al., 2013) to embedding-based approaches such as RuLES (Ho et al., 2018) and RLogic (Cheng et al., 2022), though traditional search-based techniques face scalability challenges. Abductive reasoning was introduced by AbductiveKGR (Bai et al., 2024b) using Transformer-based hypothesis generation, with follow-up work (Bai et al., 2025) highlighting its future potential.

Abductive Reasoning. In natural language inference, α -NLI (Bhagavatula et al., 2020) introduced abductive reasoning to commonsense reasoning, where plausible explanations are inferred from observations. Subsequent works proposed various techniques to enhance this capability (Qin et al., 2021; Kadiķis et al., 2022; Chan et al., 2023), including extensions to uncommon scenarios focusing on rare but logical explanations (Zhao et al., 2024). Unlike real-world data in commonsense reasoning, benchmarks like ProofWriter (Tafjord et al., 2021) evaluate formal abductive reasoning within semi-structured texts with explicit logical relationships. Recent studies have explored LLMs in more

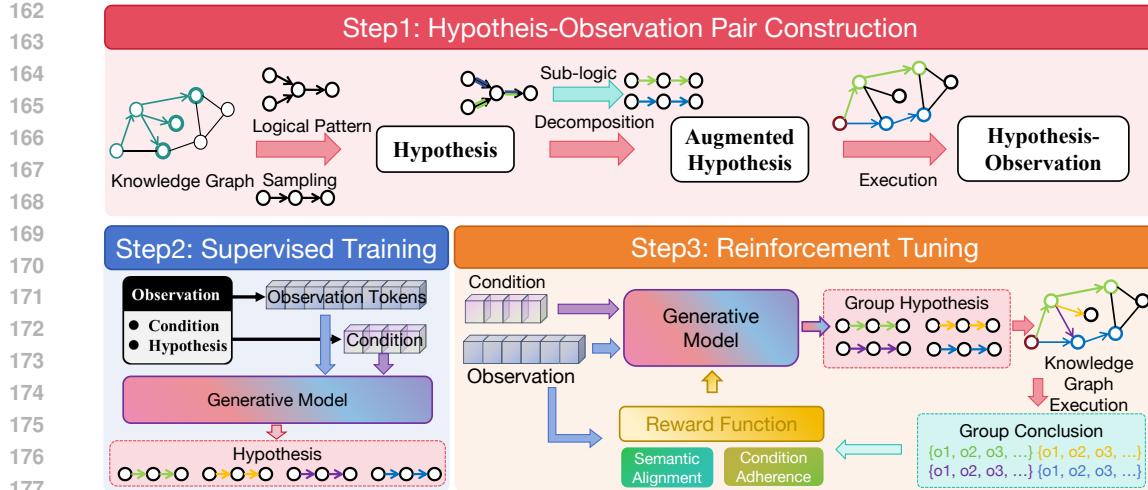


Figure 3: An overview of our controllable abductive reasoning framework. The process consists of three main steps: (1) Hypothesis-Observation pair construction through sub-logic decomposition to expand the hypothesis space, (2) Supervised training of the generative model using augmented hypotheses, and (3) Reinforcement tuning with dual rewards for semantic alignment and condition adherence to balance hypothesis accuracy with control signal compliance.

challenging open-world reasoning contexts (Zhong et al., 2023; Del & Fishel, 2023; Thagard, 2024) and abstract reasoning tasks (Liu et al., 2024b; Zheng et al., 2025).

Meanwhile, in the neuro-symbolic domain, Abductive Learning (ABL) (Zhou, 2019) attempts to integrate machine learning and logical reasoning in a balanced and mutually supportive manner. Recent research in this area, exemplified by systems such as ARLC (Camposampiero et al., 2024) and ABL-Refl (Hu et al., 2025), focuses on enhancing this integration by introducing novel techniques to improve context-awareness, error correction, generalization, and overall reasoning accuracy and efficiency.

3 METHOD

In this section, we elaborate the proposed CtrlHGen, a controllable hypothesis generation method for abductive reasoning in knowledge graphs. The framework of CtrlHGen is shown in Fig. 3.

3.1 PROBLEM DEFINITION

We define a knowledge graph as $G = (V, R)$, where V is the set of entities and R is the set of binary relations. A triple (u, r, v) exists in G if $r(u, v) = \text{true}$. Following the open-world assumption (Drummond & Shearer, 2006), only the observed graph G is available during training, with missing triples treated as unknown rather than false. The full graph \bar{G} remains hidden, and $G \subseteq \bar{G}$.

The core concepts of abductive reasoning consist of observation and hypothesis. Here, an observation O in knowledge graph G is defined as a set of entities $O = \{o_1, o_2, \dots, o_n\}$, where $o_i \in V, \forall i \in \{1, \dots, n\}$. A logical hypothesis H is defined as a query in the form of first-order logic on a knowledge graph G , including existential quantifiers(\exists), And(\wedge), Or(\vee), Not(\neg). The hypothesis can also be written in disjunctive normal form:

$$H(V_?) = \exists V_1, \dots, V_k : e_1 \vee \dots \vee e_n, \quad (1)$$

$$e_i = r_{i1} \wedge \dots \wedge r_{im_i},$$

where $\{V_1, \dots, V_k\}$ denotes the subset of V . Each r_{ij} is defined as either $r_{ij} = r(u, v)$ or $r_{ij} = \neg r(u, v)$, where u and v are either fixed entities from the set $\{V_1, \dots, V_k\}$, or variable vertices $V_?$, which could be any entity on the graph G .

216 The conclusion of the hypothesis $[H]_G$ on a graph G is the set of the variable entities $V_?$ for which H
 217 holds true on G . Specifically, it can be formulated as:

$$218 \quad [H]_G = \{V_? \in G \mid H(V_?) = \text{true}\}. \quad (2)$$

219 **Definition 3.1** (Controllable Abductive Reasoning in Knowledge Graph). Given a knowledge graph
 220 G , an observation O , and a control condition C , the goal of *controllable abductive reasoning* is to
 221 find a hypothesis H satisfying:

- 223 1. The hypothesis H is the most plausible explanation for the observation O . In other words, the
 224 conclusion $[H]_G$ closely matches the observation O .
- 225 2. H satisfies the constraints specified by the control condition C .

227 3.2 OBSERVATION-HYPOTHESIS PAIRS CONSTRUCTION

229 **Sampling.** We randomly sample observation-hypothesis pairs from the knowledge graph by con-
 230 structing hypotheses based on predefined logical patterns. Each logical pattern is assigned an equal
 231 number of hypotheses to ensure diversity, and the conclusion of hypotheses on the graph are taken as
 232 the corresponding observations. Finally, both hypotheses and observations are converted into input
 233 sequences suitable for the generative model.

234 **Augmentation by sub-logic decomposition.** To address the challenge of hypothesis space col-
 235 lapsed in complex logical patterns, we propose a dataset augmentation method based on sub-logic
 236 decomposition. Specifically, given a hypothesis–observation pair (H, O) under a complex logical
 237 pattern P , we recursively decompose the hypothesis into sub-hypotheses H_{sub} according to identifi-
 238 able sub-logical patterns P_{sub} . Corresponding sub-observations O_{sub} are then derived by executing
 239 these sub-hypotheses on the knowledge graph G . This process effectively generates additional
 240 hypothesis–observation pairs and can be formally described as:

$$241 \quad \{(H_{\text{sub}}^i, O_{\text{sub}}^i)\}_{i=1}^n = \{(f(P_{\text{sub}}^i, H), [f(P_{\text{sub}}^i, H)]_G) \mid P_{\text{sub}}^i \subseteq P\}, \quad (3)$$

242 where $f(P_{\text{sub}}^i, H)$ denotes the sub-hypothesis generated based on the sub-pattern P_{sub}^i and the origin
 243 hypothesis H , and $[f(P_{\text{sub}}^i, H)]_G$ computes the corresponding sub-observation by querying the
 244 knowledge graph to get the conclusion of the sub-hypothesis.

245 Because each sub-hypothesis is a subset of the original, they are closely related both structurally
 246 and semantically. This strong alignment enables the model to progressively learn complex logical
 247 patterns by building on simpler, related sub-patterns. We have reported more details in Appendix A.

249 3.3 SUPERVISED TRAINING OF CONTROLLABLE HYPOTHESIS GENERATION

251 To enable controllable generation of logical hypotheses, we train a conditional generative model to
 252 generate hypothesis sequences guided by a given observation and control condition. Specifically,
 253 given an observation sequence $O = \{o_1, \dots, o_m\}$, a target hypothesis sequence $H = \{h_1, \dots, h_n\}$,
 254 and a control condition C , the generative model is optimized using an autoregressive loss:

$$255 \quad \mathcal{L}_{\text{AR}} = -\log p_{\theta}(H \mid O, C) = -\sum_{i=1}^n \log p_{\theta}(h_i \mid h_1, \dots, h_{i-1}, O, C), \quad (4)$$

257 where θ denotes the generative model, which we implement using a standard Transformer-based
 258 decoder-only architecture.

259 The training process consists of two stages. In the first stage, the model is trained under an uncondi-
 260 tional setting, where the input only consists of observation tokens. This allows the model to acquire
 261 a general capability for hypothesis generation. In the second stage, the model is fine-tuned under
 262 different control conditions respectively. The input is formed by concatenating observation tokens
 263 with control condition tokens, guiding the model to generate hypotheses that satisfy the constraints.

264 The control conditions C are designed from two different perspectives to guide hypothesis generation:

- 266 • **Semantic Focus:** We randomly sample a specific entity or relation from the target hypothesis as a
 267 control condition. This guides the model to generate hypotheses grounded in a specific semantic
 268 region of the knowledge graph. The control condition is directly represented by the token of the
 269 selected entity or relation. Formally, $C \in \{T_e\}$ or $C \in \{T_r\}$. T_e and T_r represents the token set
 of entity and relation respectively.

270 • **Structural Constraint:** We apply constraints based on the logic structure of the hypothesis.
 271 Specifically, we implement three types of structural control: (1) strictly enforcing a predefined
 272 logical pattern, where each logical pattern is represented in Lisp-like language with operator
 273 tokens following previous work in KG reasoning (Bai et al.; 2024b). (2) constraining the number
 274 of entities involved, encoded using a special token $[ne]$ that indicates hypotheses with exactly n
 275 entities. Formally, $C \in \{[ne]\}$, where n is an Integer. (3) constraining the number of relations
 276 used in the generated hypothesis, encoded using a token $[nr]$, where $[nr]$ denotes hypotheses
 277 containing exactly n relations. Formally, $C \in \{[nr]\}$, where n is an Integer.

278 279 **3.4 REINFORCEMENT LEARNING**

280 To improve the generalization ability on unseen knowledge graphs and better adhere to the specified
 281 control conditions, we further fine-tune the generative model using reinforcement learning. The
 282 reward function is constructed from two perspectives: semantic alignment and condition adherence.
 283

284 **Semantic Alignment:** This reward assesses the semantic consistency between the generated hypothe-
 285 sis conclusion $[H]_G$ and the corresponding observation O . We adopt the Jaccard similarity coefficient
 286 as the primary reward due to its strict evaluation of set-level agreement. However, the high sensitivity
 287 of hypotheses can lead to sharp reward fluctuations in response to minor errors. To mitigate this,
 288 we integrate two supplementary metrics: the Dice similarity coefficient and the Overlap similarity
 289 coefficient, which provide smoother gradients and greater tolerance to slight mismatches. The final
 290 semantic reward R_{sem} is computed as a weighted combination of these metrics, defined as:
 291

$$R_{\text{sem}}([H]_G, O) = \lambda_1 \cdot \text{Jaccard}([H]_G, O) + \lambda_2 \cdot \text{Dice}([H]_G, O) + \lambda_3 \cdot \text{Overlap}([H]_G, O) \\ = \lambda_1 \cdot \frac{|[H]_G \cap O|}{|[H]_G \cup O|} + \lambda_2 \cdot \frac{2|[H]_G \cap O|}{|[H]_G| + |O|} + \lambda_3 \cdot \frac{|[H]_G \cap O|}{\min(|[H]_G|, |O|)}, \quad (5)$$

292 where λ_1 , λ_2 , and λ_3 are hyperparameters. G denotes the observable knowledge graph during
 293 training, which serves as a reliable and leakage-free proxy for evaluating abductive reasoning quality.
 294

295 **Condition Adherence:** This reward encourages the model to generate hypotheses that satisfy the
 296 given control condition C . We formulate it as a binary-valued function: if the generated hypothesis
 297 H satisfies the condition C , the reward is 1; otherwise, it is 0. The final adherence performance is
 298 evaluated by computing the proportion of generated hypotheses that meet the condition. Formally,
 299 the reward function is defined as:
 300

$$R_{\text{cond}}(H, C) = \begin{cases} 1, & \text{if } H \text{ satisfies } C, \\ 0, & \text{otherwise.} \end{cases} \quad (6)$$

301 Jointly capturing condition adherence and semantic alignment, the overall reward function \hat{R} is
 302 formulated as:
 303

$$\hat{R}(H, O, C, G) = \alpha \cdot R_{\text{sem}}([H]_G, O) + (1 - \alpha) \cdot R_{\text{cond}}(H, C), \quad (7)$$

304 where $\alpha \in [0, 1]$ is a hyperparameter that balances the contributions of semantic alignment and
 305 condition adherence.
 306

307 Since abductive reasoning often involves generating multiple plausible hypotheses rather than a single
 308 answer, it is important to ensure overall hypothesis quality. To achieve this, we use Group Relative
 309 Policy Optimization (GRPO) (Shao et al., 2024), which promotes consistent improvement across a
 310 set of sampled hypotheses per observation, instead of optimizing individual outputs. Specifically,
 311 GRPO updates the model π_θ by maximizing the expected reward over a group of hypotheses
 312 $\hat{H} = H_1, \dots, H_k$ sampled from the same observation O and control condition C . The objective is:
 313

$$\mathcal{J}(\theta) = \mathbb{E}_{O, \{H_i\} \sim \pi_{\theta_{\text{old}}}(H|O, C)} \left[\frac{1}{k} \sum_{i=1}^k \frac{1}{|H_i|} \sum_{t=1}^{|H_i|} \left\{ \frac{\pi_\theta(h_{i,t}|O, C, h_{i, \leq t})}{\pi_{\theta_{\text{old}}}(h_{i,t}|O, C, h_{i, \leq t})} \hat{R}'_i - \beta \text{D}_{KL} [\pi_\theta || \pi_{\text{ref}}] \right\} \right], \quad (8)$$

314 where k is the number of sampled hypotheses per observation. The normalized reward \hat{R}'_i is obtained
 315 by applying intra-group normalization over $\{\hat{R}_1, \dots, \hat{R}_k\}$. A KL term constrains the policy π_θ from
 316 drifting too far from the reference model π_{ref} , with β controlling its strength. Gradient clipping is
 317 also used to stabilize training.
 318

324

4 EXPERIMENT

325

4.1 EXPERIMENT SETTINGS

326 **Dataset.** We conduct experiments on three widely used knowledge graph datasets: DBpedia50 (Auer
 327 et al., 2007), WN18RR (Bordes et al., 2013), and FB15k-237 (Toutanova & Chen, 2015). Following
 328 (Bai et al., 2024b), each dataset is split into training, validation, and test sets with an 8:1:1 ratio.
 329 Under the open-world assumption, we incrementally build G_{train} , G_{valid} , and G_{test} , where each graph
 330 includes all previous edges.
 331

332 **Observation-Hypothesis Pair.** Following prior KG reasoning work (Ren et al., 2020), we adopt
 333 the 13 predefined logical patterns in Fig. 4 for hypothesis sampling. Each observation contains no
 334 more than 32 entities. To evaluate generalization, the validation and test sets include entities not seen
 335 during training, with the test set covering more unseen entities. For sub-logic decomposition, we
 336 chose five complex logical patterns (up, 3in, pni, pin, inp) to break down.
 337

338 **Evaluation Metrics.** The quality of generated
 339 hypotheses is evaluated in terms of semantic
 340 similarity and condition adherence. For semantic
 341 similarity, we use Jaccard, Dice and Overlap
 342 score, with G_{test} used to compute $[H]_{G_{\text{test}}}$ during
 343 testing. For condition adherence, we regard
 344 it as a binary classification problem and calculate
 345 Accuracy. In addition, Smatch score (Cai &
 346 Knight, 2013) is also used to quantify the struc-
 347 tural similarity corresponding to the generated
 348 hypothesis H and the reference hypothesis H_{ref} .
 349 It can measure how similar the nodes, edges and
 350 their labels are by representing the hypothesis
 351 as a graph. It should be noted that Smatch is only a reference metric, as the generated hypotheses do
 352 not need to be the same as the reference hypotheses.
 353

354 **Implementation Details.** We adopt a 12 layers decoder-only Transformer architecture (Radford
 355 et al., 2019; Vaswani et al., 2017) for the hypothesis generation model and use the AdamW optimizer.
 356 All experiments are conducted on 4 Nvidia A6000 48GB GPUs. Additional hyperparameter settings
 357 and other experiment details are reported in Appendix B.
 358

359

4.2 EXPERIMENT RESULTS AND ANALYSIS

360 We evaluated the quality and controllability of generated hypotheses on three datasets under five
 361 conditions: *pattern*, *relation-number*, *entity-number*, *specific-entity*, and *specific-relation* (see Sec-
 362 tion 3.3). As baselines, we use AbductiveKGR (Bai et al., 2024b) under unconditional settings
 363 (denoted as uncondition) to highlight the improvements of our approach. The results are reported
 364 in Table 1. We further compare several advanced LLMs, including GPT-4o Achiam et al. (2023),
 365 Kimi K2 (Team et al., 2025), Grok-3 (xAI, 2025), and Deepseek-V3 (Liu et al., 2024a), on FB15k237
 366 dataset under five conditions. For these models, 2-hop subgraphs of observation entities in triple
 367 form are included as part of the prompt to compensate for their lack of KG structural knowledge.
 368 For all LLMs above, we did not use the thinking mode. And their temperatures are uniformly set to
 369 0.0. In addition, we also added one of the most advanced reasoning models, GPT5, and adopted the
 370 thinking mode. At the same time, we constructed an attempt to combine the raw model DeepSeek-V3
 371 with RAG. Average results across five conditions are reported in Table 2, with details provided in
 372 Appendix C.1.

373 Compared to AbductiveKGR (uncondition), our model shows notable improvements in semantic
 374 similarity under conditional constraints, with most condition-adherence accuracies exceeding 80%.
 375 This improvement likely stems from the additional guidance provided by the control conditions
 376 (we further provide a case in Section 4.4 whether the model can handle irrelevant control condi-
 377 tions). Structural conditions generally outperform semantic-focused ones in semantic similarity,
 378 with the fixed-format pattern condition achieving the best results. While both specific-entity and
 379 specific-relation conditions similarly enhance semantic similarity, the model shows a clear adherence
 380 preference for specific-relation.

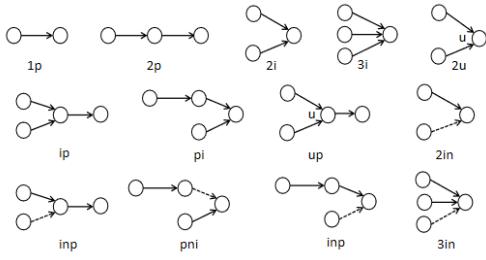
381

Figure 4: Thirteen predefined logical types.

378
 379 Table 1: The results of controllable abductive reasoning under different conditions. (Result: average
 380 score \pm standard deviation. **Bold**: best; Underline: runner-up. —: cannot be evaluated.)

Dataset	Condition	Semantic Similarity			Condition Adherence	
		Jaccard	Dice	Overlap	Accuracy	Smatch
FB15k-237	uncondition	61.4 \pm 0.33	69.3 \pm 0.31	82.3 \pm 0.33	—	61.4 \pm 0.21
	pattern	65.5 \pm 0.33	73.0 \pm 0.30	83.9 \pm 0.27	98.9 \pm 0.10	82.3 \pm 0.10
	relation-number	<u>65.1</u> \pm 0.33	72.7 \pm 0.31	83.5 \pm 0.29	<u>99.4</u> \pm 0.14	82.4 \pm 0.20
	entity-number	63.1 \pm 0.33	71.5 \pm 0.30	82.7 \pm 0.28	86.3 \pm 0.02	65.7 \pm 0.10
	specific-entity	64.3 \pm 0.35	71.1 \pm 0.33	82.4 \pm 0.31	98.9 \pm 0.10	71.2 \pm 0.21
	specific-relation	63.3 \pm 0.34	71.4 \pm 0.32	82.6 \pm 0.30	99.5 \pm 0.06	64.8 \pm 0.21
WN18RR	uncondition	72.6 \pm 0.35	74.2 \pm 0.33	85.2 \pm 0.31	—	56.4 \pm 0.20
	pattern	77.0 \pm 0.34	80.8 \pm 0.31	86.8 \pm 0.28	93.5 \pm 0.24	83.3 \pm 0.15
	relation-number	<u>74.0</u> \pm 0.34	77.4 \pm 0.31	86.3 \pm 0.28	<u>95.3</u> \pm 0.25	<u>78.9</u> \pm 0.20
	entity-number	73.2 \pm 0.37	<u>77.9</u> \pm 0.35	87.2 \pm 0.33	85.2 \pm 0.28	65.1 \pm 0.18
	specific-entity	73.6 \pm 0.38	75.6 \pm 0.37	86.2 \pm 0.36	89.0 \pm 0.31	65.2 \pm 0.21
	specific-relation	73.0 \pm 0.35	75.2 \pm 0.33	85.7 \pm 0.30	96.1 \pm 0.19	60.8 \pm 0.21
DBpedia50	uncondition	64.3 \pm 0.35	66.2 \pm 0.33	79.5 \pm 0.30	—	51.0 \pm 0.24
	pattern	73.8 \pm 0.37	76.6 \pm 0.36	86.8 \pm 0.26	88.4 \pm 0.36	79.2 \pm 0.20
	relation-number	72.1 \pm 0.32	76.1 \pm 0.30	87.5 \pm 0.22	80.6 \pm 0.43	<u>79.1</u> \pm 0.22
	entity-number	75.2 \pm 0.37	<u>80.3</u> \pm 0.35	92.4 \pm 0.29	84.0 \pm 0.26	63.3 \pm 0.22
	specific-entity	73.7 \pm 0.33	78.7 \pm 0.31	88.4 \pm 0.35	79.6 \pm 0.40	62.9 \pm 0.22
	specific-relation	75.2 \pm 0.31	80.6 \pm 0.29	93.7 \pm 0.20	<u>84.2</u> \pm 0.36	60.3 \pm 0.20

401
 402 Table 2: Average scores on FB15k237 datasets under five conditions
 403

Model	Jaccard	Dice	Overlap	Accuracy	Smatch
GPT-4o + 2-hop subgraph	2.4 \pm 0.10	3.1 \pm 0.13	5.3 \pm 0.20	77.5 \pm 0.31	37.9 \pm 0.27
Kimi K2 + 2-hop subgraph	3.1 \pm 0.11	4.7 \pm 0.17	8.5 \pm 0.24	71.6 \pm 0.34	42.4 \pm 0.22
Grok-3 + 2-hop subgraph	2.5 \pm 0.09	3.7 \pm 0.12	6.9 \pm 0.21	75.6 \pm 0.38	43.5 \pm 0.21
DeepSeek-V3 + 2-hop subgraph	2.1 \pm 0.09	2.8 \pm 0.11	6.3 \pm 0.26	73.9 \pm 0.33	41.8 \pm 0.27
DeepSeek-V3 + RAG	5.3 \pm 0.15	6.7 \pm 0.17	10.4 \pm 0.46	76.6 \pm 0.35	41.8 \pm 0.27
GPT5(Thinking) + 2-hop subgraph	18.7 \pm 0.32	21.9 \pm 0.35	37.3 \pm 0.46	92.8 \pm 0.28	32.9 \pm 0.27
CtrlHGen	64.3 \pm 0.33	71.9 \pm 0.31	83.0 \pm 0.29	96.6 \pm 0.84	73.3 \pm 0.16

414
 415 On the other hand, the performance of LLMs remains very poor, even on common-sense knowledge
 416 graphs. We attribute this issue to two main factors. First, LLMs lack the ability to fully comprehend
 417 structured data, while this task requires generating correct structured query graphs rather than merely
 418 capturing semantic meaning. Moreover, when the number of observed entities is large, their two-hop
 419 subgraphs expand rapidly, producing lengthy textual representations that further challenge the model.
 420 Second, the knowledge embedded in LLMs may conflict with that of the knowledge graph. For
 421 example, given an observation set containing several singers including Justin Bieber and Kendrick
 422 Lamar, Grok-3 classified them as singers who have made hip-hop music, whereas in the knowledge
 423 graph, Justin Bieber is not a hip-hop singer. Such contradictions can significantly affect performance
 424 on certain domain-specific data. For more analysis, please refer to Appendix C.1.

425 4.3 ABLATION STUDY

426
 427 We studied the influence of two proposed components of CtrlHGen, dataset augmentation based on
 428 sub-logical decomposition and the reward function.

429 **Sub-logical Decomposition.** We evaluate 13 logical patterns on DBpedia-50 using predefined patterns
 430 as conditions. The evaluation is conducted under two settings: one with the data augmentation strategy
 431 and one without it. As shown in Fig. 5, sub-logical decomposition significantly improves the Jaccard
 432 Index, especially for complex patterns involving disjunctions and negations, while maintaining

similar Accuracy between two settings. This indicates that the improvement in long logic is due to the enhanced understanding of the internal logical structure rather than relying on external prompts. Notably, improvements also appear on simple patterns (e.g., 1p), indicating the model benefits from decomposing logic into simpler sub-components.

Reward Function. We investigate different reward functions on WN18RR with the "pattern" condition. The results has been shown in Table 3. Reinforcement learning notably improves generalization and reduces accuracy variance compared to supervised learning. Removing Dice and Overlap rewards weakens performance, indicating that Jaccard alone is too strict and may hinder convergence. Excluding the condition-adherence reward slightly improves semantic similarity but harms condition adherence, confirming our reward design effectively balances both objectives. We further analyzed the possible reasons why semantic similarity slightly decreased when conditional adherence was introduced in Appendix C.

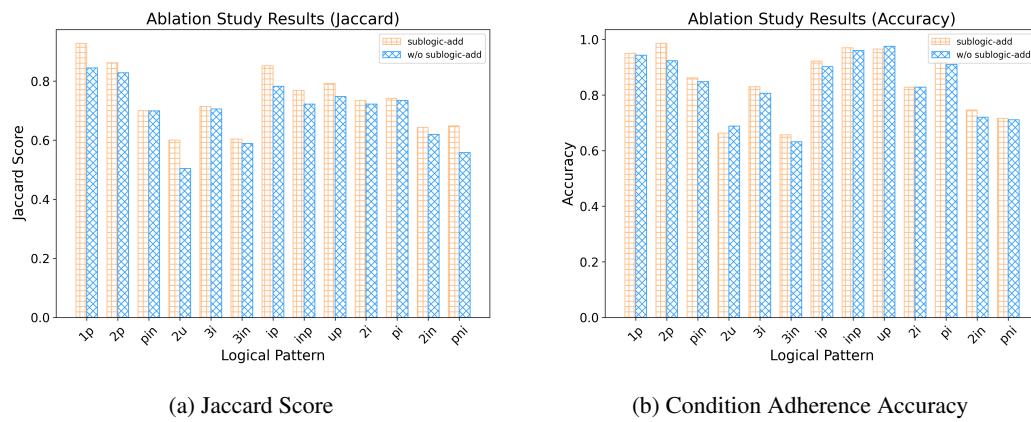


Figure 5: Results of ablation studies for the sub-logical decomposition.

Table 3: Results of ablation studies for the reward function.

Model	Semantic Similarity			Condition Adherence		Average
	Jaccard	Dice	Overlap	Accuracy	Smatch	
CtrlHG(w/o RL)	71.5 ± 0.37	75.8 ± 0.35	83.7 ± 0.33	81.5 ± 0.38	79.0 ± 0.18	78.3
CtrlHG(w/o Dice and Overlap)	74.8 ± 0.34	78.2 ± 0.33	85.1 ± 0.30	90.3 ± 0.25	82.0 ± 0.15	82.1
CtrlHG(w/o Condition Adherence)	77.5 ± 0.33	81.6 ± 0.31	87.8 ± 0.29	68.3 ± 0.46	75.0 ± 0.22	78.0
CtrlHG	77.0 ± 0.34	80.8 ± 0.31	86.8 ± 0.28	93.5 ± 0.24	83.3 ± 0.15	84.3

4.4 CASE STUDY

To demonstrate our controllability we present two representative cases from FB15k-237, with results provided in Appendix. In the first case (Fig. 8), the observation consists of four music genres: {Blues, Jazz, Rhythm_and_Blues, Bebop}. As the logical pattern conditions grow in complexity, the model produces increasingly fine-grained answers. For instance, under the basic "1p" pattern it identifies their common parent genre, while more complex patterns enable it to retrieve finer details such as artists associated with these genres. In the second case shown in Fig. 9, it focuses on specific entities. For strongly related entities such as Yahoo, the model is able to identify clear connections with the observation set. Even for entities with weaker relationships, such as two movies, the model can still capture hidden associations between them. Surprisingly, for seemingly unrelated entities like BAFTA_Award_for_Best_Sound, the model is able to generate high-semantic-quality hypotheses by leveraging the logical "or" operator, while still ensuring adherence to the given constraints.

486

5 CONCLUSION

488 In summary, this paper introduces a new task of controllable abductive reasoning in knowledge
 489 graphs to address the limitation of controllability in the existing method. To tackle the challenges
 490 when control generating long and complex logical hypotheses, we propose a data augmentation
 491 strategy based on sub-logic decomposition, along with smoother semantic and constraint-adherence
 492 reward functions. Experimental results demonstrate that our approach significantly improves the
 493 controllability and overall quality of the generated hypotheses.

495

6 REPRODUCIBILITY STATEMENT

497 To ensure the reproducibility of our results, the relevant experimental settings and implementation
 498 details have been thoroughly documented. The complete experimental setup is described in Section 4.1
 499 and Appendix B, and the corresponding code is also provided in Appendix B.

501

REFERENCES

503 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
 504 Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
 505 *arXiv preprint arXiv:2303.08774*, 2023.

506 Akari Asai and Hannaneh Hajishirzi. Logic-guided data augmentation and regularization for consis-
 507 tent question answering. *arXiv preprint arXiv:2004.10157*, 2020.

509 Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak, and Zachary Ives.
 510 Dbpedia: A nucleus for a web of open data. In *international semantic web conference*, pp. 722–735.
 511 Springer, 2007.

512 Jiaxin Bai, Tianshi Zheng, and Yangqiu Song. Sequential query encoding for complex query
 513 answering on knowledge graphs. *Transactions on Machine Learning Research*.

514 Jiaxin Bai, Zihao Wang, Hongming Zhang, and Yangqiu Song. Query2particles: Knowledge graph
 515 reasoning with particle embeddings. In *NAACL-HLT (Findings)*, pp. 2703–2714. Association for
 516 Computational Linguistics, 2022.

518 Jiaxin Bai, Xin Liu, Weiqi Wang, Chen Luo, and Yangqiu Song. Complex query answering on
 519 eventuality knowledge graph with implicit logical constraints. *Advances in Neural Information
 520 Processing Systems*, 36:30534–30553, 2023a.

521 Jiaxin Bai, Chen Luo, Zheng Li, Qingyu Yin, Bing Yin, and Yangqiu Song. Knowledge graph
 522 reasoning over entities and numerical values. In *Proceedings of the 29th ACM SIGKDD Conference
 523 on Knowledge Discovery and Data Mining*, pp. 57–68, 2023b.

524 Jiaxin Bai, Chen Luo, Zheng Li, Qingyu Yin, and Yangqiu Song. Understanding inter-session
 525 intentions via complex logical reasoning. In *Proceedings of the 30th ACM SIGKDD Conference
 526 on Knowledge Discovery and Data Mining*, pp. 71–82, 2024a.

528 Jiaxin Bai, Yicheng Wang, Tianshi Zheng, Yue Guo, Xin Liu, and Yangqiu Song. Advancing
 529 abductive reasoning in knowledge graphs through complex logical hypothesis generation. In *ACL
 530 (1)*, pp. 1312–1329. Association for Computational Linguistics, 2024b.

531 Jiaxin Bai, Zihao Wang, Yukun Zhou, Hang Yin, Weizhi Fei, Qi Hu, Zheye Deng, Jiayang Cheng,
 532 Tianshi Zheng, Hong Ting Tsang, et al. Top ten challenges towards agentic neural graph databases.
 533 *arXiv preprint arXiv:2501.14224*, 2025.

534 Chandra Bhagavatula, Ronan Le Bras, Chaitanya Malaviya, Keisuke Sakaguchi, Ari Holtzman,
 535 Hannah Rashkin, Doug Downey, Scott Wen tau Yih, and Yejin Choi. Abductive commonsense
 536 reasoning, 2020. URL <https://arxiv.org/abs/1908.05739>.

538 Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko.
 539 Translating embeddings for modeling multi-relational data. *Advances in neural information
 processing systems*, 26, 2013.

540 Shu Cai and Kevin Knight. Smatch: an evaluation metric for semantic feature structures. In
 541 *Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume*
 542 *2: Short Papers)*, pp. 748–752, 2013.

543 Giacomo Camposampiero, Michael Hersche, Aleksandar Terzic, Roger Wattenhofer, Abu Sebastian,
 544 and Abbas Rahimi. Towards learning abductive reasoning using VSA distributed representations.
 545 In *NeSy (1)*, volume 14979 of *Lecture Notes in Computer Science*, pp. 370–385. Springer, 2024.

546 Chunkit Chan, Xin Liu, Tsz Ho Chan, Jiayang Cheng, Yangqiu Song, Ginny Wong, and Simon
 547 See. Self-consistent narrative prompts on abductive natural language inference, 2023. URL
 548 <https://arxiv.org/abs/2309.08303>.

549 Kewei Cheng, Jiahao Liu, Wei Wang, and Yizhou Sun. Rlogic: Recursive logical rule learning from
 550 knowledge graphs. In *KDD*, pp. 179–189. ACM, 2022.

551 Maksym Del and Mark Fishel. True detective: A deep abductive reasoning benchmark undoable for
 552 gpt-3 and challenging for gpt-4, 2023. URL <https://arxiv.org/abs/2212.10114>.

553 Igor Douven. Abduction. 2011.

554 Nick Drummond and Rob Shearer. The open world assumption. In *eSI workshop: the closed world*
 555 *of databases meets the open world of the semantic web*, volume 15, pp. 1, 2006.

556 Eamon Duede and James Evans. The social abduction of science. *arXiv preprint arXiv:2111.13251*,
 557 2021.

558 Paul Engelschalt, Maxime Röske, Johanna Penzlin, Dirk Krüger, and Annette Upmeier zu Belzen.
 559 Abductive reasoning in modeling biological phenomena as complex systems. In *Frontiers in*
 560 *Education*, volume 8, pp. 1170967. Frontiers Media SA, 2023.

561 Luis Antonio Galárraga, Christina Teflioudi, Katja Hose, and Fabian Suchanek. Amie: association
 562 rule mining under incomplete evidence in ontological knowledge bases. In *Proceedings of the*
 563 *22nd international conference on World Wide Web*, pp. 413–422, 2013.

564 Ashwinkumar Ganesan, Pooja Parameshwarappa, Akshay Peshave, Zhiyuan Chen, and Tim Oates.
 565 Extending signature-based intrusion detection systems with bayesian abductive reasoning. *arXiv*
 566 *preprint arXiv:1903.12101*, 2019.

567 Vinh Thinh Ho, Daria Stepanova, Mohamed H. Gad-Elrab, Evgeny Kharlamov, and Gerhard Weikum.
 568 Rule learning from knowledge graphs guided by embedding models. In *ISWC (1)*, volume 11136
 569 of *Lecture Notes in Computer Science*, pp. 72–90. Springer, 2018.

570 Wen-Chao Hu, Wang-Zhou Dai, Yuan Jiang, and Zhi-Hua Zhou. Efficient rectification of neuro-
 571 symbolic reasoning inconsistencies by abductive reflection. In *Proceedings of the AAAI Conference*
 572 *on Artificial Intelligence*, volume 39, pp. 17333–17341, 2025.

573 Emīls Kadikis, Vaibhav Srivastav, and Roman Klinger. Embarrassingly simple performance prediction
 574 for abductive natural language inference, 2022. URL <https://arxiv.org/abs/2202.10408>.

575 Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
 576 Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. *arXiv preprint*
 577 *arXiv:2412.19437*, 2024a.

578 Emmy Liu, Graham Neubig, and Jacob Andreas. An incomplete loop: Instruction inference,
 579 instruction following, and in-context learning in language models, 2024b. URL <https://arxiv.org/abs/2404.03028>.

580 Carlo Martini. Abductive reasoning in clinical diagnostics. In *Handbook of abductive cognition*, pp.
 581 467–479. Springer, 2023.

582 Avinash Patil and Aryan Jadon. Advancing reasoning in large language models: Promising methods
 583 and approaches. *arXiv preprint arXiv:2502.03671*, 2025.

594 Gabriele Paul. Approaches to abductive reasoning: an overview. *Artificial intelligence review*, 7(2):
 595 109–152, 1993.
 596

597 Júlia Pukancová and Martin Homola. Abductive reasoning with description logics: Use case in
 598 medical diagnosis. In *Description Logics*, volume 1350 of *CEUR Workshop Proceedings*. CEUR-
 599 WS.org, 2015.

600 Lianhui Qin, Vered Shwartz, Peter West, Chandra Bhagavatula, Jena Hwang, Ronan Le Bras,
 601 Antoine Bosselut, and Yejin Choi. Back to the future: Unsupervised backprop-based decoding
 602 for counterfactual and abductive commonsense reasoning, 2021. URL <https://arxiv.org/abs/2010.05906>.
 603

604 Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
 605 models are unsupervised multitask learners. *OpenAI blog*, 1(8):9, 2019.
 606

607 Kushal Ramkumar, Wanling Cai, John C. McCarthy, Gavin Doherty, Bashar Nuseibeh, and Lil-
 608 iana Pasquale. Diagnosing unknown attacks in smart homes using abductive reasoning. *CoRR*,
 609 [abs/2412.10738](https://arxiv.org/abs/2412.10738), 2024.

610 Hongyu Ren, Weihua Hu, and Jure Leskovec. Query2box: Reasoning over knowledge graphs in
 611 vector space using box embeddings. In *ICLR*. OpenReview.net, 2020.
 612

613 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Mingchuan Zhang, Y. K. Li,
 614 Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open
 615 language models. *CoRR*, [abs/2402.03300](https://arxiv.org/abs/2402.03300), 2024.

616 WM Smart. John couch adams and the discovery of neptune. *Nature*, 158(4019):648–652, 1946.
 617

618 Oyvind Tafjord, Bhavana Dalvi Mishra, and Peter Clark. Proofwriter: Generating implications,
 619 proofs, and abductive statements over natural language, 2021. URL <https://arxiv.org/abs/2012.13048>.
 620

621 Kimi Team, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, Ruijue Chen, Yanru
 622 Chen, Yuankun Chen, Yutian Chen, et al. Kimi k2: Open agentic intelligence. *arXiv preprint
 623 arXiv:2507.20534*, 2025.
 624

625 Paul Thagard. Can chatgpt make explanatory inferences? benchmarks for abductive reasoning, 2024.
 626 URL <https://arxiv.org/abs/2404.18982>.
 627

628 Kristina Toutanova and Danqi Chen. Observed versus latent features for knowledge base and text in-
 629 ference. In Alexandre Allauzen, Edward Grefenstette, Karl Moritz Hermann, Hugo Larochelle, and
 630 Scott Wen-tau Yih (eds.), *Proceedings of the 3rd Workshop on Continuous Vector Space Models and
 631 their Compositionality*, pp. 57–66, Beijing, China, July 2015. Association for Computational Lin-
 632 guistics. doi: 10.18653/v1/W15-4007. URL <https://aclanthology.org/W15-4007/>.
 633

634 Annette Upmeier zu Belzen, Paul Engelschalt, and Dirk Krüger. Modeling as scientific reasoning—the
 635 role of abductive reasoning for modeling competence. *Education Sciences*, 11(9):495, 2021.
 636

637 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
 638 Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural information processing
 639 systems*, 30, 2017.

640 Jay Wm Wackerly. Abductive reasoning in organic chemistry. *Journal of Chemical Education*, 98(9):
 641 2746–2750, 2021.

642 xAI. Grok 3 beta — the age of reasoning agents. <https://x.ai/blog/grok-3>, 2025. Ac-
 643 cessed: 2025-02-21.

644 Zhangqiu Zhang, Jie Wang, Jiajun Chen, Shuiwang Ji, and Feng Wu. Cone: Cone embeddings for
 645 multi-hop reasoning over knowledge graphs. In *NeurIPS*, pp. 19172–19183, 2021.

646 Wenting Zhao, Justin T Chiu, Jena D. Hwang, Faeze Brahman, Jack Hessel, Sanjiban Choudhury,
 647 Yejin Choi, Xiang Lorraine Li, and Alane Suhr. Uncommonsense reasoning: Abductive reasoning
 648 about uncommon situations, 2024. URL <https://arxiv.org/abs/2311.08469>.

648 Tianshi Zheng, Jiayang Cheng, Chunyang Li, Haochen Shi, Zihao Wang, Jiaxin Bai, Yangqiu Song,
649 Ginny Y. Wong, and Simon See. Logidynamics: Unraveling the dynamics of logical inference in
650 large language model reasoning, 2025. URL <https://arxiv.org/abs/2502.11176>.

651

652 Tianyang Zhong, Yaonai Wei, Li Yang, Zihao Wu, Zhengliang Liu, Xiaozheng Wei, Wenjun Li,
653 Junjie Yao, Chong Ma, Xiang Li, Daqiang Zhu, Xi Jiang, Junwei Han, Dinggang Shen, Tianming
654 Liu, and Tuo Zhang. Chatabl: Abductive learning via natural language interaction with chatgpt,
655 2023. URL <https://arxiv.org/abs/2304.11107>.

656

657 Zhi-Hua Zhou. Abductive learning: towards bridging machine learning and logical reasoning. *Sci.*
658 China Inf. Sci., 62(7):76101:1–76101:3, 2019.

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 **A DETAILS FOR OBSERVATION-HYPOTHESIS SAMPLE**
703

704 Given a knowledge graph G and a predefined logical pattern P , the algorithm begins by sampling a
705 random node v and recursively constructs a hypothesis such that v is one of its conclusions and the
706 hypothesis conforms to the logical type specified by P . During the recursive process, the algorithm
707 examines the current operation in the hypothesis structure. If the operation is projection, the algorithm
708 randomly selects an incoming edge (u, r, v) of node v , then recursively generates a sub-hypothesis
709 rooted at node u according to the corresponding subtype of P . If the operation is intersection, the
710 algorithm recursively constructs sub-hypotheses using the same node v for each subtype, since all
711 sub-hypotheses must conclude with v . If the operation is union, it applies the recursion to one subtype
712 using node v , and to the remaining subtypes using randomly selected nodes. This is because, under
713 union, only one of the sub-hypotheses needs to have v as its conclusion.

714 For the sub-logic decomposition, we decompose a hypothesis into its sub-logical hypothesis H_{sub}
715 based on the type of reference hypothesis H . For example, a logical pattern "inp" can be decomposed
716 into two sublogical patterns "2p". Then we calculate the corresponding conclusions of these two "2p"
717 logical hypotheses respectively as sub-observations, thereby constructing the sub-logic observation-
718 hypothesis set.

719 **B MORE EXPERIMENT DETAILS**
720

721 For all experiments, we set the learning rate to 1e-5 and use a batch size of 256 during supervised
722 training. The supervised training process consists of two stages. In the first stage, the model is trained
723 for 400 epochs, including a 50-epoch warm-up phase. In the second stage, which involves conditional
724 supervised training, we train for 50 epochs with a 5-epoch warm-up. For reinforcement learning, a
725 smaller batch size of 32 is used, and each group samples 4 candidate answers. The hyperparameters
726 λ_1 , λ_2 , and λ_3 are set to 1.0, 0.5, and 0.5, respectively. And then we set $\alpha = 0.5$. The code is
727 available at <https://anonymous.4open.science/r/CtrlHGen-EDB3/>.
728

729 **B.1 SMATCH**
730

731 Smatch (Cai & Knight, 2013) is an evaluation metric for Abstract Meaning Representation (AMR)
732 graphs, which are directed acyclic graphs with two node types (variable and concept) and three
733 edge types (instance, attribute, and relation). Given a predicted graph G_p and a gold graph G_g ,
734 Smatch(G_p, G_g) is computed by finding an approximately optimal mapping between the variable
735 nodes of the two graphs and matching their edges. Following the settings of Bai et al. (2024b),
736 we transform the hypothesis graph $G(H)$ into an AMR graph $GA(H)$ by adding virtual nodes and
737 instance edges, and then calculate Smatch. In short, Smatch is used to measure the degree of similarity
738 between the generated hypothesis and the ground truth in the test set.

739 **C MORE RESULTS**
740741 **C.1 DETAILED RESULTS**
742

743 Here, we reported our detailed results of LLMs' performance in Table 4. We also showed our
744 prompts in Fig 6. We found that large language models are sometimes greatly influenced by
745 semantics, thus neglecting the role of correct structure. For example, when the observation is
746 $\{\text{Librarian, Lawyer, Mathematician, Physicist, Scientist-GB}\}$, Grok-3 will answer whether they are
747 working in a library or in a law-related profession. However, the correct query for reference is the
748 occupation of Gottfried Wilhelm von Leibniz or the occupation of those influenced by Italo Calvino.
749 In this example, the large language model found the most relevant semantic content but ignored
750 that they could not meet all situations. Even more strangely, large language models sometimes
751 include the entities within observations in the hypotheses they generate. Given an observation
752 $\{\text{Fever, Fatigue, Headache}\}$, LLMs did not find any drugs that could treat them or diseases with
753 these three symptoms. Instead, it included these three observed entities and predicates belonging
754 to a certain symptom in its logical assumptions. That is, these observations are symptoms of fever,
755 Headache and Fatigue. We believe this is because the large language model has not fully understood
the structural relationship, thus confusing the contents of the input edge and the output edge.

756 Input: Observation, Logic Patterns, 2-hop subgraph, condition
 757
 758 **[Format Specification]:** 'answer: <hypothesis>' .
 759 **[Instructions]:** Do not add quotes, explanations, or extra text and only replace <hypothesis>
 760 with your generated content.
 761 **[Task]:** Now you need to do the abductive reasoning in knowledge graphs. The observation
 762 (consist of entity id and semantic) is <observation>.
 763 Your task is to generate the hypothesis whose form is first order logic in <logic patterns>,
 764 where i means intersection, u means union, n means negation. p denotes the relation and e is
 765 the entity.
 766 Here is the related 2-hop subgraph <2-hop subgraph> for you, which may help you. For each
 767 (u,v,k), u is the source node, v is the target node, k is the relation. Each form is 'id: Semantic
 768 content'.
 769 Now generate the hypothesis, with the format in the <logic patterns> . Please note that you
 770 need to make sure the hypothesis you generate satisfy the <condition> .
 771
 772
 773

Figure 6: Prompt Example.

774
 775
 776
 777 On the one hand, we found that GPT5(Thinking) has achieved a significant performance improvement
 778 Firstly, the model can follow the control conditions in most cases. Secondly, higher semantic similarity
 779 is achieved under all five conditions. In contrast, models are more likely to generate hypotheses with
 780 higher semantic similarities under the control of semantic content than under structural control. This
 781 might be because the model itself is better at capturing based on semantics compared to structured
 782 reasoning. However, they still have a considerable gap compared to CtrlHGen, indicating that
 783 abductive reasoning tasks with structured knowledge remain challenging for advanced large language
 784 models.

785 On the other hand, Deepseek-V3 with RAG has improved performance under the condition of
 786 semantic control, but the results remains almost unchanged under the condition of structural control.
 787 We believe this can be attributed to two primary reasons: First, RAG primarily enhances semantic
 788 retrieval, enabling the model to fetch more semantically relevant context. It offers limited benefit
 789 when precise structural constraints are imposed, as these require strict path conformance rather than
 790 mere semantic relevance. Second, the provided 2-hop subgraph already serves as a highly informative
 791 prompt. Since the depth of all 13 predefined logical patterns is 2, this 2-hop subgraph covers most of
 792 the structural information required for hypothesis generation.

793 The consistently poor performance under structural control instead reveals the models' persistent
 794 weakness in complex structural reasoning over graphs. Compared to standard KGQA, which only
 795 requires interpreting and following one given logical chain, abductive reasoning is fundamentally more
 796 challenging: it demands that the model simultaneously consider all relevant logical chains surrounding
 797 a set of observed entities and abduce the single most explanatory multi-hop hypothesis. This inverse,
 798 open-ended search process imposes significantly greater demands on structural understanding and
 799 logical synthesis, an area where current LLMs still fall short.

800 We also compared the experimental results of GPT5 (thinking) under different temperature settings
 801 on FB15k237 dataset under the 'patttern' condition. The results are shown in Table 5. We found
 802 that a temperature of 0.0 can ensure a balance between semantic similarity and condition adherence.
 803 Excessively high temperatures may enhance the ability to explore, thereby improving semantic
 804 similarity, but they will significantly reduce condition adherence.

805 C.2 ANALYSIS FOR CONDITION ADHERENCE REWARD

806 We have further analyzed the ablation study presented in the paper, comparing the performance
 807 of each logical pattern with and without the Condition Adherence(CA) reward. The results are
 808 summarized in Table 6 and Table 7.

Table 4: The results of controllable abductive reasoning under different conditions. (Result: average score \pm standard deviation.)

Dataset	Condition	Semantic Similarity			Condition Adherence	
		Jaccard	Dice	Overlap	Accuracy	Smatch
GPT-4o + 2-hop subgraph	pattern	4.7 \pm 0.19	5.1 \pm 0.20	7.7 \pm 0.26	85.3 \pm 0.18	55.6 \pm 0.29
	relation-number	1.9 \pm 0.08	2.8 \pm 0.11	5.4 \pm 0.19	74.4 \pm 0.49	44.1 \pm 0.26
	entity-number	2.2 \pm 0.08	3.3 \pm 0.12	6.0 \pm 0.20	84.3 \pm 0.36	45.3 \pm 0.22
	specific-entity	2.5 \pm 0.12	3.2 \pm 0.14	5.0 \pm 0.21	77.8 \pm 0.24	20.7 \pm 0.27
	specific-relation	0.9 \pm 0.06	1.3 \pm 0.08	2.4 \pm 0.13	65.5 \pm 0.26	23.8 \pm 0.23
Kimi K2 + 2-hop subgraph	pattern	3.1 \pm 0.10	4.6 \pm 0.14	7.7 \pm 0.22	82.4 \pm 0.33	50.2 \pm 0.21
	relation-number	2.4 \pm 0.09	3.6 \pm 0.12	8.5 \pm 0.26	71.1 \pm 0.49	47.0 \pm 0.19
	entity-number	2.2 \pm 0.09	3.2 \pm 0.12	6.0 \pm 0.20	62.3 \pm 0.41	35.8 \pm 0.19
	specific-entity	4.2 \pm 0.18	5.7 \pm 0.20	10.8 \pm 0.26	69.0 \pm 0.30	38.4 \pm 0.25
	specific-relation	3.6 \pm 0.11	5.2 \pm 0.15	9.5 \pm 0.26	73.4 \pm 0.19	40.5 \pm 0.24
Grok-3 + 2-hop subgraph	pattern	3.8 \pm 0.11	5.7 \pm 0.15	12.0 \pm 0.28	83.0 \pm 0.37	61.2 \pm 0.24
	relation-number	1.8 \pm 0.07	2.8 \pm 0.10	4.6 \pm 0.17	70.5 \pm 0.45	40.0 \pm 0.26
	entity-number	1.9 \pm 0.07	2.8 \pm 0.11	4.9 \pm 0.18	70.9 \pm 0.45	42.2 \pm 0.23
	specific-entity	2.7 \pm 0.12	3.7 \pm 0.14	6.0 \pm 0.22	76.3 \pm 0.31	38.8 \pm 0.27
	specific-relation	2.3 \pm 0.08	3.4 \pm 0.11	7.2 \pm 0.22	77.2 \pm 0.32	35.4 \pm 0.27
Deepseek-V3 + 2-hop subgraph	pattern	2.7 \pm 0.10	4.0 \pm 0.13	7.1 \pm 0.21	79.1 \pm 0.50	47.2 \pm 0.31
	relation-number	0.9 \pm 0.04	1.3 \pm 0.06	5.5 \pm 0.22	70.6 \pm 0.31	39.1 \pm 0.32
	entity-number	1.3 \pm 0.08	1.7 \pm 0.10	3.4 \pm 0.16	69.2 \pm 0.29	40.3 \pm 0.22
	specific-entity	3.7 \pm 0.15	4.7 \pm 0.17	10.2 \pm 0.29	75.8 \pm 0.30	41.6 \pm 0.28
	specific-relation	1.7 \pm 0.09	2.3 \pm 0.11	5.4 \pm 0.20	74.2 \pm 0.28	40.6 \pm 0.23
GPT5(Thinking)+2-hop subgraph	pattern	14.8 \pm 0.30	17.4 \pm 0.32	30.6 \pm 0.42	83.8 \pm 0.37	71.5 \pm 0.31
	relation-number	14.6 \pm 0.30	17.1 \pm 0.32	31.5 \pm 0.44	96.6 \pm 0.17	56.8 \pm 0.17
	entity-number	17.8 \pm 0.30	22.0 \pm 0.33	44.9 \pm 0.46	95.3 \pm 0.21	54.2 \pm 0.19
	specific-entity	24.1 \pm 0.36	27.4 \pm 0.39	40.1 \pm 0.49	94.2 \pm 0.26	31.9 \pm 0.21
	specific-relation	22.1 \pm 0.34	25.8 \pm 0.37	39.6 \pm 0.46	94.5 \pm 0.22	28.1 \pm 0.20
Deepseek-V3 + RAG	pattern	2.8 \pm 0.09	3.8 \pm 0.22	6.1 \pm 0.21	78.5 \pm 0.34	48.2 \pm 0.35
	relation-number	1.6 \pm 0.08	2.3 \pm 0.11	3.8 \pm 0.19	69.3 \pm 0.40	34.5 \pm 0.26
	entity-number	0.8 \pm 0.04	1.4 \pm 0.07	3.8 \pm 0.19	72.3 \pm 0.40	39.2 \pm 0.24
	specific-entity	13.7 \pm 0.31	15.4 \pm 0.33	23.0 \pm 0.42	82.8 \pm 0.41	25.9 \pm 0.24
	specific-relation	7.6 \pm 0.27	10.5 \pm 0.30	15.4 \pm 0.36	80.2 \pm 0.30	16.8 \pm 0.26

Table 5: Temperature sensitivity experiment.

Temperature	Semantic Similarity			Condition Adherence		Average
	Jaccard	Dice	Overlap	Accuracy	Smatch	
t=1.0	15.8 \pm 0.31	18.2 \pm 0.33	28.5 \pm 0.41	75.3 \pm 0.43	68.4 \pm 0.18	41.2
t=0.5	13.4 \pm 0.28	15.8 \pm 0.31	28.8 \pm 0.41	79.2 \pm 0.40	69.1 \pm 0.18	41.2
t=0.0	14.8 \pm 0.30	17.4 \pm 0.32	30.6 \pm 0.42	83.8 \pm 0.37	71.5 \pm 0.31	43.6

- For logical patterns involving negation (such as 2in, pin, and inp), we observed that even without conditional adherence rewards, the model is often able to identify the correct logical structure on its own and achieve higher accuracy. In these cases, enforcing constraint adherence may overly limit the model’s exploratory flexibility, leading to suboptimal semantic performance.
- In contrast, for logical patterns that involve only intersection (such as pi, ip, 2i, 3i), we found a strong correlation between improved constraint satisfaction and enhanced semantic similarity. Without reinforcement signals guiding the model to comply with constraints, it tends to generate alternative formats that deviate from the intended structure, resulting in decreased semantic quality.

864
 865
 866
 867
 868
 869

- Interestingly, for the ‘3in’ pattern, the model appears to strike a balance between intersection and negation: regardless of whether constraints are enforced, the resulting hypotheses exhibit comparable semantic similarity.

Table 6: Ablation Results of Jaccard Score

logical pattern	2in	pin	inp	pni	up	2u	3in	1p	2p	pi	ip	2i	3i
CtrlHGen(w/o RL)	63.6	68.1	67.6	65.2	67.0	81.9	69.2	75.4	79.3	72.6	73.8	70.1	74.8
CtrlHGen(w/o CA)	76.2	75.9	72.3	71.1	71.6	85.3	70.4	91.2	85.1	75.8	82.1	78.9	71.9
CtrlHGen	71.7	73.2	69.7	69.1	70.3	84.9	70.2	91.3	85.3	76.4	82.8	79.8	77.2

870
 871
 872
 873
 874
 875

Table 7: Ablation Results of Condition Adherence Accuracy

logical pattern	2in	pin	inp	pni	up	2u	3in	1p	2p	pi	ip	2i	3i
CtrlHGen (w/o RL)	58.7	60.1	98.2	78.7	98.5	93.9	93.2	45.5	84.6	88.5	91.4	96.7	70.6
CtrlHGen (w/o CA)	82.4	84.7	78.7	79.1	91.6	97.0	34.2	65.9	74.8	57.0	58.4	76.9	16.5
CtrlHGen	84.5	98.6	84.4	85.8	98.7	96.3	95.4	89.0	96.4	98.2	98.3	98.6	90.1

C.3 MORE BASELINES

886
 887
 888
 889
 890
 891
 892

Here, we incorporated the data augmentation strategy proposed in Logic-Gen (Asai & Hajishirzi, 2020) as an additional baseline. We also compared it with our method CtrlHGen and AbductiveKGR without data augmentation but only by introducing conditional tokens. Since these two methods don’t employ reinforcement learning for conditional control, we report results after supervised training, ensuring a fair comparison. We conducted experiments on the DBpedia50 dataset and selected ‘pattern’ and ‘specific-relation’ respectively to represent structural control and semantic control. The results are reported in Table 8 and 9.

893
 894
 895
 896
 897
 898

The experiments reveal that, while Logic-Gen’s data augmentation indeed improves the model’s overall grasp of logical patterns, it remains inferior to our sub-logic decomposition approach. We believe this is because the sub-logic decomposition forces the model to deeply understand and compose longer, more intricate logical chains step-by-step, leading to substantially stronger reasoning capability on complex hypotheses. It more effectively mitigates hypothesis space collapse, thereby significantly enhancing compliance when strict structural conditions are imposed.

Table 8: Results on DBpedia50 dataset under the ‘pattern’ condition.

Model	Semantic Similarity			Condition Adherence	
	Jaccard	Dice	Overlap	Accuracy	Smach
AbductiveKGR+condition token	68.2 ± 0.34	73.2 ± 0.32	80.6 ± 0.29	66.6 ± 0.47	77.5 ± 0.20
Logic-Gen	69.5 ± 0.34	73.5 ± 0.32	79.9 ± 0.30	65.9 ± 0.47	77.5 ± 0.21
CtrlHGen	70.1 ± 0.33	74.0 ± 0.31	80.8 ± 0.29	73.1 ± 0.41	80.8 ± 0.17

C.4 VISUALIZATION

911
 912
 913
 914
 915
 916
 917

To evaluate controllability, we sampled 100 hypothesis-observation pairs from the FB15k-237 test set for each category defined by the number of relations (1, 2, or 3) in the reference hypothesis. We compared the number of predicate relations in generated hypotheses under two settings: with and without relation-number constraints. As shown in Fig. 7, without conditional constraints, the model tends to generate hypotheses with a larger number of predicate relations, making it difficult to generate hypotheses with only one relation. However, when conditional constraints are applied, the majority of generated hypotheses align with the expected number of predicates. This experiment further demonstrates the strong controllability of our model.

Table 9: Results on the DBpedia50 dataset under the ‘specific-relation’ condition.

Model	Semantic Similarity			Condition Adherence	
	Jaccard	Dice	Overlap	Accuracy	Smatch
AbductiveKGR + condition token	69.3 ± 0.35	73.0 ± 0.33	86.4 ± 0.31	78.6 ± 0.40	58.0 ± 0.23
Logic-Gen	70.4 ± 0.35	73.4 ± 0.33	88.0 ± 0.29	75.9 ± 0.42	54.9 ± 0.23
CtrlHGen	72.7 ± 0.33	77.2 ± 0.31	90.7 ± 0.27	80.0 ± 0.40	51.6 ± 0.23

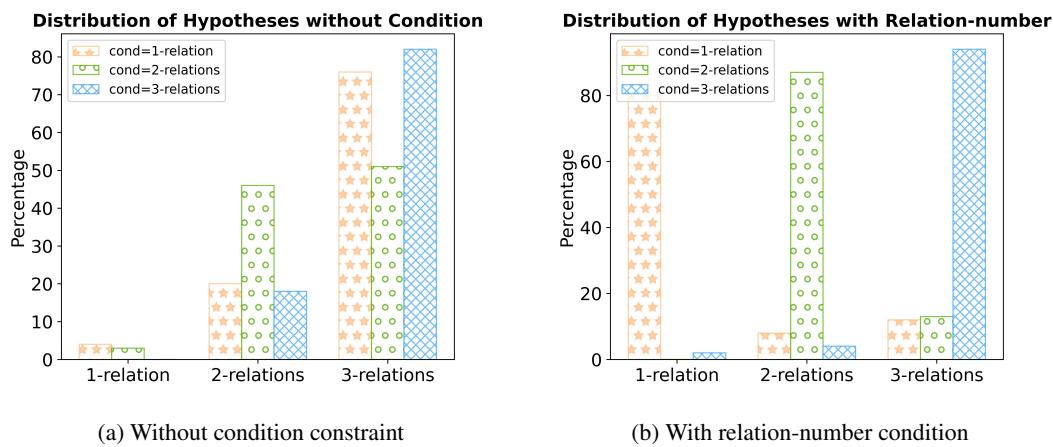


Figure 7: Visualization of Relation-number Distribution in Generated Hypotheses

C.5 CASE STUDY

In this section, we show the results of two case study in Fig 8 and Fig 9.

C.6 MULTI-DIALOGUE CASE

In this section, we implemented a simple yet highly interactive multi-round dialogue system that automatically adjusted control conditions based on the user’s evolving intentions and the outcomes of previous rounds. We leveraged a large language model (DeepSeek-V3) to intelligently select appropriate control conditions according to the user’s expressed intent. The prompt used for this condition-selection LLM is presented in Fig. 10. At each turn, the LLM generated updated control conditions by jointly considering the hypothesis produced in the previous round, its derived conclusions, the corresponding Jaccard similarity score, and the current user input. These dynamically selected conditions were then passed back to the core hypothesis generation model. A complete interaction example is shown in Fig. 11.

In this case, the initial observation consisted of four songs. In the first round, the user expressed interest in connections related to the acoustic guitar. The system accordingly generated a relatively broad hypothesis that slightly over-covered the observed entities. In the second round, the user asked who the artist was; the LLM selected “specific-relation” as the control condition to focus the generation. Although a relevant hypothesis was produced, it remained somewhat vague. Consequently, in the third round, the user requested a simpler logical structure. The LLM responded by enforcing the simplest available logic pattern, successfully revealing that all four songs were authored by Tracy Lawrence. Finally, wishing to explore the observation more deeply, the user sought additional related information. The LLM then imposed a relation count of three as the control condition, prompting the model to generate a richer, more complex hypothesis that incorporated two different associated artists.

Through this multi-round interaction, the system seamlessly combines structural and semantic control signals, gradually improving the relevant hypotheses closely related to the user's constantly evolving exploration goals. It demonstrates the potential of our method in real-world scenarios.

972 Observation: Blues, Jazz, Rhythm_and_bebop
973

974 **Condition1:** Logical Pattern 1p
975 **Hypothesis 1:** $H = V_? : \text{Parent_genre}(\text{Hard_bop}, V_?)$
976 **Interpretations 1:** The music genre that originates from the Hard_bop genre.
977 **Conclusion 1:** Blues, Jazz, Rhythm_and_bebop.
978 **Jaccard Score:** 1.0

980 **Condition2:** Logical Pattern 2p
981 **Hypothesis 2:** $H = V_? : \text{Parent_genre}(P_?, V_?) \wedge \text{genre}(\text{McCoy_Tyner}, P_?)$
982 **Interpretations 2:** The musical genre that originates from the genre which is associated
983 with the artist McCoy_Tyner.
984 **Conclusion 2:** Blues, Jazz, Rhythm_and_bebop.
985 **Jaccard Score:** 1.0

986 **Condition3:** Logical Pattern ip
987 **Hypothesis 3:** $H = V_? : \text{Parent_genre}(\text{Hard_bop}, V_?) \wedge \text{genre}(\text{Roy_Haynes}, P_?) \wedge$
988 $\text{genre}(\text{McCoy_Tyner}, P_?)$
989 **Interpretations 3:** The musical genre that originates from the Hard_bop genre and is
990 associated with the artist Roy_Haynes and McCoy_Tyner.
991 **Conclusion 3:** Blues, Jazz, Rhythm_and_bebop.
992 **Jaccard Score:** 1.0

993

Figure 8: Case study of Logic Control.

D THE USE OF LLMs

In this paper, large language models (LLMs) were employed exclusively for language refinement, such as improving grammar, clarity, and readability of the manuscript. They were not utilized in any stage of the research process itself, including the formulation of ideas, experimental design, data collection, analysis, or interpretation of results.

1026
1027
1028
1029
1030
10311032 Observation: Avid_Technology, Intel_Corporation, IBM, Microsoft_Corporation, Seat-
1033 tle_Mariners, Walmart, Cisco_Systems, Inc., Golden_State_Warriors, Seattle_Supersonics,
1034 Los_Angeles_Kings, San_Jose_Sharks, Pixar, Amazon.com, eBay
10351036 **Condition 1:** Entity contains Smokin_Aces1037 **Hypothesis 1:** $H = V_? : Employ(V_?, P_?) \wedge Film_crew_role(Smokin_Aces, P_?)$ 1038 **Interpretations 1:** The organization/company that employs people who have served as a
1039 crew member in the film Smokin_Aces.1040 **Conclusion 1:** Avid_Technology, Intel_Corporation, IBM, Microsoft_Corporation, Seat-
1041 tle_Mariners, Walmart, Cisco_Systems, Inc., Golden_State_Warriors, Seattle_Supersonics,
1042 Los_Angeles_Kings, San_Jose_Sharks, Pixar, Amazon.com, eBay.1043 **Jaccard Score:** 1.01044 **Condition 2:** Entity contains The_Phantom1045 **Hypothesis 2:** $H = V_? : Employ(V_?, P_?) \wedge Film_crew_role(The_Phantom, P_?)$ 1046 **Interpretations 2:** The organization/company that employs people who have served as a
1047 crew member in the film The_Phantom.1048 **Conclusion 2:** Avid_Technology, Intel_Corporation, IBM, Microsoft_Corporation, Seat-
1049 tle_Mariners, Walmart, Cisco_Systems, Inc., Golden_State_Warriors, Seattle_Supersonics,
1050 Los_Angeles_Kings, San_Jose_Sharks, Pixar, Amazon.com, eBay.1051 **Jaccard Score:** 1.01052 **Condition 3:** Entity contains Yahoo1053 **Hypothesis 3:** $H = V_? : Employ(V_?, P_?) \wedge \neg Employed(P_?, Yahoo) \wedge$
1054 $Employed(P_?, Avid_Technology)$ 1055 **Interpretations 3:** The organization/company that employs people who have never been
1056 employed by Yahoo, but have been employed by Avid_Technology.1057 **Conclusion 3:** Avid_Technology, Intel_Corporation, IBM, Microsoft_Corporation, Seat-
1058 tle_Mariners, Walmart, Cisco_Systems, Inc., Golden_State_Warriors, Seattle_Supersonics,
1059 Los_Angeles_Kings, San_Jose_Sharks, Pixar, Amazon.com, eBay.1060 **Jaccard Score:** 1.01061 **Condition 4:** Entity contains BAFTA_Award_for_Best_Sound1062 **Hypothesis 4:**1063 $H = V_? : Employ(V_?, P_?) \wedge Nominated_for(P_?, BAFTA_Award_for_Best_Sound)$
1064 $\vee Employed(P_?, Los_Angeles_Kings)$ 1065 **Interpretations 4:** The organization/company that employs people who have been nomi-
1066 nated for BAFTA_Award_for_Best_Sound or have been employed by Los_Angeles_Kings.1067 **Conclusion 4:** Avid_Technology, Intel_Corporation, IBM, Microsoft_Corporation, Seat-
1068 tle_Mariners, Walmart, Cisco_Systems, Inc., Golden_State_Warriors, Seattle_Supersonics,
1069 Los_Angeles_Kings, San_Jose_Sharks, Pixar, Amazon.com, eBay.1070 **Jaccard Score:** 1.01071
1072
1073
1074
1075
1076
1077
1078
1079

Figure 9: Case Study of Entity Semantic Control.

1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133

Input: Observation, Hypothesis(last round), Condition(last round), Jaccard_score(last round), Intention, Logic Patterns

[Instructions]: Do not add quotes, explanations, or extra text and only replace <hypothesis> with your generated content.

[Task]: Now I am doing the abductive reasoning in knowledge graphs. The observation (consist of entity id: semantic) is Observation. I have generated a hypothesis <Hypothesis> under the condition <Condition>. The conclusion of this hypothesis is <Conclusion>. And the jaccard score between the conclusion and the observation is <Jaccard_score>. My intention is that <Intention>. Now your task is to adjust the condition and my model will generate a new hypothesis under the condition to make the jaccard score between the conclusion and the observation higher and conforms to my intention.

[Format Specification]: The condition can be one of them 'pattern', 'entitynumber', 'entity', 'relation', 'relationnumber'. For the pattern, you can specify the corresponding first-order logical hypothesis format including <Logic Patterns>. If you choose this condition, your response must be condition: <pattern: <pattern_name>>. For the entitynumber, you can specify the number of entities in the hypothesis. If you choose this condition, your response must be condition: <entitynumber: <number>>. For the entity, you can specify the entities in the hypothesis. If you choose this condition, your response must be condition: <entity: <entity_name>>. For the relation, you can specify the relations in the hypothesis. If you choose this condition, your response must be condition: <relation: <relation_name>>. For the relationnumber, you can specify the number of relations in the hypothesis. If you choose this condition, your response must be condition: <relationnumber: <number>>.

Figure 10: Prompt for LLM.

1134
1135
1136
1137
1138
1139
1140
1141

Observation: Alibis_(song), I_See_It_Now_(song), If_the_Good_Die_Young, Some-body_Paints_the_Wall

1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Intention 1: I want to know about the connection between these songs and the guitar.

Condition 1: Entity contains Acoustic_guitar.

Hypothesis 1: $H = V_? : WorkofArtist(V_?, P_?) \wedge Instrumentof(Acoustic_guitar, P_?)$

Interpretations 1: The songs that are the work of the artist whose instrument is Acous-tic_guitar.

Conclusion 1: Alibis_(song), I_See_It_Now_(song), If_the_Good_Die_Young, Some-body_Paints_the_Wall, If_I_Had_Any_Pride_Left_at_All.

Jaccard Score: 0.66

Intention 2: I want to know which artist is the author of these songs.

Condition 2: Relation contains WorkofArtist.

Hypothesis 2: $H = V_? : WorkofArtist(V_?, P_?) \wedge AssociateArtist(Ken_Mellons, P_?)$

Interpretations 2: The songs that are the work of the artist whose associateArtist is Ken_Mellons.

Conclusion 2: Alibis_(song), I_See_It_Now_(song), If_the_Good_Die_Young, Some-body_Paints_the_Wall.

Jaccard Score: 1.0

Intention 3: This is too complex. I want to make the logic simpler.

Condition 3: Logic Pattern 1p.

Hypothesis 3: $H = V_? : WorkofArtist(V_?, Tracy_Lawrence)$

Interpretations 3: The songs that are the work of the artist Tracy_Lawrence.

Conclusion 3: Alibis_(song), I_See_It_Now_(song), If_the_Good_Die_Young, Some-body_Paints_the_Wall.

Jaccard Score: 1.0

Intention 4: I want to know more. Let's explore more.

Condition 4: Logic contains 3 relations.

Hypothesis 4: $H = V_? : Musicband(V_?, P_?) \wedge AssociateArtist(Josh_Logan_(country_singer), P_?) \wedge AssociateArtist(Ken_Mellons, P_?)$

Interpretations 4: The songs that are played by the musical band whose associate artists are Josh_Logan_(country_singer) and Ken_Mellons.

Conclusion 4: Alibis_(song), I_See_It_Now_(song), If_the_Good_Die_Young, Some-body_Paints_the_Wall.

Jaccard Score: 1.0

Figure 11: Case Study of Multi-round Dialogue.