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ABSTRACT

Abductive reasoning in knowledge graphs aims to generate plausible logical hy-
potheses from observed entities, with broad applications in areas such as clinical
diagnosis and scientific discovery. However, due to a lack of controllability, a single
observation may yield numerous plausible but redundant or irrelevant hypotheses
on large-scale knowledge graphs. To address this limitation, we introduce the task
of controllable hypothesis generation to improve the practical utility of abductive
reasoning. This task faces two key challenges when controlling for generating long
and complex logical hypotheses: hypothesis space collapse and hypothesis reward
oversensitivity. To address these challenges, we propose CtrlHGen, a Controllable
logcial Hypothesis Generation framework for abductive reasoning over knowledge
graphs, trained in a two-stage paradigm including supervised learning and subse-
quent reinforcement learning. To mitigate hypothesis space collapse, we design
a dataset augmentation strategy based on sub-logical decomposition, enabling
the model to learn complex logical structures by leveraging semantic patterns in
simpler components. To address hypothesis reward oversensitivity, we incorporate
smoothed semantic rewards including Dice and Overlap scores, and introduce a
condition-adherence reward to guide the generation toward user-specified control
constraints. Extensive experiments on three benchmark datasets demonstrate that
our model not only better adheres to control conditions but also achieves superior
semantic similarity performance compared to baselines.

1 INTRODUCTION

Abduction is widely recognized as one of the three major types of reasoning in philosophy (Douven,
2011). Specifically, abductive reasoning (Douven, 2011) is a form of logical inference that seeks
the best or most plausible hypothesis to explain an observed phenomenon and it plays a vital role
across various fields (Paul, 1993). For example, it serves as a critical tool for hypothesizing causal
links between symptoms and underlying pathologies in clinical diagnosis (Pukancová & Homola,
2015; Martini, 2023). Similarly, abductive methods localize system faults by interpreting anomalous
signal patterns in anomaly detection (Ramkumar et al., 2024; Ganesan et al., 2019). Its power
also extends to scientific discovery (Engelschalt et al., 2023; Wackerly, 2021; Duede & Evans,
2021; Upmeier zu Belzen et al., 2021), including the deduction of unknown celestial bodies from
gravitational perturbations in orbital trajectories (Smart, 1946).

On the other hand, effective abductive reasoning requires high-quality, interconnected information.
While large language models perform well in common-sense settings (Patil & Jadon, 2025), they
often struggle in domains such as healthcare, business, or other scenarios involving sensitive data
and strict privacy constraints. Knowledge graphs, whether general-purpose or domain-specific,
provide a structured foundation that supports more reliable abductive reasoning. In knowledge graphs,
abductive reasoning aims to generate complex logical hypotheses that explain observed entities,
leveraging domain knowledge to improve inference precision and reliability. AbductiveKGR (Bai
et al., 2024b) was the first to introduce this task, formulating it as logical query generation over
structural knowledge and training models through a supervised–reinforcement learning framework.

However, knowledge graphs often contain millions of facts, which can lead to generate numerous
plausible but irrelevant hypotheses from a single observation. For instance, even the relatively small
DBpedia50 dataset(with only 24,624 entities and 351 relations), produces an average of 50 reasonable
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Observation

Hypothesis 3: 
H = V_? Affected(V_?, P_?) Gender(P_?, Female)  : 

Interpretation: 
The disease that is more likely to occur in women of reproductive age 
who carry the HLA-DR3 susceptible allele.

Age(P_?, Reproductive) ∧

Systemic Lupus Erythematosus, Antiphospholipid Syndrome, Sjögren’s Syndrome

Carries(P_?, HLA-DR3)

∧

Hypothesis 2: 
H = V_? Treat(Hydroxychloroquine,V_?) Property (V_?,Autoimmune) : 

Interpretation: 
The disease that are autoimmune and can be treated with 
hydroxychloroquine.

∧

Hypothesis 1: 
H = V_? Produce(V_?，Autoantibodies) Property(V_?, Chronic )  : 

Interpretation: 
The disease that produces autoantibodies and is chronic and 
autoimmune.

Property (V_?,Autoimmune) 

∧

∧

Pathology

Treatment

Susceptibles

∧

(a) Control Semantic Domain

Hypothesis 1: 
H = V_? PlayedFor(V_?,Thunder) Won(V_?,AssistTitle) : 

Interpretation: 
Players who have played for the Oklahoma City Thunder and have 
won the NBA assist title.

Observation

Hypothesis 2: 
H = V_? PlayedFor(V_?,Thunder) Won(V_?,AssistTitle) : 

Interpretation: 
Players who have played for the Thunder, have won
 the NBA assist title, and have never won an NBA championship.

¬ Won(V_?, NBAChampionship)

Hypothesis 3: 
H = V_? PlayedFor(V_?,Thunder) Won(V_?,AssistTitle) : 

Interpretation: 
Players who have played for the Oklahoma City Thunder, have 
won the NBA assist title, have never won an NBA championship, 
but have been selected as NBA All-Stars.

¬Won(V_?, NBAChampionship)∧

Chris Paul, James Harden, Russel Westbrook

selected(V_?,ALL_Star)∧

∧

∧

∧

∧

(b) Control Structure Complexity

Figure 1: Examples of Controllability in Abductive Reasoning

hypotheses per observation. In larger graphs, this number grows dramatically, underscoring the need
to filter hypotheses according to user intent or interests for effective abductive reasoning. To address
this challenge, we introduce controlling mechanisms into the hypothesis generation process, focusing
on two critical aspects:

Controlling semantic content enables aspect-specific reasoning. We prioritize semantic control
to narrow vast hypothesis spaces to relevant aspects, essential for specialized fields where aspect-
specific insights drive decision-making. As shown in Fig. 1a, we want to explain the observation
involving three diseases:{Systemic Lupus Erythematosus, Antiphospholipid Syndrome, and Sjögren’s
Syndrome}. Directing attention to specific aspects—such as pathology, treatment, or affected
populations—yields hypotheses that are precisely aligned with each aspect. From the pathology
aspect, these diseases produce autoantibodies and are both chronic and autoimmune. From the
treatment aspect, these autoimmune diseases can be treated with hydroxychloroquine. Finally, from
the susceptibility aspect, these diseases are more likely to occur in women of reproductive age who
carry the HLA-DR3 susceptible allele. Although these hypotheses are all plausible, their usefulness
varies when people seek explanations for different scenarios.

Controlling structural complexity adjusts the level of granularity. We focus on complexity control to
address varying information needs across different reasoning scenarios and align with users’ cognitive
preferences for adjustable information density. In Fig. 1b, for an observation composed of three
NBA players, increasing the complexity of the hypothesis structure enables the model to capture
richer shared experiences or achievements among them. By adjusting the structural complexity,
users can flexibly decide how much information they want to include in the generated hypotheses.
Unfortunately, prior work (Bai et al., 2024b) has largely overlooked controllable generation, resulting
in hypotheses that are redundant or lack meaningful relevance.

Motivated by these, we introduce the task of controllable abductive reasoning, aiming at controllable
generation of hypothesis, which leads to better leverage the practical value of abductive reasoning in
knowledge graphs. However, when implementing semantic and structural controls on complex long
logical hypotheses, we face two critical challenges: (i) Hypothesis Space Collapse: As illustrated in
Fig. 2a, the number of plausible hypotheses drops sharply as their length increases. This sharp decline
severely limits our ability to apply structural complexity control, as the model needs to ensure a
strong understanding of complex logic in order to make correct candidate hypotheses. (ii) Hypothesis
Reward Oversensitivity: The previous approach (Bai et al., 2024b) utilized the Jaccard score as a
reward mechanism to enhance the model’s understanding of query semantics. However, as illustrated
in Fig. 2b, during the model’s exploration process, even a minor misstep may lead to a sharp drop
in the Jaccard score, severely disrupting training stability and guiding the model toward incorrect
directions.

To tackle these challenges, we propose a Controllable logcial Hypothesis Generation method
(CtrlHGen) for abductive reasoning in knowledge graphs. To address the problem of hypothesis
space collapse, we introduce a dataset augmentation strategy based on sub-logical decomposition.
By leveraging the semantic similarity of simpler sub-logics derived from the decomposition of
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ip
1p

2p

Reference:
H = V_? :  ServedAs(V_?,President)
∧  Country(V_?,America)
∧  Resided(V_?,White House)
∧  Active(V_?,Political Discussion)

Wrong!

Hypothesis Conclusion: All 45 American 
presidents 
Jaccard Score: 0.044

Jaccard= (|퐶표푛푐푙���표푛|∩|푂푏�푒푟����표푛|)
 (|퐶표푛푐푙���표푛|∪|푂푏�푒푟����표푛|)   =

2
45  

= �. ���

Hypothesis 1: 
H = V_? : ServedAs(V_?,President)
∧
Country(V_?,America)
∧  Resided(V_?,White House)
∧  Listed(V_?,Official Presidential Records)

(a) Hypothesis Space Collapse

ip
1p

2p

Reference:
H = V_? :  ServedAs(V_?,President)
∧  Country(V_?,America)
∧  Resided(V_?,White House)
∧  Active(V_?,Political Discussion)

Wrong!

Hypothesis Conclusion: All 45 American 
presidents 
Jaccard Score: 0.044

Jaccard= (|퐶표푛푐푙���표푛|∩|푂푏�푒푟����표푛|)
 (|퐶표푛푐푙���표푛|∪|푂푏�푒푟����표푛|)   =

2
45  

= �. ���

Hypothesis 1: 
H = V_? : ServedAs(V_?,President)
∧
Country(V_?,America)
∧  Resided(V_?,White House)
∧  Listed(V_?,Official Presidential Records)

(b) Hypothesis Reward Oversensitivity

Figure 2: (a) Hypothesis quality (measured in Jaccard) and space size across three logic lengths: short
(one predicate), medium (two predicates), and long (three predicates). Valid candidates represent
average reference hypotheses per observation. Note the dramatic collapse of hypothesis space as
complexity increases. (b) Hypothesis oversensitivity example: Minor errors cause significant Jaccard
score drops, creating tension between control adherence and semantic accuracy.

complex hypotheses, this approach enables the model to understand long logical structures, which are
composed of these smaller components. The hypothesis generator is then trained using a combination
of supervised fine-tuning and reinforcement learning. To address the problem of hypothesis reward
oversensitivity, we refine the semantic reward function by incorporating Dice and Overlap coefficient
to smooth out minor discrepancies between the hypothesis and the target. Additionally, we introduce
a condition-adherence reward to encourage the generation of hypotheses that adhere to the control
constraints during exploration. Our main contributions are as follows:

• We are the first to introduce the task of controllable abductive reasoning, enabling abductive
reasoning in knowledge graphs to better satisfy practical needs by controlling semantic content and
structural complexity.

• We propose an observation-hypothesis pair augmentation strategy via sub-logical decomposition to
address the challenge of hypothesis space collapse when generating complex logical structures,
significantly enhancing the quality of controllable hypotheses.

• To mitigate hypothesis reward oversensitivity, we refine the semantic reward function by incorpo-
rating Dice and Overlap coefficients to accommodate minor discrepancies between hypotheses and
targets, while introducing a condition-adherence reward to ensure better compliance with control
constraints, leading to more stable and accurate learning.

• Extensive experiments on three datasets demonstrate that our model not only adheres more effec-
tively to control signals but also achieves superior semantic similarity performance compared to
the baseline across multiple evaluation metrics.

2 RELATED WORK

Knowledge Graph Reasoning. Deductive reasoning focuses on answering complex logical queries
by improving query and answer embeddings (Zhang et al., 2021; Ren et al., 2020; Bai et al., 2022;
2023a;b; 2024a). Inductive reasoning, often framed as rule mining, ranges from efficient symbolic
methods like AMIE (Galárraga et al., 2013) to embedding-based approaches such as RuLES (Ho
et al., 2018) and RLogic (Cheng et al., 2022), though traditional search-based techniques face
scalability challenges. Abductive reasoning was introduced by AbductiveKGR (Bai et al., 2024b)
using Transformer-based hypothesis generation, with follow-up work (Bai et al., 2025) highlighting
its future potential.

Abductive Reasoning. In natural language inference, α-NLI (Bhagavatula et al., 2020) introduced
abductive reasoning to commonsense reasoning, where plausible explanations are inferred from
observations. Subsequent works proposed various techniques to enhance this capability (Qin et al.,
2021; Kadik, is et al., 2022; Chan et al., 2023), including extensions to uncommon scenarios focusing
on rare but logical explanations (Zhao et al., 2024). Unlike real-world data in commonsense reasoning,
benchmarks like ProofWriter (Tafjord et al., 2021) evaluate formal abductive reasoning within semi-
structured texts with explicit logical relationships. Recent studies have explored LLMs in more
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Group Conclusion

Group Hypothesis

2

Step1: Hypotheis-Observation Pair Construction

Knowledge Graph

Logical Pattern

Sub-logic 

Decomposition
Hypothesis

   Execution

Augmented
Hypothesis

Sampling

Step2: Supervised Training Step3: Reinforcement Tuning

Generative Model

Hypothesis

Generative 
Model

Knowledge 
Graph

Execution

{o1, o2, o3, …} {o1, o2, o3, …}
{o1, o2, o3, …} {o1, o2, o3, …}

Reward Function
Semantic 
Alignment

Condition 
Adherence

Observation Tokens 

Condition

Condition

Observation

Hypothesis-
Observation

Figure 3: An overview of our controllable abductive reasoning framework. The process consists of
three main steps: (1) Hypothesis-Observation pair construction through sub-logic decomposition
to expand the hypothesis space, (2) Supervised training of the generative model using augmented
hypotheses, and (3) Reinforcement tuning with dual rewards for semantic alignment and condition
adherence to balance hypothesis accuracy with control signal compliance.

challenging open-world reasoning contexts (Zhong et al., 2023; Del & Fishel, 2023; Thagard, 2024)
and abstract reasoning tasks (Liu et al., 2024b; Zheng et al., 2025).

Meanwhile, in the neuro-symbolic domain, Abductive Learning (ABL) (Zhou, 2019) attempts to
integrate machine learning and logical reasoning in a balanced and mutually supportive manner.
Recent research in this area, exemplified by systems such as ARLC (Camposampiero et al., 2024) and
ABL-Refl (Hu et al., 2025), focuses on enhancing this integration by introducing novel techniques
to improve context-awareness, error correction, generalization, and overall reasoning accuracy and
efficiency.

3 METHOD

In this section, we elaborate the proposed CtrlHGen, a controllable hypothesis generation method for
abductive reasoning in knowledge graphs. The framework of CtrlHGen is shown in Fig. 3.

3.1 PROBLEM DEFINITION

We define a knowledge graph as G = (V,R), where V is the set of entities and R is the set
of binary relations. A triple (u, r, v) exists in G if r(u, v) = true. Following the open-world
assumption (Drummond & Shearer, 2006), only the observed graph G is available during training,
with missing triples treated as unknown rather than false. The full graph Ḡ remains hidden, and
G ⊆ Ḡ.

The core concepts of abductive reasoning consist of observation and hypothesis. Here, an observation
O in knowledge graph G is defined as a set of entities O = {o1, o2, . . . , on}, where oi ∈ V, ∀i ∈
{1, . . . , n} . A logical hypothesis H is defined as a query in the form of first-order logic on a
knowledge graph G, including existential quantifiers(∃), And(∧), Or(∨), Not(¬). The hypothesis can
also be written in disjunctive normal form:

H(V?) = ∃V1, . . . , Vk : e1 ∨ · · · ∨ en,

ei = ri1 ∧ · · · ∧ rimi
,

(1)

where {V1, . . . , Vk} denotes the subset of V . Each rij is defined as either rij = r(u, v) or rij =
¬r(u, v), where u and v are either fixed entities from the set {V1, . . . , Vk}, or variable vertices V?,
which could be any entity on the graph G.
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The conclusion of the hypothesis [H]G on a graph G is the set of the variable entities V? for which H
holds true on G. Specifically, it can be formulated as:

[H]G = {V? ∈ G|H(V?) = true}. (2)
Definition 3.1 (Controllable Abductive Reasoning in Knowledge Graph). Given a knowledge graph
G, an observation O, and a control condition C, the goal of controllable abductive reasoning is to
find a hypothesis H satisfying:

1. The hypothesis H is the most plausible explanation for the observation O . In other words, the
conclusion [H]G closely matches the observation O.

2. H satisfies the constraints specified by the control condition C.

3.2 OBSERVATION-HYPOTHESIS PAIRS CONSTRUCTION

Sampling. We randomly sample observation-hypothesis pairs from the knowledge graph by con-
structing hypotheses based on predefined logical patterns. Each logical pattern is assigned an equal
number of hypotheses to ensure diversity, and the conclusion of hypotheses on the graph are taken as
the corresponding observations. Finally, both hypotheses and observations are converted into input
sequences suitable for the generative model.

Augmentation by sub-logic decomposition. To address the challenge of hypothesis space col-
lapse in complex logical patterns, we propose a dataset augmentation method based on sub-logic
decomposition. Specifically, given a hypothesis–observation pair (H,O) under a complex logical
pattern P , we recursively decompose the hypothesis into sub-hypotheses Hsub according to identifi-
able sub-logical patterns Psub. Corresponding sub-observations Osub are then derived by executing
these sub-hypotheses on the knowledge graph G. This process effectively generates additional
hypothesis–observation pairs and can be formally described as:

{(Hi
sub, O

i
sub)}ni=1 =

{
(f(P i

sub, H), [f(P i
sub, H)]G)

∣∣ P i
sub ⊆ P

}
, (3)

where f(P i
sub, H) denotes the sub-hypothesis generated based on the sub-pattern P i

sub and the origin
hypothesis H , and [f(P i

sub, H)]G computes the corresponding sub-observation by querying the
knowledge graph to get the conclusion of the sub-hypothesis.

Because each sub-hypothesis is a subset of the original, they are closely related both structurally
and semantically. This strong alignment enables the model to progressively learn complex logical
patterns by building on simpler, related sub-patterns. We have reported more details in Appendix A.

3.3 SUPERVISED TRAINING OF CONTROLLABLE HYPOTHESIS GENERATION

To enable controllable generation of logical hypotheses, we train a conditional generative model to
generate hypothesis sequences guided by a given observation and control condition. Specifically,
given an observation sequence O = {o1, . . . , om}, a target hypothesis sequence H = {h1, . . . , hn},
and a control condition C, the generative model is optimized using an autoregressive loss:

LAR = − log pθ(H | O,C) = −
∑n

i=1
log pθ(hi | h1, . . . , hi−1, O,C), (4)

where θ denotes the generative model, which we implement using a standard Transformer-based
decoder-only architecture.

The training process consists of two stages. In the first stage, the model is trained under an uncondi-
tional setting, where the input only consists of observation tokens. This allows the model to acquire
a general capability for hypothesis generation. In the second stage, the model is fine-tuned under
different control conditions respectively. The input is formed by concatenating observation tokens
with control condition tokens, guiding the model to generate hypotheses that satisfy the constraints.

The control conditions C are designed from two different perspectives to guide hypothesis generation:

• Semantic Focus: We randomly sample a specific entity or relation from the target hypothesis as a
control condition. This guides the model to generate hypotheses grounded in a specific semantic
region of the knowledge graph. The control condition is directly represented by the token of the
selected entity or relation. Formally, C ∈ {Te} or C ∈ {Tr}. Te and Tr represents the token set
of entity and relation respectively.

5
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• Structural Constraint: We apply constraints based on the logic structure of the hypothesis.
Specifically, we implement three types of structural control: (1) strictly enforcing a predefined
logical pattern, where each logical pattern is represented in Lisp-like language with operator
tokens following previous work in KG reasoning (Bai et al.; 2024b). (2) constraining the number
of entities involved, encoded using a special token [ne] that indicates hypotheses with exactly n
entities. Formally, C ∈ {[ne]}, where n is an Integer. (3) constraining the number of relations
used in the generated hypothesis, encoded using a token [nr], where [nr] denotes hypotheses
containing exactly n relations. Formally, C ∈ {[nr]}, where n is an Integer.

3.4 REINFORCEMENT LEARNING

To improve the generalization ability on unseen knowledge graphs and better adhere to the specified
control conditions, we further fine-tune the generative model using reinforcement learning. The
reward function is constructed from two perspectives: semantic alignment and condition adherence.

Semantic Alignment: This reward assesses the semantic consistency between the generated hypothe-
sis conclusion [H]G and the corresponding observation O. We adopt the Jaccard similarity coefficient
as the primary reward due to its strict evaluation of set-level agreement. However, the high sensitivity
of hypotheses can lead to sharp reward fluctuations in response to minor errors. To mitigate this,
we integrate two supplementary metrics:the Dice similarity coefficient and the Overlap similarity
coefficient, which provide smoother gradients and greater tolerance to slight mismatches. The final
semantic reward Rsem is computed as a weighted combination of these metrics, defined as:

Rsem([H]G, O) = λ1 · Jaccard([H]G, O) + λ2 · Dice([H]G, O) + λ3 · Overlap([H]G, O)

= λ1 ·
|[H]G ∩O|
|[H]G ∪O|

+ λ2 ·
2|[H]G ∩O|
|[H]G|+ |O|

+ λ3 ·
|[H]G ∩O|

min(|[H]G|, |O|)
,

(5)

where λ1, λ2, and λ3 are hyperparameters. G denotes the observable knowledge graph during
training, which serves as a reliable and leakage-free proxy for evaluating abductive reasoning quality.

Condition Adherence: This reward encourages the model to generate hypotheses that satisfy the
given control condition C. We formulate it as a binary-valued function: if the generated hypothesis
H satisfies the condition C, the reward is 1; otherwise, it is 0. The final adherence performance is
evaluated by computing the proportion of generated hypotheses that meet the condition. Formally,
the reward function is defined as:

Rcond(H,C) =

{
1, if H satisfies C,
0, otherwise.

(6)

Jointly capturing condition adherence and semantic alignment, the overall reward function R̂ is
formulated as:

R̂(H,O,C,G) = α ·Rsem([H]G, O) + (1− α) ·Rcond(H,C), (7)

where α ∈ [0, 1] is a hyperparameter that balances the contributions of semantic alignment and
condition adherence.

Since abductive reasoning often involves generating multiple plausible hypotheses rather than a single
answer, it is important to ensure overall hypothesis quality. To achieve this, we use Group Relative
Policy Optimization (GRPO) (Shao et al., 2024), which promotes consistent improvement across a
set of sampled hypotheses per observation, instead of optimizing individual outputs. Specifically,
GRPO updates the model πθ by maximizing the expected reward over a group of hypotheses
Ĥ = H1, . . . ,Hk sampled from the same observation O and control condition C. The objective is:

J (θ) = EO,{Hi}∼πθold (H|O,C)[
1

k

k∑
i=1

1

|Hi|

|Hi|∑
t=1

{
πθ(hi,t|O,C, hi,<t)

πθold(hi,t|O,C, hi,<t)
R̂

′

i − βDKL [πθ||πref]

}
],

(8)
where k is the number of sampled hypotheses per observation. The normalized reward R̂′

i is obtained
by applying intra-group normalization over {R̂1, . . . , R̂k}. A KL term constrains the policy πθ from
drifting too far from the reference model πref, with β controlling its strength. Gradient clipping is
also used to stabilize training.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4 EXPERIMENT

4.1 EXPERIMENT SETTINGS

Dataset. We conduct experiments on three widely used knowledge graph datasets: DBpedia50 (Auer
et al., 2007), WN18RR (Bordes et al., 2013), and FB15k-237 (Toutanova & Chen, 2015). Follow-
ing (Bai et al., 2024b), each dataset is split into training, validation, and test sets with an 8:1:1 ratio.
Under the open-world assumption, we incrementally build Gtrain, Gvalid, and Gtest, where each graph
includes all previous edges.

Observation-Hypothesis Pair. Following prior KG reasoning work (Ren et al., 2020), we adopt
the 13 predefined logical patterns in Fig. 4 for hypothesis sampling. Each observation contains no
more than 32 entities. To evaluate generalization, the validation and test sets include entities not seen
during training, with the test set covering more unseen entities. For sub-logic decomposition, we
chose five complex logical patterns (up, 3in, pni, pin, inp) to break down.

Figure 4: Thirteen predefined logical types.

Evaluation Metrics. The quality of generated
hypotheses is evaluated in terms of semantic
similarity and condition adherence. For seman-
tic similarity, we use Jaccard, Dice and Overlap
score, with Gtest used to compute [H]Gtest dur-
ing testing. For condition adherence, we regard
it as a binary classification problem and calcu-
late Accuracy. In addition, Smatch score (Cai &
Knight, 2013) is also used to quantify the struc-
tural similarity corresponding to the generated
hypothesis H and the reference hypothesis Href.
It can measure how similar the nodes, edges and
their labels are by representing the hypothesis
as a graph. It should be noted that Smatch is only a reference metric, as the generated hypotheses do
not need to be the same as the reference hypotheses.

Implementation Details. We adopt a 12 layers decoder-only Transformer architecture (Radford
et al., 2019; Vaswani et al., 2017) for the hypothesis generation model and use the AdamW optimizer.
All experiments are conducted on 4 Nvidia A6000 48GB GPUs. Additional hyperparameter settings
and other experiment details are reported in Appendix B.

4.2 EXPERIMENT RESULTS AND ANALYSIS

We evaluated the quality and controllability of generated hypotheses on three datasets under five
conditions: pattern, relation-number, entity-number, specific-entity, and specific-relation (see Sec-
tion 3.3). As baselines, we use AbductiveKGR (Bai et al., 2024b) under unconditional settings
(denoted as uncondition) to highlight the improvements of our approach. The results are reported
in Table 1. We further compare several advanced LLMs, including GPT-4o Achiam et al. (2023),
Kimi K2 (Team et al., 2025), Grok-3 (xAI, 2025), and Deepseek-V3 (Liu et al., 2024a), on FB15k237
dataset under five conditions. For these models, 2-hop subgraphs of observation entities in triple
form are included as part of the prompt to compensate for their lack of KG structural knowledge.
For all LLMs above, we did not use the thinking mode. And their temperatures are uniformly set to
0.0. In addition, we also added one of the most advanced reasoning models, GPT5, and adopted the
thinking mode. At the same time, we constructed an attempt to combine the raw model DeepSeek-V3
with RAG. Average results across five conditions are reported in Table 2, with details provided in
Appendix C.1.

Compared to AbductiveKGR (uncondition), our model shows notable improvements in semantic
similarity under conditional constraints, with most condition-adherence accuracies exceeding 80%.
This improvement likely stems from the additional guidance provided by the control conditions
(we further provide a case in Section 4.4 whether the model can handle irrelevant control condi-
tions). Structural conditions generally outperform semantic-focused ones in semantic similarity,
with the fixed-format pattern condition achieving the best results. While both specific-entity and
specific-relation conditions similarly enhance semantic similarity, the model shows a clear adherence
preference for specific-relation.
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Table 1: The results of controllable abductive reasoning under different conditions. (Result: average
score ± standard deviation. Bold: best; Underline: runner-up. —: cannot be evaluated.)

Dataset Condition Semantic Similarity Condition Adherence
Jaccard Dice Overlap Accuracy Smatch

FB15k-237

uncondition 61.4±0.33 69.3±0.31 82.3±0.33 — 61.4±0.21

pattern 65.5±0.33 73.0±0.30 83.9±0.27 98.9±0.10 82.3±0.10

relation-number 65.1±0.33 72.7±0.31 83.5±0.29 99.4±0.14 82.4±0.20

entity-number 63.1±0.33 71.5±0.30 82.7±0.28 86.3±0.02 65.7±0.10

specific-entity 64.3±0.35 71.1±0.33 82.4±0.31 98.9±0.10 71.2±0.21

specific-relation 63.3±0.34 71.4±0.32 82.6±0.30 99.5±0.06 64.8±0.21

WN18RR

uncondition 72.6±0.35 74.2±0.33 85.2±0.31 — 56.4±0.20

pattern 77.0±0.34 80.8±0.31 86.8±0.28 93.5±0.24 83.3±0.15

relation-number 74.0±0.34 77.4±0.31 86.3±0.28 95.3±0.25 78.9±0.20

entity-number 73.2±0.37 77.9±0.35 87.2±0.33 85.2±0.28 65.1±0.18

specific-entity 73.6±0.38 75.6±0.37 86.2±0.36 89.0±0.31 65.2±0.21

specific-relation 73.0±0.35 75.2±0.33 85.7±0.30 96.1±0.19 60.8±0.21

DBpedia50

uncondition 64.3±0.35 66.2±0.33 79.5±0.30 — 51.0±0.24

pattern 73.8±0.37 76.6±0.36 86.8±0.26 88.4±0.36 79.2±0.20

relation-number 72.1±0.32 76.1±0.30 87.5±0.22 80.6±0.43 79.1±0.22

entity-number 75.2±0.37 80.3±0.35 92.4±0.29 84.0±0.26 63.3±0.22

specific-entity 73.7±0.33 78.7±0.31 88.4±0.35 79.6±0.40 62.9±0.22

specific-relation 75.2±0.31 80.6±0.29 93.7±0.20 84.2±0.36 60.3±0.20

Table 2: Average scores on FB15k237 datasets under five conditions

Model Jaccard Dice Overlap Accuracy Smatch

GPT-4o + 2-hop subgraph 2.4±0.10 3.1±0.13 5.3±0.20 77.5±0.31 37.9±0.27

Kimi K2 + 2-hop subgraph 3.1±0.11 4.7±0.17 8.5±0.24 71.6±0.34 42.4±0.22

Grok-3 + 2-hop subgraph 2.5±0.09 3.7±0.12 6.9±0.21 75.6±0.38 43.5±0.21

DeepSeek-V3 + 2-hop subgraph 2.1±0.09 2.8±0.11 6.3±0.26 73.9±0.33 41.8±0.27

DeepSeek-V3 + RAG 5.3±0.15 6.7±0.17 10.4±0.46 76.6±0.35 41.8±0.27

GPT5(Thinking) + 2-hop subgraph 18.7±0.32 21.9±0.35 37.3±0.46 92.8±0.28 32.9±0.27

CtrlHGen 64.3±0.33 71.9±0.31 83.0±0.29 96.6±0.84 73.3±0.16

On the other hand, the performance of LLMs remains very poor, even on common-sense knowledge
graphs. We attribute this issue to two main factors. First, LLMs lack the ability to fully comprehend
structured data, while this task requires generating correct structured query graphs rather than merely
capturing semantic meaning. Moreover, when the number of observed entities is large, their two-hop
subgraphs expand rapidly, producing lengthy textual representations that further challenge the model.
Second, the knowledge embedded in LLMs may conflict with that of the knowledge graph. For
example, given an observation set containing several singers including Justin Bieber and Kendrick
Lamar, Grok-3 classified them as singers who have made hip-hop music, whereas in the knowledge
graph, Justin Bieber is not a hip-hop singer. Such contradictions can significantly affect performance
on certain domain-specific data. For more analysis, please refer to Appendix C.1.

4.3 ABLATION STUDY

We studied the influence of two proposed components of CtrlHGen, dataset augmentation based on
sub-logical decomposition and the reward function.

Sub-logical Decomposition. We evaluate 13 logical patterns on DBpedia-50 using predefined patterns
as conditions. The evaluation is conducted under two settings: one with the data augmentation strategy
and one without it. As shown in Fig. 5, sub-logical decomposition significantly improves the Jaccard
Index, especially for complex patterns involving disjunctions and negations, while maintaining
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similar Accuracy between two settings. This indicates that the improvement in long logic is due to
the enhanced understanding of the internal logical structure rather than relying on external prompts.
Notably, improvements also appear on simple patterns (e.g., 1p), indicating the model benefits from
decomposing logic into simpler sub-components.

Reward Function. We investigate different reward functions on WN18RR with the "pattern"
condition. The results has been shown in Table 3. Reinforcement learning notably improves
generalization and reduces accuracy variance compared to supervised learning. Removing Dice and
Overlap rewards weakens performance, indicating that Jaccard alone is too strict and may hinder
convergence. Excluding the condition-adherence reward slightly improves semantic similarity but
harms condition adherence, confirming our reward design effectively balances both objectives. We
further analyzed the possible reasons why semantic similarity slightly decreased when conditional
adherence was introduced in Appendix C.

(a) Jaccard Score (b) Condition Adherence Accuracy

Figure 5: Results of ablation studies for the sub-logical decomposition.

Table 3: Results of ablation studies for the reward function.

Model Semantic Similarity Condition Adherence Average
Jaccard Dice Overlap Accuracy Smatch

CtrlHG(w/o RL) 71.5±0.37 75.8±0.35 83.7±0.33 81.5±0.38 79.0±0.18 78.3
CtrlHG(w/o Dice and Overlap) 74.8±0.34 78.2±0.33 85.1±0.30 90.3±0.25 82.0±0.15 82.1
CtrlHG(w/o Condition Adherence) 77.5±0.33 81.6±0.31 87.8±0.29 68.3±0.46 75.0±0.22 78.0
CtrlHG 77.0±0.34 80.8±0.31 86.8±0.28 93.5±0.24 83.3±0.15 84.3

4.4 CASE STUDY

To demonstrate our controlbility we present two representative cases from FB15k-237, with results
provided in Appendix. In the first case (Fig. 8), the observation consists of four music genres: {Blues,
Jazz, Rhythm_and_Blues, Bebop}. As the logical pattern conditions grow in complexity, the model
produces increasingly fine-grained answers. For instance, under the basic “1p” pattern it identifies
their common parent genre, while more complex patterns enable it to retrieve finer details such as
artists associated with these genres. In the second case shown in Fig. 9, it focuses on specific entities.
For strongly related entities such as Yahoo, the model is able to identify clear connections with the
observation set. Even for entities with weaker relationships, such as two movies, the model can
still capture hidden associations between them. Surpringsingly, for seemingly unrelated entities like
BAFTA_Award_for_Best_Sound, the model is able to generate high-semantic-quality hypotheses by
leveraging the logical "or" operator, while still ensuring adherence to the given constraints.
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5 CONCLUSION

In summary, this paper introduces a new task of controllable abductive reasoning in knowledge
graphs to address the limitation of controllability in the existing method. To tackle the challenges
when control generating long and complex logical hypotheses, we propose a data augmentation
strategy based on sub-logic decomposition, along with smoother semantic and constraint-adherence
reward functions. Experimental results demonstrate that our approach significantly improves the
controllability and overall quality of the generated hypotheses.

6 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results, the relevant experimental settings and implementation
details have been thoroughly documented. The complete experimental setup is described in Section 4.1
and Appendix B, and the corresponding code is also provided in Appendix B.
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A DETAILS FOR OBSERVATION-HYPOTHESIS SAMPLE

Given a knowledge graph G and a predefined logical pattern P , the algorithm begins by sampling a
random node v and recursively constructs a hypothesis such that v is one of its conclusions and the
hypothesis conforms to the logical type specified by P . During the recursive process, the algorithm
examines the current operation in the hypothesis structure. If the operation is projection, the algorithm
randomly selects an incoming edge (u, r, v) of node v, then recursively generates a sub-hypothesis
rooted at node u according to the corresponding subtype of P . If the operation is intersection, the
algorithm recursively constructs sub-hypotheses using the same node v for each subtype, since all
sub-hypotheses must conclude with v. If the operation is union, it applies the recursion to one subtype
using node v, and to the remaining subtypes using randomly selected nodes. This is because, under
union, only one of the sub-hypotheses needs to have v as its conclusion.

For the sub-logic decomposition, we decompose a hypothesis into its sub-logical hypothesis Hsub

based on the type of reference hypothesis H . For example, a logical pattern "inp" can be decomposed
into two sublogical patterns "2p". Then we calculate the corresponding conclusions of these two "2p"
logical hypotheses respectively as sub-observations, thereby constructing the sub-logic observation-
hypothesis set.

B MORE EXPERIMENT DETAILS

For all experiments, we set the learning rate to 1e-5 and use a batch size of 256 during supervised
training. The supervised training process consists of two stages. In the first stage, the model is trained
for 400 epochs, including a 50-epoch warm-up phase. In the second stage, which involves conditional
supervised training, we train for 50 epochs with a 5-epoch warm-up. For reinforcement learning, a
smaller batch size of 32 is used, and each group samples 4 candidate answers. The hyperparameters
λ1, λ2, and λ3 are set to 1.0, 0.5, and 0.5, respectively. And then we set α = 0.5. The code is
available at https://anonymous.4open.science/r/CtrlHGen-EDB3/.

B.1 SMATCH

Smatch (Cai & Knight, 2013) is an evaluation metric for Abstract Meaning Representation (AMR)
graphs, which are directed acyclic graphs with two node types (variable and concept) and three
edge types (instance, attribute, and relation). Given a predicted graph Gp and a gold graph Gg,
Smatch(Gp, Gg) is computed by finding an approximately optimal mapping between the variable
nodes of the two graphs and matching their edges. Following the settings of Bai et al. (2024b),
we transform the hypothesis graph G(H) into an AMR graph GA(H) by adding virtual nodes and
instance edges, and then calculate Smatch. In short, Smatch is used to measure the degree of similarity
between the generated hypothesis and the ground truth in the test set.

C MORE RESULTS

C.1 DETAILED RESULTS

Here, we reported our detailed results of LLMs’ performance in Table 4. We also showed our
prompts in Fig 6. We found that large language models are sometimes greatly influenced by
semantics, thus neglecting the role of correct structure. For example, when the observation is
{Librarian, Lawyer, Mathematician, Physicist, Scientist-GB}, Grok-3 will answer whether they are
working in a library or in a law-related profession. However, the correct query for reference is the
occupation of Gottfrie Wilhelm von Leibniz or the occupation of those influenced by Italo Calvino.
In this example, the large language model found the most relevant semantic content but ignored
that they could not meet all situations. Even more strangely, large language models sometimes
include the entities within observations in the hypotheses they generate. Given an observation
{Fever, Fatigue, Headache}, LLMs did not find any drugs that could treat them or diseases with
these three symptoms. Instead, it included these three observed entities and predicates belonging
to a certain symptom in its logical assumptions. That is, these observations are symptoms of fever,
Headache and Fatigue. We believe this is because the large language model has not fully understood
the structural relationship, thus confusing the contents of the input edge and the output edge.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Input: Observation, Logic Patterns, 2-hop subgraph, condition

[Format Specification]: ’answer: <hypothesis>’.
[Instructions]: Do not add quotes, explanations, or extra text and only replace <hypothesis>
with your generated content.
[Task]: Now you need to do the abductive reasoning in knowledge graphs. The observation
(consist of entity id and semantic) is <observation>.
Your task is to generate the hypothesis whose form is first order logic in <logic patterns>,
where i means intersection, u means union, n means negation. p denotes the relation and e is
the entity.
Here is the related 2-hop subgraph <2-hop subgraph> for you, which may help you. For each
(u,v,k), u is the source node, v is the target node, k is the relation. Each form is ’id: Semantic
content’.
Now generate the hypothesis, with the format in the <logic patterns> . Please note that you
need to make sure the hypothesis you generate satisfy the <condition> .

Figure 6: Prompt Example.

On the one hand, we found that GPT5(Thinking) has achieved a significant performance improvement
Firstly, the model can follow the control conditions in most cases. Secondly, higher semantic similarity
is achieved under all five conditions. In contrast, models are more likely to generate hypotheses with
higher semantic similarities under the control of semantic content than under structural control. This
might be because the model itself is better at capturing based on semantics compared to structured
reasoning. However, they still have a considerable gap compared to CtrlHGen, indicating that
abductive reasoning tasks with structured knowledge remain challenging for advanced large language
models.

On the other hand, Deepseek-V3 with RAG has improved performance under the condition of
semantic control, but the results remains almost unchanged under the condition of structural control.
We believe this can be attributed to two primary reasons: First, RAG primarily enhances semantic
retrieval, enabling the model to fetch more semantically relevant context. It offers limited benefit
when precise structural constraints are imposed, as these require strict path conformance rather than
mere semantic relevance. Second, the provided 2-hop subgraph already serves as a highly informative
prompt. Since the depth of all 13 predefined logical patterns is 2, this 2-hop subgraph covers most of
the structural information required for hypothesis generation.

The consistently poor performance under structural control instead reveals the models’ persistent
weakness in complex structural reasoning over graphs. Compared to standard KGQA, which only
requires interpreting and following one given logical chain, abductive reasoning is fundamentally more
challenging: it demands that the model simultaneously consider all relevant logical chains surrounding
a set of observed entities and abduce the single most explanatory multi-hop hypothesis. This inverse,
open-ended search process imposes significantly greater demands on structural understanding and
logical synthesis, an area where current LLMs still fall short.

We also compared the experimental results of GPT5 (thinking) under different temperature settings
on FB15k237 dataset under the ’patttern’ condition. The results are shown in Table 5. We found
that a temperature of 0.0 can ensure a balance between semantic similarity and condition adherence.
Excessively high temperatures may enhance the ability to explore, thereby improving semantic
similarity, but they will significantly reduce condition adherence.

C.2 ANALYSIS FOR CONDITION ADHERENCE REWARD

We have further analyzed the ablation study presented in the paper, comparing the performance
of each logical pattern with and without the Condition Adherence(CA) reward. The results are
summarized in Table 6 and Table 7.
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Table 4: The results of controllable abductive reasoning under different conditions. (Result: average
score ± standard deviation.)

Dataset Condition Semantic Similarity Condition Adherence
Jaccard Dice Overlap Accuracy Smatch

GPT-4o + 2-hop subgraph

pattern 4.7±0.19 5.1±0.20 7.7±0.26 85.3±0.18 55.6±0.29

relation-number 1.9±0.08 2.8±0.11 5.4±0.19 74.4±0.49 44.1±0.26

entity-number 2.2±0.08 3.3±0.12 6.0±0.20 84.3±0.36 45.3±0.22

specific-entity 2.5±0.12 3.2±0.14 5.0±0.21 77.8±0.24 20.7±0.27

specific-relation 0.9±0.06 1.3±0.08 2.4±0.13 65.5±0.26 23.8±0.23

Kimi K2 + 2-hop subgraph

pattern 3.1±0.10 4.6±0.14 7.7±0.22 82.4±0.33 50.2±0.21

relation-number 2.4±0.09 3.6±0.12 8.5±0.26 71.1±0.49 47.0±0.19

entity-number 2.2±0.09 3.2±0.12 6.0±0.20 62.3±0.41 35.8±0.19

specific-entity 4.2±0.18 5.7±0.20 10.8±0.26 69.0±0.30 38.4±0.25

specific-relation 3.6±0.11 5.2±0.15 9.5±0.26 73.4±0.19 40.5±0.24

Grok-3 + 2-hop subgraph

pattern 3.8±0.11 5.7±0.15 12.0±0.28 83.0±0.37 61.2±0.24

relation-number 1.8±0.07 2.8±0.10 4.6±0.17 70.5±0.45 40.0±0.26

entity-number 1.9±0.07 2.8±0.11 4.9±0.18 70.9±0.45 42.2±0.23

specific-entity 2.7±0.12 3.7±0.14 6.0±0.22 76.3±0.31 38.8±0.27

specific-relation 2.3±0.08 3.4±0.11 7.2±0.22 77.2±0.32 35.4±0.27

Deepseek-V3 + 2-hop subgraph

pattern 2.7±0.10 4.0±0.13 7.1±0.21 79.1±0.50 47.2±0.31

relation-number 0.9±0.04 1.3±0.06 5.5±0.22 70.6±0.31 39.1±0.32

entity-number 1.3±0.08 1.7±0.10 3.4±0.16 69.2±0.29 40.3±0.22

specific-entity 3.7±0.15 4.7±0.17 10.2±0.29 75.8±0.30 41.6±0.28

specific-relation 1.7±0.09 2.3±0.11 5.4±0.20 74.2±0.28 40.6±0.23

GPT5(Thinking)+2-hop subgraph

pattern 14.8±0.30 17.4±0.32 30.6±0.42 83.8±0.37 71.5±0.31

relation-number 14.6±0.30 17.1±0.32 31.5±0.44 96.6±0.17 56.8±0.17

entity-number 17.8±0.30 22.0±0.33 44.9±0.46 95.3±0.21 54.2±0.19

specific-entity 24.1±0.36 27.4±0.39 40.1±0.49 94.2±0.26 31.9±0.21

specific-relation 22.1±0.34 25.8±0.37 39.6±0.46 94.5±0.22 28.1±0.20

Deepseek-V3 + RAG

pattern 2.8±0.09 3.8±0.22 6.1±0.21 78.5±0.34 48.2±0.35

relation-number 1.6±0.08 2.3±0.11 3.8±0.19 69.3±0.40 34.5±0.26

entity-number 0.8±0.04 1.4±0.07 3.8±0.19 72.3±0.40 39.2±0.24

specific-entity 13.7±0.31 15.4±0.33 23.0±0.42 82.8±0.41 25.9±0.24

specific-relation 7.6±0.27 10.5±0.30 15.4±0.36 80.2±0.30 16.8±0.26

Table 5: Temperature sensitivity experiment.

Temperature Semantic Similarity Condition Adherence Average
Jaccard Dice Overlap Accuracy Smatch

t=1.0 15.8±0.31 18.2±0.33 28.5±0.41 75.3±0.43 68.4±0.18 41.2
t=0.5 13.4±0.28 15.8±0.31 28.8±0.41 79.2±0.40 69.1±0.18 41.2
t=0.0 14.8±0.30 17.4±0.32 30.6±0.42 83.8±0.37 71.5±0.31 43.6

• For logical patterns involving negation (such as 2in, pin, and inp), we observed that even
without conditional adherence rewards, the model is often able to identify the correct logical
structure on its own and achieve higher accuracy. In these cases, enforcing constraint adher-
ence may overly limit the model’s exploratory flexibility, leading to suboptimal semantic
performance.

• In contrast, for logical patterns that involve only intersection (such as pi, ip, 2i, 3i), we
found a strong correlation between improved constraint satisfaction and enhanced semantic
similarity. Without reinforcement signals guiding the model to comply with constraints, it
tends to generate alternative formats that deviate from the intended structure, resulting in
decreased semantic quality.
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• Interestingly, for the ‘3in’ pattern, the model appears to strike a balance between intersection
and negation: regardless of whether constraints are enforced, the resulting hypotheses exhibit
comparable semantic similarity.

Table 6: Ablation Results of Jaccard Score

logical pattern 2in pin inp pni up 2u 3in 1p 2p pi ip 2i 3i

CtrlHGen(w/o RL) 63.6 68.1 67.6 65.2 67.0 81.9 69.2 75.4 79.3 72.6 73.8 70.1 74.8

CtrlHGen(w/o CA) 76.2 75.9 72.3 71.1 71.6 85.3 70.4 91.2 85.1 75.8 82.1 78.9 71.9
CtrlHGen 71.7 73.2 69.7 69.1 70.3 84.9 70.2 91.3 85.3 76.4 82.8 79.8 77.2

Difference -4.5 -2.7 -2.6 -2.0 -1.3 -0.4 -0.2 0.1 0.2 0.6 0.7 0.9 5.3

Table 7: Ablation Results of Condition Adherence Accuracy

logical pattern 2in pin inp pni up 2u 3in 1p 2p pi ip 2i 3i

CtrlHGen (w/o RL) 58.7 60.1 98.2 78.7 98.5 93.9 93.2 45.5 84.6 88.5 91.4 96.7 70.6
CtrlHGen (w/o CA) 82.4 84.7 78.7 79.1 91.6 97.0 34.2 65.9 74.8 57.0 58.4 76.9 16.5

CtrlHGen 84.5 98.6 84.4 85.8 98.7 96.3 95.4 89.0 96.4 98.2 98.3 98.6 90.1

C.3 MORE BASELINES

Here, we incorporated the data augmentation strategy proposed in Logic-Gen (Asai & Hajishirzi,
2020) as an additional baseline. We also compared it with our method CtrlHGen and AbductiveKGR
without data augmentation but only by introducing conditional tokens. Since these two methods don’t
employ reinforcement learning for conditional control, we report results after supervised training,
ensuring a fair comparison. We conducted experiments on the DBpedia50 dataset and selected
‘pattern’ and ‘specific-relation’ respectively to represent structural control and semantic control. The
results are reported in Table 8 and 9.

The experiments reveal that, while Logic-Gen’s data augmentation indeed improves the model’s
overall grasp of logical patterns, it remains inferior to our sub-logic decomposition approach. We
believe this is because the sub-logic decomposition forces the model to deeply understand and
compose longer, more intricate logical chains step-by-step, leading to substantially stronger reasoning
capability on complex hypotheses. It more effectively mitigates hypothesis space collapse, thereby
significantly enhancing compliance when strict structural conditions are imposed.

Table 8: Results on DBpedia50 dataset under the ‘pattern’ condtion.

Model Semantic Similarity Condition Adherence
Jaccard Dice Overlap Accuracy Smatch

AbductiveKGR+condition token 68.2±0.34 73.2±0.32 80.6±0.29 66.6±0.47 77.5±0.20

Logic-Gen 69.5±0.34 73.5±0.32 79.9±0.30 65.9±0.47 77.5±0.21

CtrlHGen 70.1±0.33 74.0±0.31 80.8±0.29 73.1±0.41 80.8±0.17

C.4 VISUALIZATION

To evaluate controllability, we sampled 100 hypothesis-observation pairs from the FB15k-237 test
set for each category defined by the number of relations (1, 2, or 3) in the reference hypothesis.
We compared the number of predicate relations in generated hypotheses under two settings: with
and without relation-number constraints. As shown in Fig. 7, without conditional constraints, the
model tends to generate hypotheses with a larger number of predicate relations, making it difficult
to generate hypotheses with only one relation. However, when conditional constraints are applied,
the majority of generated hypotheses align with the expected number of predicates. This experiment
further demonstrates the strong controllability of our model.
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Table 9: Results on the DBpedia50 dataset under the ‘specific-relation’ condition.

Model Semantic Similarity Condition Adherence
Jaccard Dice Overlap Accuracy Smatch

AbductiveKGR + condition token 69.3±0.35 73.0±0.33 86.4±0.31 78.6±0.40 58.0±0.23

Logic-Gen 70.4±0.35 73.4±0.33 88.0±0.29 75.9±0.42 54.9±0.23

CtrlHGen 72.7±0.33 77.2±0.31 90.7±0.27 80.0±0.40 51.6±0.23

(a) Without condition constraint (b) With relation-number condition

Figure 7: Visualization of Relation-number Distribution in Generated Hypotheses

C.5 CASE STUDY

In this section, we show the results of two case study in Fig 8 and Fig 9.

C.6 MULTI-DIALOGUE CASE

In this section, we implemented a simple yet highly interactive multi-round dialogue system that
automatically adjusted control conditions based on the user’s evolving intentions and the outcomes
of previous rounds. We leveraged a large language model (DeepSeek-V3) to intelligently select
appropriate control conditions according to the user’s expressed intent. The prompt used for this
condition-selection LLM is presented in Fig. 10. At each turn, the LLM generated updated control
conditions by jointly considering the hypothesis produced in the previous round, its derived con-
clusions, the corresponding Jaccard similarity score, and the current user input. These dynamically
selected conditions were then passed back to the core hypothesis generation model. A complete
interaction example is shown in Fig. 11.

In this case, the initial observation consisted of four songs. In the first round, the user expressed
interest in connections related to the acoustic guitar. The system accordingly generated a relatively
broad hypothesis that slightly over-covered the observed entities. In the second round, the user
asked who the artist was; the LLM selected “specific-relation” as the control condition to focus the
generation. Although a relevant hypothesis was produced, it remained somewhat vague. Consequently,
in the third round, the user requested a simpler logical structure. The LLM responded by enforcing
the simplest available logic pattern, successfully revealing that all four songs were authored by Tracy
Lawrence. Finally, wishing to explore the observation more deeply, the user sought additional related
information. The LLM then imposed a relation count of three as the control condition, prompting
the model to generate a richer, more complex hypothesis that incorporated two different associated
artists.

Through this multi-round interaction, the system seamlessly combines structural and semantic control
signals, gradually improving the relevant hypotheses closely related to the user’s constantly evolving
exploration goals. It demonstrates the potential of our method in real-world scenarios.
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Observation: Blues, Jazz, Rhythm_and_blues, Bebop

Condition1: Logical Pattern 1p
Hypothesis 1: H = V? : Parent_genre(Hard_bop, V?)
Interpretations 1: The music genre that originates from the Hard_bop genre.
Conclusion 1: Blues, Jazz, Rhythm_and_blues, Bebop.
Jaccard Score: 1.0

Condition2: Logical Pattern 2p
Hypothesis 2: H = V? : Parent_genre(P?, V?) ∧ genre(McCoy_Tyner, P?)
Interpretations 2: The musical genre that originates from the genre which is associated
with the artist McCoy_Tyner.
Conclusion 2: Blues, Jazz, Rhythm_and_blues, Bebop.
Jaccard Score: 1.0

Condition3: Logical Pattern ip
Hypothesis 3: H = V? : Parent_genre(Hard_bop, V?) ∧ genre(Roy_Haynes, P?) ∧
genre(McCoy_Tyner, P?)
Interpretations 3: The musical genre that originates from the Hard_bop genre and is
associated with the artist Roy_Haynes and McCoy_Tyner.
Conclusion 3: Blues, Jazz, Rhythm_and_blues, Bebop.
Jaccard Score: 1.0

Figure 8: Case study of Logic Control.

D THE USE OF LLMS

In this paper, large language models (LLMs) were employed exclusively for language refinement,
such as improving grammar, clarity, and readability of the manuscript. They were not utilized in any
stage of the research process itself, including the formulation of ideas, experimental design, data
collection, analysis, or interpretation of results.
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Observation: Avid_Technology, Intel_Corporation, IBM, Microsoft_Corporation, Seat-
tle_Mariners, Walmart, Cisco_Systems, Inc., Golden_State_Warriors, Seattle_Supersonics,
Los_Angeles_Kings, San_Jose_Sharks, Pixar, Amazon.com, eBay

Condition 1: Entity contains Smokin_Aces
Hypothesis 1: H = V? : Employ(V?, P?) ∧ Film_crew_role(Smokin_Aces, P?)
Interpretations 1: The organization/company that employs people who have served as a
crew member in the film Smokin_Aces.
Conclusion 1: Avid_Technology, Intel_Corporation, IBM, Microsoft_Corporation, Seat-
tle_Mariners, Walmart, Cisco_Systems, Inc., Golden_State_Warriors, Seattle_Supersonics,
Los_Angeles_Kings, San_Jose_Sharks, Pixar, Amazon.com, eBay.
Jaccard Score: 1.0

Condition 2: Entity contains The_Phantom
Hypothesis 2: H = V? : Employ(V?, P?) ∧ Film_crew_role(The_Phantom,P?)
Interpretations 2: The organization/company that employs people who have served as a
crew member in the film The_Phantom.
Conclusion 2: Avid_Technology, Intel_Corporation, IBM, Microsoft_Corporation, Seat-
tle_Mariners, Walmart, Cisco_Systems, Inc., Golden_State_Warriors, Seattle_Supersonics,
Los_Angeles_Kings, San_Jose_Sharks, Pixar, Amazon.com, eBay.
Jaccard Score: 1.0

Condition 3: Entity contains Yahoo
Hypothesis 3: H = V? : Employ(V?, P?) ∧ ¬Employed(P?, Y ahoo) ∧
Employed(P?, Avid_Technology)
Interpretations 3: The organization/company that employs people who have never been
employed by Yahoo, but have been employed by Avid_Technology.
Conclusion 3: Avid_Technology, Intel_Corporation, IBM, Microsoft_Corporation, Seat-
tle_Mariners, Walmart, Cisco_Systems, Inc., Golden_State_Warriors, Seattle_Supersonics,
Los_Angeles_Kings, San_Jose_Sharks, Pixar, Amazon.com, eBay.
Jaccard Score: 1.0

Condition 4: Entity contains BAFTA_Award_for_Best_Sound
Hypothesis 4:
H = V? : Employ(V?, P?)∧Nominated_for(P?, BAFTA_Award_for_Best_Sound)
∨ Employed(P?, Los_Angeles_Kings)
Interpretations 4: The organization/company that employs people who have been nomi-
nated for BAFTA_Award_for_Best_Sound or have been employed by Los_Angeles_Kings.
Conclusion 4: Avid_Technology, Intel_Corporation, IBM, Microsoft_Corporation, Seat-
tle_Mariners, Walmart, Cisco_Systems, Inc., Golden_State_Warriors, Seattle_Supersonics,
Los_Angeles_Kings, San_Jose_Sharks, Pixar, Amazon.com, eBay.
Jaccard Score: 1.0

Figure 9: Case Study of Entity Semantic Control.
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Input: Observation, Hypothesis(last round), Condition(last round),Jaccard_score(last round),
Intention, Logic Patterns

[Instructions]: Do not add quotes, explanations, or extra text and only replace <hypothesis>
with your generated content.
[Task]: Now I am doing the abductive reasoning in knowledge graphs. The observation
(consist of entity id: semantic) is Observation. I have generated a hypothesis <Hypothesis>
under the condition <Condition>. The conclusion of this hypothesis is <conclusion>. And the
jaccard score between the conclusion and the observation is <Jaccard_score>. My intention
is that <Intention>. Now your task is to adjust the condition and my model will generate a
new hypothesis under the condition to make the jaccard score between the conclusion and the
observation higher and conforms to my intention.
[Format Specification]: The condition can be one of them ’pattern’, ’entitynumber’,
’entity’, ’relation’, ’relationnumber’. For the pattern, you can specify the corresponding
first-order logical hypothesis format including <Logic Patterns>. If you choose this condition,
your response must be condition: <pattern: <pattern_name». For the entitynumber, you can
specify the number of entities in the hypothesis. If you choose this condition, your response
must be condition: <entitynumber: <number». For the entity, you can specify the entities
in the hypothesis. If you choose this condition, your response must be condition: <entity:
<entity_name». For the relation, you can specify the relations in the hypothesis. If you
choose this condition, your response must be condition: <relation: <relation_name». For the
relationnumber, you can specify the number of relations in the hypothesis. If you choose this
condition, your response must be condition: <relationnumber: <number».

Figure 10: Prompt for LLM.
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Observation: Alibis_(song), I_See_It_Now_(song), If_the_Good_Die_Young, Some-
body_Paints_the_Wall

Intention 1: I want to know about the connection between these songs and the guitar.
Condition 1: Entity contains Acoustic_guitar.
Hypothesis 1: H = V? : WorkofArtist(V?, P?)∧Instrumentof(Acoustic_guitar, P?)
Interpretations 1: The songs that are the work of the artist whose instrument is Acous-
tic_guitar.
Conclusion 1: Alibis_(song), I_See_It_Now_(song), If_the_Good_Die_Young, Some-
body_Paints_the_Wall, If_I_Had_Any_Pride_Left_at_All.
Jaccard Score: 0.66

Intention 2: I want to know which artist is the author of these songs.
Condition 2: Relation contains WorkofArtist.
Hypothesis 2: H = V? : WorkofArtist(V?, P?)∧AssociateArtist(Ken_Mellons, P?)
Interpretations 2: The songs that are the work of the artist whose associateArtist is
Ken_Mellons.
Conclusion 2: Alibis_(song), I_See_It_Now_(song), If_the_Good_Die_Young, Some-
body_Paints_the_Wall.
Jaccard Score: 1.0

Intention 3: This is too complex. I want to make the logic simpler.
Condition 3: Logic Pattern 1p.
Hypothesis 3: H = V? : WorkofArtist(V?, T racy_Lawrence)
Interpretations 3: The songs that are the work of the artist Tracy_Lawrence.
Conclusion 3: Alibis_(song), I_See_It_Now_(song), If_the_Good_Die_Young, Some-
body_Paints_the_Wall.
Jaccard Score: 1.0

Intention 4: I want to know more. Let’s explore more.
Condition 4: Logic contains 3 relations.
Hypothesis 4: H = V? : Musicband(V?, P?) ∧
AssociateArtist(Josh_Logan_(country_singer), P?) ∧
AssociateArtist(Ken_Mellons, P?)
Interpretations 4: The songs that are played by the musical band whose associate artists are
Josh_Logan_(country_singer) and Ken_Mellons.
Conclusion 4: Alibis_(song), I_See_It_Now_(song), If_the_Good_Die_Young, Some-
body_Paints_the_Wall.
Jaccard Score: 1.0

Figure 11: Case Study of Multi-round Dialogue.
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